Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.13
      1 /*	$NetBSD: nslm7x.c,v 1.13 2001/11/13 13:14:42 lukem Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Squier.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.13 2001/11/13 13:14:42 lukem Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/proc.h>
     46 #include <sys/device.h>
     47 #include <sys/malloc.h>
     48 #include <sys/errno.h>
     49 #include <sys/queue.h>
     50 #include <sys/lock.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/conf.h>
     53 #include <sys/time.h>
     54 
     55 #include <machine/bus.h>
     56 
     57 #include <dev/isa/isareg.h>
     58 #include <dev/isa/isavar.h>
     59 
     60 #include <dev/sysmon/sysmonvar.h>
     61 
     62 #include <dev/ic/nslm7xvar.h>
     63 
     64 #include <machine/intr.h>
     65 #include <machine/bus.h>
     66 
     67 #if defined(LMDEBUG)
     68 #define DPRINTF(x)		do { printf x; } while (0)
     69 #else
     70 #define DPRINTF(x)
     71 #endif
     72 
     73 const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     74 					/* for each unit type */
     75 	{ 7, 7,    ENVSYS_STEMP   },
     76 	{ 8, 10,   ENVSYS_SFANRPM },
     77 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     78 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     79 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     80 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     81 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     82 };
     83 
     84 
     85 u_int8_t lm_readreg __P((struct lm_softc *, int));
     86 void lm_writereg __P((struct lm_softc *, int, int));
     87 
     88 static void setup_fan __P((struct lm_softc *, int, int));
     89 static void setup_temp __P((struct lm_softc *, int, int));
     90 static void wb_setup_volt __P((struct lm_softc *));
     91 
     92 int lm_match __P((struct lm_softc *));
     93 int wb_match __P((struct lm_softc *));
     94 int def_match __P((struct lm_softc *));
     95 void lm_common_match __P((struct lm_softc *));
     96 
     97 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
     98 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
     99     struct envsys_basic_info *));
    100 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    101 
    102 void lm_refresh_sensor_data __P((struct lm_softc *));
    103 
    104 static void wb_svolt __P((struct lm_softc *));
    105 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
    106 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    107 
    108 void wb781_refresh_sensor_data __P((struct lm_softc *));
    109 void wb782_refresh_sensor_data __P((struct lm_softc *));
    110 void wb697_refresh_sensor_data __P((struct lm_softc *));
    111 
    112 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
    113 
    114 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
    115            int, struct envsys_basic_info *));
    116 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    117 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    118 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    119 
    120 struct lm_chip {
    121 	int (*chip_match) __P((struct lm_softc *));
    122 };
    123 
    124 struct lm_chip lm_chips[] = {
    125 	{ wb_match },
    126 	{ lm_match },
    127 	{ def_match } /* Must be last */
    128 };
    129 
    130 
    131 u_int8_t
    132 lm_readreg(sc, reg)
    133 	struct lm_softc *sc;
    134 	int reg;
    135 {
    136 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    137 	return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
    138 }
    139 
    140 void
    141 lm_writereg(sc, reg, val)
    142 	struct lm_softc *sc;
    143 	int reg;
    144 	int val;
    145 {
    146 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    147 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
    148 }
    149 
    150 
    151 /*
    152  * bus independent probe
    153  */
    154 int
    155 lm_probe(iot, ioh)
    156 	bus_space_tag_t iot;
    157 	bus_space_handle_t ioh;
    158 {
    159 	u_int8_t cr;
    160 	int rv;
    161 
    162 	/* Check for some power-on defaults */
    163 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    164 
    165 	/* Perform LM78 reset */
    166 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    167 
    168 	/* XXX - Why do I have to reselect the register? */
    169 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    170 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    171 
    172 	/* XXX - spec says *only* 0x08! */
    173 	if ((cr == 0x08) || (cr == 0x01))
    174 		rv = 1;
    175 	else
    176 		rv = 0;
    177 
    178 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    179 
    180 	return (rv);
    181 }
    182 
    183 
    184 /*
    185  * pre:  lmsc contains valid busspace tag and handle
    186  */
    187 void
    188 lm_attach(lmsc)
    189 	struct lm_softc *lmsc;
    190 {
    191 	int i;
    192 
    193 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    194 		if (lm_chips[i].chip_match(lmsc))
    195 			break;
    196 
    197 	/* Start the monitoring loop */
    198 	lm_writereg(lmsc, LMD_CONFIG, 0x01);
    199 
    200 	/* Indicate we have never read the registers */
    201 	timerclear(&lmsc->lastread);
    202 
    203 	/* Initialize sensors */
    204 	for (i = 0; i < lmsc->numsensors; ++i) {
    205 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    206 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    207 		lmsc->info[i].validflags = ENVSYS_FVALID;
    208 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    209 	}
    210 	/*
    211 	 * Hook into the System Monitor.
