nslm7x.c revision 1.16 1 /* $NetBSD: nslm7x.c,v 1.16 2002/11/07 08:08:51 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.16 2002/11/07 08:08:51 thorpej Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/errno.h>
49 #include <sys/queue.h>
50 #include <sys/lock.h>
51 #include <sys/ioctl.h>
52 #include <sys/conf.h>
53 #include <sys/time.h>
54
55 #include <machine/bus.h>
56
57 #include <dev/isa/isareg.h>
58 #include <dev/isa/isavar.h>
59
60 #include <dev/sysmon/sysmonvar.h>
61
62 #include <dev/ic/nslm7xvar.h>
63
64 #include <machine/intr.h>
65 #include <machine/bus.h>
66
67 #if defined(LMDEBUG)
68 #define DPRINTF(x) do { printf x; } while (0)
69 #else
70 #define DPRINTF(x)
71 #endif
72
73 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 /* for each unit type */
75 { 7, 7, ENVSYS_STEMP },
76 { 8, 10, ENVSYS_SFANRPM },
77 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 { 0, 6, ENVSYS_SVOLTS_DC },
79 { 1, 0, ENVSYS_SOHMS }, /* None */
80 { 1, 0, ENVSYS_SWATTS }, /* None */
81 { 1, 0, ENVSYS_SAMPS } /* None */
82 };
83
84
85 u_int8_t lm_readreg __P((struct lm_softc *, int));
86 void lm_writereg __P((struct lm_softc *, int, int));
87
88 static void setup_fan __P((struct lm_softc *, int, int));
89 static void setup_temp __P((struct lm_softc *, int, int));
90 static void wb_setup_volt __P((struct lm_softc *));
91
92 int lm_match __P((struct lm_softc *));
93 int wb_match __P((struct lm_softc *));
94 int def_match __P((struct lm_softc *));
95 void lm_common_match __P((struct lm_softc *));
96
97 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
98 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
99 struct envsys_basic_info *));
100 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
101
102 void lm_refresh_sensor_data __P((struct lm_softc *));
103
104 static void wb_svolt __P((struct lm_softc *));
105 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
106 static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
107 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
108
109 void wb781_refresh_sensor_data __P((struct lm_softc *));
110 void wb782_refresh_sensor_data __P((struct lm_softc *));
111 void wb697_refresh_sensor_data __P((struct lm_softc *));
112
113 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
114
115 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
116 int, struct envsys_basic_info *));
117 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
118 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
119 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
120
121 struct lm_chip {
122 int (*chip_match) __P((struct lm_softc *));
123 };
124
125 struct lm_chip lm_chips[] = {
126 { wb_match },
127 { lm_match },
128 { def_match } /* Must be last */
129 };
130
131
132 u_int8_t
133 lm_readreg(sc, reg)
134 struct lm_softc *sc;
135 int reg;
136 {
137 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
138 return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
139 }
140
141 void
142 lm_writereg(sc, reg, val)
143 struct lm_softc *sc;
144 int reg;
145 int val;
146 {
147 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
148 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
149 }
150
151
152 /*
153 * bus independent probe
154 */
155 int
156 lm_probe(iot, ioh)
157 bus_space_tag_t iot;
158 bus_space_handle_t ioh;
159 {
160 u_int8_t cr;
161 int rv;
162
163 /* Check for some power-on defaults */
164 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
165
166 /* Perform LM78 reset */
167 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
168
169 /* XXX - Why do I have to reselect the register? */
170 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
171 cr = bus_space_read_1(iot, ioh, LMC_DATA);
172
173 /* XXX - spec says *only* 0x08! */
174 if ((cr == 0x08) || (cr == 0x01))
175 rv = 1;
176 else
177 rv = 0;
178
179 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
180
181 return (rv);
182 }
183
184
185 /*
186 * pre: lmsc contains valid busspace tag and handle
187 */
188 void
189 lm_attach(lmsc)
190 struct lm_softc *lmsc;
191 {
192 u_int i;
193
194 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
195 if (lm_chips[i].chip_match(lmsc))
196 break;
197
198 /* Start the monitoring loop */
199 lm_writereg(lmsc, LMD_CONFIG, 0x01);
200
201 /* Indicate we have never read the registers */
202 timerclear(&lmsc->lastread);
203
204 /* Initialize sensors */
205 for (i = 0; i < lmsc->numsensors; ++i) {
206 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
207 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
208 lmsc->info[i].validflags = ENVSYS_FVALID;
209 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
210 }
211 /*
212 * Hook into the System Monitor.
