Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.23
      1 /*	$NetBSD: nslm7x.c,v 1.23 2005/10/15 00:41:48 xtraeme Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Squier.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.23 2005/10/15 00:41:48 xtraeme Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/proc.h>
     46 #include <sys/device.h>
     47 #include <sys/malloc.h>
     48 #include <sys/errno.h>
     49 #include <sys/queue.h>
     50 #include <sys/lock.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/conf.h>
     53 #include <sys/time.h>
     54 
     55 #include <machine/bus.h>
     56 
     57 #include <dev/isa/isareg.h>
     58 #include <dev/isa/isavar.h>
     59 
     60 #include <dev/sysmon/sysmonvar.h>
     61 
     62 #include <dev/ic/nslm7xvar.h>
     63 
     64 #include <machine/intr.h>
     65 #include <machine/bus.h>
     66 
     67 #if defined(LMDEBUG)
     68 #define DPRINTF(x)		printf x
     69 #else
     70 #define DPRINTF(x)
     71 #endif
     72 
     73 const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     74 					/* for each unit type */
     75 	{ 7, 7,    ENVSYS_STEMP   },
     76 	{ 8, 10,   ENVSYS_SFANRPM },
     77 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     78 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     79 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     80 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     81 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     82 };
     83 
     84 
     85 static void setup_fan(struct lm_softc *, int, int);
     86 static void setup_temp(struct lm_softc *, int, int);
     87 static void wb_setup_volt(struct lm_softc *);
     88 
     89 int lm_match(struct lm_softc *);
     90 int wb_match(struct lm_softc *);
     91 int itec_match(struct lm_softc *);
     92 int def_match(struct lm_softc *);
     93 void lm_common_match(struct lm_softc *);
     94 static int lm_generic_banksel(struct lm_softc *, int);
     95 
     96 static void generic_stemp(struct lm_softc *, struct envsys_tre_data *);
     97 static void generic_svolt(struct lm_softc *, struct envsys_tre_data *,
     98     struct envsys_basic_info *);
     99 static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    100 
    101 void lm_refresh_sensor_data(struct lm_softc *);
    102 
    103 static void wb_svolt(struct lm_softc *);
    104 static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int);
    105 static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    106 static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    107 
    108 void wb781_refresh_sensor_data(struct lm_softc *);
    109 void wb782_refresh_sensor_data(struct lm_softc *);
    110 void wb697_refresh_sensor_data(struct lm_softc *);
    111 
    112 static void itec_svolt(struct lm_softc *, struct envsys_tre_data *,
    113     struct envsys_basic_info *);
    114 static void itec_stemp(struct lm_softc *, struct envsys_tre_data *);
    115 static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    116 void itec_refresh_sensor_data(struct lm_softc *);
    117 
    118 int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
    119 
    120 int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
    121            int, struct envsys_basic_info *);
    122 int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    123 int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    124 int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    125 int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    126 
    127 struct lm_chip {
    128 	int (*chip_match)(struct lm_softc *);
    129 };
    130 
    131 struct lm_chip lm_chips[] = {
    132 	{ itec_match },
    133 	{ wb_match },
    134 	{ lm_match },
    135 	{ def_match } /* Must be last */
    136 };
    137 
    138 
    139 int
    140 lm_generic_banksel(lmsc, bank)
    141 	struct lm_softc *lmsc;
    142 	int bank;
    143 {
    144 
    145 	(*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
    146 	return 0;
    147 }
    148 
    149 
    150 /*
    151  * bus independent probe
    152  */
    153 int
    154 lm_probe(iot, ioh)
    155 	bus_space_tag_t iot;
    156 	bus_space_handle_t ioh;
    157 {
    158 	u_int8_t cr;
    159 	int rv;
    160 
    161 	/*
    162 	 * Check for it8705f, before we do the chip reset.
    163 	 * In case of an it8705f this might reset all the fan control
    164 	 * parameters to defaults which would void all settings done by
    165 	 * the BOOTROM/BIOS.
