Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.22
      1 /*	$NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Squier.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/proc.h>
     46 #include <sys/device.h>
     47 #include <sys/malloc.h>
     48 #include <sys/errno.h>
     49 #include <sys/queue.h>
     50 #include <sys/lock.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/conf.h>
     53 #include <sys/time.h>
     54 
     55 #include <machine/bus.h>
     56 
     57 #include <dev/isa/isareg.h>
     58 #include <dev/isa/isavar.h>
     59 
     60 #include <dev/sysmon/sysmonvar.h>
     61 
     62 #include <dev/ic/nslm7xvar.h>
     63 
     64 #include <machine/intr.h>
     65 #include <machine/bus.h>
     66 
     67 #if defined(LMDEBUG)
     68 #define DPRINTF(x)		printf x
     69 #else
     70 #define DPRINTF(x)
     71 #endif
     72 
     73 const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     74 					/* for each unit type */
     75 	{ 7, 7,    ENVSYS_STEMP   },
     76 	{ 8, 10,   ENVSYS_SFANRPM },
     77 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     78 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     79 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     80 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     81 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     82 };
     83 
     84 
     85 static void setup_fan(struct lm_softc *, int, int);
     86 static void setup_temp(struct lm_softc *, int, int);
     87 static void wb_setup_volt(struct lm_softc *);
     88 
     89 int lm_match(struct lm_softc *);
     90 int wb_match(struct lm_softc *);
     91 int itec_match(struct lm_softc *);
     92 int def_match(struct lm_softc *);
     93 void lm_common_match(struct lm_softc *);
     94 static int lm_generic_banksel(struct lm_softc *, int);
     95 
     96 static void generic_stemp(struct lm_softc *, struct envsys_tre_data *);
     97 static void generic_svolt(struct lm_softc *, struct envsys_tre_data *,
     98     struct envsys_basic_info *);
     99 static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    100 
    101 void lm_refresh_sensor_data(struct lm_softc *);
    102 
    103 static void wb_svolt(struct lm_softc *);
    104 static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int);
    105 static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    106 static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    107 
    108 void wb781_refresh_sensor_data(struct lm_softc *);
    109 void wb782_refresh_sensor_data(struct lm_softc *);
    110 void wb697_refresh_sensor_data(struct lm_softc *);
    111 
    112 static void itec_svolt(struct lm_softc *, struct envsys_tre_data *,
    113     struct envsys_basic_info *);
    114 static void itec_stemp(struct lm_softc *, struct envsys_tre_data *);
    115 static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    116 void itec_refresh_sensor_data(struct lm_softc *);
    117 
    118 int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
    119 
    120 int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
    121            int, struct envsys_basic_info *);
    122 int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    123 int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    124 int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    125 int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    126 
    127 struct lm_chip {
    128 	int (*chip_match)(struct lm_softc *);
    129 };
    130 
    131 struct lm_chip lm_chips[] = {
    132 	{ itec_match },
    133 	{ wb_match },
    134 	{ lm_match },
    135 	{ def_match } /* Must be last */
    136 };
    137 
    138 
    139 int
    140 lm_generic_banksel(lmsc, bank)
    141 	struct lm_softc *lmsc;
    142 	int bank;
    143 {
    144 
    145 	(*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
    146 	return 0;
    147 }
    148 
    149 
    150 /*
    151  * bus independent probe
    152  */
    153 int
    154 lm_probe(iot, ioh)
    155 	bus_space_tag_t iot;
    156 	bus_space_handle_t ioh;
    157 {
    158 	u_int8_t cr;
    159 	int rv;
    160 
    161 	/*
    162 	 * Check for it8705f, before we do the chip reset.
    163 	 * In case of an it8705f this might reset all the fan control
    164 	 * parameters to defaults which would void all settings done by
    165 	 * the BOOTROM/BIOS.
