nslm7x.c revision 1.22 1 /* $NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/errno.h>
49 #include <sys/queue.h>
50 #include <sys/lock.h>
51 #include <sys/ioctl.h>
52 #include <sys/conf.h>
53 #include <sys/time.h>
54
55 #include <machine/bus.h>
56
57 #include <dev/isa/isareg.h>
58 #include <dev/isa/isavar.h>
59
60 #include <dev/sysmon/sysmonvar.h>
61
62 #include <dev/ic/nslm7xvar.h>
63
64 #include <machine/intr.h>
65 #include <machine/bus.h>
66
67 #if defined(LMDEBUG)
68 #define DPRINTF(x) printf x
69 #else
70 #define DPRINTF(x)
71 #endif
72
73 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 /* for each unit type */
75 { 7, 7, ENVSYS_STEMP },
76 { 8, 10, ENVSYS_SFANRPM },
77 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 { 0, 6, ENVSYS_SVOLTS_DC },
79 { 1, 0, ENVSYS_SOHMS }, /* None */
80 { 1, 0, ENVSYS_SWATTS }, /* None */
81 { 1, 0, ENVSYS_SAMPS } /* None */
82 };
83
84
85 static void setup_fan(struct lm_softc *, int, int);
86 static void setup_temp(struct lm_softc *, int, int);
87 static void wb_setup_volt(struct lm_softc *);
88
89 int lm_match(struct lm_softc *);
90 int wb_match(struct lm_softc *);
91 int itec_match(struct lm_softc *);
92 int def_match(struct lm_softc *);
93 void lm_common_match(struct lm_softc *);
94 static int lm_generic_banksel(struct lm_softc *, int);
95
96 static void generic_stemp(struct lm_softc *, struct envsys_tre_data *);
97 static void generic_svolt(struct lm_softc *, struct envsys_tre_data *,
98 struct envsys_basic_info *);
99 static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *);
100
101 void lm_refresh_sensor_data(struct lm_softc *);
102
103 static void wb_svolt(struct lm_softc *);
104 static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int);
105 static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *);
106 static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *);
107
108 void wb781_refresh_sensor_data(struct lm_softc *);
109 void wb782_refresh_sensor_data(struct lm_softc *);
110 void wb697_refresh_sensor_data(struct lm_softc *);
111
112 static void itec_svolt(struct lm_softc *, struct envsys_tre_data *,
113 struct envsys_basic_info *);
114 static void itec_stemp(struct lm_softc *, struct envsys_tre_data *);
115 static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *);
116 void itec_refresh_sensor_data(struct lm_softc *);
117
118 int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
119
120 int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
121 int, struct envsys_basic_info *);
122 int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
123 int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
124 int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
125 int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
126
127 struct lm_chip {
128 int (*chip_match)(struct lm_softc *);
129 };
130
131 struct lm_chip lm_chips[] = {
132 { itec_match },
133 { wb_match },
134 { lm_match },
135 { def_match } /* Must be last */
136 };
137
138
139 int
140 lm_generic_banksel(lmsc, bank)
141 struct lm_softc *lmsc;
142 int bank;
143 {
144
145 (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
146 return 0;
147 }
148
149
150 /*
151 * bus independent probe
152 */
153 int
154 lm_probe(iot, ioh)
155 bus_space_tag_t iot;
156 bus_space_handle_t ioh;
157 {
158 u_int8_t cr;
159 int rv;
160
161 /*
162 * Check for it8705f, before we do the chip reset.
163 * In case of an it8705f this might reset all the fan control
164 * parameters to defaults which would void all settings done by
165 * the BOOTROM/BIOS.
