nslm7x.c revision 1.9 1 /* $NetBSD: nslm7x.c,v 1.9 2000/08/02 22:20:41 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Squier.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/device.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/queue.h>
47 #include <sys/lock.h>
48 #include <sys/ioctl.h>
49 #include <sys/conf.h>
50 #include <sys/time.h>
51
52 #include <machine/bus.h>
53
54 #include <dev/isa/isareg.h>
55 #include <dev/isa/isavar.h>
56
57 #include <dev/sysmon/sysmonvar.h>
58
59 #include <dev/ic/nslm7xvar.h>
60
61 #include <machine/intr.h>
62 #include <machine/bus.h>
63
64 #if defined(LMDEBUG)
65 #define DPRINTF(x) do { printf x; } while (0)
66 #else
67 #define DPRINTF(x)
68 #endif
69
70 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
71 /* for each unit type */
72 { 7, 7, ENVSYS_STEMP },
73 { 8, 10, ENVSYS_SFANRPM },
74 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
75 { 0, 6, ENVSYS_SVOLTS_DC },
76 { 1, 0, ENVSYS_SOHMS }, /* None */
77 { 1, 0, ENVSYS_SWATTS }, /* None */
78 { 1, 0, ENVSYS_SAMPS } /* None */
79 };
80
81
82 u_int8_t lm_readreg __P((struct lm_softc *, int));
83 void lm_writereg __P((struct lm_softc *, int, int));
84
85 static void setup_fan __P((struct lm_softc *, int, int));
86 static void setup_temp __P((struct lm_softc *, int, int));
87 static void wb_setup_volt __P((struct lm_softc *));
88
89 int lm_match __P((struct lm_softc *));
90 int wb_match __P((struct lm_softc *));
91 int def_match __P((struct lm_softc *));
92 void lm_common_match __P((struct lm_softc *));
93
94 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
95 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
96 struct envsys_basic_info *));
97 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
98
99 void lm_refresh_sensor_data __P((struct lm_softc *));
100
101 static void wb_svolt __P((struct lm_softc *));
102 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
103 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
104
105 void wb781_refresh_sensor_data __P((struct lm_softc *));
106 void wb782_refresh_sensor_data __P((struct lm_softc *));
107 void wb697_refresh_sensor_data __P((struct lm_softc *));
108
109 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
110
111 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
112 int, struct envsys_basic_info *));
113 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
114 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
115 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
116
117 struct lm_chip {
118 int (*chip_match) __P((struct lm_softc *));
119 };
120
121 struct lm_chip lm_chips[] = {
122 { wb_match },
123 { lm_match },
124 { def_match } /* Must be last */
125 };
126
127
128 u_int8_t
129 lm_readreg(sc, reg)
130 struct lm_softc *sc;
131 int reg;
132 {
133 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
134 return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
135 }
136
137 void
138 lm_writereg(sc, reg, val)
139 struct lm_softc *sc;
140 int reg;
141 int val;
142 {
143 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
144 bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
145 }
146
147
148 /*
149 * bus independent probe
150 */
151 int
152 lm_probe(iot, ioh)
153 bus_space_tag_t iot;
154 bus_space_handle_t ioh;
155 {
156 u_int8_t cr;
157 int rv;
158
159 /* Check for some power-on defaults */
160 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
161
162 /* Perform LM78 reset */
163 bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
164
165 /* XXX - Why do I have to reselect the register? */
166 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
167 cr = bus_space_read_1(iot, ioh, LMC_DATA);
168
169 /* XXX - spec says *only* 0x08! */
170 if ((cr == 0x08) || (cr == 0x01))
171 rv = 1;
172 else
173 rv = 0;
174
175 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
176
177 return (rv);
178 }
179
180
181 /*
182 * pre: lmsc contains valid busspace tag and handle
183 */
184 void
185 lm_attach(lmsc)
186 struct lm_softc *lmsc;
187 {
188 int i;
189
190 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
191 if (lm_chips[i].chip_match(lmsc))
192 break;
193
194 /* Start the monitoring loop */
195 lm_writereg(lmsc, LMD_CONFIG, 0x01);
196
197 /* Indicate we have never read the registers */
198 timerclear(&lmsc->lastread);
199
200 /* Initialize sensors */
201 for (i = 0; i < lmsc->numsensors; ++i) {
202 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
203 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
204 lmsc->info[i].validflags = ENVSYS_FVALID;
205 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
206 }
207 /*
208 * Hook into the System Monitor.