    166 	 */
    167 	bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48);
    168 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    169 
    170 	if (cr == ITEC_RES48_DEFAULT) {
    171 		bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52);
    172 		cr = bus_space_read_1(iot, ioh, LMC_DATA);
    173 		if (cr == ITEC_RES52_DEFAULT)
    174 			return 1;
    175 	}
    176 
    177 	/* Check for some power-on defaults */
    178 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    179 
    180 	/* Perform LM78 reset */
    181 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    182 
    183 	/* XXX - Why do I have to reselect the register? */
    184 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    185 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    186 
    187 	/* XXX - spec says *only* 0x08! */
    188 	if ((cr == 0x08) || (cr == 0x01))
    189 		rv = 1;
    190 	else
    191 		rv = 0;
    192 
    193 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    194 
    195 	return (rv);
    196 }
    197 
    198 
    199 /*
    200  * pre:  lmsc contains valid busspace tag and handle
    201  */
    202 void
    203 lm_attach(lmsc)
    204 	struct lm_softc *lmsc;
    205 {
    206 	u_int i;
    207 
    208 	/* Install default bank selection routine, if none given. */
    209 	if (lmsc->lm_banksel == NULL)
    210 		lmsc->lm_banksel = lm_generic_banksel;
    211 
    212 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    213 		if (lm_chips[i].chip_match(lmsc))
    214 			break;
    215 
    216 	/* Start the monitoring loop */
    217 	(*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
    218 
    219 	/* Indicate we have never read the registers */
    220 	timerclear(&lmsc->lastread);
    221 
    222 	/* Initialize sensors */
    223 	for (i = 0; i < lmsc->numsensors; ++i) {
    224 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    225 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    226 		lmsc->info[i].validflags = ENVSYS_FVALID;
    227 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    228 	}
    229 	/*
    230 	 * Hook into the System Monitor.
    231 	 */
    232 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    233 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    234 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    235 	lmsc->sc_sysmon.sme_cookie = lmsc;
    236 
    237 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    238 	/* sme_streinfo set in chip-specific attach */
    239 
    240 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    241 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    242 
    243 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    244 		printf("%s: unable to register with sysmon\n",
    245 		    lmsc->sc_dev.dv_xname);
    246 }
    247 
    248 int
    249 lm_match(sc)
    250 	struct lm_softc *sc;
    251 {
    252 	int i;
    253 
    254 	/* See if we have an LM78 or LM79 */
    255 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    256 	switch(i) {
    257 	case LM_ID_LM78:
    258 		printf(": LM78\n");
    259 		break;
    260 	case LM_ID_LM78J:
    261 		printf(": LM78J\n");
    262 		break;
    263 	case LM_ID_LM79:
    264 		printf(": LM79\n");
    265 		break;
    266 	case LM_ID_LM81:
    267 		printf(": LM81\n");
    268 		break;
    269 	default:
    270 		return 0;
    271 	}
    272 	lm_common_match(sc);
    273 	return 1;
    274 }
    275 
    276 int
    277 def_match(sc)
    278 	struct lm_softc *sc;
    279 {
    280 	int i;
    281 
    282 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    283 	printf(": Unknown chip (ID %d)\n", i);
    284 	lm_common_match(sc);
    285 	return 1;
    286 }
    287 
    288 void
    289 lm_common_match(sc)
    290 	struct lm_softc *sc;
    291 {
    292 	int i;
    293 	sc->numsensors = LM_NUM_SENSORS;
    294 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    295 
    296 	for (i = 0; i < 7; ++i) {
    297 		sc->sensors[i].units = sc->info[i].units =
    298 		    ENVSYS_SVOLTS_DC;
    299 		snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    300 		    "IN %d", i);
    301 	}
    302 
    303 	/* default correction factors for resistors on higher voltage inputs */
    304 	sc->info[0].rfact = sc->info[1].rfact =
    305 	    sc->info[2].rfact = 10000;
    306 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    307 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    308 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    309 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    310 
    311 	sc->sensors[7].units = ENVSYS_STEMP;
    312 	strcpy(sc->info[7].desc, "Temp");
    313 
    314 	setup_fan(sc, 8, 3);
    315 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    316 }
    317 
    318 int
    319 wb_match(sc)
    320 	struct lm_softc *sc;
    321 {
    322 	int i, j;
    323 
    324 	(*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    325 	j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
