nslm7x.c revision 1.26 1 /* $NetBSD: nslm7x.c,v 1.26 2006/06/07 22:33:36 kardel Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.26 2006/06/07 22:33:36 kardel Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/errno.h>
49 #include <sys/queue.h>
50 #include <sys/lock.h>
51 #include <sys/ioctl.h>
52 #include <sys/conf.h>
53 #include <sys/time.h>
54
55 #include <machine/bus.h>
56
57 #include <dev/isa/isareg.h>
58 #include <dev/isa/isavar.h>
59
60 #include <dev/sysmon/sysmonvar.h>
61
62 #include <dev/ic/nslm7xvar.h>
63
64 #include <machine/intr.h>
65 #include <machine/bus.h>
66
67 #if defined(LMDEBUG)
68 #define DPRINTF(x) printf x
69 #else
70 #define DPRINTF(x)
71 #endif
72
73 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 /* for each unit type */
75 { 7, 7, ENVSYS_STEMP },
76 { 8, 10, ENVSYS_SFANRPM },
77 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 { 0, 6, ENVSYS_SVOLTS_DC },
79 { 1, 0, ENVSYS_SOHMS }, /* None */
80 { 1, 0, ENVSYS_SWATTS }, /* None */
81 { 1, 0, ENVSYS_SAMPS } /* None */
82 };
83
84
85 static void setup_fan(struct lm_softc *, int, int);
86 static void setup_temp(struct lm_softc *, int, int);
87 static void wb_setup_volt(struct lm_softc *);
88
89 int lm_match(struct lm_softc *);
90 int wb_match(struct lm_softc *);
91 int def_match(struct lm_softc *);
92 void lm_common_match(struct lm_softc *);
93 static int lm_generic_banksel(struct lm_softc *, int);
94
95 static void generic_stemp(struct lm_softc *, struct envsys_tre_data *);
96 static void generic_svolt(struct lm_softc *, struct envsys_tre_data *,
97 struct envsys_basic_info *);
98 static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *);
99
100 void lm_refresh_sensor_data(struct lm_softc *);
101
102 static void wb_svolt(struct lm_softc *);
103 static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int);
104 static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *);
105 static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *);
106
107 void wb781_refresh_sensor_data(struct lm_softc *);
108 void wb782_refresh_sensor_data(struct lm_softc *);
109 void wb697_refresh_sensor_data(struct lm_softc *);
110
111 int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
112
113 int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
114 int, struct envsys_basic_info *);
115 int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
116 int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
117 int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
118
119 struct lm_chip {
120 int (*chip_match)(struct lm_softc *);
121 };
122
123 struct lm_chip lm_chips[] = {
124 { wb_match },
125 { lm_match },
126 { def_match } /* Must be last */
127 };
128
129
130 int
131 lm_generic_banksel(lmsc, bank)
132 struct lm_softc *lmsc;
133 int bank;
134 {
135
136 (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
137 return 0;
138 }
139
140
141 /*
142 * bus independent probe
143 */
144 int
145 lm_probe(iot, ioh)
146 bus_space_tag_t iot;
147 bus_space_handle_t ioh;
148 {
149 u_int8_t cr;
150 int rv;
151
152 /* Check for some power-on defaults */
153 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
154
155 /* Perform LM78 reset */
156 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
157
158 /* XXX - Why do I have to reselect the register? */
159 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
160 cr = bus_space_read_1(iot, ioh, LMC_DATA);
161
162 /* XXX - spec says *only* 0x08! */
163 if ((cr == 0x08) || (cr == 0x01) || (cr == 0x03))
164 rv = 1;
165 else
166 rv = 0;
167
168 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
169
170 return (rv);
171 }
172
173
174 /*
175 * pre: lmsc contains valid busspace tag and handle
176 */
177 void
178 lm_attach(lmsc)
179 struct lm_softc *lmsc;
180 {
181 u_int i;
182
183 /* Install default bank selection routine, if none given. */
184 if (lmsc->lm_banksel == NULL)
185 lmsc->lm_banksel = lm_generic_banksel;
186
187 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
188 if (lm_chips[i].chip_match(lmsc))
189 break;
190
191 /* Start the monitoring loop */
192 (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
193
194 /* Indicate we have never read the registers */
195 timerclear(&lmsc->lastread);
196
197 /* Initialize sensors */
198 for (i = 0; i < lmsc->numsensors; ++i) {
199 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
200 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
201 lmsc->info[i].validflags = ENVSYS_FVALID;
202 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
203 }
204 /*
205 * Hook into the System Monitor.