    166 	 */
    167 	bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48);
    168 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    169 
    170 	if (cr == ITEC_RES48_DEFAULT) {
    171 		bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52);
    172 		cr = bus_space_read_1(iot, ioh, LMC_DATA);
    173 		if (cr == ITEC_RES52_DEFAULT)
    174 			return 1;
    175 	}
    176 
    177 	/* Check for some power-on defaults */
    178 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    179 
    180 	/* Perform LM78 reset */
    181 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    182 
    183 	/* XXX - Why do I have to reselect the register? */
    184 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    185 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    186 
    187 	/* XXX - spec says *only* 0x08! */
    188 	if ((cr == 0x08) || (cr == 0x01) || (cr == 0x03))
    189 		rv = 1;
    190 	else
    191 		rv = 0;
    192 
    193 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    194 
    195 	return (rv);
    196 }
    197 
    198 
    199 /*
    200  * pre:  lmsc contains valid busspace tag and handle
    201  */
    202 void
    203 lm_attach(lmsc)
    204 	struct lm_softc *lmsc;
    205 {
    206 	u_int i;
    207 
    208 	/* Install default bank selection routine, if none given. */
    209 	if (lmsc->lm_banksel == NULL)
    210 		lmsc->lm_banksel = lm_generic_banksel;
    211 
    212 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    213 		if (lm_chips[i].chip_match(lmsc))
    214 			break;
    215 
    216 	/* Start the monitoring loop */
    217 	(*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
    218 
    219 	/* Indicate we have never read the registers */
    220 	timerclear(&lmsc->lastread);
    221 
    222 	/* Initialize sensors */
    223 	for (i = 0; i < lmsc->numsensors; ++i) {
    224 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    225 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    226 		lmsc->info[i].validflags = ENVSYS_FVALID;
    227 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    228 	}
    229 	/*
    230 	 * Hook into the System Monitor.
    231 	 */
    232 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    233 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    234 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    235 	lmsc->sc_sysmon.sme_cookie = lmsc;
    236 
    237 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    238 	/* sme_streinfo set in chip-specific attach */
    239 
    240 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    241 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    242 
    243 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    244 		printf("%s: unable to register with sysmon\n",
    245 		    lmsc->sc_dev.dv_xname);
    246 }
    247 
    248 int
    249 lm_match(sc)
    250 	struct lm_softc *sc;
    251 {
    252 	int i;
    253 
    254 	/* See if we have an LM78 or LM79 */
    255 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    256 	switch(i) {
    257 	case LM_ID_LM78:
    258 		printf(": LM78\n");
    259 		break;
    260 	case LM_ID_LM78J:
    261 		printf(": LM78J\n");
    262 		break;
    263 	case LM_ID_LM79:
    264 		printf(": LM79\n");
    265 		break;
    266 	case LM_ID_LM81:
    267 		printf(": LM81\n");
    268 		break;
    269 	default:
    270 		return 0;
    271 	}
    272 	lm_common_match(sc);
    273 	return 1;
    274 }
    275 
    276 int
    277 def_match(sc)
    278 	struct lm_softc *sc;
    279 {
    280 	int i;
    281 
    282 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    283 	printf(": Unknown chip (ID %d)\n", i);
    284 	lm_common_match(sc);
    285 	return 1;
    286 }
    287 
    288 void
    289 lm_common_match(sc)
    290 	struct lm_softc *sc;
    291 {
    292 	int i;
    293 	sc->numsensors = LM_NUM_SENSORS;
    294 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    295 
    296 	for (i = 0; i < 7; ++i) {
    297 		sc->sensors[i].units = sc->info[i].units =
    298 		    ENVSYS_SVOLTS_DC;
    299 		snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    300 		    "IN %d", i);
    301 	}
    302 
    303 	/* default correction factors for resistors on higher voltage inputs */
    304 	sc->info[0].rfact = sc->info[1].rfact =
    305 	    sc->info[2].rfact = 10000;
    306 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    307 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    308 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    309 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    310 
    311 	sc->sensors[7].units = ENVSYS_STEMP;
    312 	strcpy(sc->info[7].desc, "Temp");
    313 
    314 	setup_fan(sc, 8, 3);
    315 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    316 }
    317 
    318 int
    319 wb_match(sc)
    320 	struct lm_softc *sc;
    321 {
    322 	int i, j;
    323 
    324 	(*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    325 	j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
