nslm7x.c revision 1.19 1 /* $NetBSD: nslm7x.c,v 1.19 2004/07/24 18:59:16 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.19 2004/07/24 18:59:16 christos Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/errno.h>
49 #include <sys/queue.h>
50 #include <sys/lock.h>
51 #include <sys/ioctl.h>
52 #include <sys/conf.h>
53 #include <sys/time.h>
54
55 #include <machine/bus.h>
56
57 #include <dev/isa/isareg.h>
58 #include <dev/isa/isavar.h>
59
60 #include <dev/sysmon/sysmonvar.h>
61
62 #include <dev/ic/nslm7xvar.h>
63
64 #include <machine/intr.h>
65 #include <machine/bus.h>
66
67 #if defined(LMDEBUG)
68 #define DPRINTF(x) printf x
69 #else
70 #define DPRINTF(x)
71 #endif
72
73 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 /* for each unit type */
75 { 7, 7, ENVSYS_STEMP },
76 { 8, 10, ENVSYS_SFANRPM },
77 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 { 0, 6, ENVSYS_SVOLTS_DC },
79 { 1, 0, ENVSYS_SOHMS }, /* None */
80 { 1, 0, ENVSYS_SWATTS }, /* None */
81 { 1, 0, ENVSYS_SAMPS } /* None */
82 };
83
84
85 static void setup_fan __P((struct lm_softc *, int, int));
86 static void setup_temp __P((struct lm_softc *, int, int));
87 static void wb_setup_volt __P((struct lm_softc *));
88
89 int lm_match __P((struct lm_softc *));
90 int wb_match __P((struct lm_softc *));
91 int itec_match __P((struct lm_softc *));
92 int def_match __P((struct lm_softc *));
93 void lm_common_match __P((struct lm_softc *));
94 static int lm_generic_banksel __P((struct lm_softc *, int));
95
96 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
97 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
98 struct envsys_basic_info *));
99 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
100
101 void lm_refresh_sensor_data __P((struct lm_softc *));
102
103 static void wb_svolt __P((struct lm_softc *));
104 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
105 static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
106 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
107
108 void wb781_refresh_sensor_data __P((struct lm_softc *));
109 void wb782_refresh_sensor_data __P((struct lm_softc *));
110 void wb697_refresh_sensor_data __P((struct lm_softc *));
111
112 static void itec_svolt __P((struct lm_softc *, struct envsys_tre_data *,
113 struct envsys_basic_info *));
114 static void itec_stemp __P((struct lm_softc *, struct envsys_tre_data *));
115 static void itec_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
116 void itec_refresh_sensor_data __P((struct lm_softc *));
117
118 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
119
120 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
121 int, struct envsys_basic_info *));
122 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
123 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
124 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
125 int itec_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
126
127 struct lm_chip {
128 int (*chip_match) __P((struct lm_softc *));
129 };
130
131 struct lm_chip lm_chips[] = {
132 { itec_match },
133 { wb_match },
134 { lm_match },
135 { def_match } /* Must be last */
136 };
137
138
139 int
140 lm_generic_banksel(lmsc, bank)
141 struct lm_softc *lmsc;
142 int bank;
143 {
144
145 (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
146 return 0;
147 }
148
149
150 /*
151 * bus independent probe
152 */
153 int
154 lm_probe(iot, ioh)
155 bus_space_tag_t iot;
156 bus_space_handle_t ioh;
157 {
158 u_int8_t cr;
159 int rv;
160
161 /*
162 * Check for it8705f, before we do the chip reset.
163 * In case of an it8705f this might reset all the fan control
164 * parameters to defaults which would void all settings done by
165 * the BOOTROM/BIOS.