209 */
210 lmsc->sc_sysmon.sme_ranges = lm_ranges;
211 lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
212 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
213 lmsc->sc_sysmon.sme_cookie = lmsc;
214
215 lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
216 /* sme_streinfo set in chip-specific attach */
217
218 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
219 lmsc->sc_sysmon.sme_envsys_version = 1000;
220
221 if (sysmon_envsys_register(&lmsc->sc_sysmon))
222 printf("%s: unable to register with sysmon\n",
223 lmsc->sc_dev.dv_xname);
224 }
225
226 int
227 lm_match(sc)
228 struct lm_softc *sc;
229 {
230 int i;
231
232 /* See if we have an LM78 or LM79 */
233 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
234 switch(i) {
235 case LM_ID_LM78:
236 printf(": LM78\n");
237 break;
238 case LM_ID_LM78J:
239 printf(": LM78J\n");
240 break;
241 case LM_ID_LM79:
242 printf(": LM79\n");
243 break;
244 default:
245 return 0;
246 }
247 lm_common_match(sc);
248 return 1;
249 }
250
251 int
252 def_match(sc)
253 struct lm_softc *sc;
254 {
255 int i;
256
257 i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
258 printf(": Unknow chip (ID %d)\n", i);
259 lm_common_match(sc);
260 return 1;
261 }
262
263 void
264 lm_common_match(sc)
265 struct lm_softc *sc;
266 {
267 int i;
268 sc->numsensors = LM_NUM_SENSORS;
269 sc->refresh_sensor_data = lm_refresh_sensor_data;
270
271 for (i = 0; i < 7; ++i) {
272 sc->sensors[i].units = sc->info[i].units =
273 ENVSYS_SVOLTS_DC;
274 sprintf(sc->info[i].desc, "IN %d", i);
275 }
276
277 /* default correction factors for resistors on higher voltage inputs */
278 sc->info[0].rfact = sc->info[1].rfact =
279 sc->info[2].rfact = 10000;
280 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
281 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
282 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
283 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
284
285 sc->sensors[7].units = ENVSYS_STEMP;
286 strcpy(sc->info[7].desc, "Temp");
287
288 setup_fan(sc, 8, 3);
289 sc->sc_sysmon.sme_streinfo = lm_streinfo;
290 }
291
292 int
293 wb_match(sc)
294 struct lm_softc *sc;
295 {
296 int i, j;
297
298 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
299 j = lm_readreg(sc, WB_VENDID) << 8;
300 lm_writereg(sc, WB_BANKSEL, 0);
301 j |= lm_readreg(sc, WB_VENDID);
302 DPRINTF(("winbond vend id %d\n", j));
303 if (j != WB_VENDID_WINBOND)
304 return 0;
305 /* read device ID */
306 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
307 j = lm_readreg(sc, WB_BANK0_CHIPID);
308 DPRINTF(("winbond chip id %d\n", j));
309 switch(j) {
310 case WB_CHIPID_83781:
311 printf(": W83781D\n");
312
313 for (i = 0; i < 7; ++i) {
314 sc->sensors[i].units = sc->info[i].units =
315 ENVSYS_SVOLTS_DC;
316 sprintf(sc->info[i].desc, "IN %d", i);
317 }
318
319 /* default correction factors for higher voltage inputs */
320 sc->info[0].rfact = sc->info[1].rfact =
321 sc->info[2].rfact = 10000;
322 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
323 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
324 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
325 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
326
327 setup_temp(sc, 7, 3);
328 setup_fan(sc, 10, 3);
329
330 sc->numsensors = WB83781_NUM_SENSORS;
331 sc->refresh_sensor_data = wb781_refresh_sensor_data;
332 sc->sc_sysmon.sme_streinfo = wb781_streinfo;
333 return 1;
334 case WB_CHIPID_83697:
335 printf(": W83697HF\n");
336 wb_setup_volt(sc);
337 setup_temp(sc, 9, 2);
338 setup_fan(sc, 11, 3);
339 sc->numsensors = WB83697_NUM_SENSORS;
340 sc->refresh_sensor_data = wb697_refresh_sensor_data;
341 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
342 return 1;
343 break;
344 case WB_CHIPID_83782:
345 printf(": W83782D\n");
346 break;
347 case WB_CHIPID_83627:
348 printf(": W83627HF\n");
349 break;
350 default:
351 printf(": unknow winbond chip ID 0x%x\n", j);
352 /* handle as a standart lm7x */
353 lm_common_match(sc);
354 return 1;
355 }
356 /* common code for the W83782D and W83627HF */
357 wb_setup_volt(sc);
358 setup_temp(sc, 9, 3);
359 setup_fan(sc, 12, 3);
360 sc->numsensors = WB_NUM_SENSORS;
361 sc->refresh_sensor_data = wb782_refresh_sensor_data;