    326 	(*sc->lm_writereg)(sc, WB_BANKSEL, 0);
    327 	j |= (*sc->lm_readreg)(sc, WB_VENDID);
    328 	DPRINTF(("winbond vend id 0x%x\n", j));
    329 	if (j != WB_VENDID_WINBOND)
    330 		return 0;
    331 	/* read device ID */
    332 	(*sc->lm_banksel)(sc, 0);
    333 	j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
    334 	DPRINTF(("winbond chip id 0x%x\n", j));
    335 	switch(j) {
    336 	case WB_CHIPID_83781:
    337 	case WB_CHIPID_83781_2:
    338 		printf(": W83781D\n");
    339 
    340 		for (i = 0; i < 7; ++i) {
    341 			sc->sensors[i].units = sc->info[i].units =
    342 			    ENVSYS_SVOLTS_DC;
    343 			snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    344 			    "IN %d", i);
    345 		}
    346 
    347 		/* default correction factors for higher voltage inputs */
    348 		sc->info[0].rfact = sc->info[1].rfact =
    349 		    sc->info[2].rfact = 10000;
    350 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    351 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    352 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    353 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    354 
    355 		setup_temp(sc, 7, 3);
    356 		setup_fan(sc, 10, 3);
    357 
    358 		sc->numsensors = WB83781_NUM_SENSORS;
    359 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    360 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    361 		return 1;
    362 	case WB_CHIPID_83697:
    363 		printf(": W83697HF\n");
    364 		wb_setup_volt(sc);
    365 		setup_temp(sc, 9, 2);
    366 		setup_fan(sc, 11, 3);
    367 		sc->numsensors = WB83697_NUM_SENSORS;
    368 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    369 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    370 		return 1;
    371 	case WB_CHIPID_83782:
    372 		printf(": W83782D\n");
    373 		break;
    374 	case WB_CHIPID_83627:
    375 		printf(": W83627HF\n");
    376 		break;
    377 	case WB_CHIPID_83627THF:
    378 		printf(": W83627THF\n");
    379 		break;
    380 	default:
    381 		printf(": unknow winbond chip ID 0x%x\n", j);
    382 		/* handle as a standart lm7x */
    383 		lm_common_match(sc);
    384 		return 1;
    385 	}
    386 	/* common code for the W83782D and W83627HF */
    387 	wb_setup_volt(sc);
    388 	setup_temp(sc, 9, 3);
    389 	setup_fan(sc, 12, 3);
    390 	sc->numsensors = WB_NUM_SENSORS;
    391 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    392 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    393 	return 1;
    394 }
    395 
    396 static void
    397 wb_setup_volt(sc)
    398 	struct lm_softc *sc;
    399 {
    400 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    401 	snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
    402 	sc->info[0].rfact = 10000;
    403 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    404 	snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
    405 	sc->info[1].rfact = 10000;
    406 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    407 	snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
    408 	sc->info[2].rfact = 10000;
    409 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    410 	snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
    411 	sc->info[3].rfact = 16778;
    412 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    413 	snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
    414 	sc->info[4].rfact = 38000;
    415 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    416 	snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
    417 	sc->info[5].rfact = 10000;
    418 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    419 	snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
    420 	sc->info[6].rfact = 10000;
    421 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    422 	snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
    423 	sc->info[7].rfact = 15151;
    424 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    425 	snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
    426 	sc->info[8].rfact = 10000;
    427 }
    428 
    429 int
    430 itec_match(sc)
    431 	struct lm_softc *sc;
    432 {
    433 	int vendor, coreid;
    434 
    435 	/* do the same thing as in  lm_probe() */
    436 	if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT)
    437 		return 0;
    438 
    439 	if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT)
    440 		return 0;
    441 
    442 	/* We check for the core ID register (0x5B), which is available
    443 	 * only in the 8712F, if that fails, we check the vendor ID
    444 	 * register, available on 8705F and 8712F */
    445 
    446 	coreid = (*sc->lm_readreg)(sc, ITEC_COREID);
    447 
    448 	if (coreid == ITEC_COREID_ITE)
    449 		printf(": ITE8712F\n");
    450 	else {
    451 		vendor = (*sc->lm_readreg)(sc, ITEC_VENDID);
    452 		if (vendor == ITEC_VENDID_ITE)
    453 			printf(": ITE8705F\n");
    454 		else
    455 			printf(": unknown ITE87%02x compatible\n", vendor);
    456 	}
    457 
    458 	/*
    459 	 * XXX this is a litle bit lame...