166 */
167 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48);
168 cr = bus_space_read_1(iot, ioh, LMC_DATA);
169
170 if (cr == ITEC_RES48_DEFAULT) {
171 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52);
172 cr = bus_space_read_1(iot, ioh, LMC_DATA);
173 if (cr == ITEC_RES52_DEFAULT)
174 return 1;
175 }
176
177 /* Check for some power-on defaults */
178 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
179
180 /* Perform LM78 reset */
181 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
182
183 /* XXX - Why do I have to reselect the register? */
184 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
185 cr = bus_space_read_1(iot, ioh, LMC_DATA);
186
187 /* XXX - spec says *only* 0x08! */
188 if ((cr == 0x08) || (cr == 0x01))
189 rv = 1;
190 else
191 rv = 0;
192
193 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
194
195 return (rv);
196 }
197
198
199 /*
200 * pre: lmsc contains valid busspace tag and handle
201 */
202 void
203 lm_attach(lmsc)
204 struct lm_softc *lmsc;
205 {
206 u_int i;
207
208 /* Install default bank selection routine, if none given. */
209 if (lmsc->lm_banksel == NULL)
210 lmsc->lm_banksel = lm_generic_banksel;
211
212 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
213 if (lm_chips[i].chip_match(lmsc))
214 break;
215
216 /* Start the monitoring loop */
217 (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
218
219 /* Indicate we have never read the registers */
220 timerclear(&lmsc->lastread);
221
222 /* Initialize sensors */
223 for (i = 0; i < lmsc->numsensors; ++i) {
224 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
225 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
226 lmsc->info[i].validflags = ENVSYS_FVALID;
227 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
228 }
229 /*
230 * Hook into the System Monitor.
231 */
232 lmsc->sc_sysmon.sme_ranges = lm_ranges;
233 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
234 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
235 lmsc->sc_sysmon.sme_cookie = lmsc;
236
237 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
238 /* sme_streinfo set in chip-specific attach */
239
240 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
241 lmsc->sc_sysmon.sme_envsys_version = 1000;
242
243 if (sysmon_envsys_register(&lmsc->sc_sysmon))
244 printf("%s: unable to register with sysmon\n",
245 lmsc->sc_dev.dv_xname);
246 }
247
248 int
249 lm_match(sc)
250 struct lm_softc *sc;
251 {
252 int i;
253
254 /* See if we have an LM78 or LM79 */
255 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
256 switch(i) {
257 case LM_ID_LM78:
258 printf(": LM78\n");
259 break;
260 case LM_ID_LM78J:
261 printf(": LM78J\n");
262 break;
263 case LM_ID_LM79:
264 printf(": LM79\n");
265 break;
266 case LM_ID_LM81:
267 printf(": LM81\n");
268 break;
269 default:
270 return 0;
271 }
272 lm_common_match(sc);
273 return 1;
274 }
275
276 int
277 def_match(sc)
278 struct lm_softc *sc;
279 {
280 int i;
281
282 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
283 printf(": Unknown chip (ID %d)\n", i);
284 lm_common_match(sc);
285 return 1;
286 }
287
288 void
289 lm_common_match(sc)
290 struct lm_softc *sc;
291 {
292 int i;
293 sc->numsensors = LM_NUM_SENSORS;
294 sc->refresh_sensor_data = lm_refresh_sensor_data;
295
296 for (i = 0; i < 7; ++i) {
297 sc->sensors[i].units = sc->info[i].units =
298 ENVSYS_SVOLTS_DC;
299 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
300 "IN %d", i);
301 }
302
303 /* default correction factors for resistors on higher voltage inputs */
304 sc->info[0].rfact = sc->info[1].rfact =
305 sc->info[2].rfact = 10000;
306 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
307 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
308 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
309 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
310
311 sc->sensors[7].units = ENVSYS_STEMP;
312 strcpy(sc->info[7].desc, "Temp");
313
314 setup_fan(sc, 8, 3);
315 sc->sc_sysmon.sme_streinfo = lm_streinfo;
316 }
317
318 int
319 wb_match(sc)
320 struct lm_softc *sc;
321 {
322 int i, j;
323
324 (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
325 j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
326 (*sc->lm_writereg)(sc, WB_BANKSEL, 0);
327 j |= (*sc->lm_readreg)(sc, WB_VENDID);
