nslm7x.c revision 1.7 1 /* $NetBSD: nslm7x.c,v 1.7 2000/07/30 22:23:53 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/device.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/queue.h>
47 #include <sys/lock.h>
48 #include <sys/ioctl.h>
49 #include <sys/conf.h>
50 #include <sys/time.h>
51
52 #include <machine/bus.h>
53
54 #include <dev/isa/isareg.h>
55 #include <dev/isa/isavar.h>
56
57 #include <dev/sysmon/sysmonvar.h>
58
59 #include <dev/ic/nslm7xvar.h>
60
61 #include <machine/intr.h>
62 #include <machine/bus.h>
63
64 #if defined(LMDEBUG)
65 #define DPRINTF(x) do { printf x; } while (0)
66 #else
67 #define DPRINTF(x)
68 #endif
69
70 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
71 /* for each unit type */
72 { 7, 7, ENVSYS_STEMP },
73 { 8, 10, ENVSYS_SFANRPM },
74 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
75 { 0, 6, ENVSYS_SVOLTS_DC },
76 { 1, 0, ENVSYS_SOHMS }, /* None */
77 { 1, 0, ENVSYS_SWATTS }, /* None */
78 { 1, 0, ENVSYS_SAMPS } /* None */
79 };
80
81
82 u_int8_t lm_readreg __P((struct lm_softc *, int));
83 void lm_writereg __P((struct lm_softc *, int, int));
84
85 int lm_match __P((struct lm_softc *));
86 int wb_match __P((struct lm_softc *));
87 int def_match __P((struct lm_softc *));
88 void lm_common_match __P((struct lm_softc *));
89
90 void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
91 void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
92 struct envsys_basic_info *));
93 void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
94 void lm_refresh_sensor_data __P((struct lm_softc *));
95 void wb_temp __P((struct lm_softc *, struct envsys_tre_data *));
96 void wb781_refresh_sensor_data __P((struct lm_softc *));
97 void wb782_refresh_sensor_data __P((struct lm_softc *));
98
99 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
100
101 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
102 int, struct envsys_basic_info *));
103 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
104 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
105 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
106
107 struct lm_chip {
108 int (*chip_match) __P((struct lm_softc *));
109 };
110
111 struct lm_chip lm_chips[] = {
112 { wb_match},
113 { lm_match},
114 { def_match} /* Must be last */
115 };
116
117
118 u_int8_t
119 lm_readreg(sc, reg)
120 struct lm_softc *sc;
121 int reg;
122 {
123 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
124 return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
125 }
126
127 void
128 lm_writereg(sc, reg, val)
129 struct lm_softc *sc;
130 int reg;
131 int val;
132 {
133 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
134 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
135 }
136
137
138 /*
139 * bus independent probe
140 */
141 int
142 lm_probe(iot, ioh)
143 bus_space_tag_t iot;
144 bus_space_handle_t ioh;
145 {
146 u_int8_t cr;
147 int rv;
148
149 /* Check for some power-on defaults */
150 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
151
152 /* Perform LM78 reset */
153 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
154
155 /* XXX - Why do I have to reselect the register? */
156 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
157 cr = bus_space_read_1(iot, ioh, LMC_DATA);
158
159 /* XXX - spec says *only* 0x08! */
160 if ((cr == 0x08) || (cr == 0x01))
161 rv = 1;
162 else
163 rv = 0;
164
165 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
166
167 return (rv);
168 }
169
170
171 /*
172 * pre: lmsc contains valid busspace tag and handle
173 */
174 void
175 lm_attach(lmsc)
176 struct lm_softc *lmsc;
177 {
178 int i;
179
180 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
181 if (lm_chips[i].chip_match(lmsc))
182 break;
183
184 /* Start the monitoring loop */
185 lm_writereg(lmsc, LMD_CONFIG, 0x01);
186
187 /* Indicate we have never read the registers */
188 timerclear(&lmsc->lastread);
189
190 /* Initialize sensors */
191 for (i = 0; i < lmsc->numsensors; ++i) {
192 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
193 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
194 lmsc->info[i].validflags = ENVSYS_FVALID;
195 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
196 }
197 /*
198 * Hook into the System Monitor.