    460 	 * All VIN inputs work exactly the same way, it depends of the
    461 	 * external wiring what voltages they monitor and which correction
    462 	 * factors are needed. We assume a pretty standard setup here
    463 	 */
    464 	wb_setup_volt(sc);
    465 	strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc));
    466 	strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc));
    467 	strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc));
    468 	sc->info[5].rfact = 51100;
    469 	sc->info[7].rfact = 16778;
    470 
    471 	setup_temp(sc, 9, 3);
    472 	setup_fan(sc, 12, 3);
    473 	sc->numsensors = ITEC_NUM_SENSORS;
    474 	sc->refresh_sensor_data = itec_refresh_sensor_data;
    475 	sc->sc_sysmon.sme_streinfo = itec_streinfo;
    476 
    477 	return 1;
    478 }
    479 
    480 
    481 static void
    482 setup_temp(sc, start, n)
    483 	struct lm_softc *sc;
    484 	int start, n;
    485 {
    486 	int i;
    487 
    488 	for (i = 0; i < n; i++) {
    489 		sc->sensors[start + i].units = ENVSYS_STEMP;
    490 		snprintf(sc->info[start + i].desc,
    491 		    sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
    492 	}
    493 }
    494 
    495 
    496 static void
    497 setup_fan(sc, start, n)
    498 	struct lm_softc *sc;
    499 	int start, n;
    500 {
    501 	int i;
    502 	for (i = 0; i < n; ++i) {
    503 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    504 		sc->info[start + i].units = ENVSYS_SFANRPM;
    505 		snprintf(sc->info[start + i].desc,
    506 		    sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
    507 	}
    508 }
    509 
    510 int
    511 lm_gtredata(sme, tred)
    512 	 struct sysmon_envsys *sme;
    513 	 struct envsys_tre_data *tred;
    514 {
    515 	 static const struct timeval onepointfive = { 1, 500000 };
    516 	 struct timeval t;
    517 	 struct lm_softc *sc = sme->sme_cookie;
    518 	 int i, s;
    519 
    520 	 /* read new values at most once every 1.5 seconds */
    521 	 timeradd(&sc->lastread, &onepointfive, &t);
    522 	 s = splclock();
    523 	 i = timercmp(&mono_time, &t, >);
    524 	 if (i) {
    525 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    526 		  sc->lastread.tv_usec = mono_time.tv_usec;
    527 	 }
    528 	 splx(s);
    529 
    530 	 if (i)
    531 		  sc->refresh_sensor_data(sc);
    532 
    533 	 *tred = sc->sensors[tred->sensor];
    534 
    535 	 return 0;
    536 }
    537 
    538 int
    539 generic_streinfo_fan(sc, info, n, binfo)
    540 	struct lm_softc *sc;
    541 	struct envsys_basic_info *info;
    542 	int n;
    543 	struct envsys_basic_info *binfo;
    544 {
    545 	u_int8_t sdata;
    546 	int divisor;
    547 
    548 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    549 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    550 	    && (n < 2)) {
    551 		if (binfo->rpms == 0) {
    552 			binfo->validflags = 0;
    553 			return 0;
    554 		}
    555 
    556 		/* write back the nominal FAN speed  */
    557 		info->rpms = binfo->rpms;
    558 
    559 		/* 153 is the nominal FAN speed value */
    560 		divisor = 1350000 / (binfo->rpms * 153);
    561 
    562 		/* ...but we need lg(divisor) */
    563 		if (divisor <= 1)
    564 		    divisor = 0;
    565 		else if (divisor <= 2)
    566 		    divisor = 1;
    567 		else if (divisor <= 4)
    568 		    divisor = 2;
    569 		else
    570 		    divisor = 3;
    571 
    572 		/*
    573 		 * FAN1 div is in bits <5:4>, FAN2 div is
    574 		 * in <7:6>
    575 		 */
    576 		sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    577 		if ( n == 0 ) {  /* FAN1 */
    578 		    divisor <<= 4;
    579 		    sdata = (sdata & 0xCF) | divisor;
    580 		} else { /* FAN2 */
    581 		    divisor <<= 6;
    582 		    sdata = (sdata & 0x3F) | divisor;
    583 		}
    584 
    585 		(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    586 	}
    587 	return 0;
    588 
    589 }
    590 
    591 int
    592 lm_streinfo(sme, binfo)
    593 	 struct sysmon_envsys *sme;
    594 	 struct envsys_basic_info *binfo;
    595 {
    596 	 struct lm_softc *sc = sme->sme_cookie;
    597 
    598 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    599 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    600 	 else {
    601 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    602 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    603 			    binfo->sensor - 8, binfo);
    604 		}
    605 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    606 		    sizeof(sc->info[binfo->sensor].desc));