328 DPRINTF(("winbond vend id 0x%x\n", j));
329 if (j != WB_VENDID_WINBOND)
330 return 0;
331 /* read device ID */
332 (*sc->lm_banksel)(sc, 0);
333 j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
334 DPRINTF(("winbond chip id 0x%x\n", j));
335 switch(j) {
336 case WB_CHIPID_83781:
337 case WB_CHIPID_83781_2:
338 printf(": W83781D\n");
339
340 for (i = 0; i < 7; ++i) {
341 sc->sensors[i].units = sc->info[i].units =
342 ENVSYS_SVOLTS_DC;
343 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
344 "IN %d", i);
345 }
346
347 /* default correction factors for higher voltage inputs */
348 sc->info[0].rfact = sc->info[1].rfact =
349 sc->info[2].rfact = 10000;
350 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
351 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
352 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
353 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
354
355 setup_temp(sc, 7, 3);
356 setup_fan(sc, 10, 3);
357
358 sc->numsensors = WB83781_NUM_SENSORS;
359 sc->refresh_sensor_data = wb781_refresh_sensor_data;
360 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
361 return 1;
362 case WB_CHIPID_83697:
363 printf(": W83697HF\n");
364 wb_setup_volt(sc);
365 setup_temp(sc, 9, 2);
366 setup_fan(sc, 11, 3);
367 sc->numsensors = WB83697_NUM_SENSORS;
368 sc->refresh_sensor_data = wb697_refresh_sensor_data;
369 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
370 return 1;
371 case WB_CHIPID_83782:
372 printf(": W83782D\n");
373 break;
374 case WB_CHIPID_83627:
375 printf(": W83627HF\n");
376 break;
377 default:
378 printf(": unknow winbond chip ID 0x%x\n", j);
379 /* handle as a standart lm7x */
380 lm_common_match(sc);
381 return 1;
382 }
383 /* common code for the W83782D and W83627HF */
384 wb_setup_volt(sc);
385 setup_temp(sc, 9, 3);
386 setup_fan(sc, 12, 3);
387 sc->numsensors = WB_NUM_SENSORS;
388 sc->refresh_sensor_data = wb782_refresh_sensor_data;
389 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
390 return 1;
391 }
392
393 static void
394 wb_setup_volt(sc)
395 struct lm_softc *sc;
396 {
397 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
398 snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
399 sc->info[0].rfact = 10000;
400 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
401 snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
402 sc->info[1].rfact = 10000;
403 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
404 snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
405 sc->info[2].rfact = 10000;
406 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
407 snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
408 sc->info[3].rfact = 16778;
409 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
410 snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
411 sc->info[4].rfact = 38000;
412 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
413 snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
414 sc->info[5].rfact = 10000;
415 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
416 snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
417 sc->info[6].rfact = 10000;
418 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
419 snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
420 sc->info[7].rfact = 15151;
421 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
422 snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
423 sc->info[8].rfact = 10000;
424 }
425
426 int
427 itec_match(sc)
428 struct lm_softc *sc;
429 {
430 int vendor, coreid;
431
432 /* do the same thing as in lm_probe() */
433 if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT)
434 return 0;
435
436 if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT)
437 return 0;
438
439 /* We check for the core ID register (0x5B), which is available
440 * only in the 8712F, if that fails, we check the vendor ID
441 * register, available on 8705F and 8712F */
442
443 coreid = (*sc->lm_readreg)(sc, ITEC_COREID);
444
445 if (coreid == ITEC_COREID_ITE)
446 printf(": ITE8712F\n");
447 else {
448 vendor = (*sc->lm_readreg)(sc, ITEC_VENDID);
449 if (vendor == ITEC_VENDID_ITE)
450 printf(": ITE8705F\n");
451 else
452 printf(": unknown ITE87%02x compatible\n", vendor);
453 }
454
455 /*
456 * XXX this is a litle bit lame...
