Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.19
      1 /*	$NetBSD: nslm7x.c,v 1.19 2004/07/24 18:59:16 christos Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Squier.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.19 2004/07/24 18:59:16 christos Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/proc.h>
     46 #include <sys/device.h>
     47 #include <sys/malloc.h>
     48 #include <sys/errno.h>
     49 #include <sys/queue.h>
     50 #include <sys/lock.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/conf.h>
     53 #include <sys/time.h>
     54 
     55 #include <machine/bus.h>
     56 
     57 #include <dev/isa/isareg.h>
     58 #include <dev/isa/isavar.h>
     59 
     60 #include <dev/sysmon/sysmonvar.h>
     61 
     62 #include <dev/ic/nslm7xvar.h>
     63 
     64 #include <machine/intr.h>
     65 #include <machine/bus.h>
     66 
     67 #if defined(LMDEBUG)
     68 #define DPRINTF(x)		printf x
     69 #else
     70 #define DPRINTF(x)
     71 #endif
     72 
     73 const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     74 					/* for each unit type */
     75 	{ 7, 7,    ENVSYS_STEMP   },
     76 	{ 8, 10,   ENVSYS_SFANRPM },
     77 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     78 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     79 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     80 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     81 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     82 };
     83 
     84 
     85 static void setup_fan __P((struct lm_softc *, int, int));
     86 static void setup_temp __P((struct lm_softc *, int, int));
     87 static void wb_setup_volt __P((struct lm_softc *));
     88 
     89 int lm_match __P((struct lm_softc *));
     90 int wb_match __P((struct lm_softc *));
     91 int itec_match __P((struct lm_softc *));
     92 int def_match __P((struct lm_softc *));
     93 void lm_common_match __P((struct lm_softc *));
     94 static int lm_generic_banksel __P((struct lm_softc *, int));
     95 
     96 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
     97 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
     98     struct envsys_basic_info *));
     99 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    100 
    101 void lm_refresh_sensor_data __P((struct lm_softc *));
    102 
    103 static void wb_svolt __P((struct lm_softc *));
    104 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
    105 static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    106 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    107 
    108 void wb781_refresh_sensor_data __P((struct lm_softc *));
    109 void wb782_refresh_sensor_data __P((struct lm_softc *));
    110 void wb697_refresh_sensor_data __P((struct lm_softc *));
    111 
    112 static void itec_svolt __P((struct lm_softc *, struct envsys_tre_data *,
    113     struct envsys_basic_info *));
    114 static void itec_stemp __P((struct lm_softc *, struct envsys_tre_data *));
    115 static void itec_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    116 void itec_refresh_sensor_data __P((struct lm_softc *));
    117 
    118 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
    119 
    120 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
    121            int, struct envsys_basic_info *));
    122 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    123 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    124 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    125 int itec_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    126 
    127 struct lm_chip {
    128 	int (*chip_match) __P((struct lm_softc *));
    129 };
    130 
    131 struct lm_chip lm_chips[] = {
    132 	{ itec_match },
    133 	{ wb_match },
    134 	{ lm_match },
    135 	{ def_match } /* Must be last */
    136 };
    137 
    138 
    139 int
    140 lm_generic_banksel(lmsc, bank)
    141 	struct lm_softc *lmsc;
    142 	int bank;
    143 {
    144 
    145 	(*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
    146 	return 0;
    147 }
    148 
    149 
    150 /*
    151  * bus independent probe
    152  */
    153 int
    154 lm_probe(iot, ioh)
    155 	bus_space_tag_t iot;
    156 	bus_space_handle_t ioh;
    157 {
    158 	u_int8_t cr;
    159 	int rv;
    160 
    161 	/*
    162 	 * Check for it8705f, before we do the chip reset.
    163 	 * In case of an it8705f this might reset all the fan control
    164 	 * parameters to defaults which would void all settings done by
    165 	 * the BOOTROM/BIOS.