    607 		binfo->validflags = ENVSYS_FVALID;
    608 	 }
    609 	 return 0;
    610 }
    611 
    612 int
    613 wb781_streinfo(sme, binfo)
    614 	 struct sysmon_envsys *sme;
    615 	 struct envsys_basic_info *binfo;
    616 {
    617 	 struct lm_softc *sc = sme->sme_cookie;
    618 	 int divisor;
    619 	 u_int8_t sdata;
    620 	 int i;
    621 
    622 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    623 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    624 	 else {
    625 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    626 			if (binfo->rpms == 0) {
    627 				binfo->validflags = 0;
    628 				return 0;
    629 			}
    630 
    631 			/* write back the nominal FAN speed  */
    632 			sc->info[binfo->sensor].rpms = binfo->rpms;
    633 
    634 			/* 153 is the nominal FAN speed value */
    635 			divisor = 1350000 / (binfo->rpms * 153);
    636 
    637 			/* ...but we need lg(divisor) */
    638 			for (i = 0; i < 7; i++) {
    639 				if (divisor <= (1 << i))
    640 				 	break;
    641 			}
    642 			divisor = i;
    643 
    644 			if (binfo->sensor == 10 || binfo->sensor == 11) {
    645 				/*
    646 				 * FAN1 div is in bits <5:4>, FAN2 div
    647 				 * is in <7:6>
    648 				 */
    649 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    650 				if ( binfo->sensor == 10 ) {  /* FAN1 */
    651 					 sdata = (sdata & 0xCF) |
    652 					     ((divisor & 0x3) << 4);
    653 				} else { /* FAN2 */
    654 					 sdata = (sdata & 0x3F) |
    655 					     ((divisor & 0x3) << 6);
    656 				}
    657 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    658 			} else {
    659 				/* FAN3 is in WB_PIN <7:6> */
    660 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    661 				sdata = (sdata & 0x3F) |
    662 				     ((divisor & 0x3) << 6);
    663 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    664 			}
    665 		}
    666 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    667 		    sizeof(sc->info[binfo->sensor].desc));
    668 		binfo->validflags = ENVSYS_FVALID;
    669 	 }
    670 	 return 0;
    671 }
    672 
    673 int
    674 wb782_streinfo(sme, binfo)
    675 	 struct sysmon_envsys *sme;
    676 	 struct envsys_basic_info *binfo;
    677 {
    678 	 struct lm_softc *sc = sme->sme_cookie;
    679 	 int divisor;
    680 	 u_int8_t sdata;
    681 	 int i;
    682 
    683 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    684 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    685 	 else {
    686 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    687 			if (binfo->rpms == 0) {
    688 				binfo->validflags = 0;
    689 				return 0;
    690 			}
    691 
    692 			/* write back the nominal FAN speed  */
    693 			sc->info[binfo->sensor].rpms = binfo->rpms;
    694 
    695 			/* 153 is the nominal FAN speed value */
    696 			divisor = 1350000 / (binfo->rpms * 153);
    697 
    698 			/* ...but we need lg(divisor) */
    699 			for (i = 0; i < 7; i++) {
    700 				if (divisor <= (1 << i))
    701 				 	break;
    702 			}
    703 			divisor = i;
    704 
    705 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    706 				/*
    707 				 * FAN1 div is in bits <5:4>, FAN2 div
    708 				 * is in <7:6>
    709 				 */
    710 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    711 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    712 					 sdata = (sdata & 0xCF) |
    713 					     ((divisor & 0x3) << 4);
    714 				} else { /* FAN2 */
    715 					 sdata = (sdata & 0x3F) |
    716 					     ((divisor & 0x3) << 6);
    717 				}
    718 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    719 			} else {
    720 				/* FAN3 is in WB_PIN <7:6> */
    721 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    722 				sdata = (sdata & 0x3F) |
    723 				     ((divisor & 0x3) << 6);
    724 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    725 			}
    726 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    727 			(*sc->lm_banksel)(sc, 0);
    728 			sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
    729 			sdata &= ~(0x20 << (binfo->sensor - 12));
    730 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    731 			(*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
    732 		}
    733 
    734 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    735 		    sizeof(sc->info[binfo->sensor].desc));
    736 		binfo->validflags = ENVSYS_FVALID;
    737 	}
    738 	return 0;
    739 }
    740 
    741 int
    742 itec_streinfo(sme, binfo)
    743 	 struct sysmon_envsys *sme;
    744 	 struct envsys_basic_info *binfo;