457 * All VIN inputs work exactly the same way, it depends of the
458 * external wiring what voltages they monitor and which correction
459 * factors are needed. We assume a pretty standard setup here
460 */
461 wb_setup_volt(sc);
462 strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc));
463 strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc));
464 strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc));
465 sc->info[5].rfact = 51100;
466 sc->info[7].rfact = 16778;
467
468 setup_temp(sc, 9, 3);
469 setup_fan(sc, 12, 3);
470 sc->numsensors = ITEC_NUM_SENSORS;
471 sc->refresh_sensor_data = itec_refresh_sensor_data;
472 sc->sc_sysmon.sme_streinfo = itec_streinfo;
473
474 return 1;
475 }
476
477
478 static void
479 setup_temp(sc, start, n)
480 struct lm_softc *sc;
481 int start, n;
482 {
483 int i;
484
485 for (i = 0; i < n; i++) {
486 sc->sensors[start + i].units = ENVSYS_STEMP;
487 snprintf(sc->info[start + i].desc,
488 sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
489 }
490 }
491
492
493 static void
494 setup_fan(sc, start, n)
495 struct lm_softc *sc;
496 int start, n;
497 {
498 int i;
499 for (i = 0; i < n; ++i) {
500 sc->sensors[start + i].units = ENVSYS_SFANRPM;
501 sc->info[start + i].units = ENVSYS_SFANRPM;
502 snprintf(sc->info[start + i].desc,
503 sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
504 }
505 }
506
507 int
508 lm_gtredata(sme, tred)
509 struct sysmon_envsys *sme;
510 struct envsys_tre_data *tred;
511 {
512 static const struct timeval onepointfive = { 1, 500000 };
513 struct timeval t;
514 struct lm_softc *sc = sme->sme_cookie;
515 int i, s;
516
517 /* read new values at most once every 1.5 seconds */
518 timeradd(&sc->lastread, &onepointfive, &t);
519 s = splclock();
520 i = timercmp(&mono_time, &t, >);
521 if (i) {
522 sc->lastread.tv_sec = mono_time.tv_sec;
523 sc->lastread.tv_usec = mono_time.tv_usec;
524 }
525 splx(s);
526
527 if (i)
528 sc->refresh_sensor_data(sc);
529
530 *tred = sc->sensors[tred->sensor];
531
532 return 0;
533 }
534
535 int
536 generic_streinfo_fan(sc, info, n, binfo)
537 struct lm_softc *sc;
538 struct envsys_basic_info *info;
539 int n;
540 struct envsys_basic_info *binfo;
541 {
542 u_int8_t sdata;
543 int divisor;
544
545 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
546 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
547 && (n < 2)) {
548 if (binfo->rpms == 0) {
549 binfo->validflags = 0;
550 return 0;
551 }
552
553 /* write back the nominal FAN speed */
554 info->rpms = binfo->rpms;
555
556 /* 153 is the nominal FAN speed value */
557 divisor = 1350000 / (binfo->rpms * 153);
558
559 /* ...but we need lg(divisor) */
560 if (divisor <= 1)
561 divisor = 0;
562 else if (divisor <= 2)
563 divisor = 1;
564 else if (divisor <= 4)
565 divisor = 2;
566 else
567 divisor = 3;
568
569 /*
570 * FAN1 div is in bits <5:4>, FAN2 div is
571 * in <7:6>
572 */
573 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
574 if ( n == 0 ) { /* FAN1 */
575 divisor <<= 4;
576 sdata = (sdata & 0xCF) | divisor;
577 } else { /* FAN2 */
578 divisor <<= 6;
579 sdata = (sdata & 0x3F) | divisor;
580 }
581
582 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
583 }
584 return 0;
585
586 }
587
588 int
589 lm_streinfo(sme, binfo)
590 struct sysmon_envsys *sme;
591 struct envsys_basic_info *binfo;
592 {
593 struct lm_softc *sc = sme->sme_cookie;
594
595 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
596 sc->info[binfo->sensor].rfact = binfo->rfact;
597 else {
598 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
599 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
600 binfo->sensor - 8, binfo);
601 }
602 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
603 sizeof(sc->info[binfo->sensor].desc));