213 */
214 lmsc->sc_sysmon.sme_ranges = lm_ranges;
215 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
216 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
217 lmsc->sc_sysmon.sme_cookie = lmsc;
218
219 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
220 /* sme_streinfo set in chip-specific attach */
221
222 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
223 lmsc->sc_sysmon.sme_envsys_version = 1000;
224
225 if (sysmon_envsys_register(&lmsc->sc_sysmon))
226 printf("%s: unable to register with sysmon\n",
227 lmsc->sc_dev.dv_xname);
228 }
229
230 int
231 lm_match(sc)
232 struct lm_softc *sc;
233 {
234 int i;
235
236 /* See if we have an LM78 or LM79 */
237 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
238 switch(i) {
239 case LM_ID_LM78:
240 printf(": LM78\n");
241 break;
242 case LM_ID_LM78J:
243 printf(": LM78J\n");
244 break;
245 case LM_ID_LM79:
246 printf(": LM79\n");
247 break;
248 case LM_ID_LM81:
249 printf(": LM81\n");
250 break;
251 default:
252 return 0;
253 }
254 lm_common_match(sc);
255 return 1;
256 }
257
258 int
259 def_match(sc)
260 struct lm_softc *sc;
261 {
262 int i;
263
264 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
265 printf(": Unknow chip (ID %d)\n", i);
266 lm_common_match(sc);
267 return 1;
268 }
269
270 void
271 lm_common_match(sc)
272 struct lm_softc *sc;
273 {
274 int i;
275 sc->numsensors = LM_NUM_SENSORS;
276 sc->refresh_sensor_data = lm_refresh_sensor_data;
277
278 for (i = 0; i < 7; ++i) {
279 sc->sensors[i].units = sc->info[i].units =
280 ENVSYS_SVOLTS_DC;
281 sprintf(sc->info[i].desc, "IN %d", i);
282 }
283
284 /* default correction factors for resistors on higher voltage inputs */
285 sc->info[0].rfact = sc->info[1].rfact =
286 sc->info[2].rfact = 10000;
287 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
288 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
289 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
290 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
291
292 sc->sensors[7].units = ENVSYS_STEMP;
293 strcpy(sc->info[7].desc, "Temp");
294
295 setup_fan(sc, 8, 3);
296 sc->sc_sysmon.sme_streinfo = lm_streinfo;
297 }
298
299 int
300 wb_match(sc)
301 struct lm_softc *sc;
302 {
303 int i, j;
304
305 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
306 j = lm_readreg(sc, WB_VENDID) << 8;
307 lm_writereg(sc, WB_BANKSEL, 0);
308 j |= lm_readreg(sc, WB_VENDID);
309 DPRINTF(("winbond vend id 0x%x\n", j));
310 if (j != WB_VENDID_WINBOND)
311 return 0;
312 /* read device ID */
313 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
314 j = lm_readreg(sc, WB_BANK0_CHIPID);
315 DPRINTF(("winbond chip id 0x%x\n", j));
316 switch(j) {
317 case WB_CHIPID_83781:
318 case WB_CHIPID_83781_2:
319 printf(": W83781D\n");
320
321 for (i = 0; i < 7; ++i) {
322 sc->sensors[i].units = sc->info[i].units =
323 ENVSYS_SVOLTS_DC;
324 sprintf(sc->info[i].desc, "IN %d", i);
325 }
326
327 /* default correction factors for higher voltage inputs */
328 sc->info[0].rfact = sc->info[1].rfact =
329 sc->info[2].rfact = 10000;
330 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
331 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
332 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
333 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
334
335 setup_temp(sc, 7, 3);
336 setup_fan(sc, 10, 3);
337
338 sc->numsensors = WB83781_NUM_SENSORS;
339 sc->refresh_sensor_data = wb781_refresh_sensor_data;
340 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
341 return 1;
342 case WB_CHIPID_83697:
343 printf(": W83697HF\n");
344 wb_setup_volt(sc);
345 setup_temp(sc, 9, 2);
346 setup_fan(sc, 11, 3);
347 sc->numsensors = WB83697_NUM_SENSORS;