199 */
200 lmsc->sc_sysmon.sme_ranges = lm_ranges;
201 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
202 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
203 lmsc->sc_sysmon.sme_cookie = lmsc;
204
205 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
206 /* sme_streinfo set in chip-specific attach */
207
208 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
209 lmsc->sc_sysmon.sme_envsys_version = 1000;
210
211 if (sysmon_envsys_register(&lmsc->sc_sysmon))
212 printf("%s: unable to register with sysmon\n",
213 lmsc->sc_dev.dv_xname);
214 }
215
216 int
217 lm_match(sc)
218 struct lm_softc *sc;
219 {
220 int i;
221
222 /* See if we have an LM78 or LM79 */
223 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
224 switch(i) {
225 case LM_ID_LM78:
226 printf(": LM78\n");
227 break;
228 case LM_ID_LM78J:
229 printf(": LM78J\n");
230 break;
231 case LM_ID_LM79:
232 printf(": LM79\n");
233 break;
234 default:
235 return 0;
236 }
237 lm_common_match(sc);
238 return 1;
239 }
240
241 int
242 def_match(sc)
243 struct lm_softc *sc;
244 {
245 int i;
246
247 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
248 printf(": Unknow chip (ID %d)\n", i);
249 lm_common_match(sc);
250 return 1;
251 }
252
253 void
254 lm_common_match(sc)
255 struct lm_softc *sc;
256 {
257 int i;
258 sc->numsensors = LM_NUM_SENSORS;
259 sc->refresh_sensor_data = lm_refresh_sensor_data;
260
261 for (i = 0; i < 7; ++i) {
262 sc->sensors[i].units = sc->info[i].units =
263 ENVSYS_SVOLTS_DC;
264 sprintf(sc->info[i].desc, "IN %d", i);
265 }
266
267 /* default correction factors for resistors on higher voltage inputs */
268 sc->info[0].rfact = sc->info[1].rfact =
269 sc->info[2].rfact = 10000;
270 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
271 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
272 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
273 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
274
275 sc->sensors[7].units = ENVSYS_STEMP;
276 strcpy(sc->info[7].desc, "Temp");
277
278 for (i = 8; i < 11; ++i) {
279 sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
280 sprintf(sc->info[i].desc, "Fan %d", i - 7);
281 }
282 sc->sc_sysmon.sme_streinfo = lm_streinfo;
283 }
284
285 int
286 wb_match(sc)
287 struct lm_softc *sc;
288 {
289 int i, j;
290
291 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
292 j = lm_readreg(sc, WB_VENDID) << 8;
293 lm_writereg(sc, WB_BANKSEL, 0);
294 j |= lm_readreg(sc, WB_VENDID);
295 DPRINTF(("winbond vend id %d\n", j));
296 if (j != WB_VENDID_WINBOND)
297 return 0;
298 /* read device ID */
299 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
300 j = lm_readreg(sc, WB_BANK0_CHIPID);
301 DPRINTF(("winbond chip id %d\n", j));
302 switch(j) {
303 case WB_CHIPID_83781:
304 printf(": W83781D\n");
305 sc->numsensors = WB83781_NUM_SENSORS;
306 sc->refresh_sensor_data = wb781_refresh_sensor_data;
307
308 for (i = 0; i < 7; ++i) {
309 sc->sensors[i].units = sc->info[i].units =
310 ENVSYS_SVOLTS_DC;
311 sprintf(sc->info[i].desc, "IN %d", i);
312 }
313
314 /* default correction factors for higher voltage inputs */
315 sc->info[0].rfact = sc->info[1].rfact =
316 sc->info[2].rfact = 10000;
317 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
318 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
319 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
320 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
321
322 for (i = 7; i < 10; ++i) {
323 sc->sensors[i].units = sc->info[i].units =
324 ENVSYS_STEMP;
325 sprintf(sc->info[i].desc, "Temp%d", i - 6);
326 }
327
328 for (i = 10; i < 13; ++i) {
329 sc->sensors[i].units = sc->info[i].units =
330 ENVSYS_SFANRPM;
331 sprintf(sc->info[i].desc, "Fan %d", i - 9);
332 }
333 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
334 return 1;
335 case WB_CHIPID_83782:
336 printf(": W83782D\n");
337 break;
338 case WB_CHIPID_83627:
339 printf(": W83627HF\n");
340 break;
341 default:
342 printf(": unknow winbond chip ID 0x%x\n", j);
