nslm7x.c revision 1.13 1 /* $NetBSD: nslm7x.c,v 1.13 2001/11/13 13:14:42 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.13 2001/11/13 13:14:42 lukem Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/errno.h>
49 #include <sys/queue.h>
50 #include <sys/lock.h>
51 #include <sys/ioctl.h>
52 #include <sys/conf.h>
53 #include <sys/time.h>
54
55 #include <machine/bus.h>
56
57 #include <dev/isa/isareg.h>
58 #include <dev/isa/isavar.h>
59
60 #include <dev/sysmon/sysmonvar.h>
61
62 #include <dev/ic/nslm7xvar.h>
63
64 #include <machine/intr.h>
65 #include <machine/bus.h>
66
67 #if defined(LMDEBUG)
68 #define DPRINTF(x) do { printf x; } while (0)
69 #else
70 #define DPRINTF(x)
71 #endif
72
73 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 /* for each unit type */
75 { 7, 7, ENVSYS_STEMP },
76 { 8, 10, ENVSYS_SFANRPM },
77 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 { 0, 6, ENVSYS_SVOLTS_DC },
79 { 1, 0, ENVSYS_SOHMS }, /* None */
80 { 1, 0, ENVSYS_SWATTS }, /* None */
81 { 1, 0, ENVSYS_SAMPS } /* None */
82 };
83
84
85 u_int8_t lm_readreg __P((struct lm_softc *, int));
86 void lm_writereg __P((struct lm_softc *, int, int));
87
88 static void setup_fan __P((struct lm_softc *, int, int));
89 static void setup_temp __P((struct lm_softc *, int, int));
90 static void wb_setup_volt __P((struct lm_softc *));
91
92 int lm_match __P((struct lm_softc *));
93 int wb_match __P((struct lm_softc *));
94 int def_match __P((struct lm_softc *));
95 void lm_common_match __P((struct lm_softc *));
96
97 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
98 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
99 struct envsys_basic_info *));
100 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
101
102 void lm_refresh_sensor_data __P((struct lm_softc *));
103
104 static void wb_svolt __P((struct lm_softc *));
105 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
106 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
107
108 void wb781_refresh_sensor_data __P((struct lm_softc *));
109 void wb782_refresh_sensor_data __P((struct lm_softc *));
110 void wb697_refresh_sensor_data __P((struct lm_softc *));
111
112 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
113
114 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
115 int, struct envsys_basic_info *));
116 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
117 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
118 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
119
120 struct lm_chip {
121 int (*chip_match) __P((struct lm_softc *));
122 };
123
124 struct lm_chip lm_chips[] = {
125 { wb_match },
126 { lm_match },
127 { def_match } /* Must be last */
128 };
129
130
131 u_int8_t
132 lm_readreg(sc, reg)
133 struct lm_softc *sc;
134 int reg;
135 {
136 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
137 return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
138 }
139
140 void
141 lm_writereg(sc, reg, val)
142 struct lm_softc *sc;
143 int reg;
144 int val;
145 {
146 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
147 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
148 }
149
150
151 /*
152 * bus independent probe
153 */
154 int
155 lm_probe(iot, ioh)
156 bus_space_tag_t iot;
157 bus_space_handle_t ioh;
158 {
159 u_int8_t cr;
160 int rv;
161
162 /* Check for some power-on defaults */
163 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
164
165 /* Perform LM78 reset */
166 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
167
168 /* XXX - Why do I have to reselect the register? */
169 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
170 cr = bus_space_read_1(iot, ioh, LMC_DATA);
171
172 /* XXX - spec says *only* 0x08! */
173 if ((cr == 0x08) || (cr == 0x01))
174 rv = 1;
175 else
176 rv = 0;
177
178 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
179
180 return (rv);
181 }
182
183
184 /*
185 * pre: lmsc contains valid busspace tag and handle
186 */
187 void
188 lm_attach(lmsc)
189 struct lm_softc *lmsc;
190 {
191 int i;
192
193 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
194 if (lm_chips[i].chip_match(lmsc))
195 break;
196
197 /* Start the monitoring loop */
198 lm_writereg(lmsc, LMD_CONFIG, 0x01);
199
200 /* Indicate we have never read the registers */
201 timerclear(&lmsc->lastread);
202
203 /* Initialize sensors */
204 for (i = 0; i < lmsc->numsensors; ++i) {
205 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
206 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
207 lmsc->info[i].validflags = ENVSYS_FVALID;
208 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
209 }
210 /*
211 * Hook into the System Monitor.