    166 	 */
    167 	bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48);
    168 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    169 
    170 	if (cr == ITEC_RES48_DEFAULT) {
    171 		bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52);
    172 		cr = bus_space_read_1(iot, ioh, LMC_DATA);
    173 		if (cr == ITEC_RES52_DEFAULT)
    174 			return 1;
    175 	}
    176 
    177 	/* Check for some power-on defaults */
    178 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    179 
    180 	/* Perform LM78 reset */
    181 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    182 
    183 	/* XXX - Why do I have to reselect the register? */
    184 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    185 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    186 
    187 	/* XXX - spec says *only* 0x08! */
    188 	if ((cr == 0x08) || (cr == 0x01))
    189 		rv = 1;
    190 	else
    191 		rv = 0;
    192 
    193 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    194 
    195 	return (rv);
    196 }
    197 
    198 
    199 /*
    200  * pre:  lmsc contains valid busspace tag and handle
    201  */
    202 void
    203 lm_attach(lmsc)
    204 	struct lm_softc *lmsc;
    205 {
    206 	u_int i;
    207 
    208 	/* Install default bank selection routine, if none given. */
    209 	if (lmsc->lm_banksel == NULL)
    210 		lmsc->lm_banksel = lm_generic_banksel;
    211 
    212 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    213 		if (lm_chips[i].chip_match(lmsc))
    214 			break;
    215 
    216 	/* Start the monitoring loop */
    217 	(*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
    218 
    219 	/* Indicate we have never read the registers */
    220 	timerclear(&lmsc->lastread);
    221 
    222 	/* Initialize sensors */
    223 	for (i = 0; i < lmsc->numsensors; ++i) {
    224 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    225 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    226 		lmsc->info[i].validflags = ENVSYS_FVALID;
    227 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    228 	}
    229 	/*
    230 	 * Hook into the System Monitor.
    231 	 */
    232 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    233 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    234 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    235 	lmsc->sc_sysmon.sme_cookie = lmsc;
    236 
    237 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    238 	/* sme_streinfo set in chip-specific attach */
    239 
    240 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    241 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    242 
    243 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    244 		printf("%s: unable to register with sysmon\n",
    245 		    lmsc->sc_dev.dv_xname);
    246 }
    247 
    248 int
    249 lm_match(sc)
    250 	struct lm_softc *sc;
    251 {
    252 	int i;
    253 
    254 	/* See if we have an LM78 or LM79 */
    255 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    256 	switch(i) {
    257 	case LM_ID_LM78:
    258 		printf(": LM78\n");
    259 		break;
    260 	case LM_ID_LM78J:
    261 		printf(": LM78J\n");
    262 		break;
    263 	case LM_ID_LM79:
    264 		printf(": LM79\n");
    265 		break;
    266 	case LM_ID_LM81:
    267 		printf(": LM81\n");
    268 		break;
    269 	default:
    270 		return 0;
    271 	}
    272 	lm_common_match(sc);
    273 	return 1;
    274 }
    275 
    276 int
    277 def_match(sc)
    278 	struct lm_softc *sc;
    279 {
    280 	int i;
    281 
    282 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    283 	printf(": Unknown chip (ID %d)\n", i);
    284 	lm_common_match(sc);
    285 	return 1;
    286 }
    287 
    288 void
    289 lm_common_match(sc)
    290 	struct lm_softc *sc;
    291 {
    292 	int i;
    293 	sc->numsensors = LM_NUM_SENSORS;
    294 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    295 
    296 	for (i = 0; i < 7; ++i) {
    297 		sc->sensors[i].units = sc->info[i].units =
    298 		    ENVSYS_SVOLTS_DC;
    299 		snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    300 		    "IN %d", i);
    301 	}
    302 
    303 	/* default correction factors for resistors on higher voltage inputs */
    304 	sc->info[0].rfact = sc->info[1].rfact =
    305 	    sc->info[2].rfact = 10000;
    306 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    307 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    308 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    309 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    310 
    311 	sc->sensors[7].units = ENVSYS_STEMP;
    312 	strcpy(sc->info[7].desc, "Temp");
    313 
    314 	setup_fan(sc, 8, 3);
    315 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    316 }
    317 
    318 int
    319 wb_match(sc)