604 binfo->validflags = ENVSYS_FVALID;
605 }
606 return 0;
607 }
608
609 int
610 wb781_streinfo(sme, binfo)
611 struct sysmon_envsys *sme;
612 struct envsys_basic_info *binfo;
613 {
614 struct lm_softc *sc = sme->sme_cookie;
615 int divisor;
616 u_int8_t sdata;
617 int i;
618
619 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
620 sc->info[binfo->sensor].rfact = binfo->rfact;
621 else {
622 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
623 if (binfo->rpms == 0) {
624 binfo->validflags = 0;
625 return 0;
626 }
627
628 /* write back the nominal FAN speed */
629 sc->info[binfo->sensor].rpms = binfo->rpms;
630
631 /* 153 is the nominal FAN speed value */
632 divisor = 1350000 / (binfo->rpms * 153);
633
634 /* ...but we need lg(divisor) */
635 for (i = 0; i < 7; i++) {
636 if (divisor <= (1 << i))
637 break;
638 }
639 divisor = i;
640
641 if (binfo->sensor == 10 || binfo->sensor == 11) {
642 /*
643 * FAN1 div is in bits <5:4>, FAN2 div
644 * is in <7:6>
645 */
646 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
647 if ( binfo->sensor == 10 ) { /* FAN1 */
648 sdata = (sdata & 0xCF) |
649 ((divisor & 0x3) << 4);
650 } else { /* FAN2 */
651 sdata = (sdata & 0x3F) |
652 ((divisor & 0x3) << 6);
653 }
654 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
655 } else {
656 /* FAN3 is in WB_PIN <7:6> */
657 sdata = (*sc->lm_readreg)(sc, WB_PIN);
658 sdata = (sdata & 0x3F) |
659 ((divisor & 0x3) << 6);
660 (*sc->lm_writereg)(sc, WB_PIN, sdata);
661 }
662 }
663 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
664 sizeof(sc->info[binfo->sensor].desc));
665 binfo->validflags = ENVSYS_FVALID;
666 }
667 return 0;
668 }
669
670 int
671 wb782_streinfo(sme, binfo)
672 struct sysmon_envsys *sme;
673 struct envsys_basic_info *binfo;
674 {
675 struct lm_softc *sc = sme->sme_cookie;
676 int divisor;
677 u_int8_t sdata;
678 int i;
679
680 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
681 sc->info[binfo->sensor].rfact = binfo->rfact;
682 else {
683 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
684 if (binfo->rpms == 0) {
685 binfo->validflags = 0;
686 return 0;
687 }
688
689 /* write back the nominal FAN speed */
690 sc->info[binfo->sensor].rpms = binfo->rpms;
691
692 /* 153 is the nominal FAN speed value */
693 divisor = 1350000 / (binfo->rpms * 153);
694
695 /* ...but we need lg(divisor) */
696 for (i = 0; i < 7; i++) {
697 if (divisor <= (1 << i))
698 break;
699 }
700 divisor = i;
701
702 if (binfo->sensor == 12 || binfo->sensor == 13) {
703 /*
704 * FAN1 div is in bits <5:4>, FAN2 div
705 * is in <7:6>
706 */
707 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
708 if ( binfo->sensor == 12 ) { /* FAN1 */
709 sdata = (sdata & 0xCF) |
710 ((divisor & 0x3) << 4);
711 } else { /* FAN2 */
712 sdata = (sdata & 0x3F) |
713 ((divisor & 0x3) << 6);
714 }
715 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
716 } else {
717 /* FAN3 is in WB_PIN <7:6> */
718 sdata = (*sc->lm_readreg)(sc, WB_PIN);
719 sdata = (sdata & 0x3F) |
720 ((divisor & 0x3) << 6);
721 (*sc->lm_writereg)(sc, WB_PIN, sdata);
722 }
723 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
724 (*sc->lm_banksel)(sc, 0);
725 sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
726 sdata &= ~(0x20 << (binfo->sensor - 12));
727 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
728 (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
729 }
730
731 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
732 sizeof(sc->info[binfo->sensor].desc));
733 binfo->validflags = ENVSYS_FVALID;
734 }
735 return 0;
736 }
737
738 int
739 itec_streinfo(sme, binfo)
740 struct sysmon_envsys *sme;
741 struct envsys_basic_info *binfo;
742 {
743 struct lm_softc *sc = sme->sme_cookie;
744 int divisor;