    326 	(*sc->lm_writereg)(sc, WB_BANKSEL, 0);
    327 	j |= (*sc->lm_readreg)(sc, WB_VENDID);
    328 	DPRINTF(("winbond vend id 0x%x\n", j));
    329 	if (j != WB_VENDID_WINBOND)
    330 		return 0;
    331 	/* read device ID */
    332 	(*sc->lm_banksel)(sc, 0);
    333 	j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
    334 	DPRINTF(("winbond chip id 0x%x\n", j));
    335 	switch(j) {
    336 	case WB_CHIPID_83781:
    337 	case WB_CHIPID_83781_2:
    338 		printf(": W83781D\n");
    339 
    340 		for (i = 0; i < 7; ++i) {
    341 			sc->sensors[i].units = sc->info[i].units =
    342 			    ENVSYS_SVOLTS_DC;
    343 			snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    344 			    "IN %d", i);
    345 		}
    346 
    347 		/* default correction factors for higher voltage inputs */
    348 		sc->info[0].rfact = sc->info[1].rfact =
    349 		    sc->info[2].rfact = 10000;
    350 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    351 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    352 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    353 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    354 
    355 		setup_temp(sc, 7, 3);
    356 		setup_fan(sc, 10, 3);
    357 
    358 		sc->numsensors = WB83781_NUM_SENSORS;
    359 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    360 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    361 		return 1;
    362 	case WB_CHIPID_83697:
    363 		printf(": W83697HF\n");
    364 		wb_setup_volt(sc);
    365 		setup_temp(sc, 9, 2);
    366 		setup_fan(sc, 11, 3);
    367 		sc->numsensors = WB83697_NUM_SENSORS;
    368 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    369 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    370 		return 1;
    371 	case WB_CHIPID_83782:
    372 		printf(": W83782D\n");
    373 		break;
    374 	case WB_CHIPID_83627:
    375 		printf(": W83627HF\n");
    376 		break;
    377 	default:
    378 		printf(": unknow winbond chip ID 0x%x\n", j);
    379 		/* handle as a standart lm7x */
    380 		lm_common_match(sc);
    381 		return 1;
    382 	}
    383 	/* common code for the W83782D and W83627HF */
    384 	wb_setup_volt(sc);
    385 	setup_temp(sc, 9, 3);
    386 	setup_fan(sc, 12, 3);
    387 	sc->numsensors = WB_NUM_SENSORS;
    388 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    389 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    390 	return 1;
    391 }
    392 
    393 static void
    394 wb_setup_volt(sc)
    395 	struct lm_softc *sc;
    396 {
    397 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    398 	snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
    399 	sc->info[0].rfact = 10000;
    400 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    401 	snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
    402 	sc->info[1].rfact = 10000;
    403 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    404 	snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
    405 	sc->info[2].rfact = 10000;
    406 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    407 	snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
    408 	sc->info[3].rfact = 16778;
    409 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    410 	snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
    411 	sc->info[4].rfact = 38000;
    412 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    413 	snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
    414 	sc->info[5].rfact = 10000;
    415 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    416 	snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
    417 	sc->info[6].rfact = 10000;
    418 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    419 	snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
    420 	sc->info[7].rfact = 15151;
    421 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    422 	snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
    423 	sc->info[8].rfact = 10000;
    424 }
    425 
    426 int
    427 itec_match(sc)
    428 	struct lm_softc *sc;
    429 {
    430 	int vendor, coreid;
    431 
    432 	/* do the same thing as in  lm_probe() */
    433 	if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT)
    434 		return 0;
    435 
    436 	if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT)
    437 		return 0;
    438 
    439 	/* We check for the core ID register (0x5B), which is available
    440 	 * only in the 8712F, if that fails, we check the vendor ID
    441 	 * register, available on 8705F and 8712F */
    442 
    443 	coreid = (*sc->lm_readreg)(sc, ITEC_COREID);
    444 
    445 	if (coreid == ITEC_COREID_ITE)
    446 		printf(": ITE8712F\n");
    447 	else {
    448 		vendor = (*sc->lm_readreg)(sc, ITEC_VENDID);
    449 		if (vendor == ITEC_VENDID_ITE)
    450 			printf(": ITE8705F\n");
    451 		else
    452 			printf(": unknown ITE87%02x compatible\n", vendor);
    453 	}
    454 
    455 	/*
    456 	 * XXX this is a litle bit lame...