362 sc->sc_sysmon.sme_streinfo = wb782_streinfo;
363 return 1;
364 }
365
366 static void
367 wb_setup_volt(sc)
368 struct lm_softc *sc;
369 {
370 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
371 sprintf(sc->info[0].desc, "VCORE A");
372 sc->info[0].rfact = 10000;
373 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
374 sprintf(sc->info[1].desc, "VCORE B");
375 sc->info[1].rfact = 10000;
376 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
377 sprintf(sc->info[2].desc, "+3.3V");
378 sc->info[2].rfact = 10000;
379 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
380 sprintf(sc->info[3].desc, "+5V");
381 sc->info[3].rfact = 16778;
382 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
383 sprintf(sc->info[4].desc, "+12V");
384 sc->info[4].rfact = 38000;
385 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
386 sprintf(sc->info[5].desc, "-12V");
387 sc->info[5].rfact = 10000;
388 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
389 sprintf(sc->info[6].desc, "-5V");
390 sc->info[6].rfact = 10000;
391 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
392 sprintf(sc->info[7].desc, "+5VSB");
393 sc->info[7].rfact = 15151;
394 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
395 sprintf(sc->info[8].desc, "VBAT");
396 sc->info[8].rfact = 10000;
397 }
398
399 static void
400 setup_temp(sc, start, n)
401 struct lm_softc *sc;
402 int start, n;
403 {
404 int i;
405
406 for (i = 0; i < n; i++) {
407 sc->sensors[start + i].units = ENVSYS_STEMP;
408 sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
409 }
410 }
411
412
413 static void
414 setup_fan(sc, start, n)
415 struct lm_softc *sc;
416 int start, n;
417 {
418 int i;
419 for (i = 0; i < n; ++i) {
420 sc->sensors[start + i].units = ENVSYS_SFANRPM;
421 sc->info[start + i].units = ENVSYS_SFANRPM;
422 sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
423 }
424 }
425
426 int
427 lm_gtredata(sme, tred)
428 struct sysmon_envsys *sme;
429 struct envsys_tre_data *tred;
430 {
431 static const struct timeval onepointfive = { 1, 500000 };
432 struct timeval t;
433 struct lm_softc *sc = sme->sme_cookie;
434 int i, s;
435
436 /* read new values at most once every 1.5 seconds */
437 timeradd(&sc->lastread, &onepointfive, &t);
438 s = splclock();
439 i = timercmp(&mono_time, &t, >);
440 if (i) {
441 sc->lastread.tv_sec = mono_time.tv_sec;
442 sc->lastread.tv_usec = mono_time.tv_usec;
443 }
444 splx(s);
445
446 if (i)
447 sc->refresh_sensor_data(sc);
448
449 *tred = sc->sensors[tred->sensor];
450
451 return (0);
452 }
453
454 int
455 generic_streinfo_fan(sc, info, n, binfo)
456 struct lm_softc *sc;
457 struct envsys_basic_info *info;
458 int n;
459 struct envsys_basic_info *binfo;
460 {
461 u_int8_t sdata;
462 int divisor;
463
464 /* FAN1 and FAN2 can have divisors set, but not FAN3 */
465 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
466 && (binfo->sensor != 2)) {
467 if (binfo->rpms == 0) {
468 binfo->validflags = 0;
469 return (0);
470 }
471
472 /* 153 is the nominal FAN speed value */
473 divisor = 1350000 / (binfo->rpms * 153);
474
475 /* ...but we need lg(divisor) */
476 if (divisor <= 1)
477 divisor = 0;
478 else if (divisor <= 2)
479 divisor = 1;
480 else if (divisor <= 4)
481 divisor = 2;
482 else
483 divisor = 3;
484
485 /*
486 * FAN1 div is in bits <5:4>, FAN2 div is
487 * in <7:6>
488 */
489 sdata = lm_readreg(sc, LMD_VIDFAN);
490 if ( binfo->sensor == 0 ) { /* FAN1 */
491 divisor <<= 4;
492 sdata = (sdata & 0xCF) | divisor;
493 } else { /* FAN2 */
494 divisor <<= 6;
495 sdata = (sdata & 0x3F) | divisor;
496 }
497
498 lm_writereg(sc, LMD_VIDFAN, sdata);
499 }
500 return (0);
501
502 }
503
504 int
505 lm_streinfo(sme, binfo)
506 struct sysmon_envsys *sme;
507 struct envsys_basic_info *binfo;
508 {
509 struct lm_softc *sc = sme->sme_cookie;
510
511 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
512 sc->info[binfo->sensor].rfact = binfo->rfact;
513 else {
514 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
515 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
516 binfo->sensor - 8, binfo);
517 }
518 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
519 sizeof(sc->info[binfo->sensor].desc));
520 sc->info[binfo->sensor].desc[
521 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