    320 	struct lm_softc *sc;
    321 {
    322 	int i, j;
    323 
    324 	(*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    325 	j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
    326 	(*sc->lm_writereg)(sc, WB_BANKSEL, 0);
    327 	j |= (*sc->lm_readreg)(sc, WB_VENDID);
    328 	DPRINTF(("winbond vend id 0x%x\n", j));
    329 	if (j != WB_VENDID_WINBOND)
    330 		return 0;
    331 	/* read device ID */
    332 	(*sc->lm_banksel)(sc, 0);
    333 	j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
    334 	DPRINTF(("winbond chip id 0x%x\n", j));
    335 	switch(j) {
    336 	case WB_CHIPID_83781:
    337 	case WB_CHIPID_83781_2:
    338 		printf(": W83781D\n");
    339 
    340 		for (i = 0; i < 7; ++i) {
    341 			sc->sensors[i].units = sc->info[i].units =
    342 			    ENVSYS_SVOLTS_DC;
    343 			snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    344 			    "IN %d", i);
    345 		}
    346 
    347 		/* default correction factors for higher voltage inputs */
    348 		sc->info[0].rfact = sc->info[1].rfact =
    349 		    sc->info[2].rfact = 10000;
    350 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    351 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    352 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    353 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    354 
    355 		setup_temp(sc, 7, 3);
    356 		setup_fan(sc, 10, 3);
    357 
    358 		sc->numsensors = WB83781_NUM_SENSORS;
    359 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    360 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    361 		return 1;
    362 	case WB_CHIPID_83697:
    363 		printf(": W83697HF\n");
    364 		wb_setup_volt(sc);
    365 		setup_temp(sc, 9, 2);
    366 		setup_fan(sc, 11, 3);
    367 		sc->numsensors = WB83697_NUM_SENSORS;
    368 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    369 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    370 		return 1;
    371 	case WB_CHIPID_83782:
    372 		printf(": W83782D\n");
    373 		break;
    374 	case WB_CHIPID_83627:
    375 		printf(": W83627HF\n");
    376 		break;
    377 	default:
    378 		printf(": unknow winbond chip ID 0x%x\n", j);
    379 		/* handle as a standart lm7x */
    380 		lm_common_match(sc);
    381 		return 1;
    382 	}
    383 	/* common code for the W83782D and W83627HF */
    384 	wb_setup_volt(sc);
    385 	setup_temp(sc, 9, 3);
    386 	setup_fan(sc, 12, 3);
    387 	sc->numsensors = WB_NUM_SENSORS;
    388 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    389 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    390 	return 1;
    391 }
    392 
    393 static void
    394 wb_setup_volt(sc)
    395 	struct lm_softc *sc;
    396 {
    397 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    398 	snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
    399 	sc->info[0].rfact = 10000;
    400 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    401 	snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
    402 	sc->info[1].rfact = 10000;
    403 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    404 	snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
    405 	sc->info[2].rfact = 10000;
    406 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    407 	snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
    408 	sc->info[3].rfact = 16778;
    409 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    410 	snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
    411 	sc->info[4].rfact = 38000;
    412 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    413 	snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
    414 	sc->info[5].rfact = 10000;
    415 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    416 	snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
    417 	sc->info[6].rfact = 10000;
    418 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    419 	snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
    420 	sc->info[7].rfact = 15151;
    421 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    422 	snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
    423 	sc->info[8].rfact = 10000;
    424 }
    425 
    426 int
    427 itec_match(sc)
    428 	struct lm_softc *sc;
    429 {
    430 	int vendor;
    431 	/* do the same thing as in  lm_probe() */
    432 	if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT)
    433 		return 0;
    434 
    435 	if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT)
    436 		return 0;
    437 
    438 	vendor=(*sc->lm_readreg)(sc, ITEC_VENDID);
    439 
    440 	if (vendor == ITEC_VENDID_ITE)
    441 		printf(": iTE IT8705f\n");
    442 	else
    443 		printf(": unknown IT8705f compatible, vendorid 0x%02x\n",
    444 		    vendor);
    445 
    446 	/*
    447 	 * XXX this is a litle bit lame...