343 /* handle as a standart lm7x */
344 lm_common_match(sc);
345 return 1;
346 }
347
348 sc->numsensors = WB_NUM_SENSORS;
349 sc->refresh_sensor_data = wb782_refresh_sensor_data;
350
351 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
352 sprintf(sc->info[0].desc, "VCORE A");
353 sc->info[0].rfact = 10000;
354 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
355 sprintf(sc->info[1].desc, "VCORE B");
356 sc->info[1].rfact = 10000;
357 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
358 sprintf(sc->info[2].desc, "+3.3V");
359 sc->info[2].rfact = 10000;
360 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
361 sprintf(sc->info[3].desc, "+5V");
362 sc->info[3].rfact = 16778;
363 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
364 sprintf(sc->info[4].desc, "+12V");
365 sc->info[4].rfact = 38000;
366 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
367 sprintf(sc->info[5].desc, "-12V");
368 sc->info[5].rfact = 10000;
369 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
370 sprintf(sc->info[6].desc, "-5V");
371 sc->info[6].rfact = 10000;
372 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
373 sprintf(sc->info[7].desc, "+5VSB");
374 sc->info[7].rfact = 15151;
375 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
376 sprintf(sc->info[8].desc, "VBAT");
377 sc->info[8].rfact = 10000;
378
379 sc->sensors[9].units = ENVSYS_STEMP;
380 strcpy(sc->info[9].desc, "Temp 1");
381 sc->sensors[10].units = ENVSYS_STEMP;
382 strcpy(sc->info[10].desc, "Temp 2");
383 sc->sensors[11].units = ENVSYS_STEMP;
384 strcpy(sc->info[11].desc, "Temp 3");
385
386 for (i = 12; i < 15; ++i) {
387 sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
388 sprintf(sc->info[i].desc, "Fan %d", i - 11);
389 }
390 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
391 return 1;
392 }
393
394 int
395 lm_gtredata(sme, tred)
396 struct sysmon_envsys *sme;
397 struct envsys_tre_data *tred;
398 {
399 static const struct timeval onepointfive = { 1, 500000 };
400 struct timeval t;
401 struct lm_softc *sc = sme->sme_cookie;
402 int i, s;
403
404 /* read new values at most once every 1.5 seconds */
405 timeradd(&sc->lastread, &onepointfive, &t);
406 s = splclock();
407 i = timercmp(&mono_time, &t, >);
408 if (i) {
409 sc->lastread.tv_sec = mono_time.tv_sec;
410 sc->lastread.tv_usec = mono_time.tv_usec;
411 }
412 splx(s);
413
414 if (i)
415 sc->refresh_sensor_data(sc);
416
417 *tred = sc->sensors[tred->sensor];
418
419 return (0);
420 }
421
422 int
423 generic_streinfo_fan(sc, info, n, binfo)
424 struct lm_softc *sc;
425 struct envsys_basic_info *info;
426 int n;
427 struct envsys_basic_info *binfo;
428 {
429 u_int8_t sdata;
430 int divisor;
431
432 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
433 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
434 && (binfo->sensor != 2)) {
435 if (binfo->rpms == 0) {
436 binfo->validflags = 0;
437 return (0);
438 }
439
440 /* 153 is the nominal FAN speed value */
441 divisor = 1350000 / (binfo->rpms * 153);
442
443 /* ...but we need lg(divisor) */
444 if (divisor <= 1)
445 divisor = 0;
446 else if (divisor <= 2)
447 divisor = 1;
448 else if (divisor <= 4)
449 divisor = 2;
450 else
451 divisor = 3;
452
453 /*
454 * FAN1 div is in bits <5:4>, FAN2 div is
455 * in <7:6>
456 */
457 sdata = lm_readreg(sc, LMD_VIDFAN);
458 if ( binfo->sensor == 0 ) { /* FAN1 */
459 divisor <<= 4;
460 sdata = (sdata & 0xCF) | divisor;
461 } else { /* FAN2 */
462 divisor <<= 6;
463 sdata = (sdata & 0x3F) | divisor;
464 }
465
466 lm_writereg(sc, LMD_VIDFAN, sdata);
467 }
468 return (0);
469
470 }
471
472 int
473 lm_streinfo(sme, binfo)
474 struct sysmon_envsys *sme;
475 struct envsys_basic_info *binfo;
476 {
477 struct lm_softc *sc = sme->sme_cookie;
478
479 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
480 sc->info[binfo->sensor].rfact = binfo->rfact;
481 else {
482 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
483 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
484 binfo->sensor - 8, binfo);