    745 {
    746 	 struct lm_softc *sc = sme->sme_cookie;
    747 	 int divisor;
    748 	 u_int8_t sdata;
    749 	 int i;
    750 
    751 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    752 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    753 	 else {
    754 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    755 			if (binfo->rpms == 0) {
    756 				binfo->validflags = 0;
    757 				return 0;
    758 			}
    759 
    760 			/* write back the nominal FAN speed  */
    761 			sc->info[binfo->sensor].rpms = binfo->rpms;
    762 
    763 			/* 153 is the nominal FAN speed value */
    764 			divisor = 1350000 / (binfo->rpms * 153);
    765 
    766 			/* ...but we need lg(divisor) */
    767 			for (i = 0; i < 7; i++) {
    768 				if (divisor <= (1 << i))
    769 				 	break;
    770 			}
    771 			divisor = i;
    772 
    773 			sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV);
    774 			/*
    775 			 * FAN1 div is in bits <0:2>, FAN2 is in <3:5>
    776 			 * FAN3 is in <6>, if set divisor is 8, else 2
    777 			 */
    778 			if ( binfo->sensor == 10 ) {  /* FAN1 */
    779 				 sdata = (sdata & 0xf8) | divisor;
    780 			} else if ( binfo->sensor == 11 ) { /* FAN2 */
    781 				 sdata = (sdata & 0xc7) | divisor << 3;
    782 			} else { /* FAN3 */
    783 				if (divisor>2)
    784 					sdata = sdata & 0xbf;
    785 				else
    786 					sdata = sdata | 0x40;
    787 			}
    788 			(*sc->lm_writereg)(sc, ITEC_FANDIV, sdata);
    789 		}
    790 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    791 		    sizeof(sc->info[binfo->sensor].desc));
    792 		binfo->validflags = ENVSYS_FVALID;
    793 	 }
    794 	 return 0;
    795 }
    796 
    797 static void
    798 generic_stemp(sc, sensor)
    799 	struct lm_softc *sc;
    800 	struct envsys_tre_data *sensor;
    801 {
    802 	int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    803 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
    804 	/* temp is given in deg. C, we convert to uK */
    805 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    806 }
    807 
    808 static void
    809 generic_svolt(sc, sensors, infos)
    810 	struct lm_softc *sc;
    811 	struct envsys_tre_data *sensors;
    812 	struct envsys_basic_info *infos;
    813 {
    814 	int i, sdata;
    815 
    816 	for (i = 0; i < 7; i++) {
    817 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    818 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    819 		/* voltage returned as (mV >> 4), we convert to uVDC */
    820 		sensors[i].cur.data_s = (sdata << 4);
    821 		/* rfact is (factor * 10^4) */
    822 		sensors[i].cur.data_s *= infos[i].rfact;
    823 		/* division by 10 gets us back to uVDC */
    824 		sensors[i].cur.data_s /= 10;
    825 
    826 		/* these two are negative voltages */
    827 		if ( (i == 5) || (i == 6) )
    828 			sensors[i].cur.data_s *= -1;
    829 	}
    830 }
    831 
    832 static void
    833 generic_fanrpm(sc, sensors)
    834 	struct lm_softc *sc;
    835 	struct envsys_tre_data *sensors;
    836 {
    837 	int i, sdata, divisor;
    838 	for (i = 0; i < 3; i++) {
    839 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
    840 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    841 		if (i == 2)
    842 			divisor = 2;	/* Fixed divisor for FAN3 */
    843 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    844 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    845 		else
    846 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    847 
    848 		if (sdata == 0xff || sdata == 0x00) {
    849 			sensors[i].cur.data_us = 0;
    850 		} else {
    851 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    852 		}
    853 	}
    854 }
    855 
    856 /*
    857  * pre:  last read occurred >= 1.5 seconds ago
    858  * post: sensors[] current data are the latest from the chip
    859  */
    860 void
    861 lm_refresh_sensor_data(sc)
    862 	struct lm_softc *sc;
    863 {
    864 	/* Refresh our stored data for every sensor */
    865 	generic_stemp(sc, &sc->sensors[7]);
    866 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    867 	generic_fanrpm(sc, &sc->sensors[8]);
    868 }
    869 
    870 static void
    871 wb_svolt(sc)
    872 	struct lm_softc *sc;
    873 {
    874 	int i, sdata;
    875 	for (i = 0; i < 9; ++i) {
    876 		if (i < 7) {
    877 			sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    878 		} else {
    879 			/* from bank5 */
    880 			(*sc->lm_banksel)(sc, 5);
    881 			sdata = (*sc->lm_readreg)(sc, (i == 7) ?