348 sc->refresh_sensor_data = wb697_refresh_sensor_data;
349 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
350 return 1;
351 break;
352 case WB_CHIPID_83782:
353 printf(": W83782D\n");
354 break;
355 case WB_CHIPID_83627:
356 printf(": W83627HF\n");
357 break;
358 default:
359 printf(": unknow winbond chip ID 0x%x\n", j);
360 /* handle as a standart lm7x */
361 lm_common_match(sc);
362 return 1;
363 }
364 /* common code for the W83782D and W83627HF */
365 wb_setup_volt(sc);
366 setup_temp(sc, 9, 3);
367 setup_fan(sc, 12, 3);
368 sc->numsensors = WB_NUM_SENSORS;
369 sc->refresh_sensor_data = wb782_refresh_sensor_data;
370 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
371 return 1;
372 }
373
374 static void
375 wb_setup_volt(sc)
376 struct lm_softc *sc;
377 {
378 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
379 sprintf(sc->info[0].desc, "VCORE A");
380 sc->info[0].rfact = 10000;
381 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
382 sprintf(sc->info[1].desc, "VCORE B");
383 sc->info[1].rfact = 10000;
384 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
385 sprintf(sc->info[2].desc, "+3.3V");
386 sc->info[2].rfact = 10000;
387 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
388 sprintf(sc->info[3].desc, "+5V");
389 sc->info[3].rfact = 16778;
390 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
391 sprintf(sc->info[4].desc, "+12V");
392 sc->info[4].rfact = 38000;
393 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
394 sprintf(sc->info[5].desc, "-12V");
395 sc->info[5].rfact = 10000;
396 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
397 sprintf(sc->info[6].desc, "-5V");
398 sc->info[6].rfact = 10000;
399 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
400 sprintf(sc->info[7].desc, "+5VSB");
401 sc->info[7].rfact = 15151;
402 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
403 sprintf(sc->info[8].desc, "VBAT");
404 sc->info[8].rfact = 10000;
405 }
406
407 static void
408 setup_temp(sc, start, n)
409 struct lm_softc *sc;
410 int start, n;
411 {
412 int i;
413
414 for (i = 0; i < n; i++) {
415 sc->sensors[start + i].units = ENVSYS_STEMP;
416 sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
417 }
418 }
419
420
421 static void
422 setup_fan(sc, start, n)
423 struct lm_softc *sc;
424 int start, n;
425 {
426 int i;
427 for (i = 0; i < n; ++i) {
428 sc->sensors[start + i].units = ENVSYS_SFANRPM;
429 sc->info[start + i].units = ENVSYS_SFANRPM;
430 sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
431 }
432 }
433
434 int
435 lm_gtredata(sme, tred)
436 struct sysmon_envsys *sme;
437 struct envsys_tre_data *tred;
438 {
439 static const struct timeval onepointfive = { 1, 500000 };
440 struct timeval t;
441 struct lm_softc *sc = sme->sme_cookie;
442 int i, s;
443
444 /* read new values at most once every 1.5 seconds */
445 timeradd(&sc->lastread, &onepointfive, &t);
446 s = splclock();
447 i = timercmp(&mono_time, &t, >);
448 if (i) {
449 sc->lastread.tv_sec = mono_time.tv_sec;
450 sc->lastread.tv_usec = mono_time.tv_usec;
451 }
452 splx(s);
453
454 if (i)
455 sc->refresh_sensor_data(sc);
456
457 *tred = sc->sensors[tred->sensor];
458
459 return (0);
460 }
461
462 int
463 generic_streinfo_fan(sc, info, n, binfo)
464 struct lm_softc *sc;
465 struct envsys_basic_info *info;
466 int n;
467 struct envsys_basic_info *binfo;
468 {
469 u_int8_t sdata;
470 int divisor;
471
472 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
473 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
474 && (n < 2)) {
475 if (binfo->rpms == 0) {
476 binfo->validflags = 0;
477 return (0);
478 }
479
480 /* write back the nominal FAN speed */
481 info->rpms = binfo->rpms;
482
483 /* 153 is the nominal FAN speed value */