485 }
486 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
487 sizeof(sc->info[binfo->sensor].desc));
488 sc->info[binfo->sensor].desc[
489 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
490
491 binfo->validflags = ENVSYS_FVALID;
492 }
493 return (0);
494 }
495
496 int
497 wb781_streinfo(sme, binfo)
498 struct sysmon_envsys *sme;
499 struct envsys_basic_info *binfo;
500 {
501 struct lm_softc *sc = sme->sme_cookie;
502
503 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
504 sc->info[binfo->sensor].rfact = binfo->rfact;
505 else {
506 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
507 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
508 binfo->sensor - 10, binfo);
509 }
510 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
511 sizeof(sc->info[binfo->sensor].desc));
512 sc->info[binfo->sensor].desc[
513 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
514
515 binfo->validflags = ENVSYS_FVALID;
516 }
517 return (0);
518 }
519
520 int
521 wb782_streinfo(sme, binfo)
522 struct sysmon_envsys *sme;
523 struct envsys_basic_info *binfo;
524 {
525 struct lm_softc *sc = sme->sme_cookie;
526 int divisor;
527 u_int8_t sdata;
528 int i;
529
530 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
531 sc->info[binfo->sensor].rfact = binfo->rfact;
532 else {
533 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
534 if (binfo->rpms == 0) {
535 binfo->validflags = 0;
536 return (0);
537 }
538
539 /* 153 is the nominal FAN speed value */
540 divisor = 1350000 / (binfo->rpms * 153);
541
542 /* ...but we need lg(divisor) */
543 for (i = 0; i < 7; i++) {
544 if (divisor <= (1 << i))
545 break;
546 }
547 divisor = i;
548
549 if (binfo->sensor == 12 || binfo->sensor == 13) {
550 /*
551 * FAN1 div is in bits <5:4>, FAN2 div
552 * is in <7:6>
553 */
554 sdata = lm_readreg(sc, LMD_VIDFAN);
555 if ( binfo->sensor == 12 ) { /* FAN1 */
556 sdata = (sdata & 0xCF) |
557 ((divisor & 0x3) << 4);
558 } else { /* FAN2 */
559 sdata = (sdata & 0x3F) |
560 ((divisor & 0x3) << 6);
561 }
562 lm_writereg(sc, LMD_VIDFAN, sdata);
563 } else {
564 /* FAN3 is in WB_PIN <7:6> */
565 sdata = lm_readreg(sc, WB_PIN);
566 sdata = (sdata & 0x3F) |
567 ((divisor & 0x3) << 6);
568 lm_writereg(sc, LMD_VIDFAN, sdata);
569 }
570 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
571 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
572 sdata = lm_readreg(sc, WB_BANK0_FANBAT);
573 sdata &= ~(0x20 << (binfo->sensor - 12));
574 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
575 lm_writereg(sc, WB_BANK0_FANBAT, sdata);
576 }
577
578 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
579 sizeof(sc->info[binfo->sensor].desc));
580 sc->info[binfo->sensor].desc[
581 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
582
583 binfo->validflags = ENVSYS_FVALID;
584 }
585 return (0);
586 }
587
588 void
589 generic_stemp(sc, sensor)
590 struct lm_softc *sc;
591 struct envsys_tre_data *sensor;
592 {
593 int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
594 /* temp is given in deg. C, we convert to uK */
595 sensor->cur.data_us = sdata * 1000000 + 273150000;
596 }
597
598 void
599 generic_svolt(sc, sensors, infos)
600 struct lm_softc *sc;
601 struct envsys_tre_data *sensors;
602 struct envsys_basic_info *infos;
603 {
604 int i, sdata;
605
606 for (i = 0; i < 7; i++) {
607 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
608 /* voltage returned as (mV >> 4), we convert to uVDC */
609 sensors[i].cur.data_s = (sdata << 4);
610 /* rfact is (factor * 10^4) */
611 sensors[i].cur.data_s *= infos[i].rfact;
612 /* division by 10 gets us back to uVDC */
613 sensors[i].cur.data_s /= 10;
614
615 /* these two are negative voltages */
616 if ( (i == 5) || (i == 6) )
617 sensors[i].cur.data_s *= -1;
618 }
619 }
620
621 void
622 generic_fanrpm(sc, sensors)
623 struct lm_softc *sc;
624 struct envsys_tre_data *sensors;
625 {
626 int i, sdata, divisor;
627 for (i = 0; i < 3; i++) {
628 sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