212 */
213 lmsc->sc_sysmon.sme_ranges = lm_ranges;
214 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
215 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
216 lmsc->sc_sysmon.sme_cookie = lmsc;
217
218 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
219 /* sme_streinfo set in chip-specific attach */
220
221 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
222 lmsc->sc_sysmon.sme_envsys_version = 1000;
223
224 if (sysmon_envsys_register(&lmsc->sc_sysmon))
225 printf("%s: unable to register with sysmon\n",
226 lmsc->sc_dev.dv_xname);
227 }
228
229 int
230 lm_match(sc)
231 struct lm_softc *sc;
232 {
233 int i;
234
235 /* See if we have an LM78 or LM79 */
236 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
237 switch(i) {
238 case LM_ID_LM78:
239 printf(": LM78\n");
240 break;
241 case LM_ID_LM78J:
242 printf(": LM78J\n");
243 break;
244 case LM_ID_LM79:
245 printf(": LM79\n");
246 break;
247 default:
248 return 0;
249 }
250 lm_common_match(sc);
251 return 1;
252 }
253
254 int
255 def_match(sc)
256 struct lm_softc *sc;
257 {
258 int i;
259
260 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
261 printf(": Unknow chip (ID %d)\n", i);
262 lm_common_match(sc);
263 return 1;
264 }
265
266 void
267 lm_common_match(sc)
268 struct lm_softc *sc;
269 {
270 int i;
271 sc->numsensors = LM_NUM_SENSORS;
272 sc->refresh_sensor_data = lm_refresh_sensor_data;
273
274 for (i = 0; i < 7; ++i) {
275 sc->sensors[i].units = sc->info[i].units =
276 ENVSYS_SVOLTS_DC;
277 sprintf(sc->info[i].desc, "IN %d", i);
278 }
279
280 /* default correction factors for resistors on higher voltage inputs */
281 sc->info[0].rfact = sc->info[1].rfact =
282 sc->info[2].rfact = 10000;
283 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
284 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
285 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
286 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
287
288 sc->sensors[7].units = ENVSYS_STEMP;
289 strcpy(sc->info[7].desc, "Temp");
290
291 setup_fan(sc, 8, 3);
292 sc->sc_sysmon.sme_streinfo = lm_streinfo;
293 }
294
295 int
296 wb_match(sc)
297 struct lm_softc *sc;
298 {
299 int i, j;
300
301 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
302 j = lm_readreg(sc, WB_VENDID) << 8;
303 lm_writereg(sc, WB_BANKSEL, 0);
304 j |= lm_readreg(sc, WB_VENDID);
305 DPRINTF(("winbond vend id 0x%x\n", j));
306 if (j != WB_VENDID_WINBOND)
307 return 0;
308 /* read device ID */
309 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
310 j = lm_readreg(sc, WB_BANK0_CHIPID);
311 DPRINTF(("winbond chip id 0x%x\n", j));
312 switch(j) {
313 case WB_CHIPID_83781:
314 case WB_CHIPID_83781_2:
315 printf(": W83781D\n");
316
317 for (i = 0; i < 7; ++i) {
318 sc->sensors[i].units = sc->info[i].units =
319 ENVSYS_SVOLTS_DC;
320 sprintf(sc->info[i].desc, "IN %d", i);
321 }
322
323 /* default correction factors for higher voltage inputs */
324 sc->info[0].rfact = sc->info[1].rfact =
325 sc->info[2].rfact = 10000;
326 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
327 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
328 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
329 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
330
331 setup_temp(sc, 7, 3);
332 setup_fan(sc, 10, 3);
333
334 sc->numsensors = WB83781_NUM_SENSORS;
335 sc->refresh_sensor_data = wb781_refresh_sensor_data;
336 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
337 return 1;
338 case WB_CHIPID_83697:
339 printf(": W83697HF\n");
340 wb_setup_volt(sc);
341 setup_temp(sc, 9, 2);
342 setup_fan(sc, 11, 3);
343 sc->numsensors = WB83697_NUM_SENSORS;
344 sc->refresh_sensor_data = wb697_refresh_sensor_data;
345 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
346 return 1;
347 break;
348 case WB_CHIPID_83782:
349 printf(": W83782D\n");
350 break;
351 case WB_CHIPID_83627:
352 printf(": W83627HF\n");
353 break;
354 default:
355 printf(": unknow winbond chip ID 0x%x\n", j);
356 /* handle as a standart lm7x */
357 lm_common_match(sc);
358 return 1;
359 }
360 /* common code for the W83782D and W83627HF */
361 wb_setup_volt(sc);
362 setup_temp(sc, 9, 3);
363 setup_fan(sc, 12, 3);
364 sc->numsensors = WB_NUM_SENSORS;
365 sc->refresh_sensor_data = wb782_refresh_sensor_data;
366 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
