nslm7x.c revision 1.3 1 /* $NetBSD: nslm7x.c,v 1.3 2000/03/09 04:20:58 groo Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/device.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/queue.h>
47 #include <sys/lock.h>
48 #include <sys/ioctl.h>
49 #include <sys/conf.h>
50 #include <sys/time.h>
51
52 #include <sys/envsys.h>
53
54 #include <machine/bus.h>
55
56 #include <dev/isa/isareg.h>
57 #include <dev/isa/isavar.h>
58
59 #include <dev/ic/nslm7xvar.h>
60
61 #include <machine/intr.h>
62 #include <machine/bus.h>
63
64 #if defined(LMDEBUG)
65 #define DPRINTF(x) do { printf x; } while (0)
66 #else
67 #define DPRINTF(x)
68 #endif
69
70 struct envsys_range ranges[] = { /* sc->sensors sub-intervals */
71 /* for each unit type */
72 { 7, 7, ENVSYS_STEMP },
73 { 8, 10, ENVSYS_SFANRPM },
74 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
75 { 0, 6, ENVSYS_SVOLTS_DC },
76 { 1, 0, ENVSYS_SOHMS }, /* None */
77 { 1, 0, ENVSYS_SWATTS }, /* None */
78 { 1, 0, ENVSYS_SAMPS } /* None */
79 };
80
81
82 #define SCFLAG_OREAD 0x00000001
83 #define SCFLAG_OWRITE 0x00000002
84 #define SCFLAG_OPEN (SCFLAG_OREAD|SCFLAG_OWRITE)
85
86 u_int8_t lm_readreg __P((struct lm_softc *, int));
87 void lm_writereg __P((struct lm_softc *, int, int));
88 void lm_refresh_sensor_data __P((struct lm_softc *));
89
90 cdev_decl(lm);
91
92 extern struct cfdriver lm_cd;
93
94 #define LMUNIT(x) (minor(x))
95
96 u_int8_t
97 lm_readreg(sc, reg)
98 struct lm_softc *sc;
99 int reg;
100 {
101 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
102 return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
103 }
104
105 void
106 lm_writereg(sc, reg, val)
107 struct lm_softc *sc;
108 int reg;
109 int val;
110 {
111 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
112 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
113 }
114
115
116 /*
117 * bus independent probe
118 */
119 int
120 lm_probe(iot, ioh)
121 bus_space_tag_t iot;
122 bus_space_handle_t ioh;
123 {
124 u_int8_t cr;
125 int rv;
126
127 /* Check for some power-on defaults */
128 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
129
130 /* Perform LM78 reset */
131 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
132
133 /* XXX - Why do I have to reselect the register? */
134 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
135 cr = bus_space_read_1(iot, ioh, LMC_DATA);
136
137 /* XXX - spec says *only* 0x08! */
138 if ((cr == 0x08) || (cr == 0x01))
139 rv = 1;
140 else
141 rv = 0;
142
143 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
144
145 return (rv);
146 }
147
148
149 /*
150 * pre: lmsc contains valid busspace tag and handle
151 */
152 void
153 lm_attach(lmsc)
154 struct lm_softc *lmsc;
155 {
156 int i;
157
158 /* See if we have an LM78 or LM79 */
159 i = lm_readreg(lmsc, LMD_CHIPID) & LM_ID_MASK;
160 printf(": LM7");
161 if (i == LM_ID_LM78)
162 printf("8\n");
163 else if (i == LM_ID_LM78J)
164 printf("8J\n");
165 else if (i == LM_ID_LM79)
166 printf("9\n");
167 else
168 printf("? - Unknown chip ID (%x)\n", i);
169
170 /* Start the monitoring loop */
171 lm_writereg(lmsc, LMD_CONFIG, 0x01);
172
173 /* Indicate we have never read the registers */
174 timerclear(&lmsc->lastread);
175
176 /* Initialize sensors */
177 for (i = 0; i < LM_NUM_SENSORS; ++i) {
178 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