166 */
167 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48);
168 cr = bus_space_read_1(iot, ioh, LMC_DATA);
169
170 if (cr == ITEC_RES48_DEFAULT) {
171 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52);
172 cr = bus_space_read_1(iot, ioh, LMC_DATA);
173 if (cr == ITEC_RES52_DEFAULT)
174 return 1;
175 }
176
177 /* Check for some power-on defaults */
178 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
179
180 /* Perform LM78 reset */
181 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
182
183 /* XXX - Why do I have to reselect the register? */
184 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
185 cr = bus_space_read_1(iot, ioh, LMC_DATA);
186
187 /* XXX - spec says *only* 0x08! */
188 if ((cr == 0x08) || (cr == 0x01))
189 rv = 1;
190 else
191 rv = 0;
192
193 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
194
195 return (rv);
196 }
197
198
199 /*
200 * pre: lmsc contains valid busspace tag and handle
201 */
202 void
203 lm_attach(lmsc)
204 struct lm_softc *lmsc;
205 {
206 u_int i;
207
208 /* Install default bank selection routine, if none given. */
209 if (lmsc->lm_banksel == NULL)
210 lmsc->lm_banksel = lm_generic_banksel;
211
212 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
213 if (lm_chips[i].chip_match(lmsc))
214 break;
215
216 /* Start the monitoring loop */
217 (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
218
219 /* Indicate we have never read the registers */
220 timerclear(&lmsc->lastread);
221
222 /* Initialize sensors */
223 for (i = 0; i < lmsc->numsensors; ++i) {
224 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
225 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
226 lmsc->info[i].validflags = ENVSYS_FVALID;
227 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
228 }
229 /*
230 * Hook into the System Monitor.
231 */
232 lmsc->sc_sysmon.sme_ranges = lm_ranges;
233 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
234 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
235 lmsc->sc_sysmon.sme_cookie = lmsc;
236
237 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
238 /* sme_streinfo set in chip-specific attach */
239
240 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
241 lmsc->sc_sysmon.sme_envsys_version = 1000;
242
243 if (sysmon_envsys_register(&lmsc->sc_sysmon))
244 printf("%s: unable to register with sysmon\n",
245 lmsc->sc_dev.dv_xname);
246 }
247
248 int
249 lm_match(sc)
250 struct lm_softc *sc;
251 {
252 int i;
253
254 /* See if we have an LM78 or LM79 */
255 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
256 switch(i) {
257 case LM_ID_LM78:
258 printf(": LM78\n");
259 break;
260 case LM_ID_LM78J:
261 printf(": LM78J\n");
262 break;
263 case LM_ID_LM79:
264 printf(": LM79\n");
265 break;
266 case LM_ID_LM81:
267 printf(": LM81\n");
268 break;
269 default:
270 return 0;
271 }
272 lm_common_match(sc);
273 return 1;
274 }
275
276 int
277 def_match(sc)
278 struct lm_softc *sc;
279 {
280 int i;
281
282 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
283 printf(": Unknown chip (ID %d)\n", i);
284 lm_common_match(sc);
285 return 1;
286 }
287
288 void
289 lm_common_match(sc)
290 struct lm_softc *sc;
291 {
292 int i;
293 sc->numsensors = LM_NUM_SENSORS;
294 sc->refresh_sensor_data = lm_refresh_sensor_data;
295
296 for (i = 0; i < 7; ++i) {
297 sc->sensors[i].units = sc->info[i].units =
298 ENVSYS_SVOLTS_DC;
299 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
300 "IN %d", i);
301 }
302
303 /* default correction factors for resistors on higher voltage inputs */
304 sc->info[0].rfact = sc->info[1].rfact =
305 sc->info[2].rfact = 10000;
306 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
307 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
308 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
309 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
310
311 sc->sensors[7].units = ENVSYS_STEMP;
312 strcpy(sc->info[7].desc, "Temp");
313
314 setup_fan(sc, 8, 3);
315 sc->sc_sysmon.sme_streinfo = lm_streinfo;
316 }
317
318 int
319 wb_match(sc)
320 struct lm_softc *sc;
321 {
322 int i, j;
323
324 (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