206 */
207 lmsc->sc_sysmon.sme_ranges = lm_ranges;
208 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
209 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
210 lmsc->sc_sysmon.sme_cookie = lmsc;
211
212 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
213 /* sme_streinfo set in chip-specific attach */
214
215 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
216 lmsc->sc_sysmon.sme_envsys_version = 1000;
217
218 if (sysmon_envsys_register(&lmsc->sc_sysmon))
219 printf("%s: unable to register with sysmon\n",
220 lmsc->sc_dev.dv_xname);
221 }
222
223 int
224 lm_match(sc)
225 struct lm_softc *sc;
226 {
227 int i;
228
229 /* See if we have an LM78 or LM79 */
230 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
231 switch(i) {
232 case LM_ID_LM78:
233 printf(": LM78\n");
234 break;
235 case LM_ID_LM78J:
236 printf(": LM78J\n");
237 break;
238 case LM_ID_LM79:
239 printf(": LM79\n");
240 break;
241 case LM_ID_LM81:
242 printf(": LM81\n");
243 break;
244 default:
245 return 0;
246 }
247 lm_common_match(sc);
248 return 1;
249 }
250
251 int
252 def_match(sc)
253 struct lm_softc *sc;
254 {
255 int i;
256
257 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
258 printf(": Unknown chip (ID %d)\n", i);
259 lm_common_match(sc);
260 return 1;
261 }
262
263 void
264 lm_common_match(sc)
265 struct lm_softc *sc;
266 {
267 int i;
268 sc->numsensors = LM_NUM_SENSORS;
269 sc->refresh_sensor_data = lm_refresh_sensor_data;
270
271 for (i = 0; i < 7; ++i) {
272 sc->sensors[i].units = sc->info[i].units =
273 ENVSYS_SVOLTS_DC;
274 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
275 "IN %d", i);
276 }
277
278 /* default correction factors for resistors on higher voltage inputs */
279 sc->info[0].rfact = sc->info[1].rfact =
280 sc->info[2].rfact = 10000;
281 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
282 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
283 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
284 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
285
286 sc->sensors[7].units = ENVSYS_STEMP;
287 strcpy(sc->info[7].desc, "Temp");
288
289 setup_fan(sc, 8, 3);
290 sc->sc_sysmon.sme_streinfo = lm_streinfo;
291 }
292
293 int
294 wb_match(sc)
295 struct lm_softc *sc;
296 {
297 int i, j;
298
299 (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
300 j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
301 (*sc->lm_writereg)(sc, WB_BANKSEL, 0);
302 j |= (*sc->lm_readreg)(sc, WB_VENDID);
303 DPRINTF(("winbond vend id 0x%x\n", j));
304 if (j != WB_VENDID_WINBOND)
305 return 0;
306 /* read device ID */
307 (*sc->lm_banksel)(sc, 0);
308 j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
309 DPRINTF(("winbond chip id 0x%x\n", j));
310 switch(j) {
311 case WB_CHIPID_83781:
312 case WB_CHIPID_83781_2:
313 printf(": W83781D\n");
314
315 for (i = 0; i < 7; ++i) {
316 sc->sensors[i].units = sc->info[i].units =
317 ENVSYS_SVOLTS_DC;
318 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
319 "IN %d", i);
320 }
321
322 /* default correction factors for higher voltage inputs */
323 sc->info[0].rfact = sc->info[1].rfact =
324 sc->info[2].rfact = 10000;
325 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
326 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
327 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
328 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
329
330 setup_temp(sc, 7, 3);
331 setup_fan(sc, 10, 3);
332
333 sc->numsensors = WB83781_NUM_SENSORS;
334 sc->refresh_sensor_data = wb781_refresh_sensor_data;
335 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
336 return 1;
337 case WB_CHIPID_83697:
338 printf(": W83697HF\n");
339 wb_setup_volt(sc);
340 setup_temp(sc, 9, 2);
341 setup_fan(sc, 11, 3);