745 u_int8_t sdata;
746 int i;
747
748 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
749 sc->info[binfo->sensor].rfact = binfo->rfact;
750 else {
751 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
752 if (binfo->rpms == 0) {
753 binfo->validflags = 0;
754 return 0;
755 }
756
757 /* write back the nominal FAN speed */
758 sc->info[binfo->sensor].rpms = binfo->rpms;
759
760 /* 153 is the nominal FAN speed value */
761 divisor = 1350000 / (binfo->rpms * 153);
762
763 /* ...but we need lg(divisor) */
764 for (i = 0; i < 7; i++) {
765 if (divisor <= (1 << i))
766 break;
767 }
768 divisor = i;
769
770 sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV);
771 /*
772 * FAN1 div is in bits <0:2>, FAN2 is in <3:5>
773 * FAN3 is in <6>, if set divisor is 8, else 2
774 */
775 if ( binfo->sensor == 10 ) { /* FAN1 */
776 sdata = (sdata & 0xf8) | divisor;
777 } else if ( binfo->sensor == 11 ) { /* FAN2 */
778 sdata = (sdata & 0xc7) | divisor << 3;
779 } else { /* FAN3 */
780 if (divisor>2)
781 sdata = sdata & 0xbf;
782 else
783 sdata = sdata | 0x40;
784 }
785 (*sc->lm_writereg)(sc, ITEC_FANDIV, sdata);
786 }
787 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
788 sizeof(sc->info[binfo->sensor].desc));
789 binfo->validflags = ENVSYS_FVALID;
790 }
791 return 0;
792 }
793
794 static void
795 generic_stemp(sc, sensor)
796 struct lm_softc *sc;
797 struct envsys_tre_data *sensor;
798 {
799 int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
800 DPRINTF(("sdata[temp] 0x%x\n", sdata));
801 /* temp is given in deg. C, we convert to uK */
802 sensor->cur.data_us = sdata * 1000000 + 273150000;
803 }
804
805 static void
806 generic_svolt(sc, sensors, infos)
807 struct lm_softc *sc;
808 struct envsys_tre_data *sensors;
809 struct envsys_basic_info *infos;
810 {
811 int i, sdata;
812
813 for (i = 0; i < 7; i++) {
814 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
815 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
816 /* voltage returned as (mV >> 4), we convert to uVDC */
817 sensors[i].cur.data_s = (sdata << 4);
818 /* rfact is (factor * 10^4) */
819 sensors[i].cur.data_s *= infos[i].rfact;
820 /* division by 10 gets us back to uVDC */
821 sensors[i].cur.data_s /= 10;
822
823 /* these two are negative voltages */
824 if ( (i == 5) || (i == 6) )
825 sensors[i].cur.data_s *= -1;
826 }
827 }
828
829 static void
830 generic_fanrpm(sc, sensors)
831 struct lm_softc *sc;
832 struct envsys_tre_data *sensors;
833 {
834 int i, sdata, divisor;
835 for (i = 0; i < 3; i++) {
836 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
837 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
838 if (i == 2)
839 divisor = 2; /* Fixed divisor for FAN3 */
840 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
841 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
842 else
843 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
844
845 if (sdata == 0xff || sdata == 0x00) {
846 sensors[i].cur.data_us = 0;
847 } else {
848 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
849 }
850 }
851 }
852
853 /*
854 * pre: last read occurred >= 1.5 seconds ago
855 * post: sensors[] current data are the latest from the chip
856 */
857 void
858 lm_refresh_sensor_data(sc)
859 struct lm_softc *sc;
860 {
861 /* Refresh our stored data for every sensor */
862 generic_stemp(sc, &sc->sensors[7]);
863 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
864 generic_fanrpm(sc, &sc->sensors[8]);
865 }
866
867 static void
868 wb_svolt(sc)
869 struct lm_softc *sc;
870 {
871 int i, sdata;
872 for (i = 0; i < 9; ++i) {
873 if (i < 7) {
874 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
875 } else {
876 /* from bank5 */
877 (*sc->lm_banksel)(sc, 5);
878 sdata = (*sc->lm_readreg)(sc, (i == 7) ?