484 divisor = 1350000 / (binfo->rpms * 153);
485
486 /* ...but we need lg(divisor) */
487 if (divisor <= 1)
488 divisor = 0;
489 else if (divisor <= 2)
490 divisor = 1;
491 else if (divisor <= 4)
492 divisor = 2;
493 else
494 divisor = 3;
495
496 /*
497 * FAN1 div is in bits <5:4>, FAN2 div is
498 * in <7:6>
499 */
500 sdata = lm_readreg(sc, LMD_VIDFAN);
501 if ( n == 0 ) { /* FAN1 */
502 divisor <<= 4;
503 sdata = (sdata & 0xCF) | divisor;
504 } else { /* FAN2 */
505 divisor <<= 6;
506 sdata = (sdata & 0x3F) | divisor;
507 }
508
509 lm_writereg(sc, LMD_VIDFAN, sdata);
510 }
511 return (0);
512
513 }
514
515 int
516 lm_streinfo(sme, binfo)
517 struct sysmon_envsys *sme;
518 struct envsys_basic_info *binfo;
519 {
520 struct lm_softc *sc = sme->sme_cookie;
521
522 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
523 sc->info[binfo->sensor].rfact = binfo->rfact;
524 else {
525 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
526 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
527 binfo->sensor - 8, binfo);
528 }
529 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
530 sizeof(sc->info[binfo->sensor].desc));
531 sc->info[binfo->sensor].desc[
532 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
533
534 binfo->validflags = ENVSYS_FVALID;
535 }
536 return (0);
537 }
538
539 int
540 wb781_streinfo(sme, binfo)
541 struct sysmon_envsys *sme;
542 struct envsys_basic_info *binfo;
543 {
544 struct lm_softc *sc = sme->sme_cookie;
545 int divisor;
546 u_int8_t sdata;
547 int i;
548
549 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
550 sc->info[binfo->sensor].rfact = binfo->rfact;
551 else {
552 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
553 if (binfo->rpms == 0) {
554 binfo->validflags = 0;
555 return (0);
556 }
557
558 /* write back the nominal FAN speed */
559 sc->info[binfo->sensor].rpms = binfo->rpms;
560
561 /* 153 is the nominal FAN speed value */
562 divisor = 1350000 / (binfo->rpms * 153);
563
564 /* ...but we need lg(divisor) */
565 for (i = 0; i < 7; i++) {
566 if (divisor <= (1 << i))
567 break;
568 }
569 divisor = i;
570
571 if (binfo->sensor == 10 || binfo->sensor == 11) {
572 /*
573 * FAN1 div is in bits <5:4>, FAN2 div
574 * is in <7:6>
575 */
576 sdata = lm_readreg(sc, LMD_VIDFAN);
577 if ( binfo->sensor == 10 ) { /* FAN1 */
578 sdata = (sdata & 0xCF) |
579 ((divisor & 0x3) << 4);
580 } else { /* FAN2 */
581 sdata = (sdata & 0x3F) |
582 ((divisor & 0x3) << 6);
583 }
584 lm_writereg(sc, LMD_VIDFAN, sdata);
585 } else {
586 /* FAN3 is in WB_PIN <7:6> */
587 sdata = lm_readreg(sc, WB_PIN);
588 sdata = (sdata & 0x3F) |
589 ((divisor & 0x3) << 6);
590 lm_writereg(sc, WB_PIN, sdata);
591 }
592 }
593 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
594 sizeof(sc->info[binfo->sensor].desc));
595 sc->info[binfo->sensor].desc[
596 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
597
598 binfo->validflags = ENVSYS_FVALID;
599 }
600 return (0);
601 }
602
603 int
604 wb782_streinfo(sme, binfo)
605 struct sysmon_envsys *sme;
606 struct envsys_basic_info *binfo;
607 {
608 struct lm_softc *sc = sme->sme_cookie;
609 int divisor;
610 u_int8_t sdata;
611 int i;
612
613 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
614 sc->info[binfo->sensor].rfact = binfo->rfact;
615 else {
616 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
617 if (binfo->rpms == 0) {
618 binfo->validflags = 0;
619 return (0);
620 }
621
622 /* write back the nominal FAN speed */
623 sc->info[binfo->sensor].rpms = binfo->rpms;
624
625 /* 153 is the nominal FAN speed value */
626 divisor = 1350000 / (binfo->rpms * 153);
627
628 /* ...but we need lg(divisor) */
629 for (i = 0; i < 7; i++) {
