Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.6
      1 /*	$NetBSD: nslm7x.c,v 1.6 2000/07/30 17:22:26 bouyer Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Squier.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/kernel.h>
     42 #include <sys/proc.h>
     43 #include <sys/device.h>
     44 #include <sys/malloc.h>
     45 #include <sys/errno.h>
     46 #include <sys/queue.h>
     47 #include <sys/lock.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/conf.h>
     50 #include <sys/time.h>
     51 
     52 #include <machine/bus.h>
     53 
     54 #include <dev/isa/isareg.h>
     55 #include <dev/isa/isavar.h>
     56 
     57 #include <dev/sysmon/sysmonvar.h>
     58 
     59 #include <dev/ic/nslm7xvar.h>
     60 
     61 #include <machine/intr.h>
     62 #include <machine/bus.h>
     63 
     64 #if defined(LMDEBUG)
     65 #define DPRINTF(x)		do { printf x; } while (0)
     66 #else
     67 #define DPRINTF(x)
     68 #endif
     69 
     70 const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     71 					/* for each unit type */
     72 	{ 7, 7,    ENVSYS_STEMP   },
     73 	{ 8, 10,   ENVSYS_SFANRPM },
     74 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     75 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     76 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     77 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     78 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     79 };
     80 
     81 
     82 u_int8_t lm_readreg __P((struct lm_softc *, int));
     83 void lm_writereg __P((struct lm_softc *, int, int));
     84 
     85 int lm_match __P((struct lm_softc *));
     86 void lm_refresh_sensor_data __P((struct lm_softc *));
     87 
     88 int wb_match __P((struct lm_softc *));
     89 void wb_refresh_sensor_data __P((struct lm_softc *));
     90 
     91 int def_match __P((struct lm_softc *));
     92 void lm_common_match __P((struct lm_softc *));
     93 
     94 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
     95 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
     96 int wb_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
     97 
     98 struct lm_chip {
     99 	int (*chip_match) __P((struct lm_softc *));
    100 };
    101 
    102 struct lm_chip lm_chips[] = {
    103 	{ wb_match},
    104 	{ lm_match},
    105 	{ def_match} /* Must be last */
    106 };
    107 
    108 
    109 u_int8_t
    110 lm_readreg(sc, reg)
    111 	struct lm_softc *sc;
    112 	int reg;
    113 {
    114 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    115 	return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
    116 }
    117 
    118 void
    119 lm_writereg(sc, reg, val)
    120 	struct lm_softc *sc;
    121 	int reg;
    122 	int val;
    123 {
    124 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    125 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
    126 }
    127 
    128 
    129 /*
    130  * bus independent probe
    131  */
    132 int
    133 lm_probe(iot, ioh)
    134 	bus_space_tag_t iot;
    135 	bus_space_handle_t ioh;
    136 {
    137 	u_int8_t cr;
    138 	int rv;
    139 
    140 	/* Check for some power-on defaults */
    141 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    142 
    143 	/* Perform LM78 reset */
    144 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    145 
    146 	/* XXX - Why do I have to reselect the register? */
    147 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    148 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    149 
    150 	/* XXX - spec says *only* 0x08! */
    151 	if ((cr == 0x08) || (cr == 0x01))
    152 		rv = 1;
    153 	else
    154 		rv = 0;
    155 
    156 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    157 
    158 	return (rv);
    159 }
    160 
    161 
    162 /*
    163  * pre:  lmsc contains valid busspace tag and handle
    164  */
    165 void
    166 lm_attach(lmsc)
    167 	struct lm_softc *lmsc;
    168 {
    169 	int i;
    170 
    171 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    172 		if (lm_chips[i].chip_match(lmsc))
    173 			break;
    174 
    175 	/* Start the monitoring loop */
    176 	lm_writereg(lmsc, LMD_CONFIG, 0x01);
    177 
    178 	/* Indicate we have never read the registers */
    179 	timerclear(&lmsc->lastread);
    180 
    181 	/* Initialize sensors */
    182 	for (i = 0; i < lmsc->numsensors; ++i) {
    183 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    184 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    185 		lmsc->info[i].validflags = ENVSYS_FVALID;
    186 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    187 	}
    188 	/*
    189 	 * Hook into the System Monitor.
