nslm7x.c revision 1.8 1 /* $NetBSD: nslm7x.c,v 1.8 2000/08/02 21:50:37 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/device.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/queue.h>
47 #include <sys/lock.h>
48 #include <sys/ioctl.h>
49 #include <sys/conf.h>
50 #include <sys/time.h>
51
52 #include <machine/bus.h>
53
54 #include <dev/isa/isareg.h>
55 #include <dev/isa/isavar.h>
56
57 #include <dev/sysmon/sysmonvar.h>
58
59 #include <dev/ic/nslm7xvar.h>
60
61 #include <machine/intr.h>
62 #include <machine/bus.h>
63
64 #if defined(LMDEBUG)
65 #define DPRINTF(x) do { printf x; } while (0)
66 #else
67 #define DPRINTF(x)
68 #endif
69
70 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
71 /* for each unit type */
72 { 7, 7, ENVSYS_STEMP },
73 { 8, 10, ENVSYS_SFANRPM },
74 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
75 { 0, 6, ENVSYS_SVOLTS_DC },
76 { 1, 0, ENVSYS_SOHMS }, /* None */
77 { 1, 0, ENVSYS_SWATTS }, /* None */
78 { 1, 0, ENVSYS_SAMPS } /* None */
79 };
80
81
82 u_int8_t lm_readreg __P((struct lm_softc *, int));
83 void lm_writereg __P((struct lm_softc *, int, int));
84
85 static void setup_fan __P((struct lm_softc *, int, int));
86 static void setup_temp __P((struct lm_softc *, int, int));
87 static void wb_setup_volt __P((struct lm_softc *));
88
89 int lm_match __P((struct lm_softc *));
90 int wb_match __P((struct lm_softc *));
91 int def_match __P((struct lm_softc *));
92 void lm_common_match __P((struct lm_softc *));
93
94 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
95 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
96 struct envsys_basic_info *));
97 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
98
99 void lm_refresh_sensor_data __P((struct lm_softc *));
100
101 static void wb_svolt __P((struct lm_softc *));
102 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
103 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
104
105 void wb781_refresh_sensor_data __P((struct lm_softc *));
106 void wb782_refresh_sensor_data __P((struct lm_softc *));
107 void wb697_refresh_sensor_data __P((struct lm_softc *));
108
109 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
110
111 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
112 int, struct envsys_basic_info *));
113 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
114 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
115 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
116
117 struct lm_chip {
118 int (*chip_match) __P((struct lm_softc *));
119 };
120
121 struct lm_chip lm_chips[] = {
122 { wb_match },
123 { lm_match },
124 { def_match } /* Must be last */
125 };
126
127
128 u_int8_t
129 lm_readreg(sc, reg)
130 struct lm_softc *sc;
131 int reg;
132 {
133 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
134 return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
135 }
136
137 void
138 lm_writereg(sc, reg, val)
139 struct lm_softc *sc;
140 int reg;
141 int val;
142 {
143 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
144 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
145 }
146
147
148 /*
149 * bus independent probe
150 */
151 int
152 lm_probe(iot, ioh)
153 bus_space_tag_t iot;
154 bus_space_handle_t ioh;
155 {
156 u_int8_t cr;
157 int rv;
158
159 /* Check for some power-on defaults */
160 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
161
162 /* Perform LM78 reset */
163 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
164
165 /* XXX - Why do I have to reselect the register? */
166 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
167 cr = bus_space_read_1(iot, ioh, LMC_DATA);
168
169 /* XXX - spec says *only* 0x08! */
170 if ((cr == 0x08) || (cr == 0x01))
171 rv = 1;
172 else
173 rv = 0;
174
175 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
176
177 return (rv);
178 }
179
180
181 /*
182 * pre: lmsc contains valid busspace tag and handle
183 */
184 void
185 lm_attach(lmsc)
186 struct lm_softc *lmsc;
187 {
188 int i;
189
190 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
191 if (lm_chips[i].chip_match(lmsc))
192 break;
193
194 /* Start the monitoring loop */
195 lm_writereg(lmsc, LMD_CONFIG, 0x01);
196
197 /* Indicate we have never read the registers */
198 timerclear(&lmsc->lastread);
199
200 /* Initialize sensors */
201 for (i = 0; i < lmsc->numsensors; ++i) {
202 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
203 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
204 lmsc->info[i].validflags = ENVSYS_FVALID;
205 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
206 }
207 /*
208 * Hook into the System Monitor.