367 return 1;
368 }
369
370 static void
371 wb_setup_volt(sc)
372 struct lm_softc *sc;
373 {
374 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
375 sprintf(sc->info[0].desc, "VCORE A");
376 sc->info[0].rfact = 10000;
377 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
378 sprintf(sc->info[1].desc, "VCORE B");
379 sc->info[1].rfact = 10000;
380 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
381 sprintf(sc->info[2].desc, "+3.3V");
382 sc->info[2].rfact = 10000;
383 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
384 sprintf(sc->info[3].desc, "+5V");
385 sc->info[3].rfact = 16778;
386 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
387 sprintf(sc->info[4].desc, "+12V");
388 sc->info[4].rfact = 38000;
389 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
390 sprintf(sc->info[5].desc, "-12V");
391 sc->info[5].rfact = 10000;
392 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
393 sprintf(sc->info[6].desc, "-5V");
394 sc->info[6].rfact = 10000;
395 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
396 sprintf(sc->info[7].desc, "+5VSB");
397 sc->info[7].rfact = 15151;
398 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
399 sprintf(sc->info[8].desc, "VBAT");
400 sc->info[8].rfact = 10000;
401 }
402
403 static void
404 setup_temp(sc, start, n)
405 struct lm_softc *sc;
406 int start, n;
407 {
408 int i;
409
410 for (i = 0; i < n; i++) {
411 sc->sensors[start + i].units = ENVSYS_STEMP;
412 sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
413 }
414 }
415
416
417 static void
418 setup_fan(sc, start, n)
419 struct lm_softc *sc;
420 int start, n;
421 {
422 int i;
423 for (i = 0; i < n; ++i) {
424 sc->sensors[start + i].units = ENVSYS_SFANRPM;
425 sc->info[start + i].units = ENVSYS_SFANRPM;
426 sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
427 }
428 }
429
430 int
431 lm_gtredata(sme, tred)
432 struct sysmon_envsys *sme;
433 struct envsys_tre_data *tred;
434 {
435 static const struct timeval onepointfive = { 1, 500000 };
436 struct timeval t;
437 struct lm_softc *sc = sme->sme_cookie;
438 int i, s;
439
440 /* read new values at most once every 1.5 seconds */
441 timeradd(&sc->lastread, &onepointfive, &t);
442 s = splclock();
443 i = timercmp(&mono_time, &t, >);
444 if (i) {
445 sc->lastread.tv_sec = mono_time.tv_sec;
446 sc->lastread.tv_usec = mono_time.tv_usec;
447 }
448 splx(s);
449
450 if (i)
451 sc->refresh_sensor_data(sc);
452
453 *tred = sc->sensors[tred->sensor];
454
455 return (0);
456 }
457
458 int
459 generic_streinfo_fan(sc, info, n, binfo)
460 struct lm_softc *sc;
461 struct envsys_basic_info *info;
462 int n;
463 struct envsys_basic_info *binfo;
464 {
465 u_int8_t sdata;
466 int divisor;
467
468 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
469 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
470 && (binfo->sensor != 2)) {
471 if (binfo->rpms == 0) {
472 binfo->validflags = 0;
473 return (0);
474 }
475
476 /* 153 is the nominal FAN speed value */
477 divisor = 1350000 / (binfo->rpms * 153);
478
479 /* ...but we need lg(divisor) */
480 if (divisor <= 1)
481 divisor = 0;
482 else if (divisor <= 2)
483 divisor = 1;
484 else if (divisor <= 4)
485 divisor = 2;
486 else
487 divisor = 3;
488
489 /*
490 * FAN1 div is in bits <5:4>, FAN2 div is
491 * in <7:6>
492 */
493 sdata = lm_readreg(sc, LMD_VIDFAN);
494 if ( binfo->sensor == 0 ) { /* FAN1 */
495 divisor <<= 4;
496 sdata = (sdata & 0xCF) | divisor;
497 } else { /* FAN2 */
498 divisor <<= 6;
499 sdata = (sdata & 0x3F) | divisor;
500 }
501
502 lm_writereg(sc, LMD_VIDFAN, sdata);
503 }
504 return (0);
505
506 }
507
508 int
509 lm_streinfo(sme, binfo)
510 struct sysmon_envsys *sme;
511 struct envsys_basic_info *binfo;
512 {
513 struct lm_softc *sc = sme->sme_cookie;
514
515 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
516 sc->info[binfo->sensor].rfact = binfo->rfact;
517 else {
518 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
519 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
520 binfo->sensor - 8, binfo);
521 }
522 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
523 sizeof(sc->info[binfo->sensor].desc));
524 sc->info[binfo->sensor].desc[
525 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
526
527 binfo->validflags = ENVSYS_FVALID;
528 }
529 return (0);