342 sc->numsensors = WB83697_NUM_SENSORS;
343 sc->refresh_sensor_data = wb697_refresh_sensor_data;
344 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
345 return 1;
346 case WB_CHIPID_83782:
347 printf(": W83782D\n");
348 break;
349 case WB_CHIPID_83627:
350 printf(": W83627HF\n");
351 break;
352 case WB_CHIPID_83627THF:
353 printf(": W83627THF\n");
354 break;
355 default:
356 printf(": unknow winbond chip ID 0x%x\n", j);
357 /* handle as a standart lm7x */
358 lm_common_match(sc);
359 return 1;
360 }
361 /* common code for the W83782D and W83627HF */
362 wb_setup_volt(sc);
363 setup_temp(sc, 9, 3);
364 setup_fan(sc, 12, 3);
365 sc->numsensors = WB_NUM_SENSORS;
366 sc->refresh_sensor_data = wb782_refresh_sensor_data;
367 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
368 return 1;
369 }
370
371 static void
372 wb_setup_volt(sc)
373 struct lm_softc *sc;
374 {
375 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
376 snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
377 sc->info[0].rfact = 10000;
378 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
379 snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
380 sc->info[1].rfact = 10000;
381 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
382 snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
383 sc->info[2].rfact = 10000;
384 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
385 snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
386 sc->info[3].rfact = 16778;
387 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
388 snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
389 sc->info[4].rfact = 38000;
390 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
391 snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
392 sc->info[5].rfact = 10000;
393 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
394 snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
395 sc->info[6].rfact = 10000;
396 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
397 snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
398 sc->info[7].rfact = 15151;
399 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
400 snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
401 sc->info[8].rfact = 10000;
402 }
403
404 static void
405 setup_temp(sc, start, n)
406 struct lm_softc *sc;
407 int start, n;
408 {
409 int i;
410
411 for (i = 0; i < n; i++) {
412 sc->sensors[start + i].units = ENVSYS_STEMP;
413 snprintf(sc->info[start + i].desc,
414 sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
415 }
416 }
417
418
419 static void
420 setup_fan(sc, start, n)
421 struct lm_softc *sc;
422 int start, n;
423 {
424 int i;
425 for (i = 0; i < n; ++i) {
426 sc->sensors[start + i].units = ENVSYS_SFANRPM;
427 sc->info[start + i].units = ENVSYS_SFANRPM;
428 snprintf(sc->info[start + i].desc,
429 sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
430 }
431 }
432
433 int
434 lm_gtredata(sme, tred)
435 struct sysmon_envsys *sme;
436 struct envsys_tre_data *tred;
437 {
438 static const struct timeval onepointfive = { 1, 500000 };
439 struct timeval t, utv;
440 struct lm_softc *sc = sme->sme_cookie;
441
442 /* read new values at most once every 1.5 seconds */
443 getmicrouptime(&utv);
444 timeradd(&sc->lastread, &onepointfive, &t);
445 if (timercmp(&utv, &t, >)) {
446 sc->lastread = utv;
447 sc->refresh_sensor_data(sc);
448
449 *tred = sc->sensors[tred->sensor];
450
451 return 0;
452 }
453
454 int
455 generic_streinfo_fan(sc, info, n, binfo)
456 struct lm_softc *sc;
457 struct envsys_basic_info *info;
458 int n;
459 struct envsys_basic_info *binfo;
460 {
461 u_int8_t sdata;
462 int divisor;
463
464 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