209 */
210 lmsc->sc_sysmon.sme_ranges = lm_ranges;
211 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
212 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
213 lmsc->sc_sysmon.sme_cookie = lmsc;
214
215 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
216 /* sme_streinfo set in chip-specific attach */
217
218 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
219 lmsc->sc_sysmon.sme_envsys_version = 1000;
220
221 if (sysmon_envsys_register(&lmsc->sc_sysmon))
222 printf("%s: unable to register with sysmon\n",
223 lmsc->sc_dev.dv_xname);
224 }
225
226 int
227 lm_match(sc)
228 struct lm_softc *sc;
229 {
230 int i;
231
232 /* See if we have an LM78 or LM79 */
233 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
234 switch(i) {
235 case LM_ID_LM78:
236 printf(": LM78\n");
237 break;
238 case LM_ID_LM78J:
239 printf(": LM78J\n");
240 break;
241 case LM_ID_LM79:
242 printf(": LM79\n");
243 break;
244 default:
245 return 0;
246 }
247 lm_common_match(sc);
248 return 1;
249 }
250
251 int
252 def_match(sc)
253 struct lm_softc *sc;
254 {
255 int i;
256
257 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
258 printf(": Unknow chip (ID %d)\n", i);
259 lm_common_match(sc);
260 return 1;
261 }
262
263 void
264 lm_common_match(sc)
265 struct lm_softc *sc;
266 {
267 int i;
268 sc->numsensors = LM_NUM_SENSORS;
269 sc->refresh_sensor_data = lm_refresh_sensor_data;
270
271 for (i = 0; i < 7; ++i) {
272 sc->sensors[i].units = sc->info[i].units =
273 ENVSYS_SVOLTS_DC;
274 sprintf(sc->info[i].desc, "IN %d", i);
275 }
276
277 /* default correction factors for resistors on higher voltage inputs */
278 sc->info[0].rfact = sc->info[1].rfact =
279 sc->info[2].rfact = 10000;
280 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
281 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
282 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
283 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
284
285 sc->sensors[7].units = ENVSYS_STEMP;
286 strcpy(sc->info[7].desc, "Temp");
287
288 setup_fan(sc, 8, 3);
289 sc->sc_sysmon.sme_streinfo = lm_streinfo;
290 }
291
292 int
293 wb_match(sc)
294 struct lm_softc *sc;
295 {
296 int i, j;
297
298 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
299 j = lm_readreg(sc, WB_VENDID) << 8;
300 lm_writereg(sc, WB_BANKSEL, 0);
301 j |= lm_readreg(sc, WB_VENDID);
302 DPRINTF(("winbond vend id %d\n", j));
303 if (j != WB_VENDID_WINBOND)
304 return 0;
305 /* read device ID */
306 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
307 j = lm_readreg(sc, WB_BANK0_CHIPID);
308 DPRINTF(("winbond chip id %d\n", j));
309 switch(j) {
310 case WB_CHIPID_83781:
311 printf(": W83781D\n");
312 sc->numsensors = WB83781_NUM_SENSORS;
313 sc->refresh_sensor_data = wb781_refresh_sensor_data;
314
315 for (i = 0; i < 7; ++i) {
316 sc->sensors[i].units = sc->info[i].units =
317 ENVSYS_SVOLTS_DC;
318 sprintf(sc->info[i].desc, "IN %d", i);
319 }
320
321 /* default correction factors for higher voltage inputs */
322 sc->info[0].rfact = sc->info[1].rfact =
323 sc->info[2].rfact = 10000;
324 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
325 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
326 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
327 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
328
329 for (i = 7; i < 10; ++i) {
330 sc->sensors[i].units = sc->info[i].units =
331 ENVSYS_STEMP;
332 sprintf(sc->info[i].desc, "Temp%d", i - 6);
333 }
334
335 for (i = 10; i < 13; ++i) {
336 sc->sensors[i].units = sc->info[i].units =
337 ENVSYS_SFANRPM;
338 sprintf(sc->info[i].desc, "Fan %d", i - 9);
339 }
340 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
341 return 1;
342 case WB_CHIPID_83697:
343 printf(": W83697HF\n");
344 wb_setup_volt(sc);
345 setup_temp(sc, 9, 2);
346 setup_fan(sc, 11, 3);
347 sc->numsensors = WB83697_NUM_SENSORS;
348 sc->refresh_sensor_data = wb697_refresh_sensor_data;
349 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
350 return 1;
351 break;
352 case WB_CHIPID_83782:
353 printf(": W83782D\n");
354 break;
355 case WB_CHIPID_83627:
356 printf(": W83627HF\n");
357 break;
358 default:
359 printf(": unknow winbond chip ID 0x%x\n", j);
360 /* handle as a standart lm7x */
361 lm_common_match(sc);
362 return 1;