    190 	 */
    191 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    192 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    193 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    194 	lmsc->sc_sysmon.sme_cookie = lmsc;
    195 
    196 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    197 	/* sme_streinfo set in chip-specific attach */
    198 
    199 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    200 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    201 
    202 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    203 		printf("%s: unable to register with sysmon\n",
    204 		    lmsc->sc_dev.dv_xname);
    205 }
    206 
    207 int
    208 lm_match(sc)
    209 	struct lm_softc *sc;
    210 {
    211 	int i;
    212 
    213 	/* See if we have an LM78 or LM79 */
    214 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    215 	switch(i) {
    216 	case LM_ID_LM78:
    217 		printf(": LM78\n");
    218 		break;
    219 	case LM_ID_LM78J:
    220 		printf(": LM78J\n");
    221 		break;
    222 	case LM_ID_LM79:
    223 		printf(": LM79\n");
    224 		break;
    225 	default:
    226 		return 0;
    227 	}
    228 	lm_common_match(sc);
    229 	return 1;
    230 }
    231 
    232 int
    233 def_match(sc)
    234 	struct lm_softc *sc;
    235 {
    236 	int i;
    237 
    238 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    239 	printf(": Unknow chip (ID %d)\n", i);
    240 	lm_common_match(sc);
    241 	return 1;
    242 }
    243 
    244 void
    245 lm_common_match(sc)
    246 	struct lm_softc *sc;
    247 {
    248 	int i;
    249 	sc->numsensors = LM_NUM_SENSORS;
    250 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    251 
    252 	for (i = 0; i < 7; ++i) {
    253 		sc->sensors[i].units = sc->info[i].units =
    254 		    ENVSYS_SVOLTS_DC;
    255 		sprintf(sc->info[i].desc, "IN %d", i);
    256 	}
    257 
    258 	/* default correction factors for resistors on higher voltage inputs */
    259 	sc->info[0].rfact = sc->info[1].rfact =
    260 	    sc->info[2].rfact = 10000;
    261 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    262 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    263 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    264 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    265 
    266 	sc->sensors[7].units = ENVSYS_STEMP;
    267 	strcpy(sc->info[7].desc, "Temp");
    268 
    269 	for (i = 8; i < 11; ++i) {
    270 		sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
    271 		sprintf(sc->info[i].desc, "Fan %d", i - 7);
    272 	}
    273 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    274 }
    275 
    276 int
    277 wb_match(sc)
    278 	struct lm_softc *sc;
    279 {
    280 	int i, j;
    281 
    282 	/* See if we have a winbond */
    283 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    284 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    285 	j = lm_readreg(sc, WB_VENDID) << 8;
    286 	lm_writereg(sc, WB_BANKSEL, 0);
    287 	j |= lm_readreg(sc, WB_VENDID);
    288 	DPRINTF(("winbond vend id %d\n", j));
    289 	if (j != WB_VENDID_WINBOND)
    290 		return 0;
    291 	printf(": W83627HF (device ID %d)\n", i);
    292 	sc->numsensors = WB_NUM_SENSORS;
    293 	sc->refresh_sensor_data = wb_refresh_sensor_data;
    294 
    295 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    296 	sprintf(sc->info[0].desc, "VCORE A");
    297 	sc->info[0].rfact = 10000;
    298 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    299 	sprintf(sc->info[1].desc, "VCORE B");
    300 	sc->info[1].rfact = 10000;
    301 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    302 	sprintf(sc->info[2].desc, "+3.3V");
    303 	sc->info[2].rfact = 10000;
    304 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    305 	sprintf(sc->info[3].desc, "+5V");