    212 	 */
    213 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    214 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    215 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    216 	lmsc->sc_sysmon.sme_cookie = lmsc;
    217 
    218 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    219 	/* sme_streinfo set in chip-specific attach */
    220 
    221 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    222 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    223 
    224 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    225 		printf("%s: unable to register with sysmon\n",
    226 		    lmsc->sc_dev.dv_xname);
    227 }
    228 
    229 int
    230 lm_match(sc)
    231 	struct lm_softc *sc;
    232 {
    233 	int i;
    234 
    235 	/* See if we have an LM78 or LM79 */
    236 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    237 	switch(i) {
    238 	case LM_ID_LM78:
    239 		printf(": LM78\n");
    240 		break;
    241 	case LM_ID_LM78J:
    242 		printf(": LM78J\n");
    243 		break;
    244 	case LM_ID_LM79:
    245 		printf(": LM79\n");
    246 		break;
    247 	default:
    248 		return 0;
    249 	}
    250 	lm_common_match(sc);
    251 	return 1;
    252 }
    253 
    254 int
    255 def_match(sc)
    256 	struct lm_softc *sc;
    257 {
    258 	int i;
    259 
    260 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    261 	printf(": Unknow chip (ID %d)\n", i);
    262 	lm_common_match(sc);
    263 	return 1;
    264 }
    265 
    266 void
    267 lm_common_match(sc)
    268 	struct lm_softc *sc;
    269 {
    270 	int i;
    271 	sc->numsensors = LM_NUM_SENSORS;
    272 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    273 
    274 	for (i = 0; i < 7; ++i) {
    275 		sc->sensors[i].units = sc->info[i].units =
    276 		    ENVSYS_SVOLTS_DC;
    277 		sprintf(sc->info[i].desc, "IN %d", i);
    278 	}
    279 
    280 	/* default correction factors for resistors on higher voltage inputs */
    281 	sc->info[0].rfact = sc->info[1].rfact =
    282 	    sc->info[2].rfact = 10000;
    283 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    284 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    285 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    286 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    287 
    288 	sc->sensors[7].units = ENVSYS_STEMP;
    289 	strcpy(sc->info[7].desc, "Temp");
    290 
    291 	setup_fan(sc, 8, 3);
    292 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    293 }
    294 
    295 int
    296 wb_match(sc)
    297 	struct lm_softc *sc;
    298 {
    299 	int i, j;
    300 
    301 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    302 	j = lm_readreg(sc, WB_VENDID) << 8;
    303 	lm_writereg(sc, WB_BANKSEL, 0);
    304 	j |= lm_readreg(sc, WB_VENDID);
    305 	DPRINTF(("winbond vend id 0x%x\n", j));
    306 	if (j != WB_VENDID_WINBOND)
    307 		return 0;
    308 	/* read device ID */
    309 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    310 	j = lm_readreg(sc, WB_BANK0_CHIPID);
    311 	DPRINTF(("winbond chip id 0x%x\n", j));
    312 	switch(j) {
    313 	case WB_CHIPID_83781:
    314 	case WB_CHIPID_83781_2:
    315 		printf(": W83781D\n");
    316 
    317 		for (i = 0; i < 7; ++i) {
    318 			sc->sensors[i].units = sc->info[i].units =
    319 			    ENVSYS_SVOLTS_DC;
    320 			sprintf(sc->info[i].desc, "IN %d", i);
    321 		}
    322 
    323 		/* default correction factors for higher voltage inputs */
    324 		sc->info[0].rfact = sc->info[1].rfact =
    325 		    sc->info[2].rfact = 10000;
    326 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    327 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    328 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    329 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    330 
    331 		setup_temp(sc, 7, 3);
    332 		setup_fan(sc, 10, 3);
    333 
    334 		sc->numsensors = WB83781_NUM_SENSORS;
    335 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    336 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    337 		return 1;