    448 	 * All VIN inputs work exactly the same way, it depends of the
    449 	 * external wiring what voltages they monitor and which correction
    450 	 * factors are needed. We assume a pretty standard setup here
    451 	 */
    452 	wb_setup_volt(sc);
    453 	strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc));
    454 	strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc));
    455 	strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc));
    456 	sc->info[5].rfact = 51100;
    457 	sc->info[7].rfact = 16778;
    458 
    459 	setup_temp(sc, 9, 3);
    460 	setup_fan(sc, 12, 3);
    461 	sc->numsensors = ITEC_NUM_SENSORS;
    462 	sc->refresh_sensor_data = itec_refresh_sensor_data;
    463 	sc->sc_sysmon.sme_streinfo = itec_streinfo;
    464 
    465 	return 1;
    466 }
    467 
    468 
    469 static void
    470 setup_temp(sc, start, n)
    471 	struct lm_softc *sc;
    472 	int start, n;
    473 {
    474 	int i;
    475 
    476 	for (i = 0; i < n; i++) {
    477 		sc->sensors[start + i].units = ENVSYS_STEMP;
    478 		snprintf(sc->info[start + i].desc,
    479 		    sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
    480 	}
    481 }
    482 
    483 
    484 static void
    485 setup_fan(sc, start, n)
    486 	struct lm_softc *sc;
    487 	int start, n;
    488 {
    489 	int i;
    490 	for (i = 0; i < n; ++i) {
    491 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    492 		sc->info[start + i].units = ENVSYS_SFANRPM;
    493 		snprintf(sc->info[start + i].desc,
    494 		    sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
    495 	}
    496 }
    497 
    498 int
    499 lm_gtredata(sme, tred)
    500 	 struct sysmon_envsys *sme;
    501 	 struct envsys_tre_data *tred;
    502 {
    503 	 static const struct timeval onepointfive = { 1, 500000 };
    504 	 struct timeval t;
    505 	 struct lm_softc *sc = sme->sme_cookie;
    506 	 int i, s;
    507 
    508 	 /* read new values at most once every 1.5 seconds */
    509 	 timeradd(&sc->lastread, &onepointfive, &t);
    510 	 s = splclock();
    511 	 i = timercmp(&mono_time, &t, >);
    512 	 if (i) {
    513 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    514 		  sc->lastread.tv_usec = mono_time.tv_usec;
    515 	 }
    516 	 splx(s);
    517 
    518 	 if (i)
    519 		  sc->refresh_sensor_data(sc);
    520 
    521 	 *tred = sc->sensors[tred->sensor];
    522 
    523 	 return 0;
    524 }
    525 
    526 int
    527 generic_streinfo_fan(sc, info, n, binfo)
    528 	struct lm_softc *sc;
    529 	struct envsys_basic_info *info;
    530 	int n;
    531 	struct envsys_basic_info *binfo;
    532 {
    533 	u_int8_t sdata;
    534 	int divisor;
    535 
    536 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    537 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    538 	    && (n < 2)) {
    539 		if (binfo->rpms == 0) {
    540 			binfo->validflags = 0;
    541 			return 0;
    542 		}
    543 
    544 		/* write back the nominal FAN speed  */
    545 		info->rpms = binfo->rpms;
    546 
    547 		/* 153 is the nominal FAN speed value */
    548 		divisor = 1350000 / (binfo->rpms * 153);
    549 
    550 		/* ...but we need lg(divisor) */
    551 		if (divisor <= 1)
    552 		    divisor = 0;
    553 		else if (divisor <= 2)
    554 		    divisor = 1;
    555 		else if (divisor <= 4)
    556 		    divisor = 2;
    557 		else
    558 		    divisor = 3;
    559 
    560 		/*
    561 		 * FAN1 div is in bits <5:4>, FAN2 div is
    562 		 * in <7:6>
    563 		 */
    564 		sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    565 		if ( n == 0 ) {  /* FAN1 */
    566 		    divisor <<= 4;
    567 		    sdata = (sdata & 0xCF) | divisor;
    568 		} else { /* FAN2 */
    569 		    divisor <<= 6;
    570 		    sdata = (sdata & 0x3F) | divisor;
    571 		}
    572 
    573 		(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    574 	}
    575 	return 0;
    576 
    577 }
    578 
    579 int
    580 lm_streinfo(sme, binfo)
    581 	 struct sysmon_envsys *sme;
    582 	 struct envsys_basic_info *binfo;
    583 {
    584 	 struct lm_softc *sc = sme->sme_cookie;
    585 
    586 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    587 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    588 	 else {
    589 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    590 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    591 			    binfo->sensor - 8, binfo);
    592 		}
    593 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    594 		    sizeof(sc->info[binfo->sensor].desc));