    457 	 * All VIN inputs work exactly the same way, it depends of the
    458 	 * external wiring what voltages they monitor and which correction
    459 	 * factors are needed. We assume a pretty standard setup here
    460 	 */
    461 	wb_setup_volt(sc);
    462 	strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc));
    463 	strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc));
    464 	strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc));
    465 	sc->info[5].rfact = 51100;
    466 	sc->info[7].rfact = 16778;
    467 
    468 	setup_temp(sc, 9, 3);
    469 	setup_fan(sc, 12, 3);
    470 	sc->numsensors = ITEC_NUM_SENSORS;
    471 	sc->refresh_sensor_data = itec_refresh_sensor_data;
    472 	sc->sc_sysmon.sme_streinfo = itec_streinfo;
    473 
    474 	return 1;
    475 }
    476 
    477 
    478 static void
    479 setup_temp(sc, start, n)
    480 	struct lm_softc *sc;
    481 	int start, n;
    482 {
    483 	int i;
    484 
    485 	for (i = 0; i < n; i++) {
    486 		sc->sensors[start + i].units = ENVSYS_STEMP;
    487 		snprintf(sc->info[start + i].desc,
    488 		    sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
    489 	}
    490 }
    491 
    492 
    493 static void
    494 setup_fan(sc, start, n)
    495 	struct lm_softc *sc;
    496 	int start, n;
    497 {
    498 	int i;
    499 	for (i = 0; i < n; ++i) {
    500 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    501 		sc->info[start + i].units = ENVSYS_SFANRPM;
    502 		snprintf(sc->info[start + i].desc,
    503 		    sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
    504 	}
    505 }
    506 
    507 int
    508 lm_gtredata(sme, tred)
    509 	 struct sysmon_envsys *sme;
    510 	 struct envsys_tre_data *tred;
    511 {
    512 	 static const struct timeval onepointfive = { 1, 500000 };
    513 	 struct timeval t;
    514 	 struct lm_softc *sc = sme->sme_cookie;
    515 	 int i, s;
    516 
    517 	 /* read new values at most once every 1.5 seconds */
    518 	 timeradd(&sc->lastread, &onepointfive, &t);
    519 	 s = splclock();
    520 	 i = timercmp(&mono_time, &t, >);
    521 	 if (i) {
    522 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    523 		  sc->lastread.tv_usec = mono_time.tv_usec;
    524 	 }
    525 	 splx(s);
    526 
    527 	 if (i)
    528 		  sc->refresh_sensor_data(sc);
    529 
    530 	 *tred = sc->sensors[tred->sensor];
    531 
    532 	 return 0;
    533 }
    534 
    535 int
    536 generic_streinfo_fan(sc, info, n, binfo)
    537 	struct lm_softc *sc;
    538 	struct envsys_basic_info *info;
    539 	int n;
    540 	struct envsys_basic_info *binfo;
    541 {
    542 	u_int8_t sdata;
    543 	int divisor;
    544 
    545 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    546 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    547 	    && (n < 2)) {
    548 		if (binfo->rpms == 0) {
    549 			binfo->validflags = 0;
    550 			return 0;
    551 		}
    552 
    553 		/* write back the nominal FAN speed  */
    554 		info->rpms = binfo->rpms;
    555 
    556 		/* 153 is the nominal FAN speed value */
    557 		divisor = 1350000 / (binfo->rpms * 153);
    558 
    559 		/* ...but we need lg(divisor) */
    560 		if (divisor <= 1)
    561 		    divisor = 0;
    562 		else if (divisor <= 2)
    563 		    divisor = 1;
    564 		else if (divisor <= 4)
    565 		    divisor = 2;
    566 		else
    567 		    divisor = 3;
    568 
    569 		/*
    570 		 * FAN1 div is in bits <5:4>, FAN2 div is
    571 		 * in <7:6>
    572 		 */
    573 		sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    574 		if ( n == 0 ) {  /* FAN1 */
    575 		    divisor <<= 4;
    576 		    sdata = (sdata & 0xCF) | divisor;
    577 		} else { /* FAN2 */
    578 		    divisor <<= 6;
    579 		    sdata = (sdata & 0x3F) | divisor;
    580 		}
    581 
    582 		(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    583 	}
    584 	return 0;
    585 
    586 }
    587 
    588 int
    589 lm_streinfo(sme, binfo)
    590 	 struct sysmon_envsys *sme;
    591 	 struct envsys_basic_info *binfo;
    592 {
    593 	 struct lm_softc *sc = sme->sme_cookie;
    594 
    595 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    596 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    597 	 else {
    598 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    599 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    600 			    binfo->sensor - 8, binfo);
    601 		}
    602 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    603 		    sizeof(sc->info[binfo->sensor].desc));