    882 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    883 		}
    884 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    885 		/* voltage returned as (mV >> 4), we convert to uV */
    886 		sdata =  sdata << 4;
    887 		/* special case for negative voltages */
    888 		if (i == 5) {
    889 			/*
    890 			 * -12Vdc, assume Winbond recommended values for
    891 			 * resistors
    892 			 */
    893 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    894 		} else if (i == 6) {
    895 			/*
    896 			 * -5Vdc, assume Winbond recommended values for
    897 			 * resistors
    898 			 */
    899 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    900 		}
    901 		/* rfact is (factor * 10^4) */
    902 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    903 		/* division by 10 gets us back to uVDC */
    904 		sc->sensors[i].cur.data_s /= 10;
    905 	}
    906 }
    907 
    908 static void
    909 wb_stemp(sc, sensors, n)
    910 	struct lm_softc *sc;
    911 	struct  envsys_tre_data *sensors;
    912 	int n;
    913 {
    914 	int sdata;
    915 	/* temperatures. Given in dC, we convert to uK */
    916 	sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    917 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
    918 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    919 	/* from bank1 */
    920 	if ((*sc->lm_banksel)(sc, 1))
    921 		sensors[1].validflags &= ~ENVSYS_FCURVALID;
    922 	else {
    923 		sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
    924 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
    925 		DPRINTF(("sdata[temp1] 0x%x\n", sdata));
    926 		sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    927 	}
    928 	if (n < 3)
    929 		return;
    930 	/* from bank2 */
    931 	if ((*sc->lm_banksel)(sc, 2))
    932 		sensors[2].validflags &= ~ENVSYS_FCURVALID;
    933 	else {
    934 		sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
    935 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
    936 		DPRINTF(("sdata[temp2] 0x%x\n", sdata));
    937 		sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    938 	}
    939 }
    940 
    941 static void
    942 wb781_fanrpm(sc, sensors)
    943 	struct lm_softc *sc;
    944 	struct envsys_tre_data *sensors;
    945 {
    946 	int i, divisor, sdata;
    947 	(*sc->lm_banksel)(sc, 0);
    948 	for (i = 0; i < 3; i++) {
    949 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    950 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    951 		if (i == 0)
    952 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    953 		else if (i == 1)
    954 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    955 		else
    956 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    957 
    958 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    959 		if (sdata == 0xff || sdata == 0x00) {
    960 			sensors[i].cur.data_us = 0;
    961 		} else {
    962 			sensors[i].cur.data_us = 1350000 /
    963 			    (sdata << divisor);
    964 		}
    965 	}
    966 }
    967 
    968 static void
    969 wb_fanrpm(sc, sensors)
    970 	struct lm_softc *sc;
    971 	struct envsys_tre_data *sensors;
    972 {
    973 	int i, divisor, sdata;
    974 	(*sc->lm_banksel)(sc, 0);
    975 	for (i = 0; i < 3; i++) {
    976 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    977 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    978 		if (i == 0)
    979 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    980 		else if (i == 1)
    981 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    982 		else
    983 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    984 		divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    985 
    986 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    987 		if (sdata == 0xff || sdata == 0x00) {
    988 			sensors[i].cur.data_us = 0;
    989 		} else {
    990 			sensors[i].cur.data_us = 1350000 /