    595 		binfo->validflags = ENVSYS_FVALID;
    596 	 }
    597 	 return 0;
    598 }
    599 
    600 int
    601 wb781_streinfo(sme, binfo)
    602 	 struct sysmon_envsys *sme;
    603 	 struct envsys_basic_info *binfo;
    604 {
    605 	 struct lm_softc *sc = sme->sme_cookie;
    606 	 int divisor;
    607 	 u_int8_t sdata;
    608 	 int i;
    609 
    610 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    611 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    612 	 else {
    613 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    614 			if (binfo->rpms == 0) {
    615 				binfo->validflags = 0;
    616 				return 0;
    617 			}
    618 
    619 			/* write back the nominal FAN speed  */
    620 			sc->info[binfo->sensor].rpms = binfo->rpms;
    621 
    622 			/* 153 is the nominal FAN speed value */
    623 			divisor = 1350000 / (binfo->rpms * 153);
    624 
    625 			/* ...but we need lg(divisor) */
    626 			for (i = 0; i < 7; i++) {
    627 				if (divisor <= (1 << i))
    628 				 	break;
    629 			}
    630 			divisor = i;
    631 
    632 			if (binfo->sensor == 10 || binfo->sensor == 11) {
    633 				/*
    634 				 * FAN1 div is in bits <5:4>, FAN2 div
    635 				 * is in <7:6>
    636 				 */
    637 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    638 				if ( binfo->sensor == 10 ) {  /* FAN1 */
    639 					 sdata = (sdata & 0xCF) |
    640 					     ((divisor & 0x3) << 4);
    641 				} else { /* FAN2 */
    642 					 sdata = (sdata & 0x3F) |
    643 					     ((divisor & 0x3) << 6);
    644 				}
    645 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    646 			} else {
    647 				/* FAN3 is in WB_PIN <7:6> */
    648 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    649 				sdata = (sdata & 0x3F) |
    650 				     ((divisor & 0x3) << 6);
    651 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    652 			}
    653 		}
    654 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    655 		    sizeof(sc->info[binfo->sensor].desc));
    656 		binfo->validflags = ENVSYS_FVALID;
    657 	 }
    658 	 return 0;
    659 }
    660 
    661 int
    662 wb782_streinfo(sme, binfo)
    663 	 struct sysmon_envsys *sme;
    664 	 struct envsys_basic_info *binfo;
    665 {
    666 	 struct lm_softc *sc = sme->sme_cookie;
    667 	 int divisor;
    668 	 u_int8_t sdata;
    669 	 int i;
    670 
    671 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    672 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    673 	 else {
    674 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    675 			if (binfo->rpms == 0) {
    676 				binfo->validflags = 0;
    677 				return 0;
    678 			}
    679 
    680 			/* write back the nominal FAN speed  */
    681 			sc->info[binfo->sensor].rpms = binfo->rpms;
    682 
    683 			/* 153 is the nominal FAN speed value */
    684 			divisor = 1350000 / (binfo->rpms * 153);
    685 
    686 			/* ...but we need lg(divisor) */
    687 			for (i = 0; i < 7; i++) {
    688 				if (divisor <= (1 << i))
    689 				 	break;
    690 			}
    691 			divisor = i;
    692 
    693 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    694 				/*
    695 				 * FAN1 div is in bits <5:4>, FAN2 div
    696 				 * is in <7:6>
    697 				 */
    698 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    699 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    700 					 sdata = (sdata & 0xCF) |
    701 					     ((divisor & 0x3) << 4);
    702 				} else { /* FAN2 */
    703 					 sdata = (sdata & 0x3F) |
    704 					     ((divisor & 0x3) << 6);
    705 				}
    706 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    707 			} else {
    708 				/* FAN3 is in WB_PIN <7:6> */
    709 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    710 				sdata = (sdata & 0x3F) |
    711 				     ((divisor & 0x3) << 6);
    712 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    713 			}
    714 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    715 			(*sc->lm_banksel)(sc, 0);
    716 			sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
    717 			sdata &= ~(0x20 << (binfo->sensor - 12));
    718 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    719 			(*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
    720 		}
    721 
    722 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    723 		    sizeof(sc->info[binfo->sensor].desc));
    724 		binfo->validflags = ENVSYS_FVALID;
    725 	}
    726 	return 0;
    727 }
    728 
    729 int
    730 itec_streinfo(sme, binfo)
    731 	 struct sysmon_envsys *sme;
    732 	 struct envsys_basic_info *binfo;