    604 		binfo->validflags = ENVSYS_FVALID;
    605 	 }
    606 	 return 0;
    607 }
    608 
    609 int
    610 wb781_streinfo(sme, binfo)
    611 	 struct sysmon_envsys *sme;
    612 	 struct envsys_basic_info *binfo;
    613 {
    614 	 struct lm_softc *sc = sme->sme_cookie;
    615 	 int divisor;
    616 	 u_int8_t sdata;
    617 	 int i;
    618 
    619 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    620 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    621 	 else {
    622 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    623 			if (binfo->rpms == 0) {
    624 				binfo->validflags = 0;
    625 				return 0;
    626 			}
    627 
    628 			/* write back the nominal FAN speed  */
    629 			sc->info[binfo->sensor].rpms = binfo->rpms;
    630 
    631 			/* 153 is the nominal FAN speed value */
    632 			divisor = 1350000 / (binfo->rpms * 153);
    633 
    634 			/* ...but we need lg(divisor) */
    635 			for (i = 0; i < 7; i++) {
    636 				if (divisor <= (1 << i))
    637 				 	break;
    638 			}
    639 			divisor = i;
    640 
    641 			if (binfo->sensor == 10 || binfo->sensor == 11) {
    642 				/*
    643 				 * FAN1 div is in bits <5:4>, FAN2 div
    644 				 * is in <7:6>
    645 				 */
    646 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    647 				if ( binfo->sensor == 10 ) {  /* FAN1 */
    648 					 sdata = (sdata & 0xCF) |
    649 					     ((divisor & 0x3) << 4);
    650 				} else { /* FAN2 */
    651 					 sdata = (sdata & 0x3F) |
    652 					     ((divisor & 0x3) << 6);
    653 				}
    654 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    655 			} else {
    656 				/* FAN3 is in WB_PIN <7:6> */
    657 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    658 				sdata = (sdata & 0x3F) |
    659 				     ((divisor & 0x3) << 6);
    660 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    661 			}
    662 		}
    663 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    664 		    sizeof(sc->info[binfo->sensor].desc));
    665 		binfo->validflags = ENVSYS_FVALID;
    666 	 }
    667 	 return 0;
    668 }
    669 
    670 int
    671 wb782_streinfo(sme, binfo)
    672 	 struct sysmon_envsys *sme;
    673 	 struct envsys_basic_info *binfo;
    674 {
    675 	 struct lm_softc *sc = sme->sme_cookie;
    676 	 int divisor;
    677 	 u_int8_t sdata;
    678 	 int i;
    679 
    680 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    681 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    682 	 else {
    683 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    684 			if (binfo->rpms == 0) {
    685 				binfo->validflags = 0;
    686 				return 0;
    687 			}
    688 
    689 			/* write back the nominal FAN speed  */
    690 			sc->info[binfo->sensor].rpms = binfo->rpms;
    691 
    692 			/* 153 is the nominal FAN speed value */
    693 			divisor = 1350000 / (binfo->rpms * 153);
    694 
    695 			/* ...but we need lg(divisor) */
    696 			for (i = 0; i < 7; i++) {
    697 				if (divisor <= (1 << i))
    698 				 	break;
    699 			}
    700 			divisor = i;
    701 
    702 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    703 				/*
    704 				 * FAN1 div is in bits <5:4>, FAN2 div
    705 				 * is in <7:6>
    706 				 */
    707 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    708 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    709 					 sdata = (sdata & 0xCF) |
    710 					     ((divisor & 0x3) << 4);
    711 				} else { /* FAN2 */
    712 					 sdata = (sdata & 0x3F) |
    713 					     ((divisor & 0x3) << 6);
    714 				}
    715 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    716 			} else {
    717 				/* FAN3 is in WB_PIN <7:6> */
    718 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    719 				sdata = (sdata & 0x3F) |
    720 				     ((divisor & 0x3) << 6);
    721 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    722 			}
    723 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    724 			(*sc->lm_banksel)(sc, 0);
    725 			sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
    726 			sdata &= ~(0x20 << (binfo->sensor - 12));
    727 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    728 			(*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
    729 		}
    730 
    731 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    732 		    sizeof(sc->info[binfo->sensor].desc));
    733 		binfo->validflags = ENVSYS_FVALID;
    734 	}
    735 	return 0;
    736 }
    737 
    738 int
    739 itec_streinfo(sme, binfo)
    740 	 struct sysmon_envsys *sme;
    741 	 struct envsys_basic_info *binfo;