522
523 binfo->validflags = ENVSYS_FVALID;
524 }
525 return (0);
526 }
527
528 int
529 wb781_streinfo(sme, binfo)
530 struct sysmon_envsys *sme;
531 struct envsys_basic_info *binfo;
532 {
533 struct lm_softc *sc = sme->sme_cookie;
534
535 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
536 sc->info[binfo->sensor].rfact = binfo->rfact;
537 else {
538 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
539 generic_streinfo_fan(sc, &sc->info[binfo->sensor],
540 binfo->sensor - 10, binfo);
541 }
542 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
543 sizeof(sc->info[binfo->sensor].desc));
544 sc->info[binfo->sensor].desc[
545 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
546
547 binfo->validflags = ENVSYS_FVALID;
548 }
549 return (0);
550 }
551
552 int
553 wb782_streinfo(sme, binfo)
554 struct sysmon_envsys *sme;
555 struct envsys_basic_info *binfo;
556 {
557 struct lm_softc *sc = sme->sme_cookie;
558 int divisor;
559 u_int8_t sdata;
560 int i;
561
562 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
563 sc->info[binfo->sensor].rfact = binfo->rfact;
564 else {
565 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
566 if (binfo->rpms == 0) {
567 binfo->validflags = 0;
568 return (0);
569 }
570
571 /* 153 is the nominal FAN speed value */
572 divisor = 1350000 / (binfo->rpms * 153);
573
574 /* ...but we need lg(divisor) */
575 for (i = 0; i < 7; i++) {
576 if (divisor <= (1 << i))
577 break;
578 }
579 divisor = i;
580
581 if (binfo->sensor == 12 || binfo->sensor == 13) {
582 /*
583 * FAN1 div is in bits <5:4>, FAN2 div
584 * is in <7:6>
585 */
586 sdata = lm_readreg(sc, LMD_VIDFAN);
587 if ( binfo->sensor == 12 ) { /* FAN1 */
588 sdata = (sdata & 0xCF) |
589 ((divisor & 0x3) << 4);
590 } else { /* FAN2 */
591 sdata = (sdata & 0x3F) |
592 ((divisor & 0x3) << 6);
593 }
594 lm_writereg(sc, LMD_VIDFAN, sdata);
595 } else {
596 /* FAN3 is in WB_PIN <7:6> */
597 sdata = lm_readreg(sc, WB_PIN);
598 sdata = (sdata & 0x3F) |
599 ((divisor & 0x3) << 6);
600 lm_writereg(sc, LMD_VIDFAN, sdata);
601 }
602 /* Bit 2 of divisor is in WB_BANK0_FANBAT */
603 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
604 sdata = lm_readreg(sc, WB_BANK0_FANBAT);
605 sdata &= ~(0x20 << (binfo->sensor - 12));
606 sdata |= (divisor & 0x4) << (binfo->sensor - 9);
607 lm_writereg(sc, WB_BANK0_FANBAT, sdata);
608 }
609
610 memcpy(sc->info[binfo->sensor].desc, binfo->desc,
611 sizeof(sc->info[binfo->sensor].desc));
612 sc->info[binfo->sensor].desc[
613 sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
614
615 binfo->validflags = ENVSYS_FVALID;
616 }
617 return (0);
618 }
619
620 static void
621 generic_stemp(sc, sensor)
622 struct lm_softc *sc;
623 struct envsys_tre_data *sensor;
624 {
625 int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
626 /* temp is given in deg. C, we convert to uK */
627 sensor->cur.data_us = sdata * 1000000 + 273150000;
628 }
629
630 static void
631 generic_svolt(sc, sensors, infos)
632 struct lm_softc *sc;
633 struct envsys_tre_data *sensors;
634 struct envsys_basic_info *infos;
635 {
636 int i, sdata;
637
638 for (i = 0; i < 7; i++) {
639 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
640 /* voltage returned as (mV >> 4), we convert to uVDC */
641 sensors[i].cur.data_s = (sdata << 4);
642 /* rfact is (factor * 10^4) */
643 sensors[i].cur.data_s *= infos[i].rfact;
644 /* division by 10 gets us back to uVDC */
645 sensors[i].cur.data_s /= 10;
646
647 /* these two are negative voltages */
648 if ( (i == 5) || (i == 6) )
649 sensors[i].cur.data_s *= -1;
650 }
651 }
652
653 static void
654 generic_fanrpm(sc, sensors)
655 struct lm_softc *sc;
656 struct envsys_tre_data *sensors;
657 {
658 int i, sdata, divisor;
659 for (i = 0; i < 3; i++) {
660 sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
661 if (i == 2)
662 divisor = 2; /* Fixed divisor for FAN3 */
663 else if (i == 1) /* Bits 7 & 6 of VID/FAN */
664 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
665 else
666 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
667
668 if (sdata == 0xff || sdata == 0x00) {
669 sensors[i].cur.data_us = 0;
670 } else {
671 sensors[i].cur.data_us = 1350000 / (sdata << divisor);
672 }
673 }
674 }
675
676 /*