465 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
466 && (n < 2)) {
467 if (binfo->rpms == 0) {
468 binfo->validflags = 0;
469 return 0;
470 }
471
472 /* write back the nominal FAN speed */
473 info->rpms = binfo->rpms;
474
475 /* 153 is the nominal FAN speed value */
476 divisor = 1350000 / (binfo->rpms * 153);
477
478 /* ...but we need lg(divisor) */
479 if (divisor <= 1)
480 divisor = 0;
481 else if (divisor <= 2)
482 divisor = 1;
483 else if (divisor <= 4)
484 divisor = 2;
485 else
486 divisor = 3;
487
488 /*
489 * FAN1 div is in bits <5:4>, FAN2 div is
490 * in <7:6>
491 */
492 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
493 if ( n == 0 ) { /* FAN1 */
494 divisor <<= 4;
495 sdata = (sdata & 0xCF) | divisor;
496 } else { /* FAN2 */
497 divisor <<= 6;
498 sdata = (sdata & 0x3F) | divisor;
499 }
500
501 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
502 }
503 return 0;
504
505 }
506
507 int
508 lm_streinfo(sme, binfo)
509 struct sysmon_envsys *sme;
510 struct envsys_basic_info *binfo;
511 {
512 struct lm_softc *sc = sme->sme_cookie;
513
514 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
515 sc->info[binfo->sensor].rfact = binfo->rfact;
516 else {
517 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
518 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
519 binfo->sensor - 8, binfo);
520 }
521 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
522 sizeof(sc->info[binfo->sensor].desc));
523 binfo->validflags = ENVSYS_FVALID;
524 }
525 return 0;
526 }
527
528 int
529 wb781_streinfo(sme, binfo)
530 struct sysmon_envsys *sme;
531 struct envsys_basic_info *binfo;
532 {
533 struct lm_softc *sc = sme->sme_cookie;
534 int divisor;
535 u_int8_t sdata;
536 int i;
537
538 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
539 sc->info[binfo->sensor].rfact = binfo->rfact;
540 else {
541 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
542 if (binfo->rpms == 0) {
543 binfo->validflags = 0;
544 return 0;
545 }
546
547 /* write back the nominal FAN speed */
548 sc->info[binfo->sensor].rpms = binfo->rpms;
549
550 /* 153 is the nominal FAN speed value */
551 divisor = 1350000 / (binfo->rpms * 153);
552
553 /* ...but we need lg(divisor) */
554 for (i = 0; i < 7; i++) {
555 if (divisor <= (1 << i))
556 break;
557 }
558 divisor = i;
559
560 if (binfo->sensor == 10 || binfo->sensor == 11) {
561 /*
562 * FAN1 div is in bits <5:4>, FAN2 div
563 * is in <7:6>
564 */
565 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
566 if ( binfo->sensor == 10 ) { /* FAN1 */
567 sdata = (sdata & 0xCF) |
568 ((divisor & 0x3) << 4);
569 } else { /* FAN2 */
570 sdata = (sdata & 0x3F) |
571 ((divisor & 0x3) << 6);
572 }
573 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
574 } else {
575 /* FAN3 is in WB_PIN <7:6> */
576 sdata = (*sc->lm_readreg)(sc, WB_PIN);
577 sdata = (sdata & 0x3F) |
578 ((divisor & 0x3) << 6);
579 (*sc->lm_writereg)(sc, WB_PIN, sdata);
580 }
581 }
582 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
583 sizeof(sc->info[binfo->sensor].desc));
584 binfo->validflags = ENVSYS_FVALID;
585 }
586 return 0;
587 }
588
589 int
590 wb782_streinfo(sme, binfo)
591 struct sysmon_envsys *sme;
592 struct envsys_basic_info *binfo;
593 {
594 struct lm_softc *sc = sme->sme_cookie;
595 int divisor;
596 u_int8_t sdata;
597 int i;
598
599 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
600 sc->info[binfo->sensor].rfact = binfo->rfact;
601 else {
602 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
603 if (binfo->rpms == 0) {
604 binfo->validflags = 0;
605 return 0;
606 }
607
608 /* write back the nominal FAN speed */
609 sc->info[binfo->sensor].rpms = binfo->rpms;
610
611 /* 153 is the nominal FAN speed value */
612 divisor = 1350000 / (binfo->rpms * 153);
