nslm7x.c revision 1.10 1 /* $NetBSD: nslm7x.c,v 1.10 2000/08/03 09:27:01 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/device.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/queue.h>
47 #include <sys/lock.h>
48 #include <sys/ioctl.h>
49 #include <sys/conf.h>
50 #include <sys/time.h>
51
52 #include <machine/bus.h>
53
54 #include <dev/isa/isareg.h>
55 #include <dev/isa/isavar.h>
56
57 #include <dev/sysmon/sysmonvar.h>
58
59 #include <dev/ic/nslm7xvar.h>
60
61 #include <machine/intr.h>
62 #include <machine/bus.h>
63
64 #if defined(LMDEBUG)
65 #define DPRINTF(x) do { printf x; } while (0)
66 #else
67 #define DPRINTF(x)
68 #endif
69
70 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
71 /* for each unit type */
72 { 7, 7, ENVSYS_STEMP },
73 { 8, 10, ENVSYS_SFANRPM },
74 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
75 { 0, 6, ENVSYS_SVOLTS_DC },
76 { 1, 0, ENVSYS_SOHMS }, /* None */
77 { 1, 0, ENVSYS_SWATTS }, /* None */
78 { 1, 0, ENVSYS_SAMPS } /* None */
79 };
80
81
82 u_int8_t lm_readreg __P((struct lm_softc *, int));
83 void lm_writereg __P((struct lm_softc *, int, int));
84
85 static void setup_fan __P((struct lm_softc *, int, int));
86 static void setup_temp __P((struct lm_softc *, int, int));
87 static void wb_setup_volt __P((struct lm_softc *));
88
89 int lm_match __P((struct lm_softc *));
90 int wb_match __P((struct lm_softc *));
91 int def_match __P((struct lm_softc *));
92 void lm_common_match __P((struct lm_softc *));
93
94 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
95 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
96 struct envsys_basic_info *));
97 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
98
99 void lm_refresh_sensor_data __P((struct lm_softc *));
100
101 static void wb_svolt __P((struct lm_softc *));
102 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
103 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
104
105 void wb781_refresh_sensor_data __P((struct lm_softc *));
106 void wb782_refresh_sensor_data __P((struct lm_softc *));
107 void wb697_refresh_sensor_data __P((struct lm_softc *));
108
109 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
110
111 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
112 int, struct envsys_basic_info *));
113 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
114 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
115 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
116
117 struct lm_chip {
118 int (*chip_match) __P((struct lm_softc *));
119 };
120
121 struct lm_chip lm_chips[] = {
122 { wb_match },
123 { lm_match },
124 { def_match } /* Must be last */
125 };
126
127
128 u_int8_t
129 lm_readreg(sc, reg)
130 struct lm_softc *sc;
131 int reg;
132 {
133 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
134 return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
135 }
136
137 void
138 lm_writereg(sc, reg, val)
139 struct lm_softc *sc;
140 int reg;
141 int val;
142 {
143 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
144 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
145 }
146
147
148 /*
149 * bus independent probe
150 */
151 int
152 lm_probe(iot, ioh)
153 bus_space_tag_t iot;
154 bus_space_handle_t ioh;
155 {
156 u_int8_t cr;
157 int rv;
158
159 /* Check for some power-on defaults */
160 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
161
162 /* Perform LM78 reset */
163 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
164
165 /* XXX - Why do I have to reselect the register? */
166 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
167 cr = bus_space_read_1(iot, ioh, LMC_DATA);
168
169 /* XXX - spec says *only* 0x08! */
170 if ((cr == 0x08) || (cr == 0x01))
171 rv = 1;
172 else
173 rv = 0;
174
175 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
176
177 return (rv);
178 }
179
180
181 /*
182 * pre: lmsc contains valid busspace tag and handle
183 */
184 void
185 lm_attach(lmsc)
186 struct lm_softc *lmsc;
187 {
188 int i;
189
190 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
191 if (lm_chips[i].chip_match(lmsc))
192 break;
193
194 /* Start the monitoring loop */
195 lm_writereg(lmsc, LMD_CONFIG, 0x01);
196
197 /* Indicate we have never read the registers */
198 timerclear(&lmsc->lastread);
199
200 /* Initialize sensors */
201 for (i = 0; i < lmsc->numsensors; ++i) {
202 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
203 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
204 lmsc->info[i].validflags = ENVSYS_FVALID;
205 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
206 }
207 /*
208 * Hook into the System Monitor.