    306 	sc->info[3].rfact = 16778;
    307 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    308 	sprintf(sc->info[4].desc, "+12V");
    309 	sc->info[4].rfact = 38000;
    310 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    311 	sprintf(sc->info[5].desc, "-12V");
    312 	sc->info[5].rfact = 10000;
    313 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    314 	sprintf(sc->info[6].desc, "-5V");
    315 	sc->info[6].rfact = 10000;
    316 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    317 	sprintf(sc->info[7].desc, "+5VSB");
    318 	sc->info[7].rfact = 15151;
    319 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    320 	sprintf(sc->info[8].desc, "VBAT");
    321 	sc->info[8].rfact = 10000;
    322 
    323 	sc->sensors[9].units = ENVSYS_STEMP;
    324 	strcpy(sc->info[9].desc, "Temp 1");
    325 	sc->sensors[10].units = ENVSYS_STEMP;
    326 	strcpy(sc->info[10].desc, "Temp 2");
    327 	sc->sensors[11].units = ENVSYS_STEMP;
    328 	strcpy(sc->info[11].desc, "Temp 3");
    329 
    330 	for (i = 12; i < 15; ++i) {
    331 		sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
    332 		sprintf(sc->info[i].desc, "Fan %d", i - 11);
    333 	}
    334 	sc->sc_sysmon.sme_streinfo = wb_streinfo;
    335 	return 1;
    336 }
    337 
    338 int
    339 lm_gtredata(sme, tred)
    340 	 struct sysmon_envsys *sme;
    341 	 struct envsys_tre_data *tred;
    342 {
    343 	 static const struct timeval onepointfive = { 1, 500000 };
    344 	 struct timeval t;
    345 	 struct lm_softc *sc = sme->sme_cookie;
    346 	 int i, s;
    347 
    348 	 /* read new values at most once every 1.5 seconds */
    349 	 timeradd(&sc->lastread, &onepointfive, &t);
    350 	 s = splclock();
    351 	 i = timercmp(&mono_time, &t, >);
    352 	 if (i) {
    353 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    354 		  sc->lastread.tv_usec = mono_time.tv_usec;
    355 	 }
    356 	 splx(s);
    357 
    358 	 if (i)
    359 		  sc->refresh_sensor_data(sc);
    360 
    361 	 *tred = sc->sensors[tred->sensor];
    362 
    363 	 return (0);
    364 }
    365 
    366 int
    367 lm_streinfo(sme, binfo)
    368 	 struct sysmon_envsys *sme;
    369 	 struct envsys_basic_info *binfo;
    370 {
    371 	 struct lm_softc *sc = sme->sme_cookie;
    372 	 int divisor;
    373 	 u_int8_t sdata;
    374 
    375 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    376 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    377 	 else {
    378 		  /* FAN1 and FAN2 can have divisors set, but not FAN3 */
    379 		  if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    380 		      && (binfo->sensor != 10)) {
    381 
    382 				if (binfo->rpms == 0) {
    383 					 binfo->validflags = 0;
    384 					 return (0);
    385 				}
    386 
    387 				/* 153 is the nominal FAN speed value */
    388 				divisor = 1350000 / (binfo->rpms * 153);
    389 
    390 				/* ...but we need lg(divisor) */
    391 				if (divisor <= 1)
    392 					 divisor = 0;
    393 				else if (divisor <= 2)
    394 					 divisor = 1;
    395 				else if (divisor <= 4)
    396 					 divisor = 2;
    397 				else
    398 					 divisor = 3;
    399 
    400 				/*
    401 				 * FAN1 div is in bits <5:4>, FAN2 div is
    402 				 * in <7:6>
    403 				 */
    404 				sdata = lm_readreg(sc, LMD_VIDFAN);
    405 				if ( binfo->sensor == 8 ) {  /* FAN1 */
    406 					 divisor <<= 4;
    407 					 sdata = (sdata & 0xCF) | divisor;
    408 				} else { /* FAN2 */
    409 					 divisor <<= 6;
    410 					 sdata = (sdata & 0x3F) | divisor;
    411 				}
    412 
    413 				lm_writereg(sc, LMD_VIDFAN, sdata);
    414 		  }
    415 
    416 		  memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    417 			sizeof(sc->info[binfo->sensor].desc));
    418 		  sc->info[binfo->sensor].desc[