    742 {
    743 	 struct lm_softc *sc = sme->sme_cookie;
    744 	 int divisor;
    745 	 u_int8_t sdata;
    746 	 int i;
    747 
    748 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    749 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    750 	 else {
    751 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    752 			if (binfo->rpms == 0) {
    753 				binfo->validflags = 0;
    754 				return 0;
    755 			}
    756 
    757 			/* write back the nominal FAN speed  */
    758 			sc->info[binfo->sensor].rpms = binfo->rpms;
    759 
    760 			/* 153 is the nominal FAN speed value */
    761 			divisor = 1350000 / (binfo->rpms * 153);
    762 
    763 			/* ...but we need lg(divisor) */
    764 			for (i = 0; i < 7; i++) {
    765 				if (divisor <= (1 << i))
    766 				 	break;
    767 			}
    768 			divisor = i;
    769 
    770 			sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV);
    771 			/*
    772 			 * FAN1 div is in bits <0:2>, FAN2 is in <3:5>
    773 			 * FAN3 is in <6>, if set divisor is 8, else 2
    774 			 */
    775 			if ( binfo->sensor == 10 ) {  /* FAN1 */
    776 				 sdata = (sdata & 0xf8) | divisor;
    777 			} else if ( binfo->sensor == 11 ) { /* FAN2 */
    778 				 sdata = (sdata & 0xc7) | divisor << 3;
    779 			} else { /* FAN3 */
    780 				if (divisor>2)
    781 					sdata = sdata & 0xbf;
    782 				else
    783 					sdata = sdata | 0x40;
    784 			}
    785 			(*sc->lm_writereg)(sc, ITEC_FANDIV, sdata);
    786 		}
    787 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    788 		    sizeof(sc->info[binfo->sensor].desc));
    789 		binfo->validflags = ENVSYS_FVALID;
    790 	 }
    791 	 return 0;
    792 }
    793 
    794 static void
    795 generic_stemp(sc, sensor)
    796 	struct lm_softc *sc;
    797 	struct envsys_tre_data *sensor;
    798 {
    799 	int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    800 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
    801 	/* temp is given in deg. C, we convert to uK */
    802 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    803 }
    804 
    805 static void
    806 generic_svolt(sc, sensors, infos)
    807 	struct lm_softc *sc;
    808 	struct envsys_tre_data *sensors;
    809 	struct envsys_basic_info *infos;
    810 {
    811 	int i, sdata;
    812 
    813 	for (i = 0; i < 7; i++) {
    814 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    815 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    816 		/* voltage returned as (mV >> 4), we convert to uVDC */
    817 		sensors[i].cur.data_s = (sdata << 4);
    818 		/* rfact is (factor * 10^4) */
    819 		sensors[i].cur.data_s *= infos[i].rfact;
    820 		/* division by 10 gets us back to uVDC */
    821 		sensors[i].cur.data_s /= 10;
    822 
    823 		/* these two are negative voltages */
    824 		if ( (i == 5) || (i == 6) )
    825 			sensors[i].cur.data_s *= -1;
    826 	}
    827 }
    828 
    829 static void
    830 generic_fanrpm(sc, sensors)
    831 	struct lm_softc *sc;
    832 	struct envsys_tre_data *sensors;
    833 {
    834 	int i, sdata, divisor;
    835 	for (i = 0; i < 3; i++) {
    836 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
    837 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    838 		if (i == 2)
    839 			divisor = 2;	/* Fixed divisor for FAN3 */
    840 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    841 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    842 		else
    843 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    844 
    845 		if (sdata == 0xff || sdata == 0x00) {
    846 			sensors[i].cur.data_us = 0;
    847 		} else {
    848 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    849 		}
    850 	}
    851 }
    852 
    853 /*
    854  * pre:  last read occurred >= 1.5 seconds ago
    855  * post: sensors[] current data are the latest from the chip
    856  */
    857 void
    858 lm_refresh_sensor_data(sc)
    859 	struct lm_softc *sc;
    860 {
    861 	/* Refresh our stored data for every sensor */
    862 	generic_stemp(sc, &sc->sensors[7]);
    863 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    864 	generic_fanrpm(sc, &sc->sensors[8]);
    865 }
    866 
    867 static void
    868 wb_svolt(sc)
    869 	struct lm_softc *sc;
    870 {
    871 	int i, sdata;
    872 	for (i = 0; i < 9; ++i) {
    873 		if (i < 7) {
    874 			sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    875 		} else {
    876 			/* from bank5 */
    877 			(*sc->lm_banksel)(sc, 5);
    878 			sdata = (*sc->lm_readreg)(sc, (i == 7) ?