209 */
210 lmsc->sc_sysmon.sme_ranges = lm_ranges;
211 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
212 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
213 lmsc->sc_sysmon.sme_cookie = lmsc;
214
215 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
216 /* sme_streinfo set in chip-specific attach */
217
218 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
219 lmsc->sc_sysmon.sme_envsys_version = 1000;
220
221 if (sysmon_envsys_register(&lmsc->sc_sysmon))
222 printf("%s: unable to register with sysmon\n",
223 lmsc->sc_dev.dv_xname);
224 }
225
226 int
227 lm_match(sc)
228 struct lm_softc *sc;
229 {
230 int i;
231
232 /* See if we have an LM78 or LM79 */
233 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
234 switch(i) {
235 case LM_ID_LM78:
236 printf(": LM78\n");
237 break;
238 case LM_ID_LM78J:
239 printf(": LM78J\n");
240 break;
241 case LM_ID_LM79:
242 printf(": LM79\n");
243 break;
244 default:
245 return 0;
246 }
247 lm_common_match(sc);
248 return 1;
249 }
250
251 int
252 def_match(sc)
253 struct lm_softc *sc;
254 {
255 int i;
256
257 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
258 printf(": Unknow chip (ID %d)\n", i);
259 lm_common_match(sc);
260 return 1;
261 }
262
263 void
264 lm_common_match(sc)
265 struct lm_softc *sc;
266 {
267 int i;
268 sc->numsensors = LM_NUM_SENSORS;
269 sc->refresh_sensor_data = lm_refresh_sensor_data;
270
271 for (i = 0; i < 7; ++i) {
272 sc->sensors[i].units = sc->info[i].units =
273 ENVSYS_SVOLTS_DC;
274 sprintf(sc->info[i].desc, "IN %d", i);
275 }
276
277 /* default correction factors for resistors on higher voltage inputs */
278 sc->info[0].rfact = sc->info[1].rfact =
279 sc->info[2].rfact = 10000;
280 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
281 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
282 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
283 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
284
285 sc->sensors[7].units = ENVSYS_STEMP;
286 strcpy(sc->info[7].desc, "Temp");
287
288 setup_fan(sc, 8, 3);
289 sc->sc_sysmon.sme_streinfo = lm_streinfo;
290 }
291
292 int
293 wb_match(sc)
294 struct lm_softc *sc;
295 {
296 int i, j;
297
298 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
299 j = lm_readreg(sc, WB_VENDID) << 8;
300 lm_writereg(sc, WB_BANKSEL, 0);
301 j |= lm_readreg(sc, WB_VENDID);
302 DPRINTF(("winbond vend id %d\n", j));
303 if (j != WB_VENDID_WINBOND)
304 return 0;
305 /* read device ID */
306 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
307 j = lm_readreg(sc, WB_BANK0_CHIPID);
308 DPRINTF(("winbond chip id %d\n", j));
309 switch(j) {
310 case WB_CHIPID_83781:
311 case WB_CHIPID_83781_2:
312 printf(": W83781D\n");
313
314 for (i = 0; i < 7; ++i) {
315 sc->sensors[i].units = sc->info[i].units =
316 ENVSYS_SVOLTS_DC;
317 sprintf(sc->info[i].desc, "IN %d", i);
318 }
319
320 /* default correction factors for higher voltage inputs */
321 sc->info[0].rfact = sc->info[1].rfact =
322 sc->info[2].rfact = 10000;
323 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
324 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
325 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
326 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
327
328 setup_temp(sc, 7, 3);
329 setup_fan(sc, 10, 3);
330
331 sc->numsensors = WB83781_NUM_SENSORS;
332 sc->refresh_sensor_data = wb781_refresh_sensor_data;
333 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
334 return 1;
335 case WB_CHIPID_83697:
336 printf(": W83697HF\n");
337 wb_setup_volt(sc);
338 setup_temp(sc, 9, 2);
339 setup_fan(sc, 11, 3);
340 sc->numsensors = WB83697_NUM_SENSORS;
341 sc->refresh_sensor_data = wb697_refresh_sensor_data;
342 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
343 return 1;
344 break;
345 case WB_CHIPID_83782:
346 printf(": W83782D\n");
347 break;
348 case WB_CHIPID_83627:
349 printf(": W83627HF\n");
350 break;
351 default:
352 printf(": unknow winbond chip ID 0x%x\n", j);
353 /* handle as a standart lm7x */
354 lm_common_match(sc);
355 return 1;
356 }
357 /* common code for the W83782D and W83627HF */
358 wb_setup_volt(sc);
359 setup_temp(sc, 9, 3);
360 setup_fan(sc, 12, 3);
361 sc->numsensors = WB_NUM_SENSORS;
362 sc->refresh_sensor_data = wb782_refresh_sensor_data;
363 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