    991 			    (sdata << divisor);
    992 		}
    993 	}
    994 }
    995 
    996 void
    997 wb781_refresh_sensor_data(sc)
    998 	struct lm_softc *sc;
    999 {
   1000 	/* Refresh our stored data for every sensor */
   1001 	/* we need to reselect bank0 to access common registers */
   1002 	(*sc->lm_banksel)(sc, 0);
   1003 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
   1004 	(*sc->lm_banksel)(sc, 0);
   1005 	wb_stemp(sc, &sc->sensors[7], 3);
   1006 	(*sc->lm_banksel)(sc, 0);
   1007 	wb781_fanrpm(sc, &sc->sensors[10]);
   1008 }
   1009 
   1010 void
   1011 wb782_refresh_sensor_data(sc)
   1012 	struct lm_softc *sc;
   1013 {
   1014 	/* Refresh our stored data for every sensor */
   1015 	wb_svolt(sc);
   1016 	wb_stemp(sc, &sc->sensors[9], 3);
   1017 	wb_fanrpm(sc, &sc->sensors[12]);
   1018 }
   1019 
   1020 void
   1021 wb697_refresh_sensor_data(sc)
   1022 	struct lm_softc *sc;
   1023 {
   1024 	/* Refresh our stored data for every sensor */
   1025 	wb_svolt(sc);
   1026 	wb_stemp(sc, &sc->sensors[9], 2);
   1027 	wb_fanrpm(sc, &sc->sensors[11]);
   1028 }
   1029 
   1030 static void
   1031 itec_svolt(sc, sensors, infos)
   1032 	struct lm_softc *sc;
   1033 	struct envsys_tre_data *sensors;
   1034 	struct envsys_basic_info *infos;
   1035 {
   1036 	int i, sdata;
   1037 
   1038 	for (i = 0; i < 9; i++) {
   1039 		sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i);
   1040 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
   1041 		/* voltage returned as (mV >> 4), we convert to uVDC */
   1042 		sensors[i].cur.data_s = ( sdata << 4 );
   1043 		/* rfact is (factor * 10^4) */
   1044 
   1045 		sensors[i].cur.data_s *= infos[i].rfact;
   1046 		/*
   1047 		 * XXX We assume input 5 is wired the way iTE suggests to
   1048 		 * monitor a negative voltage. I'd prefer using negative rfacts
   1049 		 * for detecting those cases but since rfact is an u_int this
   1050 		 * isn't possible.
   1051 		 */
   1052 		if (i == 5)
   1053 			sensors[i].cur.data_s -=
   1054 			    (infos[i].rfact - 10000) * ITEC_VREF;
   1055 		/* division by 10 gets us back to uVDC */
   1056 		sensors[i].cur.data_s /= 10;
   1057 	}
   1058 }
   1059 
   1060 static void
   1061 itec_stemp(sc, sensors)
   1062 	struct lm_softc *sc;
   1063 	struct  envsys_tre_data *sensors;
   1064 {
   1065 	int i, sdata;
   1066 
   1067 	/* temperatures. Given in dC, we convert to uK */
   1068 	for (i = 0; i < 3; i++) {
   1069 		sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i);
   1070 		DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata));
   1071 		sensors[i].cur.data_us = sdata * 1000000 + 273150000;
   1072 	}
   1073 }
   1074 
   1075 static void
   1076 itec_fanrpm(sc, sensors)
   1077 	struct lm_softc *sc;
   1078 	struct envsys_tre_data *sensors;
   1079 {
   1080 	int i, fandiv, divisor, sdata;
   1081 	(*sc->lm_banksel)(sc, 0);
   1082 	fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV));
   1083 
   1084 	for (i = 0; i < 3; i++) {
   1085 		sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i);
   1086 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
   1087 		switch (i) {
   1088 		case 0:
   1089 			divisor = fandiv & 0x7;
   1090 			break;
   1091 		case 1:
   1092 			divisor = (fandiv >> 3) & 0x7;
   1093 			break;
   1094 		case 2:
   1095 		default:	/* XXX */
   1096 			divisor = (fandiv & 0x40) ? 3 : 1;
   1097 			break;
   1098 		}
   1099 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
   1100 		if (sdata == 0xff || sdata == 0x00) {
   1101 			sensors[i].cur.data_us = 0;
   1102 		} else {
   1103 			sensors[i].cur.data_us = 1350000 /
   1104 			    (sdata << divisor);
   1105 		}
   1106 	}
   1107 
   1108 }
   1109 
   1110 void
   1111 itec_refresh_sensor_data(sc)
   1112 	struct lm_softc *sc;
   1113 {
   1114 	itec_svolt(sc, &sc->sensors[0], &sc->info[0]);
   1115 	itec_stemp(sc, &sc->sensors[9]);
   1116 	itec_fanrpm(sc, &sc->sensors[12]);
   1117 }
   1118