    419 			sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    420 
    421 		  binfo->validflags = ENVSYS_FVALID;
    422 	 }
    423 	 return (0);
    424 }
    425 
    426 int
    427 wb_streinfo(sme, binfo)
    428 	 struct sysmon_envsys *sme;
    429 	 struct envsys_basic_info *binfo;
    430 {
    431 	 struct lm_softc *sc = sme->sme_cookie;
    432 	 int divisor;
    433 	 u_int8_t sdata;
    434 	 int i;
    435 
    436 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    437 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    438 	 else {
    439 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    440 
    441 			if (binfo->rpms == 0) {
    442 				binfo->validflags = 0;
    443 				return (0);
    444 			}
    445 
    446 			/* 153 is the nominal FAN speed value */
    447 			divisor = 1350000 / (binfo->rpms * 153);
    448 
    449 			/* ...but we need lg(divisor) */
    450 			for (i = 0; i < 7; i++) {
    451 				if (divisor <= (1 << i))
    452 				 	break;
    453 			}
    454 			divisor = i;
    455 
    456 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    457 				/*
    458 				 * FAN1 div is in bits <5:4>, FAN2 div
    459 				 * is in <7:6>
    460 				 */
    461 				sdata = lm_readreg(sc, LMD_VIDFAN);
    462 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    463 					 sdata = (sdata & 0xCF) |
    464 					     ((divisor & 0x3) << 4);
    465 				} else { /* FAN2 */
    466 					 sdata = (sdata & 0x3F) |
    467 					     ((divisor & 0x3) << 6);
    468 				}
    469 				lm_writereg(sc, LMD_VIDFAN, sdata);
    470 			} else {
    471 				/* FAN3 is in WB_PIN <7:6> */
    472 				sdata = lm_readreg(sc, WB_PIN);
    473 				sdata = (sdata & 0x3F) |
    474 				     ((divisor & 0x3) << 6);
    475 				lm_writereg(sc, LMD_VIDFAN, sdata);
    476 			}
    477 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    478 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    479 			sdata = lm_readreg(sc, WB_BANK0_FANBAT);
    480 			sdata &= ~(0x20 << (binfo->sensor - 12));
    481 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    482 			lm_writereg(sc, WB_BANK0_FANBAT, sdata);
    483 		}
    484 
    485 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    486 		    sizeof(sc->info[binfo->sensor].desc));
    487 		sc->info[binfo->sensor].desc[
    488 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    489 
    490 		binfo->validflags = ENVSYS_FVALID;
    491 	}
    492 	return (0);
    493 }
    494 
    495 /*
    496  * pre:  last read occured >= 1.5 seconds ago
    497  * post: sensors[] current data are the latest from the chip
    498  */
    499 void
    500 lm_refresh_sensor_data(sc)
    501 	struct lm_softc *sc;
    502 {
    503 	int sdata;
    504 	int i, divisor;
    505 
    506 	/* Refresh our stored data for every sensor */
    507 	for (i = 0; i < LM_NUM_SENSORS; ++i) {
    508 		sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    509 
    510 		switch (sc->sensors[i].units) {
    511 		case ENVSYS_STEMP:
    512 			/* temp is given in deg. C, we convert to uK */
    513 			sc->sensors[i].cur.data_us = sdata * 1000000 +
    514 			    273150000;
    515 			break;
    516 
    517 		case ENVSYS_SVOLTS_DC:
    518 			/* voltage returned as (mV >> 4), we convert to uVDC */
    519 			sc->sensors[i].cur.data_s = (sdata << 4);
    520 			/* rfact is (factor * 10^4) */
    521 			sc->sensors[i].cur.data_s *= sc->info[i].rfact;
    522 			/* division by 10 gets us back to uVDC */
    523 			sc->sensors[i].cur.data_s /= 10;
    524 
    525 			/* these two are negative voltages */
    526 			if ( (i == 5) || (i == 6) )
    527 				sc->sensors[i].cur.data_s *= -1;
    528 
    529 			break;
    530 
    531 		case ENVSYS_SFANRPM:
    532 			if (i == 10)
    533 				divisor = 2;	/* Fixed divisor for FAN3 */
    534 			else if (i == 9)	/* Bits 7 & 6 of VID/FAN  */