325 j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
326 (*sc->lm_writereg)(sc, WB_BANKSEL, 0);
327 j |= (*sc->lm_readreg)(sc, WB_VENDID);
328 DPRINTF(("winbond vend id 0x%x\n", j));
329 if (j != WB_VENDID_WINBOND)
330 return 0;
331 /* read device ID */
332 (*sc->lm_banksel)(sc, 0);
333 j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
334 DPRINTF(("winbond chip id 0x%x\n", j));
335 switch(j) {
336 case WB_CHIPID_83781:
337 case WB_CHIPID_83781_2:
338 printf(": W83781D\n");
339
340 for (i = 0; i < 7; ++i) {
341 sc->sensors[i].units = sc->info[i].units =
342 ENVSYS_SVOLTS_DC;
343 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
344 "IN %d", i);
345 }
346
347 /* default correction factors for higher voltage inputs */
348 sc->info[0].rfact = sc->info[1].rfact =
349 sc->info[2].rfact = 10000;
350 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
351 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
352 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
353 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
354
355 setup_temp(sc, 7, 3);
356 setup_fan(sc, 10, 3);
357
358 sc->numsensors = WB83781_NUM_SENSORS;
359 sc->refresh_sensor_data = wb781_refresh_sensor_data;
360 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
361 return 1;
362 case WB_CHIPID_83697:
363 printf(": W83697HF\n");
364 wb_setup_volt(sc);
365 setup_temp(sc, 9, 2);
366 setup_fan(sc, 11, 3);
367 sc->numsensors = WB83697_NUM_SENSORS;
368 sc->refresh_sensor_data = wb697_refresh_sensor_data;
369 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
370 return 1;
371 case WB_CHIPID_83782:
372 printf(": W83782D\n");
373 break;
374 case WB_CHIPID_83627:
375 printf(": W83627HF\n");
376 break;
377 default:
378 printf(": unknow winbond chip ID 0x%x\n", j);
379 /* handle as a standart lm7x */
380 lm_common_match(sc);
381 return 1;
382 }
383 /* common code for the W83782D and W83627HF */
384 wb_setup_volt(sc);
385 setup_temp(sc, 9, 3);
386 setup_fan(sc, 12, 3);
387 sc->numsensors = WB_NUM_SENSORS;
388 sc->refresh_sensor_data = wb782_refresh_sensor_data;
389 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
390 return 1;
391 }
392
393 static void
394 wb_setup_volt(sc)
395 struct lm_softc *sc;
396 {
397 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
398 snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
399 sc->info[0].rfact = 10000;
400 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
401 snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
402 sc->info[1].rfact = 10000;
403 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
404 snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
405 sc->info[2].rfact = 10000;
406 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
407 snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
408 sc->info[3].rfact = 16778;
409 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
410 snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
411 sc->info[4].rfact = 38000;
412 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
413 snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
414 sc->info[5].rfact = 10000;
415 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
416 snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
417 sc->info[6].rfact = 10000;
418 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
419 snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
420 sc->info[7].rfact = 15151;
421 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
422 snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
423 sc->info[8].rfact = 10000;
424 }
425
426 int
427 itec_match(sc)
428 struct lm_softc *sc;
429 {
430 int vendor;
431 /* do the same thing as in lm_probe() */
432 if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT)
433 return 0;
434
435 if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT)
436 return 0;
437
438 vendor=(*sc->lm_readreg)(sc, ITEC_VENDID);
439
440 if (vendor == ITEC_VENDID_ITE)
441 printf(": iTE IT8705f\n");
442 else
443 printf(": unknown IT8705f compatible, vendorid 0x%02x\n",
444 vendor);
445
446 /*
447 * XXX this is a litle bit lame...