613
614 /* ...but we need lg(divisor) */
615 for (i = 0; i < 7; i++) {
616 if (divisor <= (1 << i))
617 break;
618 }
619 divisor = i;
620
621 if (binfo->sensor == 12 || binfo->sensor == 13) {
622 /*
623 * FAN1 div is in bits <5:4>, FAN2 div
624 * is in <7:6>
625 */
626 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
627 if ( binfo->sensor == 12 ) { /* FAN1 */
628 sdata = (sdata & 0xCF) |
629 ((divisor & 0x3) << 4);
630 } else { /* FAN2 */
631 sdata = (sdata & 0x3F) |
632 ((divisor & 0x3) << 6);
633 }
634 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
635 } else {
636 /* FAN3 is in WB_PIN <7:6> */
637 sdata = (*sc->lm_readreg)(sc, WB_PIN);
638 sdata = (sdata & 0x3F) |
639 ((divisor & 0x3) << 6);
640 (*sc->lm_writereg)(sc, WB_PIN, sdata);
641 }
642 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
643 (*sc->lm_banksel)(sc, 0);
644 sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
645 sdata &= ~(0x20 << (binfo->sensor - 12));
646 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
647 (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
648 }
649
650 strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
651 sizeof(sc->info[binfo->sensor].desc));
652 binfo->validflags = ENVSYS_FVALID;
653 }
654 return 0;
655 }
656
657 static void
658 generic_stemp(sc, sensor)
659 struct lm_softc *sc;
660 struct envsys_tre_data *sensor;
661 {
662 int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
663 DPRINTF(("sdata[temp] 0x%x\n", sdata));
664 /* temp is given in deg. C, we convert to uK */
665 sensor->cur.data_us = sdata * 1000000 + 273150000;
666 }
667
668 static void
669 generic_svolt(sc, sensors, infos)
670 struct lm_softc *sc;
671 struct envsys_tre_data *sensors;
672 struct envsys_basic_info *infos;
673 {
674 int i, sdata;
675
676 for (i = 0; i < 7; i++) {
677 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
678 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
679 /* voltage returned as (mV >> 4), we convert to uVDC */
680 sensors[i].cur.data_s = (sdata << 4);
681 /* rfact is (factor * 10^4) */
682 sensors[i].cur.data_s *= infos[i].rfact;
683 /* division by 10 gets us back to uVDC */
684 sensors[i].cur.data_s /= 10;
685
686 /* these two are negative voltages */
687 if ( (i == 5) || (i == 6) )
688 sensors[i].cur.data_s *= -1;
689 }
690 }
691
692 static void
693 generic_fanrpm(sc, sensors)
694 struct lm_softc *sc;
695 struct envsys_tre_data *sensors;
696 {
697 int i, sdata, divisor;
698 for (i = 0; i < 3; i++) {
699 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
700 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
701 if (i == 2)
702 divisor = 2; /* Fixed divisor for FAN3 */
703 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
704 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
705 else
706 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
707
708 if (sdata == 0xff || sdata == 0x00) {
709 sensors[i].cur.data_us = 0;
710 } else {
711 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
712 }
713 }
714 }
715
716 /*
717 * pre: last read occurred >= 1.5 seconds ago
718 * post: sensors[] current data are the latest from the chip
719 */
720 void
721 lm_refresh_sensor_data(sc)
722 struct lm_softc *sc;
723 {
724 /* Refresh our stored data for every sensor */
725 generic_stemp(sc, &sc->sensors[7]);
726 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
727 generic_fanrpm(sc, &sc->sensors[8]);
728 }
729
730 static void
731 wb_svolt(sc)
732 struct lm_softc *sc;
733 {
734 int i, sdata;
735 for (i = 0; i < 9; ++i) {
736 if (i < 7) {
737 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
738 } else {
739 /* from bank5 */
740 (*sc->lm_banksel)(sc, 5);
741 sdata = (*sc->lm_readreg)(sc, (i == 7) ?