    733 {
    734 	 struct lm_softc *sc = sme->sme_cookie;
    735 	 int divisor;
    736 	 u_int8_t sdata;
    737 	 int i;
    738 
    739 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    740 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    741 	 else {
    742 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    743 			if (binfo->rpms == 0) {
    744 				binfo->validflags = 0;
    745 				return 0;
    746 			}
    747 
    748 			/* write back the nominal FAN speed  */
    749 			sc->info[binfo->sensor].rpms = binfo->rpms;
    750 
    751 			/* 153 is the nominal FAN speed value */
    752 			divisor = 1350000 / (binfo->rpms * 153);
    753 
    754 			/* ...but we need lg(divisor) */
    755 			for (i = 0; i < 7; i++) {
    756 				if (divisor <= (1 << i))
    757 				 	break;
    758 			}
    759 			divisor = i;
    760 
    761 			sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV);
    762 			/*
    763 			 * FAN1 div is in bits <0:2>, FAN2 is in <3:5>
    764 			 * FAN3 is in <6>, if set divisor is 8, else 2
    765 			 */
    766 			if ( binfo->sensor == 10 ) {  /* FAN1 */
    767 				 sdata = (sdata & 0xf8) | divisor;
    768 			} else if ( binfo->sensor == 11 ) { /* FAN2 */
    769 				 sdata = (sdata & 0xc7) | divisor << 3;
    770 			} else { /* FAN3 */
    771 				if (divisor>2)
    772 					sdata = sdata & 0xbf;
    773 				else
    774 					sdata = sdata | 0x40;
    775 			}
    776 			(*sc->lm_writereg)(sc, ITEC_FANDIV, sdata);
    777 		}
    778 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    779 		    sizeof(sc->info[binfo->sensor].desc));
    780 		binfo->validflags = ENVSYS_FVALID;
    781 	 }
    782 	 return 0;
    783 }
    784 
    785 static void
    786 generic_stemp(sc, sensor)
    787 	struct lm_softc *sc;
    788 	struct envsys_tre_data *sensor;
    789 {
    790 	int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    791 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
    792 	/* temp is given in deg. C, we convert to uK */
    793 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    794 }
    795 
    796 static void
    797 generic_svolt(sc, sensors, infos)
    798 	struct lm_softc *sc;
    799 	struct envsys_tre_data *sensors;
    800 	struct envsys_basic_info *infos;
    801 {
    802 	int i, sdata;
    803 
    804 	for (i = 0; i < 7; i++) {
    805 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    806 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    807 		/* voltage returned as (mV >> 4), we convert to uVDC */
    808 		sensors[i].cur.data_s = (sdata << 4);
    809 		/* rfact is (factor * 10^4) */
    810 		sensors[i].cur.data_s *= infos[i].rfact;
    811 		/* division by 10 gets us back to uVDC */
    812 		sensors[i].cur.data_s /= 10;
    813 
    814 		/* these two are negative voltages */
    815 		if ( (i == 5) || (i == 6) )
    816 			sensors[i].cur.data_s *= -1;
    817 	}
    818 }
    819 
    820 static void
    821 generic_fanrpm(sc, sensors)
    822 	struct lm_softc *sc;
    823 	struct envsys_tre_data *sensors;
    824 {
    825 	int i, sdata, divisor;
    826 	for (i = 0; i < 3; i++) {
    827 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
    828 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    829 		if (i == 2)
    830 			divisor = 2;	/* Fixed divisor for FAN3 */
    831 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    832 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    833 		else
    834 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    835 
    836 		if (sdata == 0xff || sdata == 0x00) {
    837 			sensors[i].cur.data_us = 0;
    838 		} else {
    839 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    840 		}
    841 	}
    842 }
    843 
    844 /*
    845  * pre:  last read occurred >= 1.5 seconds ago
    846  * post: sensors[] current data are the latest from the chip
    847  */
    848 void
    849 lm_refresh_sensor_data(sc)
    850 	struct lm_softc *sc;
    851 {
    852 	/* Refresh our stored data for every sensor */
    853 	generic_stemp(sc, &sc->sensors[7]);
    854 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    855 	generic_fanrpm(sc, &sc->sensors[8]);
    856 }
    857 
    858 static void
    859 wb_svolt(sc)
    860 	struct lm_softc *sc;
    861 {
    862 	int i, sdata;
    863 	for (i = 0; i < 9; ++i) {
    864 		if (i < 7) {
    865 			sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    866 		} else {
    867 			/* from bank5 */
    868 			(*sc->lm_banksel)(sc, 5);
    869 			sdata = (*sc->lm_readreg)(sc, (i == 7) ?