363 }
364 /* common code for the W83782D and W83627HF */
365 wb_setup_volt(sc);
366 setup_temp(sc, 9, 3);
367 setup_fan(sc, 12, 3);
368 sc->numsensors = WB_NUM_SENSORS;
369 sc->refresh_sensor_data = wb782_refresh_sensor_data;
370 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
371 return 1;
372 }
373
374 static void
375 wb_setup_volt(sc)
376 struct lm_softc *sc;
377 {
378 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
379 sprintf(sc->info[0].desc, "VCORE A");
380 sc->info[0].rfact = 10000;
381 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
382 sprintf(sc->info[1].desc, "VCORE B");
383 sc->info[1].rfact = 10000;
384 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
385 sprintf(sc->info[2].desc, "+3.3V");
386 sc->info[2].rfact = 10000;
387 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
388 sprintf(sc->info[3].desc, "+5V");
389 sc->info[3].rfact = 16778;
390 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
391 sprintf(sc->info[4].desc, "+12V");
392 sc->info[4].rfact = 38000;
393 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
394 sprintf(sc->info[5].desc, "-12V");
395 sc->info[5].rfact = 10000;
396 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
397 sprintf(sc->info[6].desc, "-5V");
398 sc->info[6].rfact = 10000;
399 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
400 sprintf(sc->info[7].desc, "+5VSB");
401 sc->info[7].rfact = 15151;
402 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
403 sprintf(sc->info[8].desc, "VBAT");
404 sc->info[8].rfact = 10000;
405 }
406
407 static void
408 setup_temp(sc, start, n)
409 struct lm_softc *sc;
410 int start, n;
411 {
412 int i;
413
414 for (i = 0; i < n; i++) {
415 sc->sensors[start + i].units = ENVSYS_STEMP;
416 sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
417 }
418 }
419
420
421 static void
422 setup_fan(sc, start, n)
423 struct lm_softc *sc;
424 int start, n;
425 {
426 int i;
427 for (i = 0; i < n; ++i) {
428 sc->sensors[start + i].units = ENVSYS_SFANRPM;
429 sc->info[start + i].units = ENVSYS_SFANRPM;
430 sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
431 }
432 }
433
434 int
435 lm_gtredata(sme, tred)
436 struct sysmon_envsys *sme;
437 struct envsys_tre_data *tred;
438 {
439 static const struct timeval onepointfive = { 1, 500000 };
440 struct timeval t;
441 struct lm_softc *sc = sme->sme_cookie;
442 int i, s;
443
444 /* read new values at most once every 1.5 seconds */
445 timeradd(&sc->lastread, &onepointfive, &t);
446 s = splclock();
447 i = timercmp(&mono_time, &t, >);
448 if (i) {
449 sc->lastread.tv_sec = mono_time.tv_sec;
450 sc->lastread.tv_usec = mono_time.tv_usec;
451 }
452 splx(s);
453
454 if (i)
455 sc->refresh_sensor_data(sc);
456
457 *tred = sc->sensors[tred->sensor];
458
459 return (0);
460 }
461
462 int
463 generic_streinfo_fan(sc, info, n, binfo)
464 struct lm_softc *sc;
465 struct envsys_basic_info *info;
466 int n;
467 struct envsys_basic_info *binfo;
468 {
469 u_int8_t sdata;
470 int divisor;
471
472 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
473 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
474 && (binfo->sensor != 2)) {
475 if (binfo->rpms == 0) {
476 binfo->validflags = 0;
477 return (0);
478 }
479
480 /* 153 is the nominal FAN speed value */
481 divisor = 1350000 / (binfo->rpms * 153);
482
483 /* ...but we need lg(divisor) */
484 if (divisor <= 1)
485 divisor = 0;
486 else if (divisor <= 2)
487 divisor = 1;
488 else if (divisor <= 4)
489 divisor = 2;
490 else
491 divisor = 3;
492
493 /*
494 * FAN1 div is in bits <5:4>, FAN2 div is
495 * in <7:6>
496 */
497 sdata = lm_readreg(sc, LMD_VIDFAN);
498 if ( binfo->sensor == 0 ) { /* FAN1 */
499 divisor <<= 4;
500 sdata = (sdata & 0xCF) | divisor;
501 } else { /* FAN2 */
502 divisor <<= 6;
503 sdata = (sdata & 0x3F) | divisor;
504 }
505
506 lm_writereg(sc, LMD_VIDFAN, sdata);
507 }
508 return (0);
509
510 }
511
512 int
513 lm_streinfo(sme, binfo)
514 struct sysmon_envsys *sme;
515 struct envsys_basic_info *binfo;
516 {
517 struct lm_softc *sc = sme->sme_cookie;
518
519 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
520 sc->info[binfo->sensor].rfact = binfo->rfact;
521 else {
522 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
523 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