530 }
531
532 int
533 wb781_streinfo(sme, binfo)
534 struct sysmon_envsys *sme;
535 struct envsys_basic_info *binfo;
536 {
537 struct lm_softc *sc = sme->sme_cookie;
538
539 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
540 sc->info[binfo->sensor].rfact = binfo->rfact;
541 else {
542 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
543 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
544 binfo->sensor - 10, binfo);
545 }
546 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
547 sizeof(sc->info[binfo->sensor].desc));
548 sc->info[binfo->sensor].desc[
549 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
550
551 binfo->validflags = ENVSYS_FVALID;
552 }
553 return (0);
554 }
555
556 int
557 wb782_streinfo(sme, binfo)
558 struct sysmon_envsys *sme;
559 struct envsys_basic_info *binfo;
560 {
561 struct lm_softc *sc = sme->sme_cookie;
562 int divisor;
563 u_int8_t sdata;
564 int i;
565
566 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
567 sc->info[binfo->sensor].rfact = binfo->rfact;
568 else {
569 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
570 if (binfo->rpms == 0) {
571 binfo->validflags = 0;
572 return (0);
573 }
574
575 /* 153 is the nominal FAN speed value */
576 divisor = 1350000 / (binfo->rpms * 153);
577
578 /* ...but we need lg(divisor) */
579 for (i = 0; i < 7; i++) {
580 if (divisor <= (1 << i))
581 break;
582 }
583 divisor = i;
584
585 if (binfo->sensor == 12 || binfo->sensor == 13) {
586 /*
587 * FAN1 div is in bits <5:4>, FAN2 div
588 * is in <7:6>
589 */
590 sdata = lm_readreg(sc, LMD_VIDFAN);
591 if ( binfo->sensor == 12 ) { /* FAN1 */
592 sdata = (sdata & 0xCF) |
593 ((divisor & 0x3) << 4);
594 } else { /* FAN2 */
595 sdata = (sdata & 0x3F) |
596 ((divisor & 0x3) << 6);
597 }
598 lm_writereg(sc, LMD_VIDFAN, sdata);
599 } else {
600 /* FAN3 is in WB_PIN <7:6> */
601 sdata = lm_readreg(sc, WB_PIN);
602 sdata = (sdata & 0x3F) |
603 ((divisor & 0x3) << 6);
604 lm_writereg(sc, LMD_VIDFAN, sdata);
605 }
606 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
607 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
608 sdata = lm_readreg(sc, WB_BANK0_FANBAT);
609 sdata &= ~(0x20 << (binfo->sensor - 12));
610 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
611 lm_writereg(sc, WB_BANK0_FANBAT, sdata);
612 }
613
614 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
615 sizeof(sc->info[binfo->sensor].desc));
616 sc->info[binfo->sensor].desc[
617 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
618
619 binfo->validflags = ENVSYS_FVALID;
620 }
621 return (0);
622 }
623
624 static void
625 generic_stemp(sc, sensor)
626 struct lm_softc *sc;
627 struct envsys_tre_data *sensor;
628 {
629 int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
630 DPRINTF(("sdata[temp] 0x%x\n", sdata));
631 /* temp is given in deg. C, we convert to uK */
632 sensor->cur.data_us = sdata * 1000000 + 273150000;
633 }
634
635 static void
636 generic_svolt(sc, sensors, infos)
637 struct lm_softc *sc;
638 struct envsys_tre_data *sensors;
639 struct envsys_basic_info *infos;
640 {
641 int i, sdata;
642
643 for (i = 0; i < 7; i++) {
644 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
645 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
646 /* voltage returned as (mV >> 4), we convert to uVDC */
647 sensors[i].cur.data_s = (sdata << 4);
648 /* rfact is (factor * 10^4) */
649 sensors[i].cur.data_s *= infos[i].rfact;
650 /* division by 10 gets us back to uVDC */
651 sensors[i].cur.data_s /= 10;
652
653 /* these two are negative voltages */
654 if ( (i == 5) || (i == 6) )
655 sensors[i].cur.data_s *= -1;
656 }
657 }
658
659 static void
660 generic_fanrpm(sc, sensors)
661 struct lm_softc *sc;
662 struct envsys_tre_data *sensors;
663 {
664 int i, sdata, divisor;
665 for (i = 0; i < 3; i++) {
666 sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
667 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
668 if (i == 2)
669 divisor = 2; /* Fixed divisor for FAN3 */
670 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
671 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
672 else
673 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
674
675 if (sdata == 0xff || sdata == 0x00) {
676 sensors[i].cur.data_us = 0;
677 } else {
678 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