    870 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    871 		}
    872 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    873 		/* voltage returned as (mV >> 4), we convert to uV */
    874 		sdata =  sdata << 4;
    875 		/* special case for negative voltages */
    876 		if (i == 5) {
    877 			/*
    878 			 * -12Vdc, assume Winbond recommended values for
    879 			 * resistors
    880 			 */
    881 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    882 		} else if (i == 6) {
    883 			/*
    884 			 * -5Vdc, assume Winbond recommended values for
    885 			 * resistors
    886 			 */
    887 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    888 		}
    889 		/* rfact is (factor * 10^4) */
    890 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    891 		/* division by 10 gets us back to uVDC */
    892 		sc->sensors[i].cur.data_s /= 10;
    893 	}
    894 }
    895 
    896 static void
    897 wb_stemp(sc, sensors, n)
    898 	struct lm_softc *sc;
    899 	struct  envsys_tre_data *sensors;
    900 	int n;
    901 {
    902 	int sdata;
    903 	/* temperatures. Given in dC, we convert to uK */
    904 	sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    905 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
    906 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    907 	/* from bank1 */
    908 	if ((*sc->lm_banksel)(sc, 1))
    909 		sensors[1].validflags &= ~ENVSYS_FCURVALID;
    910 	else {
    911 		sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
    912 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
    913 		DPRINTF(("sdata[temp1] 0x%x\n", sdata));
    914 		sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    915 	}
    916 	if (n < 3)
    917 		return;
    918 	/* from bank2 */
    919 	if ((*sc->lm_banksel)(sc, 2))
    920 		sensors[2].validflags &= ~ENVSYS_FCURVALID;
    921 	else {
    922 		sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
    923 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
    924 		DPRINTF(("sdata[temp2] 0x%x\n", sdata));
    925 		sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    926 	}
    927 }
    928 
    929 static void
    930 wb781_fanrpm(sc, sensors)
    931 	struct lm_softc *sc;
    932 	struct envsys_tre_data *sensors;
    933 {
    934 	int i, divisor, sdata;
    935 	(*sc->lm_banksel)(sc, 0);
    936 	for (i = 0; i < 3; i++) {
    937 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    938 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    939 		if (i == 0)
    940 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    941 		else if (i == 1)
    942 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    943 		else
    944 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    945 
    946 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    947 		if (sdata == 0xff || sdata == 0x00) {
    948 			sensors[i].cur.data_us = 0;
    949 		} else {
    950 			sensors[i].cur.data_us = 1350000 /
    951 			    (sdata << divisor);
    952 		}
    953 	}
    954 }
    955 
    956 static void
    957 wb_fanrpm(sc, sensors)
    958 	struct lm_softc *sc;
    959 	struct envsys_tre_data *sensors;
    960 {
    961 	int i, divisor, sdata;
    962 	(*sc->lm_banksel)(sc, 0);
    963 	for (i = 0; i < 3; i++) {
    964 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    965 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    966 		if (i == 0)
    967 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    968 		else if (i == 1)
    969 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    970 		else
    971 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    972 		divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    973 
    974 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    975 		if (sdata == 0xff || sdata == 0x00) {
    976 			sensors[i].cur.data_us = 0;
    977 		} else {
    978 			sensors[i].cur.data_us = 1350000 /