742 WB_BANK5_5VSB : WB_BANK5_VBAT);
743 }
744 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
745 /* voltage returned as (mV >> 4), we convert to uV */
746 sdata = sdata << 4;
747 /* special case for negative voltages */
748 if (i == 5) {
749 /*
750 * -12Vdc, assume Winbond recommended values for
751 * resistors
752 */
753 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
754 } else if (i == 6) {
755 /*
756 * -5Vdc, assume Winbond recommended values for
757 * resistors
758 */
759 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
760 }
761 /* rfact is (factor * 10^4) */
762 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
763 /* division by 10 gets us back to uVDC */
764 sc->sensors[i].cur.data_s /= 10;
765 }
766 }
767
768 static void
769 wb_stemp(sc, sensors, n)
770 struct lm_softc *sc;
771 struct envsys_tre_data *sensors;
772 int n;
773 {
774 int sdata;
775 /* temperatures. Given in dC, we convert to uK */
776 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
777 DPRINTF(("sdata[temp0] 0x%x\n", sdata));
778 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
779 /* from bank1 */
780 if ((*sc->lm_banksel)(sc, 1))
781 sensors[1].validflags &= ~ENVSYS_FCURVALID;
782 else {
783 sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
784 sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
785 DPRINTF(("sdata[temp1] 0x%x\n", sdata));
786 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
787 }
788 if (n < 3)
789 return;
790 /* from bank2 */
791 if ((*sc->lm_banksel)(sc, 2))
792 sensors[2].validflags &= ~ENVSYS_FCURVALID;
793 else {
794 sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
795 sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
796 DPRINTF(("sdata[temp2] 0x%x\n", sdata));
797 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
798 }
799 }
800
801 static void
802 wb781_fanrpm(sc, sensors)
803 struct lm_softc *sc;
804 struct envsys_tre_data *sensors;
805 {
806 int i, divisor, sdata;
807 (*sc->lm_banksel)(sc, 0);
808 for (i = 0; i < 3; i++) {
809 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
810 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
811 if (i == 0)
812 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
813 else if (i == 1)
814 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
815 else
816 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
817
818 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
819 if (sdata == 0xff || sdata == 0x00) {
820 sensors[i].cur.data_us = 0;
821 } else {
822 sensors[i].cur.data_us = 1350000 /
823 (sdata << divisor);
824 }
825 }
826 }
827
828 static void
829 wb_fanrpm(sc, sensors)
830 struct lm_softc *sc;
831 struct envsys_tre_data *sensors;
832 {
833 int i, divisor, sdata;
834 (*sc->lm_banksel)(sc, 0);
835 for (i = 0; i < 3; i++) {
836 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
837 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
838 if (i == 0)
839 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
840 else if (i == 1)
841 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
842 else
843 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
844 divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
845
846 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
847 if (sdata == 0xff || sdata == 0x00) {
848 sensors[i].cur.data_us = 0;
849 } else {
850 sensors[i].cur.data_us = 1350000 /
851 (sdata << divisor);
852 }
853 }
854 }
855
856 void
857 wb781_refresh_sensor_data(sc)
858 struct lm_softc *sc;
859 {
860 /* Refresh our stored data for every sensor */
861 /* we need to reselect bank0 to access common registers */
862 (*sc->lm_banksel)(sc, 0);
863 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
864 (*sc->lm_banksel)(sc, 0);
865 wb_stemp(sc, &sc->sensors[7], 3);
866 (*sc->lm_banksel)(sc, 0);
867 wb781_fanrpm(sc, &sc->sensors[10]);
868 }
869
870 void
871 wb782_refresh_sensor_data(sc)
872 struct lm_softc *sc;
873 {
874 /* Refresh our stored data for every sensor */
875 wb_svolt(sc);
876 wb_stemp(sc, &sc->sensors[9], 3);
877 wb_fanrpm(sc, &sc->sensors[12]);
878 }
879
880 void
881 wb697_refresh_sensor_data(sc)
882 struct lm_softc *sc;
883 {
884 /* Refresh our stored data for every sensor */
885 wb_svolt(sc);
886 wb_stemp(sc, &sc->sensors[9], 2);
887 wb_fanrpm(sc, &sc->sensors[11]);
888 }
889