    879 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    880 		}
    881 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    882 		/* voltage returned as (mV >> 4), we convert to uV */
    883 		sdata =  sdata << 4;
    884 		/* special case for negative voltages */
    885 		if (i == 5) {
    886 			/*
    887 			 * -12Vdc, assume Winbond recommended values for
    888 			 * resistors
    889 			 */
    890 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    891 		} else if (i == 6) {
    892 			/*
    893 			 * -5Vdc, assume Winbond recommended values for
    894 			 * resistors
    895 			 */
    896 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    897 		}
    898 		/* rfact is (factor * 10^4) */
    899 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    900 		/* division by 10 gets us back to uVDC */
    901 		sc->sensors[i].cur.data_s /= 10;
    902 	}
    903 }
    904 
    905 static void
    906 wb_stemp(sc, sensors, n)
    907 	struct lm_softc *sc;
    908 	struct  envsys_tre_data *sensors;
    909 	int n;
    910 {
    911 	int sdata;
    912 	/* temperatures. Given in dC, we convert to uK */
    913 	sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    914 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
    915 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    916 	/* from bank1 */
    917 	if ((*sc->lm_banksel)(sc, 1))
    918 		sensors[1].validflags &= ~ENVSYS_FCURVALID;
    919 	else {
    920 		sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
    921 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
    922 		DPRINTF(("sdata[temp1] 0x%x\n", sdata));
    923 		sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    924 	}
    925 	if (n < 3)
    926 		return;
    927 	/* from bank2 */
    928 	if ((*sc->lm_banksel)(sc, 2))
    929 		sensors[2].validflags &= ~ENVSYS_FCURVALID;
    930 	else {
    931 		sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
    932 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
    933 		DPRINTF(("sdata[temp2] 0x%x\n", sdata));
    934 		sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    935 	}
    936 }
    937 
    938 static void
    939 wb781_fanrpm(sc, sensors)
    940 	struct lm_softc *sc;
    941 	struct envsys_tre_data *sensors;
    942 {
    943 	int i, divisor, sdata;
    944 	(*sc->lm_banksel)(sc, 0);
    945 	for (i = 0; i < 3; i++) {
    946 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    947 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    948 		if (i == 0)
    949 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    950 		else if (i == 1)
    951 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    952 		else
    953 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    954 
    955 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    956 		if (sdata == 0xff || sdata == 0x00) {
    957 			sensors[i].cur.data_us = 0;
    958 		} else {
    959 			sensors[i].cur.data_us = 1350000 /
    960 			    (sdata << divisor);
    961 		}
    962 	}
    963 }
    964 
    965 static void
    966 wb_fanrpm(sc, sensors)
    967 	struct lm_softc *sc;
    968 	struct envsys_tre_data *sensors;
    969 {
    970 	int i, divisor, sdata;
    971 	(*sc->lm_banksel)(sc, 0);
    972 	for (i = 0; i < 3; i++) {
    973 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    974 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    975 		if (i == 0)
    976 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    977 		else if (i == 1)
    978 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    979 		else
    980 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    981 		divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    982 
    983 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    984 		if (sdata == 0xff || sdata == 0x00) {
    985 			sensors[i].cur.data_us = 0;
    986 		} else {
    987 			sensors[i].cur.data_us = 1350000 /