629 if (i == 2)
630 divisor = 2; /* Fixed divisor for FAN3 */
631 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
632 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
633 else
634 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
635
636 if (sdata == 0xff || sdata == 0x00) {
637 sensors[i].cur.data_us = 0;
638 } else {
639 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
640 }
641 }
642 }
643
644 /*
645 * pre: last read occured >= 1.5 seconds ago
646 * post: sensors[] current data are the latest from the chip
647 */
648 void
649 lm_refresh_sensor_data(sc)
650 struct lm_softc *sc;
651 {
652 /* Refresh our stored data for every sensor */
653 generic_stemp(sc, &sc->sensors[7]);
654 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
655 generic_fanrpm(sc, &sc->sensors[8]);
656 }
657
658 void
659 wb_temp(sc, sensors)
660 struct lm_softc *sc;
661 struct envsys_tre_data *sensors;
662 {
663 int sdata;
664 /* temperatures. Given in dC, we convert to uK */
665 sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
666 DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
667 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
668 /* from bank1 */
669 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
670 sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
671 sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
672 DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
673 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
674 /* from bank2 */
675 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
676 sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
677 sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
678 DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
679 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
680 }
681
682 void
683 wb781_refresh_sensor_data(sc)
684 struct lm_softc *sc;
685 {
686 /* Refresh our stored data for every sensor */
687 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
688 wb_temp(sc, &sc->sensors[7]);
689 generic_fanrpm(sc, &sc->sensors[10]);
690 }
691
692 void
693 wb782_refresh_sensor_data(sc)
694 struct lm_softc *sc;
695 {
696 int sdata;
697 int i, divisor;
698
699 /* Refresh our stored data for every sensor */
700 /* first voltage sensors */
701 for (i = 0; i < 9; ++i) {
702 if (i < 7) {
703 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
704 } else {
705 /* from bank5 */
706 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
707 sdata = lm_readreg(sc, (i == 7) ?
708 WB_BANK5_5VSB : WB_BANK5_VBAT);
709 }
710 DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
711 /* voltage returned as (mV >> 4), we convert to uV */
712 sdata = sdata << 4;
713 /* special case for negative voltages */
714 if (i == 5) {
715 /*
716 * -12Vdc, assume Winbond recommended values for
717 * resistors
718 */
719 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
720 } else if (i == 6) {
721 /*
722 * -5Vdc, assume Winbond recommended values for
723 * resistors
724 */
725 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
726 }
727 /* rfact is (factor * 10^4) */
728 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
729 /* division by 10 gets us back to uVDC */
730 sc->sensors[i].cur.data_s /= 10;
731 }
732 wb_temp(sc, &sc->sensors[9]);
733
734 /* Fans */
735 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
736 for (i = 12; i < 15; i++) {
737 sdata = lm_readreg(sc, LMD_SENSORBASE + i - 4);
738 if (i == 12)
739 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
740 else if (i == 13)
741 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
742 else
743 divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
744 divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i - 9)) & 0x4;
745
746 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
747 if (sdata == 0xff || sdata == 0x00) {
748 sc->sensors[i].cur.data_us = 0;
749 } else {
750 sc->sensors[i].cur.data_us = 1350000 /
751 (sdata << divisor);
752 }
753 }
754 }
755