448 * All VIN inputs work exactly the same way, it depends of the
449 * external wiring what voltages they monitor and which correction
450 * factors are needed. We assume a pretty standard setup here
451 */
452 wb_setup_volt(sc);
453 strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc));
454 strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc));
455 strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc));
456 sc->info[5].rfact = 51100;
457 sc->info[7].rfact = 16778;
458
459 setup_temp(sc, 9, 3);
460 setup_fan(sc, 12, 3);
461 sc->numsensors = ITEC_NUM_SENSORS;
462 sc->refresh_sensor_data = itec_refresh_sensor_data;
463 sc->sc_sysmon.sme_streinfo = itec_streinfo;
464
465 return 1;
466 }
467
468
469 static void
470 setup_temp(sc, start, n)
471 struct lm_softc *sc;
472 int start, n;
473 {
474 int i;
475
476 for (i = 0; i < n; i++) {
477 sc->sensors[start + i].units = ENVSYS_STEMP;
478 snprintf(sc->info[start + i].desc,
479 sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
480 }
481 }
482
483
484 static void
485 setup_fan(sc, start, n)
486 struct lm_softc *sc;
487 int start, n;
488 {
489 int i;
490 for (i = 0; i < n; ++i) {
491 sc->sensors[start + i].units = ENVSYS_SFANRPM;
492 sc->info[start + i].units = ENVSYS_SFANRPM;
493 snprintf(sc->info[start + i].desc,
494 sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
495 }
496 }
497
498 int
499 lm_gtredata(sme, tred)
500 struct sysmon_envsys *sme;
501 struct envsys_tre_data *tred;
502 {
503 static const struct timeval onepointfive = { 1, 500000 };
504 struct timeval t;
505 struct lm_softc *sc = sme->sme_cookie;
506 int i, s;
507
508 /* read new values at most once every 1.5 seconds */
509 timeradd(&sc->lastread, &onepointfive, &t);
510 s = splclock();
511 i = timercmp(&mono_time, &t, >);
512 if (i) {
513 sc->lastread.tv_sec = mono_time.tv_sec;
514 sc->lastread.tv_usec = mono_time.tv_usec;
515 }
516 splx(s);
517
518 if (i)
519 sc->refresh_sensor_data(sc);
520
521 *tred = sc->sensors[tred->sensor];
522
523 return 0;
524 }
525
526 int
527 generic_streinfo_fan(sc, info, n, binfo)
528 struct lm_softc *sc;
529 struct envsys_basic_info *info;
530 int n;
531 struct envsys_basic_info *binfo;
532 {
533 u_int8_t sdata;
534 int divisor;
535
536 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
537 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
538 && (n < 2)) {
539 if (binfo->rpms == 0) {
540 binfo->validflags = 0;
541 return 0;
542 }
543
544 /* write back the nominal FAN speed */
545 info->rpms = binfo->rpms;
546
547 /* 153 is the nominal FAN speed value */
548 divisor = 1350000 / (binfo->rpms * 153);
549
550 /* ...but we need lg(divisor) */
551 if (divisor <= 1)
552 divisor = 0;
553 else if (divisor <= 2)
554 divisor = 1;
555 else if (divisor <= 4)
556 divisor = 2;
557 else
558 divisor = 3;
559
560 /*
561 * FAN1 div is in bits <5:4>, FAN2 div is
562 * in <7:6>
563 */
564 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
565 if ( n == 0 ) { /* FAN1 */
566 divisor <<= 4;
567 sdata = (sdata & 0xCF) | divisor;
568 } else { /* FAN2 */
569 divisor <<= 6;
570 sdata = (sdata & 0x3F) | divisor;
571 }
572
573 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
574 }
575 return 0;
576
577 }
578
579 int
580 lm_streinfo(sme, binfo)
581 struct sysmon_envsys *sme;
582 struct envsys_basic_info *binfo;
583 {
584 struct lm_softc *sc = sme->sme_cookie;
585
586 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
587 sc->info[binfo->sensor].rfact = binfo->rfact;
588 else {
589 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
590 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
591 binfo->sensor - 8, binfo);
592 }
593 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
594 sizeof(sc->info[binfo->sensor].desc));