    338 	case WB_CHIPID_83697:
    339 		printf(": W83697HF\n");
    340 		wb_setup_volt(sc);
    341 		setup_temp(sc, 9, 2);
    342 		setup_fan(sc, 11, 3);
    343 		sc->numsensors = WB83697_NUM_SENSORS;
    344 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    345 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    346 	return 1;
    347 		break;
    348 	case WB_CHIPID_83782:
    349 		printf(": W83782D\n");
    350 		break;
    351 	case WB_CHIPID_83627:
    352 		printf(": W83627HF\n");
    353 		break;
    354 	default:
    355 		printf(": unknow winbond chip ID 0x%x\n", j);
    356 		/* handle as a standart lm7x */
    357 		lm_common_match(sc);
    358 		return 1;
    359 	}
    360 	/* common code for the W83782D and W83627HF */
    361 	wb_setup_volt(sc);
    362 	setup_temp(sc, 9, 3);
    363 	setup_fan(sc, 12, 3);
    364 	sc->numsensors = WB_NUM_SENSORS;
    365 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    366 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    367 	return 1;
    368 }
    369 
    370 static void
    371 wb_setup_volt(sc)
    372 	struct lm_softc *sc;
    373 {
    374 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    375 	sprintf(sc->info[0].desc, "VCORE A");
    376 	sc->info[0].rfact = 10000;
    377 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    378 	sprintf(sc->info[1].desc, "VCORE B");
    379 	sc->info[1].rfact = 10000;
    380 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    381 	sprintf(sc->info[2].desc, "+3.3V");
    382 	sc->info[2].rfact = 10000;
    383 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    384 	sprintf(sc->info[3].desc, "+5V");
    385 	sc->info[3].rfact = 16778;
    386 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    387 	sprintf(sc->info[4].desc, "+12V");
    388 	sc->info[4].rfact = 38000;
    389 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    390 	sprintf(sc->info[5].desc, "-12V");
    391 	sc->info[5].rfact = 10000;
    392 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    393 	sprintf(sc->info[6].desc, "-5V");
    394 	sc->info[6].rfact = 10000;
    395 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    396 	sprintf(sc->info[7].desc, "+5VSB");
    397 	sc->info[7].rfact = 15151;
    398 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    399 	sprintf(sc->info[8].desc, "VBAT");
    400 	sc->info[8].rfact = 10000;
    401 }
    402 
    403 static void
    404 setup_temp(sc, start, n)
    405 	struct lm_softc *sc;
    406 	int start, n;
    407 {
    408 	int i;
    409 
    410 	for (i = 0; i < n; i++) {
    411 		sc->sensors[start + i].units = ENVSYS_STEMP;
    412 		sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
    413 	}
    414 }
    415 
    416 
    417 static void
    418 setup_fan(sc, start, n)
    419 	struct lm_softc *sc;
    420 	int start, n;
    421 {
    422 	int i;
    423 	for (i = 0; i < n; ++i) {
    424 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    425 		sc->info[start + i].units = ENVSYS_SFANRPM;
    426 		sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
    427 	}
    428 }
    429 
    430 int
    431 lm_gtredata(sme, tred)
    432 	 struct sysmon_envsys *sme;
    433 	 struct envsys_tre_data *tred;
    434 {
    435 	 static const struct timeval onepointfive = { 1, 500000 };
    436 	 struct timeval t;
    437 	 struct lm_softc *sc = sme->sme_cookie;
    438 	 int i, s;
    439 
    440 	 /* read new values at most once every 1.5 seconds */
    441 	 timeradd(&sc->lastread, &onepointfive, &t);
    442 	 s = splclock();
    443 	 i = timercmp(&mono_time, &t, >);
    444 	 if (i) {
    445 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    446 		  sc->lastread.tv_usec = mono_time.tv_usec;
    447 	 }
    448 	 splx(s);
    449 
    450 	 if (i)
    451 		  sc->refresh_sensor_data(sc);
    452 
    453 	 *tred = sc->sensors[tred->sensor];
    454 
    455 	 return (0);
    456 }
    457 
    458 int
    459 generic_streinfo_fan(sc, info, n, binfo)
    460 	struct lm_softc *sc;