679 }
680 }
681 }
682
683 /*
684 * pre: last read occurred >= 1.5 seconds ago
685 * post: sensors[] current data are the latest from the chip
686 */
687 void
688 lm_refresh_sensor_data(sc)
689 struct lm_softc *sc;
690 {
691 /* Refresh our stored data for every sensor */
692 generic_stemp(sc, &sc->sensors[7]);
693 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
694 generic_fanrpm(sc, &sc->sensors[8]);
695 }
696
697 static void
698 wb_svolt(sc)
699 struct lm_softc *sc;
700 {
701 int i, sdata;
702 for (i = 0; i < 9; ++i) {
703 if (i < 7) {
704 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
705 } else {
706 /* from bank5 */
707 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
708 sdata = lm_readreg(sc, (i == 7) ?
709 WB_BANK5_5VSB : WB_BANK5_VBAT);
710 }
711 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
712 /* voltage returned as (mV >> 4), we convert to uV */
713 sdata = sdata << 4;
714 /* special case for negative voltages */
715 if (i == 5) {
716 /*
717 * -12Vdc, assume Winbond recommended values for
718 * resistors
719 */
720 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
721 } else if (i == 6) {
722 /*
723 * -5Vdc, assume Winbond recommended values for
724 * resistors
725 */
726 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
727 }
728 /* rfact is (factor * 10^4) */
729 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
730 /* division by 10 gets us back to uVDC */
731 sc->sensors[i].cur.data_s /= 10;
732 }
733 }
734
735 static void
736 wb_stemp(sc, sensors, n)
737 struct lm_softc *sc;
738 struct envsys_tre_data *sensors;
739 int n;
740 {
741 int sdata;
742 /* temperatures. Given in dC, we convert to uK */
743 sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
744 DPRINTF(("sdata[temp0] 0x%x\n", sdata));
745 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
746 /* from bank1 */
747 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
748 sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
749 sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
750 DPRINTF(("sdata[temp1] 0x%x\n", sdata));
751 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
752 if (n < 3)
753 return;
754 /* from bank2 */
755 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
756 sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
757 sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
758 DPRINTF(("sdata[temp2] 0x%x\n", sdata));
759 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
760 }
761
762 static void
763 wb_fanrpm(sc, sensors)
764 struct lm_softc *sc;
765 struct envsys_tre_data *sensors;
766 {
767 int i, divisor, sdata;
768 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
769 for (i = 0; i < 3; i++) {
770 sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
771 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
772 if (i == 0)
773 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
774 else if (i == 1)
775 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
776 else
777 divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
778 divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
779
780 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
781 if (sdata == 0xff || sdata == 0x00) {
782 sensors[i].cur.data_us = 0;
783 } else {
784 sensors[i].cur.data_us = 1350000 /
785 (sdata << divisor);
786 }
787 }
788 }
789
790 void
791 wb781_refresh_sensor_data(sc)
792 struct lm_softc *sc;
793 {
794 /* Refresh our stored data for every sensor */
795 /* we need to reselect bank0 to access common registers */
796 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
797 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
798 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
799 wb_stemp(sc, &sc->sensors[7], 3);
800 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
801 generic_fanrpm(sc, &sc->sensors[10]);
802 }
803
804 void
805 wb782_refresh_sensor_data(sc)
806 struct lm_softc *sc;
807 {
808 /* Refresh our stored data for every sensor */
809 wb_svolt(sc);
810 wb_stemp(sc, &sc->sensors[9], 3);
811 wb_fanrpm(sc, &sc->sensors[12]);
812 }
813
814 void
815 wb697_refresh_sensor_data(sc)
816 struct lm_softc *sc;
817 {
818 /* Refresh our stored data for every sensor */
819 wb_svolt(sc);
820 wb_stemp(sc, &sc->sensors[9], 2);
821 wb_fanrpm(sc, &sc->sensors[11]);
822 }
823