595 binfo->validflags = ENVSYS_FVALID;
596 }
597 return 0;
598 }
599
600 int
601 wb781_streinfo(sme, binfo)
602 struct sysmon_envsys *sme;
603 struct envsys_basic_info *binfo;
604 {
605 struct lm_softc *sc = sme->sme_cookie;
606 int divisor;
607 u_int8_t sdata;
608 int i;
609
610 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
611 sc->info[binfo->sensor].rfact = binfo->rfact;
612 else {
613 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
614 if (binfo->rpms == 0) {
615 binfo->validflags = 0;
616 return 0;
617 }
618
619 /* write back the nominal FAN speed */
620 sc->info[binfo->sensor].rpms = binfo->rpms;
621
622 /* 153 is the nominal FAN speed value */
623 divisor = 1350000 / (binfo->rpms * 153);
624
625 /* ...but we need lg(divisor) */
626 for (i = 0; i < 7; i++) {
627 if (divisor <= (1 << i))
628 break;
629 }
630 divisor = i;
631
632 if (binfo->sensor == 10 || binfo->sensor == 11) {
633 /*
634 * FAN1 div is in bits <5:4>, FAN2 div
635 * is in <7:6>
636 */
637 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
638 if ( binfo->sensor == 10 ) { /* FAN1 */
639 sdata = (sdata & 0xCF) |
640 ((divisor & 0x3) << 4);
641 } else { /* FAN2 */
642 sdata = (sdata & 0x3F) |
643 ((divisor & 0x3) << 6);
644 }
645 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
646 } else {
647 /* FAN3 is in WB_PIN <7:6> */
648 sdata = (*sc->lm_readreg)(sc, WB_PIN);
649 sdata = (sdata & 0x3F) |
650 ((divisor & 0x3) << 6);
651 (*sc->lm_writereg)(sc, WB_PIN, sdata);
652 }
653 }
654 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
655 sizeof(sc->info[binfo->sensor].desc));
656 binfo->validflags = ENVSYS_FVALID;
657 }
658 return 0;
659 }
660
661 int
662 wb782_streinfo(sme, binfo)
663 struct sysmon_envsys *sme;
664 struct envsys_basic_info *binfo;
665 {
666 struct lm_softc *sc = sme->sme_cookie;
667 int divisor;
668 u_int8_t sdata;
669 int i;
670
671 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
672 sc->info[binfo->sensor].rfact = binfo->rfact;
673 else {
674 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
675 if (binfo->rpms == 0) {
676 binfo->validflags = 0;
677 return 0;
678 }
679
680 /* write back the nominal FAN speed */
681 sc->info[binfo->sensor].rpms = binfo->rpms;
682
683 /* 153 is the nominal FAN speed value */
684 divisor = 1350000 / (binfo->rpms * 153);
685
686 /* ...but we need lg(divisor) */
687 for (i = 0; i < 7; i++) {
688 if (divisor <= (1 << i))
689 break;
690 }
691 divisor = i;
692
693 if (binfo->sensor == 12 || binfo->sensor == 13) {
694 /*
695 * FAN1 div is in bits <5:4>, FAN2 div
696 * is in <7:6>
697 */
698 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
699 if ( binfo->sensor == 12 ) { /* FAN1 */
700 sdata = (sdata & 0xCF) |
701 ((divisor & 0x3) << 4);
702 } else { /* FAN2 */
703 sdata = (sdata & 0x3F) |
704 ((divisor & 0x3) << 6);
705 }
706 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
707 } else {
708 /* FAN3 is in WB_PIN <7:6> */
709 sdata = (*sc->lm_readreg)(sc, WB_PIN);
710 sdata = (sdata & 0x3F) |
711 ((divisor & 0x3) << 6);
712 (*sc->lm_writereg)(sc, WB_PIN, sdata);
713 }
714 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
715 (*sc->lm_banksel)(sc, 0);
716 sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
717 sdata &= ~(0x20 << (binfo->sensor - 12));
718 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
719 (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
720 }
721
722 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
723 sizeof(sc->info[binfo->sensor].desc));
724 binfo->validflags = ENVSYS_FVALID;
725 }
726 return 0;
727 }
728
729 int
730 itec_streinfo(sme, binfo)
731 struct sysmon_envsys *sme;
732 struct envsys_basic_info *binfo;
733 {
734 struct lm_softc *sc = sme->sme_cookie;
735 int divisor;