524 binfo->sensor - 8, binfo);
525 }
526 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
527 sizeof(sc->info[binfo->sensor].desc));
528 sc->info[binfo->sensor].desc[
529 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
530
531 binfo->validflags = ENVSYS_FVALID;
532 }
533 return (0);
534 }
535
536 int
537 wb781_streinfo(sme, binfo)
538 struct sysmon_envsys *sme;
539 struct envsys_basic_info *binfo;
540 {
541 struct lm_softc *sc = sme->sme_cookie;
542
543 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
544 sc->info[binfo->sensor].rfact = binfo->rfact;
545 else {
546 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
547 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
548 binfo->sensor - 10, binfo);
549 }
550 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
551 sizeof(sc->info[binfo->sensor].desc));
552 sc->info[binfo->sensor].desc[
553 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
554
555 binfo->validflags = ENVSYS_FVALID;
556 }
557 return (0);
558 }
559
560 int
561 wb782_streinfo(sme, binfo)
562 struct sysmon_envsys *sme;
563 struct envsys_basic_info *binfo;
564 {
565 struct lm_softc *sc = sme->sme_cookie;
566 int divisor;
567 u_int8_t sdata;
568 int i;
569
570 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
571 sc->info[binfo->sensor].rfact = binfo->rfact;
572 else {
573 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
574 if (binfo->rpms == 0) {
575 binfo->validflags = 0;
576 return (0);
577 }
578
579 /* 153 is the nominal FAN speed value */
580 divisor = 1350000 / (binfo->rpms * 153);
581
582 /* ...but we need lg(divisor) */
583 for (i = 0; i < 7; i++) {
584 if (divisor <= (1 << i))
585 break;
586 }
587 divisor = i;
588
589 if (binfo->sensor == 12 || binfo->sensor == 13) {
590 /*
591 * FAN1 div is in bits <5:4>, FAN2 div
592 * is in <7:6>
593 */
594 sdata = lm_readreg(sc, LMD_VIDFAN);
595 if ( binfo->sensor == 12 ) { /* FAN1 */
596 sdata = (sdata & 0xCF) |
597 ((divisor & 0x3) << 4);
598 } else { /* FAN2 */
599 sdata = (sdata & 0x3F) |
600 ((divisor & 0x3) << 6);
601 }
602 lm_writereg(sc, LMD_VIDFAN, sdata);
603 } else {
604 /* FAN3 is in WB_PIN <7:6> */
605 sdata = lm_readreg(sc, WB_PIN);
606 sdata = (sdata & 0x3F) |
607 ((divisor & 0x3) << 6);
608 lm_writereg(sc, LMD_VIDFAN, sdata);
609 }
610 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
611 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
612 sdata = lm_readreg(sc, WB_BANK0_FANBAT);
613 sdata &= ~(0x20 << (binfo->sensor - 12));
614 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
615 lm_writereg(sc, WB_BANK0_FANBAT, sdata);
616 }
617
618 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
619 sizeof(sc->info[binfo->sensor].desc));
620 sc->info[binfo->sensor].desc[
621 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
622
623 binfo->validflags = ENVSYS_FVALID;
624 }
625 return (0);
626 }
627
628 static void
629 generic_stemp(sc, sensor)
630 struct lm_softc *sc;
631 struct envsys_tre_data *sensor;
632 {
633 int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
634 /* temp is given in deg. C, we convert to uK */
635 sensor->cur.data_us = sdata * 1000000 + 273150000;
636 }
637
638 static void
639 generic_svolt(sc, sensors, infos)
640 struct lm_softc *sc;
641 struct envsys_tre_data *sensors;
642 struct envsys_basic_info *infos;
643 {
644 int i, sdata;
645
646 for (i = 0; i < 7; i++) {
647 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
648 /* voltage returned as (mV >> 4), we convert to uVDC */
649 sensors[i].cur.data_s = (sdata << 4);
650 /* rfact is (factor * 10^4) */
651 sensors[i].cur.data_s *= infos[i].rfact;
652 /* division by 10 gets us back to uVDC */
653 sensors[i].cur.data_s /= 10;
654
655 /* these two are negative voltages */
656 if ( (i == 5) || (i == 6) )
657 sensors[i].cur.data_s *= -1;
658 }
659 }
660
661 static void
662 generic_fanrpm(sc, sensors)
663 struct lm_softc *sc;
664 struct envsys_tre_data *sensors;
665 {
666 int i, sdata, divisor;
667 for (i = 0; i < 3; i++) {
668 sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
669 if (i == 2)
670 divisor = 2; /* Fixed divisor for FAN3 */
671 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
672 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
673 else