    461 	struct envsys_basic_info *info;
    462 	int n;
    463 	struct envsys_basic_info *binfo;
    464 {
    465 	u_int8_t sdata;
    466 	int divisor;
    467 
    468 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    469 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    470 	    && (binfo->sensor != 2)) {
    471 		if (binfo->rpms == 0) {
    472 			binfo->validflags = 0;
    473 			return (0);
    474 		}
    475 
    476 		/* 153 is the nominal FAN speed value */
    477 		divisor = 1350000 / (binfo->rpms * 153);
    478 
    479 		/* ...but we need lg(divisor) */
    480 		if (divisor <= 1)
    481 		    divisor = 0;
    482 		else if (divisor <= 2)
    483 		    divisor = 1;
    484 		else if (divisor <= 4)
    485 		    divisor = 2;
    486 		else
    487 		    divisor = 3;
    488 
    489 		/*
    490 		 * FAN1 div is in bits <5:4>, FAN2 div is
    491 		 * in <7:6>
    492 		 */
    493 		sdata = lm_readreg(sc, LMD_VIDFAN);
    494 		if ( binfo->sensor == 0 ) {  /* FAN1 */
    495 		    divisor <<= 4;
    496 		    sdata = (sdata & 0xCF) | divisor;
    497 		} else { /* FAN2 */
    498 		    divisor <<= 6;
    499 		    sdata = (sdata & 0x3F) | divisor;
    500 		}
    501 
    502 		lm_writereg(sc, LMD_VIDFAN, sdata);
    503 	}
    504 	return (0);
    505 
    506 }
    507 
    508 int
    509 lm_streinfo(sme, binfo)
    510 	 struct sysmon_envsys *sme;
    511 	 struct envsys_basic_info *binfo;
    512 {
    513 	 struct lm_softc *sc = sme->sme_cookie;
    514 
    515 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    516 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    517 	 else {
    518 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    519 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    520 			    binfo->sensor - 8, binfo);
    521 		}
    522 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    523 		    sizeof(sc->info[binfo->sensor].desc));
    524 		sc->info[binfo->sensor].desc[
    525 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    526 
    527 		binfo->validflags = ENVSYS_FVALID;
    528 	 }
    529 	 return (0);
    530 }
    531 
    532 int
    533 wb781_streinfo(sme, binfo)
    534 	 struct sysmon_envsys *sme;
    535 	 struct envsys_basic_info *binfo;
    536 {
    537 	 struct lm_softc *sc = sme->sme_cookie;
    538 
    539 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    540 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    541 	 else {
    542 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    543 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    544 			    binfo->sensor - 10, binfo);
    545 		}
    546 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    547 		    sizeof(sc->info[binfo->sensor].desc));
    548 		sc->info[binfo->sensor].desc[
    549 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    550 
    551 		binfo->validflags = ENVSYS_FVALID;
    552 	 }
    553 	 return (0);
    554 }
    555 
    556 int
    557 wb782_streinfo(sme, binfo)
    558 	 struct sysmon_envsys *sme;
    559 	 struct envsys_basic_info *binfo;
    560 {
    561 	 struct lm_softc *sc = sme->sme_cookie;
    562 	 int divisor;
    563 	 u_int8_t sdata;
    564 	 int i;
    565 
    566 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    567 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    568 	 else {
    569 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    570 			if (binfo->rpms == 0) {
    571 				binfo->validflags = 0;
    572 				return (0);
    573 			}
    574 
    575 			/* 153 is the nominal FAN speed value */
    576 			divisor = 1350000 / (binfo->rpms * 153);
    577 
    578 			/* ...but we need lg(divisor) */
    579 			for (i = 0; i < 7; i++) {
    580 				if (divisor <= (1 << i))
    581 				 	break;
    582 			}
    583 			divisor = i;
    584 
    585 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    586 				/*
    587 				 * FAN1 div is in bits <5:4>, FAN2 div
    588 				 * is in <7:6>
    589 				 */
    590 				sdata = lm_readreg(sc, LMD_VIDFAN);