736 u_int8_t sdata;
737 int i;
738
739 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
740 sc->info[binfo->sensor].rfact = binfo->rfact;
741 else {
742 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
743 if (binfo->rpms == 0) {
744 binfo->validflags = 0;
745 return 0;
746 }
747
748 /* write back the nominal FAN speed */
749 sc->info[binfo->sensor].rpms = binfo->rpms;
750
751 /* 153 is the nominal FAN speed value */
752 divisor = 1350000 / (binfo->rpms * 153);
753
754 /* ...but we need lg(divisor) */
755 for (i = 0; i < 7; i++) {
756 if (divisor <= (1 << i))
757 break;
758 }
759 divisor = i;
760
761 sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV);
762 /*
763 * FAN1 div is in bits <0:2>, FAN2 is in <3:5>
764 * FAN3 is in <6>, if set divisor is 8, else 2
765 */
766 if ( binfo->sensor == 10 ) { /* FAN1 */
767 sdata = (sdata & 0xf8) | divisor;
768 } else if ( binfo->sensor == 11 ) { /* FAN2 */
769 sdata = (sdata & 0xc7) | divisor << 3;
770 } else { /* FAN3 */
771 if (divisor>2)
772 sdata = sdata & 0xbf;
773 else
774 sdata = sdata | 0x40;
775 }
776 (*sc->lm_writereg)(sc, ITEC_FANDIV, sdata);
777 }
778 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
779 sizeof(sc->info[binfo->sensor].desc));
780 binfo->validflags = ENVSYS_FVALID;
781 }
782 return 0;
783 }
784
785 static void
786 generic_stemp(sc, sensor)
787 struct lm_softc *sc;
788 struct envsys_tre_data *sensor;
789 {
790 int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
791 DPRINTF(("sdata[temp] 0x%x\n", sdata));
792 /* temp is given in deg. C, we convert to uK */
793 sensor->cur.data_us = sdata * 1000000 + 273150000;
794 }
795
796 static void
797 generic_svolt(sc, sensors, infos)
798 struct lm_softc *sc;
799 struct envsys_tre_data *sensors;
800 struct envsys_basic_info *infos;
801 {
802 int i, sdata;
803
804 for (i = 0; i < 7; i++) {
805 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
806 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
807 /* voltage returned as (mV >> 4), we convert to uVDC */
808 sensors[i].cur.data_s = (sdata << 4);
809 /* rfact is (factor * 10^4) */
810 sensors[i].cur.data_s *= infos[i].rfact;
811 /* division by 10 gets us back to uVDC */
812 sensors[i].cur.data_s /= 10;
813
814 /* these two are negative voltages */
815 if ( (i == 5) || (i == 6) )
816 sensors[i].cur.data_s *= -1;
817 }
818 }
819
820 static void
821 generic_fanrpm(sc, sensors)
822 struct lm_softc *sc;
823 struct envsys_tre_data *sensors;
824 {
825 int i, sdata, divisor;
826 for (i = 0; i < 3; i++) {
827 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
828 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
829 if (i == 2)
830 divisor = 2; /* Fixed divisor for FAN3 */
831 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
832 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
833 else
834 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
835
836 if (sdata == 0xff || sdata == 0x00) {
837 sensors[i].cur.data_us = 0;
838 } else {
839 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
840 }
841 }
842 }
843
844 /*
845 * pre: last read occurred >= 1.5 seconds ago
846 * post: sensors[] current data are the latest from the chip
847 */
848 void
849 lm_refresh_sensor_data(sc)
850 struct lm_softc *sc;
851 {
852 /* Refresh our stored data for every sensor */
853 generic_stemp(sc, &sc->sensors[7]);
854 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
855 generic_fanrpm(sc, &sc->sensors[8]);
856 }
857
858 static void
859 wb_svolt(sc)
860 struct lm_softc *sc;
861 {
862 int i, sdata;
863 for (i = 0; i < 9; ++i) {
864 if (i < 7) {
865 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
866 } else {
867 /* from bank5 */
868 (*sc->lm_banksel)(sc, 5);
869 sdata = (*sc->lm_readreg)(sc, (i == 7) ?