677 * pre: last read occured >= 1.5 seconds ago
678 * post: sensors[] current data are the latest from the chip
679 */
680 void
681 lm_refresh_sensor_data(sc)
682 struct lm_softc *sc;
683 {
684 /* Refresh our stored data for every sensor */
685 generic_stemp(sc, &sc->sensors[7]);
686 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
687 generic_fanrpm(sc, &sc->sensors[8]);
688 }
689
690 static void
691 wb_svolt(sc)
692 struct lm_softc *sc;
693 {
694 int i, sdata;
695 for (i = 0; i < 9; ++i) {
696 if (i < 7) {
697 sdata = lm_readreg(sc, LMD_SENSORBASE + i);
698 } else {
699 /* from bank5 */
700 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
701 sdata = lm_readreg(sc, (i == 7) ?
702 WB_BANK5_5VSB : WB_BANK5_VBAT);
703 }
704 DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
705 /* voltage returned as (mV >> 4), we convert to uV */
706 sdata = sdata << 4;
707 /* special case for negative voltages */
708 if (i == 5) {
709 /*
710 * -12Vdc, assume Winbond recommended values for
711 * resistors
712 */
713 sdata = ((sdata * 1000) - (3600 * 805)) / 195;
714 } else if (i == 6) {
715 /*
716 * -5Vdc, assume Winbond recommended values for
717 * resistors
718 */
719 sdata = ((sdata * 1000) - (3600 * 682)) / 318;
720 }
721 /* rfact is (factor * 10^4) */
722 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
723 /* division by 10 gets us back to uVDC */
724 sc->sensors[i].cur.data_s /= 10;
725 }
726 }
727
728 static void
729 wb_stemp(sc, sensors, n)
730 struct lm_softc *sc;
731 struct envsys_tre_data *sensors;
732 int n;
733 {
734 int sdata;
735 /* temperatures. Given in dC, we convert to uK */
736 sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
737 DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
738 sensors[0].cur.data_us = sdata * 1000000 + 273150000;
739 /* from bank1 */
740 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
741 sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
742 sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
743 DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
744 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
745 if (n < 3)
746 return;
747 /* from bank2 */
748 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
749 sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
750 sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
751 DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
752 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
753 }
754
755 static void
756 wb_fanrpm(sc, sensors)
757 struct lm_softc *sc;
758 struct envsys_tre_data *sensors;
759 {
760 int i, divisor, sdata;
761 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
762 for (i = 0; i < 3; i++) {
763 sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
764 if (i == 0)
765 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
766 else if (i == 1)
767 divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
768 else
769 divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
770 divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
771
772 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
773 if (sdata == 0xff || sdata == 0x00) {
774 sensors[i].cur.data_us = 0;
775 } else {
776 sensors[i].cur.data_us = 1350000 /
777 (sdata << divisor);
778 }
779 }
780 }
781
782 void
783 wb781_refresh_sensor_data(sc)
784 struct lm_softc *sc;
785 {
786 /* Refresh our stored data for every sensor */
787 /* we need to reselect bank0 to access common registers */
788 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
789 generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
790 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
791 wb_stemp(sc, &sc->sensors[7], 3);
792 lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
793 generic_fanrpm(sc, &sc->sensors[10]);
794 }
795
796 void
797 wb782_refresh_sensor_data(sc)
798 struct lm_softc *sc;
799 {
800 /* Refresh our stored data for every sensor */
801 wb_svolt(sc);
802 wb_stemp(sc, &sc->sensors[9], 3);
803 wb_fanrpm(sc, &sc->sensors[12]);
804 }
805
806 void
807 wb697_refresh_sensor_data(sc)
808 struct lm_softc *sc;
809 {
810 /* Refresh our stored data for every sensor */
811 wb_svolt(sc);
812 wb_stemp(sc, &sc->sensors[9], 2);
813 wb_fanrpm(sc, &sc->sensors[11]);
814 }
815