    591 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    592 					 sdata = (sdata & 0xCF) |
    593 					     ((divisor & 0x3) << 4);
    594 				} else { /* FAN2 */
    595 					 sdata = (sdata & 0x3F) |
    596 					     ((divisor & 0x3) << 6);
    597 				}
    598 				lm_writereg(sc, LMD_VIDFAN, sdata);
    599 			} else {
    600 				/* FAN3 is in WB_PIN <7:6> */
    601 				sdata = lm_readreg(sc, WB_PIN);
    602 				sdata = (sdata & 0x3F) |
    603 				     ((divisor & 0x3) << 6);
    604 				lm_writereg(sc, LMD_VIDFAN, sdata);
    605 			}
    606 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    607 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    608 			sdata = lm_readreg(sc, WB_BANK0_FANBAT);
    609 			sdata &= ~(0x20 << (binfo->sensor - 12));
    610 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    611 			lm_writereg(sc, WB_BANK0_FANBAT, sdata);
    612 		}
    613 
    614 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    615 		    sizeof(sc->info[binfo->sensor].desc));
    616 		sc->info[binfo->sensor].desc[
    617 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    618 
    619 		binfo->validflags = ENVSYS_FVALID;
    620 	}
    621 	return (0);
    622 }
    623 
    624 static void
    625 generic_stemp(sc, sensor)
    626 	struct lm_softc *sc;
    627 	struct envsys_tre_data *sensor;
    628 {
    629 	int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    630 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
    631 	/* temp is given in deg. C, we convert to uK */
    632 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    633 }
    634 
    635 static void
    636 generic_svolt(sc, sensors, infos)
    637 	struct lm_softc *sc;
    638 	struct envsys_tre_data *sensors;
    639 	struct envsys_basic_info *infos;
    640 {
    641 	int i, sdata;
    642 
    643 	for (i = 0; i < 7; i++) {
    644 		sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    645 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    646 		/* voltage returned as (mV >> 4), we convert to uVDC */
    647 		sensors[i].cur.data_s = (sdata << 4);
    648 		/* rfact is (factor * 10^4) */
    649 		sensors[i].cur.data_s *= infos[i].rfact;
    650 		/* division by 10 gets us back to uVDC */
    651 		sensors[i].cur.data_s /= 10;
    652 
    653 		/* these two are negative voltages */
    654 		if ( (i == 5) || (i == 6) )
    655 			sensors[i].cur.data_s *= -1;
    656 	}
    657 }
    658 
    659 static void
    660 generic_fanrpm(sc, sensors)
    661 	struct lm_softc *sc;
    662 	struct envsys_tre_data *sensors;
    663 {
    664 	int i, sdata, divisor;
    665 	for (i = 0; i < 3; i++) {
    666 		sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
    667 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    668 		if (i == 2)
    669 			divisor = 2;	/* Fixed divisor for FAN3 */
    670 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    671 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    672 		else
    673 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    674 
    675 		if (sdata == 0xff || sdata == 0x00) {
    676 			sensors[i].cur.data_us = 0;
    677 		} else {
    678 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    679 		}
    680 	}
    681 }
    682 
    683 /*
    684  * pre:  last read occurred >= 1.5 seconds ago
    685  * post: sensors[] current data are the latest from the chip
    686  */
    687 void
    688 lm_refresh_sensor_data(sc)
    689 	struct lm_softc *sc;
    690 {
    691 	/* Refresh our stored data for every sensor */
    692 	generic_stemp(sc, &sc->sensors[7]);
    693 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    694 	generic_fanrpm(sc, &sc->sensors[8]);
    695 }
    696 
    697 static void
    698 wb_svolt(sc)
    699 	struct lm_softc *sc;
    700 {
    701 	int i, sdata;
    702 	for (i = 0; i < 9; ++i) {
    703 		if (i < 7) {
    704 			sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    705 		} else {
    706 			/* from bank5 */
    707 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
    708 			sdata = lm_readreg(sc, (i == 7) ?