870 WB_BANK5_5VSB : WB_BANK5_VBAT);
871 }
872 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
873 /* voltage returned as (mV >> 4), we convert to uV */
874 sdata = sdata << 4;
875 /* special case for negative voltages */
876 if (i == 5) {
877 /*
878 * -12Vdc, assume Winbond recommended values for
879 * resistors
880 */
881 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
882 } else if (i == 6) {
883 /*
884 * -5Vdc, assume Winbond recommended values for
885 * resistors
886 */
887 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
888 }
889 /* rfact is (factor * 10^4) */
890 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
891 /* division by 10 gets us back to uVDC */
892 sc->sensors[i].cur.data_s /= 10;
893 }
894 }
895
896 static void
897 wb_stemp(sc, sensors, n)
898 struct lm_softc *sc;
899 struct envsys_tre_data *sensors;
900 int n;
901 {
902 int sdata;
903 /* temperatures. Given in dC, we convert to uK */
904 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
905 DPRINTF(("sdata[temp0] 0x%x\n", sdata));
906 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
907 /* from bank1 */
908 if ((*sc->lm_banksel)(sc, 1))
909 sensors[1].validflags &= ~ENVSYS_FCURVALID;
910 else {
911 sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
912 sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
913 DPRINTF(("sdata[temp1] 0x%x\n", sdata));
914 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
915 }
916 if (n < 3)
917 return;
918 /* from bank2 */
919 if ((*sc->lm_banksel)(sc, 2))
920 sensors[2].validflags &= ~ENVSYS_FCURVALID;
921 else {
922 sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
923 sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
924 DPRINTF(("sdata[temp2] 0x%x\n", sdata));
925 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
926 }
927 }
928
929 static void
930 wb781_fanrpm(sc, sensors)
931 struct lm_softc *sc;
932 struct envsys_tre_data *sensors;
933 {
934 int i, divisor, sdata;
935 (*sc->lm_banksel)(sc, 0);
936 for (i = 0; i < 3; i++) {
937 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
938 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
939 if (i == 0)
940 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
941 else if (i == 1)
942 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
943 else
944 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
945
946 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
947 if (sdata == 0xff || sdata == 0x00) {
948 sensors[i].cur.data_us = 0;
949 } else {
950 sensors[i].cur.data_us = 1350000 /
951 (sdata << divisor);
952 }
953 }
954 }
955
956 static void
957 wb_fanrpm(sc, sensors)
958 struct lm_softc *sc;
959 struct envsys_tre_data *sensors;
960 {
961 int i, divisor, sdata;
962 (*sc->lm_banksel)(sc, 0);
963 for (i = 0; i < 3; i++) {
964 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
965 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
966 if (i == 0)
967 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
968 else if (i == 1)
969 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
970 else
971 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
972 divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
973
974 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
975 if (sdata == 0xff || sdata == 0x00) {
976 sensors[i].cur.data_us = 0;
977 } else {
978 sensors[i].cur.data_us = 1350000 /
979 (sdata << divisor);
980 }