879 WB_BANK5_5VSB : WB_BANK5_VBAT);
880 }
881 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
882 /* voltage returned as (mV >> 4), we convert to uV */
883 sdata = sdata << 4;
884 /* special case for negative voltages */
885 if (i == 5) {
886 /*
887 * -12Vdc, assume Winbond recommended values for
888 * resistors
889 */
890 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
891 } else if (i == 6) {
892 /*
893 * -5Vdc, assume Winbond recommended values for
894 * resistors
895 */
896 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
897 }
898 /* rfact is (factor * 10^4) */
899 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
900 /* division by 10 gets us back to uVDC */
901 sc->sensors[i].cur.data_s /= 10;
902 }
903 }
904
905 static void
906 wb_stemp(sc, sensors, n)
907 struct lm_softc *sc;
908 struct envsys_tre_data *sensors;
909 int n;
910 {
911 int sdata;
912 /* temperatures. Given in dC, we convert to uK */
913 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
914 DPRINTF(("sdata[temp0] 0x%x\n", sdata));
915 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
916 /* from bank1 */
917 if ((*sc->lm_banksel)(sc, 1))
918 sensors[1].validflags &= ~ENVSYS_FCURVALID;
919 else {
920 sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
921 sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
922 DPRINTF(("sdata[temp1] 0x%x\n", sdata));
923 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
924 }
925 if (n < 3)
926 return;
927 /* from bank2 */
928 if ((*sc->lm_banksel)(sc, 2))
929 sensors[2].validflags &= ~ENVSYS_FCURVALID;
930 else {
931 sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
932 sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
933 DPRINTF(("sdata[temp2] 0x%x\n", sdata));
934 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
935 }
936 }
937
938 static void
939 wb781_fanrpm(sc, sensors)
940 struct lm_softc *sc;
941 struct envsys_tre_data *sensors;
942 {
943 int i, divisor, sdata;
944 (*sc->lm_banksel)(sc, 0);
945 for (i = 0; i < 3; i++) {
946 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
947 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
948 if (i == 0)
949 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
950 else if (i == 1)
951 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
952 else
953 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
954
955 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
956 if (sdata == 0xff || sdata == 0x00) {
957 sensors[i].cur.data_us = 0;
958 } else {
959 sensors[i].cur.data_us = 1350000 /
960 (sdata << divisor);
961 }
962 }
963 }
964
965 static void
966 wb_fanrpm(sc, sensors)
967 struct lm_softc *sc;
968 struct envsys_tre_data *sensors;
969 {
970 int i, divisor, sdata;
971 (*sc->lm_banksel)(sc, 0);
972 for (i = 0; i < 3; i++) {
973 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
974 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
975 if (i == 0)
976 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
977 else if (i == 1)
978 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
979 else
980 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
981 divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
982
983 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
984 if (sdata == 0xff || sdata == 0x00) {
985 sensors[i].cur.data_us = 0;
986 } else {
987 sensors[i].cur.data_us = 1350000 /
988 (sdata << divisor);
989 }
990 }