    535 				divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) &
    536 				    0x3;
    537 			else
    538 				divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) &
    539 				    0x3;
    540 
    541 			if (sdata == 0xff || sdata == 0x00) {
    542 				sc->sensors[i].cur.data_us = 0;
    543 			} else {
    544 				sc->sensors[i].cur.data_us = 1350000 /
    545 				    (sdata << divisor);
    546 			}
    547 			break;
    548 
    549 		default:
    550 			/* XXX - debug log something? */
    551 			sc->sensors[i].validflags = 0;
    552 
    553 			break;
    554 		}
    555 	}
    556 }
    557 
    558 void
    559 wb_refresh_sensor_data(sc)
    560 	struct lm_softc *sc;
    561 {
    562 	int sdata;
    563 	int i, divisor;
    564 
    565 	/* Refresh our stored data for every sensor */
    566 	/* first voltage sensors */
    567 	for (i = 0; i < 9; ++i) {
    568 		if (i < 7) {
    569 			sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    570 		} else {
    571 			/* from bank5 */
    572 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
    573 			sdata = lm_readreg(sc, (i == 7) ?
    574 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    575 		}
    576 		DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
    577 		/* voltage returned as (mV >> 4), we convert to uV */
    578 		sdata =  sdata << 4;
    579 		/* special case for negative voltages */
    580 		if (i == 5) {
    581 			/*
    582 			 * -12Vdc, assume Winbond recommended values for
    583 			 * resistors
    584 			 */
    585 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    586 		} else if (i == 6) {
    587 			/*
    588 			 * -5Vdc, assume Winbond recommended values for
    589 			 * resistors
    590 			 */
    591 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    592 		}
    593 		/* rfact is (factor * 10^4) */
    594 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    595 		/* division by 10 gets us back to uVDC */
    596 		sc->sensors[i].cur.data_s /= 10;
    597 	}
    598 	/* temperatures. Given in dC, we convert to uK */
    599 	sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    600 	DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
    601 	sc->sensors[9].cur.data_us = sdata * 1000000 + 273150000;
    602 	/* from bank1 */
    603 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
    604 	sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
    605 	sdata |=  (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
    606 	DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
    607 	sc->sensors[10].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    608 	/* from bank2 */
    609 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
    610 	sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
    611 	sdata |=  (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
    612 	DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
    613 	sc->sensors[11].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    614 
    615 	/* Fans */
    616 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    617 	for (i = 12; i < 15; i++) {
    618 		sdata = lm_readreg(sc, LMD_SENSORBASE + i - 4);
    619 		if (i == 12)
    620 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    621 		else if (i == 13)
    622 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    623 		else
    624 			divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
    625 		divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i - 9)) & 0x4;
    626 
    627 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    628 		if (sdata == 0xff || sdata == 0x00) {
    629 			sc->sensors[i].cur.data_us = 0;
    630 		} else {
    631 			sc->sensors[i].cur.data_us = 1350000 /
    632 			    (sdata << divisor);
    633 		}
    634 	}
    635 }
    636