179 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
180 lmsc->info[i].validflags = ENVSYS_FVALID;
181 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
182 }
183
184 for (i = 0; i < 7; ++i) {
185 lmsc->sensors[i].units = lmsc->info[i].units =
186 ENVSYS_SVOLTS_DC;
187
188 lmsc->info[i].desc[0] = 'I';
189 lmsc->info[i].desc[1] = 'N';
190 lmsc->info[i].desc[2] = i + '0';
191 lmsc->info[i].desc[3] = 0;
192 }
193
194 /* default correction factors for resistors on higher voltage inputs */
195 lmsc->info[0].rfact = lmsc->info[1].rfact =
196 lmsc->info[2].rfact = 10000;
197 lmsc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
198 lmsc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
199 lmsc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
200 lmsc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
201
202 lmsc->sensors[7].units = ENVSYS_STEMP;
203 strcpy(lmsc->info[7].desc, "Temp");
204
205 for (i = 8; i < 11; ++i) {
206 lmsc->sensors[i].units = lmsc->info[i].units = ENVSYS_SFANRPM;
207
208 lmsc->info[i].desc[0] = 'F';
209 lmsc->info[i].desc[1] = 'a';
210 lmsc->info[i].desc[2] = 'n';
211 lmsc->info[i].desc[3] = ' ';
212 lmsc->info[i].desc[4] = i - 7 + '0';
213 lmsc->info[i].desc[5] = 0;
214 }
215 }
216
217
218 int
219 lmopen(dev, flag, mode, p)
220 dev_t dev;
221 int flag, mode;
222 struct proc *p;
223 {
224 int unit = LMUNIT(dev);
225 struct lm_softc *sc;
226
227 if (unit >= lm_cd.cd_ndevs)
228 return (ENXIO);
229 sc = lm_cd.cd_devs[unit];
230 if (sc == 0)
231 return (ENXIO);
232
233 /* XXX - add spinlocks instead! */
234 if (sc->sc_flags & SCFLAG_OPEN)
235 return (EBUSY);
236
237 sc->sc_flags |= SCFLAG_OPEN;
238
239 return 0;
240 }
241
242
243 int
244 lmclose(dev, flag, mode, p)
245 dev_t dev;
246 int flag, mode;
247 struct proc *p;
248 {
249 struct lm_softc *sc = lm_cd.cd_devs[LMUNIT(dev)];
250
251 DPRINTF(("lmclose: pid %d flag %x mode %x\n", p->p_pid, flag, mode));
252
253 sc->sc_flags &= ~SCFLAG_OPEN;
254
255 return 0;
256 }
257
258
259 int
260 lmioctl(dev, cmd, data, flag, p)
261 dev_t dev;
262 u_long cmd;
263 caddr_t data;
264 int flag;
265 struct proc *p;
266 {
267 struct lm_softc *sc = lm_cd.cd_devs[LMUNIT(dev)];
268 struct envsys_range *rng;
269 struct envsys_tre_data *tred;
270 struct envsys_basic_info *binfo;
271 struct timeval t, onepointfive = { 1, 500000 };
272 u_int8_t sdata;
273 int32_t *vers;
274 int i, s;
275 int divisor;
276
277 switch (cmd) {
278 case ENVSYS_VERSION:
279 vers = (int32_t *)data;
280 *vers = 1000;
281
282 return (0);
283
284 case ENVSYS_GRANGE:
285 rng = (struct envsys_range *)data;
286 if ((rng->units < ENVSYS_STEMP) ||
287 (rng->units > ENVSYS_SAMPS) ) {
288 /* Return empty range for unsupp sensor types */
289 rng->low = 1;
290 rng->high = 0;
291 } else {
292 rng->low = ranges[rng->units].low;
293 rng->high = ranges[rng->units].high;
294 }
295
296 return (0);
297
298 case ENVSYS_GTREDATA:
299 tred = (struct envsys_tre_data *)data;
300 tred->validflags = 0;
301
302 if (tred->sensor < LM_NUM_SENSORS) {
303 /* read new values at most once every 1.5 seconds */
304 s = splclock();
305
306 timeradd(&sc->lastread, &onepointfive, &t);
307
308 i = timercmp(&mono_time, &t, >);
309 if (i) {
310 sc->lastread.tv_sec = mono_time.tv_sec;
311 sc->lastread.tv_usec = mono_time.tv_usec;
312 }
313 splx(s);
314