630 if (divisor <= (1 << i))
631 break;
632 }
633 divisor = i;
634
635 if (binfo->sensor == 12 || binfo->sensor == 13) {
636 /*
637 * FAN1 div is in bits <5:4>, FAN2 div
638 * is in <7:6>
639 */
640 sdata = lm_readreg(sc, LMD_VIDFAN);
641 if ( binfo->sensor == 12 ) { /* FAN1 */
642 sdata = (sdata & 0xCF) |
643 ((divisor & 0x3) << 4);
644 } else { /* FAN2 */
645 sdata = (sdata & 0x3F) |
646 ((divisor & 0x3) << 6);
647 }
648 lm_writereg(sc, LMD_VIDFAN, sdata);
649 } else {
650 /* FAN3 is in WB_PIN <7:6> */
651 sdata = lm_readreg(sc, WB_PIN);
652 sdata = (sdata & 0x3F) |
653 ((divisor & 0x3) << 6);
654 lm_writereg(sc, WB_PIN, sdata);
655 }
656 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
657 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
658 sdata = lm_readreg(sc, WB_BANK0_FANBAT);
659 sdata &= ~(0x20 << (binfo->sensor - 12));
660 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
661 lm_writereg(sc, WB_BANK0_FANBAT, sdata);
662 }
663
664 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
665 sizeof(sc->info[binfo->sensor].desc));
666 sc->info[binfo->sensor].desc[
667 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
668
669 binfo->validflags = ENVSYS_FVALID;
670 }
671 return (0);
672 }
673
674 static void
675 generic_stemp(sc, sensor)
676 struct lm_softc *sc;
677 struct envsys_tre_data *sensor;
678 {
679 int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
680 DPRINTF(("sdata[temp] 0x%x\n", sdata));
681 /* temp is given in deg. C, we convert to uK */
682 sensor->cur.data_us = sdata * 1000000 + 273150000;
683 }
684
685 static void
686 generic_svolt(sc, sensors, infos)
687 struct lm_softc *sc;
688 struct envsys_tre_data *sensors;
689 struct envsys_basic_info *infos;
690 {
691 int i, sdata;
692
693 for (i = 0; i < 7; i++) {
694 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
695 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
696 /* voltage returned as (mV >> 4), we convert to uVDC */
697 sensors[i].cur.data_s = (sdata << 4);
698 /* rfact is (factor * 10^4) */
699 sensors[i].cur.data_s *= infos[i].rfact;
700 /* division by 10 gets us back to uVDC */
701 sensors[i].cur.data_s /= 10;
702
703 /* these two are negative voltages */
704 if ( (i == 5) || (i == 6) )
705 sensors[i].cur.data_s *= -1;
706 }
707 }
708
709 static void
710 generic_fanrpm(sc, sensors)
711 struct lm_softc *sc;
712 struct envsys_tre_data *sensors;
713 {
714 int i, sdata, divisor;
715 for (i = 0; i < 3; i++) {
716 sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
717 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
718 if (i == 2)
719 divisor = 2; /* Fixed divisor for FAN3 */
720 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
721 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
722 else
723 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
724
725 if (sdata == 0xff || sdata == 0x00) {
726 sensors[i].cur.data_us = 0;
727 } else {
728 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
729 }
730 }
731 }
732
733 /*
734 * pre: last read occurred >= 1.5 seconds ago
735 * post: sensors[] current data are the latest from the chip
736 */
737 void
738 lm_refresh_sensor_data(sc)
739 struct lm_softc *sc;
740 {
741 /* Refresh our stored data for every sensor */
742 generic_stemp(sc, &sc->sensors[7]);
743 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
744 generic_fanrpm(sc, &sc->sensors[8]);
745 }
746
747 static void
748 wb_svolt(sc)
749 struct lm_softc *sc;
750 {
751 int i, sdata;
752 for (i = 0; i < 9; ++i) {
753 if (i < 7) {
754 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
755 } else {
756 /* from bank5 */
757 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
758 sdata = lm_readreg(sc, (i == 7) ?