674 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
675
676 if (sdata == 0xff || sdata == 0x00) {
677 sensors[i].cur.data_us = 0;
678 } else {
679 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
680 }
681 }
682 }
683
684 /*
685 * pre: last read occured >= 1.5 seconds ago
686 * post: sensors[] current data are the latest from the chip
687 */
688 void
689 lm_refresh_sensor_data(sc)
690 struct lm_softc *sc;
691 {
692 /* Refresh our stored data for every sensor */
693 generic_stemp(sc, &sc->sensors[7]);
694 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
695 generic_fanrpm(sc, &sc->sensors[8]);
696 }
697
698 static void
699 wb_svolt(sc)
700 struct lm_softc *sc;
701 {
702 int i, sdata;
703 for (i = 0; i < 9; ++i) {
704 if (i < 7) {
705 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
706 } else {
707 /* from bank5 */
708 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
709 sdata = lm_readreg(sc, (i == 7) ?
710 WB_BANK5_5VSB : WB_BANK5_VBAT);
711 }
712 DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
713 /* voltage returned as (mV >> 4), we convert to uV */
714 sdata = sdata << 4;
715 /* special case for negative voltages */
716 if (i == 5) {
717 /*
718 * -12Vdc, assume Winbond recommended values for
719 * resistors
720 */
721 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
722 } else if (i == 6) {
723 /*
724 * -5Vdc, assume Winbond recommended values for
725 * resistors
726 */
727 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
728 }
729 /* rfact is (factor * 10^4) */
730 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
731 /* division by 10 gets us back to uVDC */
732 sc->sensors[i].cur.data_s /= 10;
733 }
734 }
735
736 static void
737 wb_stemp(sc, sensors, n)
738 struct lm_softc *sc;
739 struct envsys_tre_data *sensors;
740 int n;
741 {
742 int sdata;
743 /* temperatures. Given in dC, we convert to uK */
744 sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
745 DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
746 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
747 /* from bank1 */
748 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
749 sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
750 sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
751 DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
752 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
753 if (n < 3)
754 return;
755 /* from bank2 */
756 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
757 sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
758 sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
759 DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
760 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
761 }
762
763 static void
764 wb_fanrpm(sc, sensors)
765 struct lm_softc *sc;
766 struct envsys_tre_data *sensors;
767 {
768 int i, divisor, sdata;
769 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
770 for (i = 0; i < 3; i++) {
771 sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
772 if (i == 0)
773 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
774 else if (i == 1)
775 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
776 else
777 divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
778 divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
779
780 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
781 if (sdata == 0xff || sdata == 0x00) {
782 sensors[i].cur.data_us = 0;
783 } else {
784 sensors[i].cur.data_us = 1350000 /
785 (sdata << divisor);
786 }
787 }
788 }
789
790 void
791 wb781_refresh_sensor_data(sc)
792 struct lm_softc *sc;
793 {
794 /* Refresh our stored data for every sensor */
795 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
796 wb_stemp(sc, &sc->sensors[7], 3);
797 generic_fanrpm(sc, &sc->sensors[10]);
798 }
799
800 void
801 wb782_refresh_sensor_data(sc)
802 struct lm_softc *sc;
803 {
804 /* Refresh our stored data for every sensor */
805 wb_svolt(sc);
806 wb_stemp(sc, &sc->sensors[9], 3);
807 wb_fanrpm(sc, &sc->sensors[12]);
808 }
809
810 void
811 wb697_refresh_sensor_data(sc)
812 struct lm_softc *sc;
813 {
814 /* Refresh our stored data for every sensor */
815 wb_svolt(sc);
816 wb_stemp(sc, &sc->sensors[9], 2);
817 wb_fanrpm(sc, &sc->sensors[11]);
818 }
819