315 if (i) {
316 lm_refresh_sensor_data(sc);
317 }
318
319 bcopy(&sc->sensors[tred->sensor], tred,
320 sizeof(struct envsys_tre_data));
321 }
322
323 return (0);
324
325 case ENVSYS_GTREINFO:
326 binfo = (struct envsys_basic_info *)data;
327
328 if (binfo->sensor >= LM_NUM_SENSORS)
329 binfo->validflags = 0;
330 else
331 bcopy(&sc->info[binfo->sensor], binfo,
332 sizeof(struct envsys_basic_info));
333
334 return (0);
335
336 case ENVSYS_STREINFO:
337 binfo = (struct envsys_basic_info *)data;
338
339 if (binfo->sensor >= LM_NUM_SENSORS)
340 binfo->validflags = 0;
341 else if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
342 sc->info[binfo->sensor].rfact = binfo->rfact;
343 else {
344 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
345 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
346 && (binfo->sensor != 10)) {
347
348 if (binfo->rpms == 0) {
349 binfo->validflags = 0;
350 return (0);
351 }
352
353 /* 153 is the nominal FAN speed value */
354 divisor = 1350000 / (binfo->rpms * 153);
355
356 /* ...but we need lg(divisor) */
357 if (divisor <= 1)
358 divisor = 0;
359 else if (divisor <= 2)
360 divisor = 1;
361 else if (divisor <= 4)
362 divisor = 2;
363 else
364 divisor = 3;
365
366 /*
367 * FAN1 div is in bits <5:4>, FAN2 div is
368 * in <7:6>
369 */
370 sdata = lm_readreg(sc, LMD_VIDFAN);
371 if ( binfo->sensor == 8 ) { /* FAN1 */
372 divisor <<= 4;
373 sdata = (sdata & 0xCF) | divisor;
374 } else { /* FAN2 */
375 divisor <<= 6;
376 sdata = (sdata & 0x3F) | divisor;
377 }
378
379 lm_writereg(sc, LMD_VIDFAN, sdata);
380 }
381
382 bcopy(binfo->desc, sc->info[binfo->sensor].desc, 33);
383 sc->info[binfo->sensor].desc[32] = 0;
384
385 binfo->validflags = ENVSYS_FVALID;
386 }
387
388 return (0);
389
390 default:
391 return (ENOTTY);
392 }
393 }
394
395
396 /*
397 * pre: last read occured >= 1.5 seconds ago
398 * post: sensors[] current data are the latest from the chip
399 */
400 void
401 lm_refresh_sensor_data(sc)
402 struct lm_softc *sc;
403 {
404 u_int8_t sdata;
405 int i, divisor;
406
407 /* Refresh our stored data for every sensor */
408 for (i = 0; i < LM_NUM_SENSORS; ++i) {
409 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
410
411 switch (sc->sensors[i].units) {
412 case ENVSYS_STEMP:
413 /* temp is given in deg. C, we convert to uK */
414 sc->sensors[i].cur.data_us = sdata * 1000000 +
415 273150000;
416 break;
417
418 case ENVSYS_SVOLTS_DC:
419 /* voltage returned as (mV >> 4), we convert to uVDC */
420 sc->sensors[i].cur.data_s = (sdata << 4);
421 /* rfact is (factor * 10^4) */
422 sc->sensors[i].cur.data_s *= sc->info[i].rfact;
423 /* division by 10 gets us back to uVDC */
424 sc->sensors[i].cur.data_s /= 10;
425
426 /* these two are negative voltages */
427 if ( (i == 5) || (i == 6) )
428 sc->sensors[i].cur.data_s *= -1;
429
430 break;
431
432 case ENVSYS_SFANRPM:
433 if (i == 10)
434 divisor = 2; /* Fixed divisor for FAN3 */
435 else if (i == 9) /* Bits 7 & 6 of VID/FAN */
436 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) &
437 0x3;
438 else
439 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) &
440 0x3;
441
442 sc->sensors[i].cur.data_us = 1350000 /
443 (sdata << divisor);
444
445 break;
446
447 default:
448 /* XXX - debug log something? */
449 sc->sensors[i].validflags = 0;
450
451 break;
452 }
453 }
454 }
455