759 WB_BANK5_5VSB : WB_BANK5_VBAT);
760 }
761 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
762 /* voltage returned as (mV >> 4), we convert to uV */
763 sdata = sdata << 4;
764 /* special case for negative voltages */
765 if (i == 5) {
766 /*
767 * -12Vdc, assume Winbond recommended values for
768 * resistors
769 */
770 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
771 } else if (i == 6) {
772 /*
773 * -5Vdc, assume Winbond recommended values for
774 * resistors
775 */
776 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
777 }
778 /* rfact is (factor * 10^4) */
779 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
780 /* division by 10 gets us back to uVDC */
781 sc->sensors[i].cur.data_s /= 10;
782 }
783 }
784
785 static void
786 wb_stemp(sc, sensors, n)
787 struct lm_softc *sc;
788 struct envsys_tre_data *sensors;
789 int n;
790 {
791 int sdata;
792 /* temperatures. Given in dC, we convert to uK */
793 sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
794 DPRINTF(("sdata[temp0] 0x%x\n", sdata));
795 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
796 /* from bank1 */
797 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
798 sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
799 sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
800 DPRINTF(("sdata[temp1] 0x%x\n", sdata));
801 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
802 if (n < 3)
803 return;
804 /* from bank2 */
805 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
806 sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
807 sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
808 DPRINTF(("sdata[temp2] 0x%x\n", sdata));
809 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
810 }
811
812 static void
813 wb781_fanrpm(sc, sensors)
814 struct lm_softc *sc;
815 struct envsys_tre_data *sensors;
816 {
817 int i, divisor, sdata;
818 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
819 for (i = 0; i < 3; i++) {
820 sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
821 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
822 if (i == 0)
823 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
824 else if (i == 1)
825 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
826 else
827 divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
828
829 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
830 if (sdata == 0xff || sdata == 0x00) {
831 sensors[i].cur.data_us = 0;
832 } else {
833 sensors[i].cur.data_us = 1350000 /
834 (sdata << divisor);
835 }
836 }
837 }
838
839 static void
840 wb_fanrpm(sc, sensors)
841 struct lm_softc *sc;
842 struct envsys_tre_data *sensors;
843 {
844 int i, divisor, sdata;
845 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
846 for (i = 0; i < 3; i++) {
847 sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
848 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
849 if (i == 0)
850 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
851 else if (i == 1)
852 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
853 else
854 divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
855 divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
856
857 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
858 if (sdata == 0xff || sdata == 0x00) {
859 sensors[i].cur.data_us = 0;
860 } else {
861 sensors[i].cur.data_us = 1350000 /
862 (sdata << divisor);
863 }
864 }
865 }
866
867 void
868 wb781_refresh_sensor_data(sc)
869 struct lm_softc *sc;
870 {
871 /* Refresh our stored data for every sensor */
872 /* we need to reselect bank0 to access common registers */
873 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
874 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
875 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
876 wb_stemp(sc, &sc->sensors[7], 3);
877 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
878 wb781_fanrpm(sc, &sc->sensors[10]);
879 }
880
881 void
882 wb782_refresh_sensor_data(sc)
883 struct lm_softc *sc;
884 {
885 /* Refresh our stored data for every sensor */
886 wb_svolt(sc);
887 wb_stemp(sc, &sc->sensors[9], 3);
888 wb_fanrpm(sc, &sc->sensors[12]);
889 }
890
891 void
892 wb697_refresh_sensor_data(sc)
893 struct lm_softc *sc;
894 {
895 /* Refresh our stored data for every sensor */
896 wb_svolt(sc);
897 wb_stemp(sc, &sc->sensors[9], 2);
898 wb_fanrpm(sc, &sc->sensors[11]);
899 }
900