991 }
992
993 void
994 wb781_refresh_sensor_data(sc)
995 struct lm_softc *sc;
996 {
997 /* Refresh our stored data for every sensor */
998 /* we need to reselect bank0 to access common registers */
999 (*sc->lm_banksel)(sc, 0);
1000 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
1001 (*sc->lm_banksel)(sc, 0);
1002 wb_stemp(sc, &sc->sensors[7], 3);
1003 (*sc->lm_banksel)(sc, 0);
1004 wb781_fanrpm(sc, &sc->sensors[10]);
1005 }
1006
1007 void
1008 wb782_refresh_sensor_data(sc)
1009 struct lm_softc *sc;
1010 {
1011 /* Refresh our stored data for every sensor */
1012 wb_svolt(sc);
1013 wb_stemp(sc, &sc->sensors[9], 3);
1014 wb_fanrpm(sc, &sc->sensors[12]);
1015 }
1016
1017 void
1018 wb697_refresh_sensor_data(sc)
1019 struct lm_softc *sc;
1020 {
1021 /* Refresh our stored data for every sensor */
1022 wb_svolt(sc);
1023 wb_stemp(sc, &sc->sensors[9], 2);
1024 wb_fanrpm(sc, &sc->sensors[11]);
1025 }
1026
1027 static void
1028 itec_svolt(sc, sensors, infos)
1029 struct lm_softc *sc;
1030 struct envsys_tre_data *sensors;
1031 struct envsys_basic_info *infos;
1032 {
1033 int i, sdata;
1034
1035 for (i = 0; i < 9; i++) {
1036 sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i);
1037 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
1038 /* voltage returned as (mV >> 4), we convert to uVDC */
1039 sensors[i].cur.data_s = ( sdata << 4 );
1040 /* rfact is (factor * 10^4) */
1041
1042 sensors[i].cur.data_s *= infos[i].rfact;
1043 /*
1044 * XXX We assume input 5 is wired the way iTE suggests to
1045 * monitor a negative voltage. I'd prefer using negative rfacts
1046 * for detecting those cases but since rfact is an u_int this
1047 * isn't possible.
1048 */
1049 if (i == 5)
1050 sensors[i].cur.data_s -=
1051 (infos[i].rfact - 10000) * ITEC_VREF;
1052 /* division by 10 gets us back to uVDC */
1053 sensors[i].cur.data_s /= 10;
1054 }
1055 }
1056
1057 static void
1058 itec_stemp(sc, sensors)
1059 struct lm_softc *sc;
1060 struct envsys_tre_data *sensors;
1061 {
1062 int i, sdata;
1063
1064 /* temperatures. Given in dC, we convert to uK */
1065 for (i = 0; i < 3; i++) {
1066 sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i);
1067 DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata));
1068 sensors[i].cur.data_us = sdata * 1000000 + 273150000;
1069 }
1070 }
1071
1072 static void
1073 itec_fanrpm(sc, sensors)
1074 struct lm_softc *sc;
1075 struct envsys_tre_data *sensors;
1076 {
1077 int i, fandiv, divisor, sdata;
1078 (*sc->lm_banksel)(sc, 0);
1079 fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV));
1080
1081 for (i = 0; i < 3; i++) {
1082 sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i);
1083 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
1084 switch (i) {
1085 case 0:
1086 divisor = fandiv & 0x7;
1087 break;
1088 case 1:
1089 divisor = (fandiv >> 3) & 0x7;
1090 break;
1091 case 2:
1092 default: /* XXX */
1093 divisor = (fandiv & 0x40) ? 3 : 1;
1094 break;
1095 }
1096 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
1097 if (sdata == 0xff || sdata == 0x00) {
1098 sensors[i].cur.data_us = 0;
1099 } else {
1100 sensors[i].cur.data_us = 1350000 /
1101 (sdata << divisor);
1102 }
1103 }
1104
1105 }
1106
1107 void
1108 itec_refresh_sensor_data(sc)
1109 struct lm_softc *sc;
1110 {
1111 itec_svolt(sc, &sc->sensors[0], &sc->info[0]);
1112 itec_stemp(sc, &sc->sensors[9]);
1113 itec_fanrpm(sc, &sc->sensors[12]);
1114 }
1115