364 return 1;
365 }
366
367 static void
368 wb_setup_volt(sc)
369 struct lm_softc *sc;
370 {
371 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
372 sprintf(sc->info[0].desc, "VCORE A");
373 sc->info[0].rfact = 10000;
374 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
375 sprintf(sc->info[1].desc, "VCORE B");
376 sc->info[1].rfact = 10000;
377 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
378 sprintf(sc->info[2].desc, "+3.3V");
379 sc->info[2].rfact = 10000;
380 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
381 sprintf(sc->info[3].desc, "+5V");
382 sc->info[3].rfact = 16778;
383 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
384 sprintf(sc->info[4].desc, "+12V");
385 sc->info[4].rfact = 38000;
386 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
387 sprintf(sc->info[5].desc, "-12V");
388 sc->info[5].rfact = 10000;
389 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
390 sprintf(sc->info[6].desc, "-5V");
391 sc->info[6].rfact = 10000;
392 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
393 sprintf(sc->info[7].desc, "+5VSB");
394 sc->info[7].rfact = 15151;
395 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
396 sprintf(sc->info[8].desc, "VBAT");
397 sc->info[8].rfact = 10000;
398 }
399
400 static void
401 setup_temp(sc, start, n)
402 struct lm_softc *sc;
403 int start, n;
404 {
405 int i;
406
407 for (i = 0; i < n; i++) {
408 sc->sensors[start + i].units = ENVSYS_STEMP;
409 sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
410 }
411 }
412
413
414 static void
415 setup_fan(sc, start, n)
416 struct lm_softc *sc;
417 int start, n;
418 {
419 int i;
420 for (i = 0; i < n; ++i) {
421 sc->sensors[start + i].units = ENVSYS_SFANRPM;
422 sc->info[start + i].units = ENVSYS_SFANRPM;
423 sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
424 }
425 }
426
427 int
428 lm_gtredata(sme, tred)
429 struct sysmon_envsys *sme;
430 struct envsys_tre_data *tred;
431 {
432 static const struct timeval onepointfive = { 1, 500000 };
433 struct timeval t;
434 struct lm_softc *sc = sme->sme_cookie;
435 int i, s;
436
437 /* read new values at most once every 1.5 seconds */
438 timeradd(&sc->lastread, &onepointfive, &t);
439 s = splclock();
440 i = timercmp(&mono_time, &t, >);
441 if (i) {
442 sc->lastread.tv_sec = mono_time.tv_sec;
443 sc->lastread.tv_usec = mono_time.tv_usec;
444 }
445 splx(s);
446
447 if (i)
448 sc->refresh_sensor_data(sc);
449
450 *tred = sc->sensors[tred->sensor];
451
452 return (0);
453 }
454
455 int
456 generic_streinfo_fan(sc, info, n, binfo)
457 struct lm_softc *sc;
458 struct envsys_basic_info *info;
459 int n;
460 struct envsys_basic_info *binfo;
461 {
462 u_int8_t sdata;
463 int divisor;
464
465 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
466 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
467 && (binfo->sensor != 2)) {
468 if (binfo->rpms == 0) {
469 binfo->validflags = 0;
470 return (0);
471 }
472
473 /* 153 is the nominal FAN speed value */
474 divisor = 1350000 / (binfo->rpms * 153);
475
476 /* ...but we need lg(divisor) */
477 if (divisor <= 1)
478 divisor = 0;
479 else if (divisor <= 2)
480 divisor = 1;
481 else if (divisor <= 4)
482 divisor = 2;
483 else
484 divisor = 3;
485
486 /*
487 * FAN1 div is in bits <5:4>, FAN2 div is
488 * in <7:6>
489 */
490 sdata = lm_readreg(sc, LMD_VIDFAN);
491 if ( binfo->sensor == 0 ) { /* FAN1 */
492 divisor <<= 4;
493 sdata = (sdata & 0xCF) | divisor;
494 } else { /* FAN2 */
495 divisor <<= 6;
496 sdata = (sdata & 0x3F) | divisor;
497 }
498
499 lm_writereg(sc, LMD_VIDFAN, sdata);
500 }
501 return (0);
502
503 }
504
505 int
506 lm_streinfo(sme, binfo)
507 struct sysmon_envsys *sme;
508 struct envsys_basic_info *binfo;
509 {
510 struct lm_softc *sc = sme->sme_cookie;
511
512 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
513 sc->info[binfo->sensor].rfact = binfo->rfact;
514 else {
515 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
516 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
517 binfo->sensor - 8, binfo);
518 }
519 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
520 sizeof(sc->info[binfo->sensor].desc));
521 sc->info[binfo->sensor].desc[
522 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
523
524 binfo->validflags = ENVSYS_FVALID;
525 }
526 return (0);
527 }