    709 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    710 		}
    711 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    712 		/* voltage returned as (mV >> 4), we convert to uV */
    713 		sdata =  sdata << 4;
    714 		/* special case for negative voltages */
    715 		if (i == 5) {
    716 			/*
    717 			 * -12Vdc, assume Winbond recommended values for
    718 			 * resistors
    719 			 */
    720 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    721 		} else if (i == 6) {
    722 			/*
    723 			 * -5Vdc, assume Winbond recommended values for
    724 			 * resistors
    725 			 */
    726 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    727 		}
    728 		/* rfact is (factor * 10^4) */
    729 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    730 		/* division by 10 gets us back to uVDC */
    731 		sc->sensors[i].cur.data_s /= 10;
    732 	}
    733 }
    734 
    735 static void
    736 wb_stemp(sc, sensors, n)
    737 	struct lm_softc *sc;
    738 	struct  envsys_tre_data *sensors;
    739 	int n;
    740 {
    741 	int sdata;
    742 	/* temperatures. Given in dC, we convert to uK */
    743 	sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    744 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
    745 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    746 	/* from bank1 */
    747 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
    748 	sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
    749 	sdata |=  (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
    750 	DPRINTF(("sdata[temp1] 0x%x\n", sdata));
    751 	sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    752 	if (n < 3)
    753 		return;
    754 	/* from bank2 */
    755 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
    756 	sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
    757 	sdata |=  (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
    758 	DPRINTF(("sdata[temp2] 0x%x\n", sdata));
    759 	sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    760 }
    761 
    762 static void
    763 wb_fanrpm(sc, sensors)
    764 	struct lm_softc *sc;
    765 	struct envsys_tre_data *sensors;
    766 {
    767 	int i, divisor, sdata;
    768 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    769 	for (i = 0; i < 3; i++) {
    770 		sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
    771 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    772 		if (i == 0)
    773 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    774 		else if (i == 1)
    775 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    776 		else
    777 			divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
    778 		divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    779 
    780 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    781 		if (sdata == 0xff || sdata == 0x00) {
    782 			sensors[i].cur.data_us = 0;
    783 		} else {
    784 			sensors[i].cur.data_us = 1350000 /
    785 			    (sdata << divisor);
    786 		}
    787 	}
    788 }
    789 
    790 void
    791 wb781_refresh_sensor_data(sc)
    792 	struct lm_softc *sc;
    793 {
    794 	/* Refresh our stored data for every sensor */
    795 	/* we need to reselect bank0 to access common registers */
    796 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    797 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    798 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    799 	wb_stemp(sc, &sc->sensors[7], 3);
    800 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    801 	generic_fanrpm(sc, &sc->sensors[10]);
    802 }
    803 
    804 void
    805 wb782_refresh_sensor_data(sc)
    806 	struct lm_softc *sc;
    807 {
    808 	/* Refresh our stored data for every sensor */
    809 	wb_svolt(sc);
    810 	wb_stemp(sc, &sc->sensors[9], 3);
    811 	wb_fanrpm(sc, &sc->sensors[12]);
    812 }
    813 
    814 void
    815 wb697_refresh_sensor_data(sc)
    816 	struct lm_softc *sc;
    817 {
    818 	/* Refresh our stored data for every sensor */
    819 	wb_svolt(sc);
    820 	wb_stemp(sc, &sc->sensors[9], 2);
    821 	wb_fanrpm(sc, &sc->sensors[11]);
    822 }
    823