    979 			    (sdata << divisor);
    980 		}
    981 	}
    982 }
    983 
    984 void
    985 wb781_refresh_sensor_data(sc)
    986 	struct lm_softc *sc;
    987 {
    988 	/* Refresh our stored data for every sensor */
    989 	/* we need to reselect bank0 to access common registers */
    990 	(*sc->lm_banksel)(sc, 0);
    991 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    992 	(*sc->lm_banksel)(sc, 0);
    993 	wb_stemp(sc, &sc->sensors[7], 3);
    994 	(*sc->lm_banksel)(sc, 0);
    995 	wb781_fanrpm(sc, &sc->sensors[10]);
    996 }
    997 
    998 void
    999 wb782_refresh_sensor_data(sc)
   1000 	struct lm_softc *sc;
   1001 {
   1002 	/* Refresh our stored data for every sensor */
   1003 	wb_svolt(sc);
   1004 	wb_stemp(sc, &sc->sensors[9], 3);
   1005 	wb_fanrpm(sc, &sc->sensors[12]);
   1006 }
   1007 
   1008 void
   1009 wb697_refresh_sensor_data(sc)
   1010 	struct lm_softc *sc;
   1011 {
   1012 	/* Refresh our stored data for every sensor */
   1013 	wb_svolt(sc);
   1014 	wb_stemp(sc, &sc->sensors[9], 2);
   1015 	wb_fanrpm(sc, &sc->sensors[11]);
   1016 }
   1017 
   1018 static void
   1019 itec_svolt(sc, sensors, infos)
   1020 	struct lm_softc *sc;
   1021 	struct envsys_tre_data *sensors;
   1022 	struct envsys_basic_info *infos;
   1023 {
   1024 	int i, sdata;
   1025 
   1026 	for (i = 0; i < 9; i++) {
   1027 		sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i);
   1028 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
   1029 		/* voltage returned as (mV >> 4), we convert to uVDC */
   1030 		sensors[i].cur.data_s = ( sdata << 4 );
   1031 		/* rfact is (factor * 10^4) */
   1032 
   1033 		sensors[i].cur.data_s *= infos[i].rfact;
   1034 		/*
   1035 		 * XXX We assume input 5 is wired the way iTE suggests to
   1036 		 * monitor a negative voltage. I'd prefer using negative rfacts
   1037 		 * for detecting those cases but since rfact is an u_int this
   1038 		 * isn't possible.
   1039 		 */
   1040 		if (i == 5)
   1041 			sensors[i].cur.data_s -=
   1042 			    (infos[i].rfact - 10000) * ITEC_VREF;
   1043 		/* division by 10 gets us back to uVDC */
   1044 		sensors[i].cur.data_s /= 10;
   1045 	}
   1046 }
   1047 
   1048 static void
   1049 itec_stemp(sc, sensors)
   1050 	struct lm_softc *sc;
   1051 	struct  envsys_tre_data *sensors;
   1052 {
   1053 	int i, sdata;
   1054 
   1055 	/* temperatures. Given in dC, we convert to uK */
   1056 	for (i = 0; i < 3; i++) {
   1057 		sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i);
   1058 		DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata));
   1059 		sensors[i].cur.data_us = sdata * 1000000 + 273150000;
   1060 	}
   1061 }
   1062 
   1063 static void
   1064 itec_fanrpm(sc, sensors)
   1065 	struct lm_softc *sc;
   1066 	struct envsys_tre_data *sensors;
   1067 {
   1068 	int i, fandiv, divisor, sdata;
   1069 	(*sc->lm_banksel)(sc, 0);
   1070 	fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV));
   1071 
   1072 	for (i = 0; i < 3; i++) {
   1073 		sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i);
   1074 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
   1075 		switch (i) {
   1076 		case 0:
   1077 			divisor = fandiv & 0x7;
   1078 			break;
   1079 		case 1:
   1080 			divisor = (fandiv >> 3) & 0x7;
   1081 			break;
   1082 		case 2:
   1083 		default:	/* XXX */
   1084 			divisor = (fandiv & 0x40) ? 3 : 1;
   1085 			break;
   1086 		}
   1087 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
   1088 		if (sdata == 0xff || sdata == 0x00) {
   1089 			sensors[i].cur.data_us = 0;
   1090 		} else {
   1091 			sensors[i].cur.data_us = 1350000 /
   1092 			    (sdata << divisor);
   1093 		}
   1094 	}
   1095 
   1096 }
   1097 
   1098 void
   1099 itec_refresh_sensor_data(sc)
   1100 	struct lm_softc *sc;
   1101 {
   1102 	itec_svolt(sc, &sc->sensors[0], &sc->info[0]);
   1103 	itec_stemp(sc, &sc->sensors[9]);
   1104 	itec_fanrpm(sc, &sc->sensors[12]);
   1105 }
   1106