528
529 int
530 wb781_streinfo(sme, binfo)
531 struct sysmon_envsys *sme;
532 struct envsys_basic_info *binfo;
533 {
534 struct lm_softc *sc = sme->sme_cookie;
535
536 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
537 sc->info[binfo->sensor].rfact = binfo->rfact;
538 else {
539 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
540 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
541 binfo->sensor - 10, binfo);
542 }
543 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
544 sizeof(sc->info[binfo->sensor].desc));
545 sc->info[binfo->sensor].desc[
546 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
547
548 binfo->validflags = ENVSYS_FVALID;
549 }
550 return (0);
551 }
552
553 int
554 wb782_streinfo(sme, binfo)
555 struct sysmon_envsys *sme;
556 struct envsys_basic_info *binfo;
557 {
558 struct lm_softc *sc = sme->sme_cookie;
559 int divisor;
560 u_int8_t sdata;
561 int i;
562
563 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
564 sc->info[binfo->sensor].rfact = binfo->rfact;
565 else {
566 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
567 if (binfo->rpms == 0) {
568 binfo->validflags = 0;
569 return (0);
570 }
571
572 /* 153 is the nominal FAN speed value */
573 divisor = 1350000 / (binfo->rpms * 153);
574
575 /* ...but we need lg(divisor) */
576 for (i = 0; i < 7; i++) {
577 if (divisor <= (1 << i))
578 break;
579 }
580 divisor = i;
581
582 if (binfo->sensor == 12 || binfo->sensor == 13) {
583 /*
584 * FAN1 div is in bits <5:4>, FAN2 div
585 * is in <7:6>
586 */
587 sdata = lm_readreg(sc, LMD_VIDFAN);
588 if ( binfo->sensor == 12 ) { /* FAN1 */
589 sdata = (sdata & 0xCF) |
590 ((divisor & 0x3) << 4);
591 } else { /* FAN2 */
592 sdata = (sdata & 0x3F) |
593 ((divisor & 0x3) << 6);
594 }
595 lm_writereg(sc, LMD_VIDFAN, sdata);
596 } else {
597 /* FAN3 is in WB_PIN <7:6> */
598 sdata = lm_readreg(sc, WB_PIN);
599 sdata = (sdata & 0x3F) |
600 ((divisor & 0x3) << 6);
601 lm_writereg(sc, LMD_VIDFAN, sdata);
602 }
603 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
604 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
605 sdata = lm_readreg(sc, WB_BANK0_FANBAT);
606 sdata &= ~(0x20 << (binfo->sensor - 12));
607 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
608 lm_writereg(sc, WB_BANK0_FANBAT, sdata);
609 }
610
611 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
612 sizeof(sc->info[binfo->sensor].desc));
613 sc->info[binfo->sensor].desc[
614 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
615
616 binfo->validflags = ENVSYS_FVALID;
617 }
618 return (0);
619 }
620
621 static void
622 generic_stemp(sc, sensor)
623 struct lm_softc *sc;
624 struct envsys_tre_data *sensor;
625 {
626 int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
627 DPRINTF(("sdata[temp] 0x%x\n", sdata));
628 /* temp is given in deg. C, we convert to uK */
629 sensor->cur.data_us = sdata * 1000000 + 273150000;
630 }
631
632 static void
633 generic_svolt(sc, sensors, infos)
634 struct lm_softc *sc;
635 struct envsys_tre_data *sensors;
636 struct envsys_basic_info *infos;
637 {
638 int i, sdata;
639
640 for (i = 0; i < 7; i++) {
641 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
642 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
643 /* voltage returned as (mV >> 4), we convert to uVDC */
644 sensors[i].cur.data_s = (sdata << 4);
645 /* rfact is (factor * 10^4) */
646 sensors[i].cur.data_s *= infos[i].rfact;
647 /* division by 10 gets us back to uVDC */
648 sensors[i].cur.data_s /= 10;
649
650 /* these two are negative voltages */
651 if ( (i == 5) || (i == 6) )
652 sensors[i].cur.data_s *= -1;
653 }
654 }
655
656 static void
657 generic_fanrpm(sc, sensors)
658 struct lm_softc *sc;
659 struct envsys_tre_data *sensors;
660 {
661 int i, sdata, divisor;
662 for (i = 0; i < 3; i++) {
663 sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
664 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
665 if (i == 2)
666 divisor = 2; /* Fixed divisor for FAN3 */
667 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
668 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
669 else
670 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
671
672 if (sdata == 0xff || sdata == 0x00) {
673 sensors[i].cur.data_us = 0;
674 } else {
675 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