    988 			    (sdata << divisor);
    989 		}
    990 	}
    991 }
    992 
    993 void
    994 wb781_refresh_sensor_data(sc)
    995 	struct lm_softc *sc;
    996 {
    997 	/* Refresh our stored data for every sensor */
    998 	/* we need to reselect bank0 to access common registers */
    999 	(*sc->lm_banksel)(sc, 0);
   1000 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
   1001 	(*sc->lm_banksel)(sc, 0);
   1002 	wb_stemp(sc, &sc->sensors[7], 3);
   1003 	(*sc->lm_banksel)(sc, 0);
   1004 	wb781_fanrpm(sc, &sc->sensors[10]);
   1005 }
   1006 
   1007 void
   1008 wb782_refresh_sensor_data(sc)
   1009 	struct lm_softc *sc;
   1010 {
   1011 	/* Refresh our stored data for every sensor */
   1012 	wb_svolt(sc);
   1013 	wb_stemp(sc, &sc->sensors[9], 3);
   1014 	wb_fanrpm(sc, &sc->sensors[12]);
   1015 }
   1016 
   1017 void
   1018 wb697_refresh_sensor_data(sc)
   1019 	struct lm_softc *sc;
   1020 {
   1021 	/* Refresh our stored data for every sensor */
   1022 	wb_svolt(sc);
   1023 	wb_stemp(sc, &sc->sensors[9], 2);
   1024 	wb_fanrpm(sc, &sc->sensors[11]);
   1025 }
   1026 
   1027 static void
   1028 itec_svolt(sc, sensors, infos)
   1029 	struct lm_softc *sc;
   1030 	struct envsys_tre_data *sensors;
   1031 	struct envsys_basic_info *infos;
   1032 {
   1033 	int i, sdata;
   1034 
   1035 	for (i = 0; i < 9; i++) {
   1036 		sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i);
   1037 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
   1038 		/* voltage returned as (mV >> 4), we convert to uVDC */
   1039 		sensors[i].cur.data_s = ( sdata << 4 );
   1040 		/* rfact is (factor * 10^4) */
   1041 
   1042 		sensors[i].cur.data_s *= infos[i].rfact;
   1043 		/*
   1044 		 * XXX We assume input 5 is wired the way iTE suggests to
   1045 		 * monitor a negative voltage. I'd prefer using negative rfacts
   1046 		 * for detecting those cases but since rfact is an u_int this
   1047 		 * isn't possible.
   1048 		 */
   1049 		if (i == 5)
   1050 			sensors[i].cur.data_s -=
   1051 			    (infos[i].rfact - 10000) * ITEC_VREF;
   1052 		/* division by 10 gets us back to uVDC */
   1053 		sensors[i].cur.data_s /= 10;
   1054 	}
   1055 }
   1056 
   1057 static void
   1058 itec_stemp(sc, sensors)
   1059 	struct lm_softc *sc;
   1060 	struct  envsys_tre_data *sensors;
   1061 {
   1062 	int i, sdata;
   1063 
   1064 	/* temperatures. Given in dC, we convert to uK */
   1065 	for (i = 0; i < 3; i++) {
   1066 		sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i);
   1067 		DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata));
   1068 		sensors[i].cur.data_us = sdata * 1000000 + 273150000;
   1069 	}
   1070 }
   1071 
   1072 static void
   1073 itec_fanrpm(sc, sensors)
   1074 	struct lm_softc *sc;
   1075 	struct envsys_tre_data *sensors;
   1076 {
   1077 	int i, fandiv, divisor, sdata;
   1078 	(*sc->lm_banksel)(sc, 0);
   1079 	fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV));
   1080 
   1081 	for (i = 0; i < 3; i++) {
   1082 		sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i);
   1083 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
   1084 		switch (i) {
   1085 		case 0:
   1086 			divisor = fandiv & 0x7;
   1087 			break;
   1088 		case 1:
   1089 			divisor = (fandiv >> 3) & 0x7;
   1090 			break;
   1091 		case 2:
   1092 		default:	/* XXX */
   1093 			divisor = (fandiv & 0x40) ? 3 : 1;
   1094 			break;
   1095 		}
   1096 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
   1097 		if (sdata == 0xff || sdata == 0x00) {
   1098 			sensors[i].cur.data_us = 0;
   1099 		} else {
   1100 			sensors[i].cur.data_us = 1350000 /
   1101 			    (sdata << divisor);
   1102 		}
   1103 	}
   1104 
   1105 }
   1106 
   1107 void
   1108 itec_refresh_sensor_data(sc)
   1109 	struct lm_softc *sc;
   1110 {
   1111 	itec_svolt(sc, &sc->sensors[0], &sc->info[0]);
   1112 	itec_stemp(sc, &sc->sensors[9]);
   1113 	itec_fanrpm(sc, &sc->sensors[12]);
   1114 }
   1115