981 }
982 }
983
984 void
985 wb781_refresh_sensor_data(sc)
986 struct lm_softc *sc;
987 {
988 /* Refresh our stored data for every sensor */
989 /* we need to reselect bank0 to access common registers */
990 (*sc->lm_banksel)(sc, 0);
991 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
992 (*sc->lm_banksel)(sc, 0);
993 wb_stemp(sc, &sc->sensors[7], 3);
994 (*sc->lm_banksel)(sc, 0);
995 wb781_fanrpm(sc, &sc->sensors[10]);
996 }
997
998 void
999 wb782_refresh_sensor_data(sc)
1000 struct lm_softc *sc;
1001 {
1002 /* Refresh our stored data for every sensor */
1003 wb_svolt(sc);
1004 wb_stemp(sc, &sc->sensors[9], 3);
1005 wb_fanrpm(sc, &sc->sensors[12]);
1006 }
1007
1008 void
1009 wb697_refresh_sensor_data(sc)
1010 struct lm_softc *sc;
1011 {
1012 /* Refresh our stored data for every sensor */
1013 wb_svolt(sc);
1014 wb_stemp(sc, &sc->sensors[9], 2);
1015 wb_fanrpm(sc, &sc->sensors[11]);
1016 }
1017
1018 static void
1019 itec_svolt(sc, sensors, infos)
1020 struct lm_softc *sc;
1021 struct envsys_tre_data *sensors;
1022 struct envsys_basic_info *infos;
1023 {
1024 int i, sdata;
1025
1026 for (i = 0; i < 9; i++) {
1027 sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i);
1028 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
1029 /* voltage returned as (mV >> 4), we convert to uVDC */
1030 sensors[i].cur.data_s = ( sdata << 4 );
1031 /* rfact is (factor * 10^4) */
1032
1033 sensors[i].cur.data_s *= infos[i].rfact;
1034 /*
1035 * XXX We assume input 5 is wired the way iTE suggests to
1036 * monitor a negative voltage. I'd prefer using negative rfacts
1037 * for detecting those cases but since rfact is an u_int this
1038 * isn't possible.
1039 */
1040 if (i == 5)
1041 sensors[i].cur.data_s -=
1042 (infos[i].rfact - 10000) * ITEC_VREF;
1043 /* division by 10 gets us back to uVDC */
1044 sensors[i].cur.data_s /= 10;
1045 }
1046 }
1047
1048 static void
1049 itec_stemp(sc, sensors)
1050 struct lm_softc *sc;
1051 struct envsys_tre_data *sensors;
1052 {
1053 int i, sdata;
1054
1055 /* temperatures. Given in dC, we convert to uK */
1056 for (i = 0; i < 3; i++) {
1057 sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i);
1058 DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata));
1059 sensors[i].cur.data_us = sdata * 1000000 + 273150000;
1060 }
1061 }
1062
1063 static void
1064 itec_fanrpm(sc, sensors)
1065 struct lm_softc *sc;
1066 struct envsys_tre_data *sensors;
1067 {
1068 int i, fandiv, divisor, sdata;
1069 (*sc->lm_banksel)(sc, 0);
1070 fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV));
1071
1072 for (i = 0; i < 3; i++) {
1073 sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i);
1074 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
1075 switch (i) {
1076 case 0:
1077 divisor = fandiv & 0x7;
1078 break;
1079 case 1:
1080 divisor = (fandiv >> 3) & 0x7;
1081 break;
1082 case 2:
1083 default: /* XXX */
1084 divisor = (fandiv & 0x40) ? 3 : 1;
1085 break;
1086 }
1087 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
1088 if (sdata == 0xff || sdata == 0x00) {
1089 sensors[i].cur.data_us = 0;
1090 } else {
1091 sensors[i].cur.data_us = 1350000 /
1092 (sdata << divisor);
1093 }
1094 }
1095
1096 }
1097
1098 void
1099 itec_refresh_sensor_data(sc)
1100 struct lm_softc *sc;
1101 {
1102 itec_svolt(sc, &sc->sensors[0], &sc->info[0]);
1103 itec_stemp(sc, &sc->sensors[9]);
1104 itec_fanrpm(sc, &sc->sensors[12]);
1105 }
1106