676 }
677 }
678 }
679
680 /*
681 * pre: last read occured >= 1.5 seconds ago
682 * post: sensors[] current data are the latest from the chip
683 */
684 void
685 lm_refresh_sensor_data(sc)
686 struct lm_softc *sc;
687 {
688 /* Refresh our stored data for every sensor */
689 generic_stemp(sc, &sc->sensors[7]);
690 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
691 generic_fanrpm(sc, &sc->sensors[8]);
692 }
693
694 static void
695 wb_svolt(sc)
696 struct lm_softc *sc;
697 {
698 int i, sdata;
699 for (i = 0; i < 9; ++i) {
700 if (i < 7) {
701 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
702 } else {
703 /* from bank5 */
704 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
705 sdata = lm_readreg(sc, (i == 7) ?
706 WB_BANK5_5VSB : WB_BANK5_VBAT);
707 }
708 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
709 /* voltage returned as (mV >> 4), we convert to uV */
710 sdata = sdata << 4;
711 /* special case for negative voltages */
712 if (i == 5) {
713 /*
714 * -12Vdc, assume Winbond recommended values for
715 * resistors
716 */
717 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
718 } else if (i == 6) {
719 /*
720 * -5Vdc, assume Winbond recommended values for
721 * resistors
722 */
723 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
724 }
725 /* rfact is (factor * 10^4) */
726 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
727 /* division by 10 gets us back to uVDC */
728 sc->sensors[i].cur.data_s /= 10;
729 }
730 }
731
732 static void
733 wb_stemp(sc, sensors, n)
734 struct lm_softc *sc;
735 struct envsys_tre_data *sensors;
736 int n;
737 {
738 int sdata;
739 /* temperatures. Given in dC, we convert to uK */
740 sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
741 DPRINTF(("sdata[temp0] 0x%x\n", sdata));
742 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
743 /* from bank1 */
744 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
745 sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
746 sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
747 DPRINTF(("sdata[temp1] 0x%x\n", sdata));
748 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
749 if (n < 3)
750 return;
751 /* from bank2 */
752 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
753 sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
754 sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
755 DPRINTF(("sdata[temp2] 0x%x\n", sdata));
756 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
757 }
758
759 static void
760 wb_fanrpm(sc, sensors)
761 struct lm_softc *sc;
762 struct envsys_tre_data *sensors;
763 {
764 int i, divisor, sdata;
765 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
766 for (i = 0; i < 3; i++) {
767 sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
768 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
769 if (i == 0)
770 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
771 else if (i == 1)
772 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
773 else
774 divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
775 divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
776
777 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
778 if (sdata == 0xff || sdata == 0x00) {
779 sensors[i].cur.data_us = 0;
780 } else {
781 sensors[i].cur.data_us = 1350000 /
782 (sdata << divisor);
783 }
784 }
785 }
786
787 void
788 wb781_refresh_sensor_data(sc)
789 struct lm_softc *sc;
790 {
791 /* Refresh our stored data for every sensor */
792 /* we need to reselect bank0 to access common registers */
793 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
794 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
795 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
796 wb_stemp(sc, &sc->sensors[7], 3);
797 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
798 generic_fanrpm(sc, &sc->sensors[10]);
799 }
800
801 void
802 wb782_refresh_sensor_data(sc)
803 struct lm_softc *sc;
804 {
805 /* Refresh our stored data for every sensor */
806 wb_svolt(sc);
807 wb_stemp(sc, &sc->sensors[9], 3);
808 wb_fanrpm(sc, &sc->sensors[12]);
809 }
810
811 void
812 wb697_refresh_sensor_data(sc)
813 struct lm_softc *sc;
814 {
815 /* Refresh our stored data for every sensor */
816 wb_svolt(sc);
817 wb_stemp(sc, &sc->sensors[9], 2);
818 wb_fanrpm(sc, &sc->sensors[11]);
819 }
820