Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.13
      1 /*	$NetBSD: nvme.c,v 1.13 2016/09/20 21:18:08 jdolecek Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.13 2016/09/20 21:18:08 jdolecek Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 128;
     44 int nvme_ioq_size = 1024;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 static void	nvme_version(struct nvme_softc *, uint32_t);
     54 #ifdef NVME_DEBUG
     55 static void	nvme_dumpregs(struct nvme_softc *);
     56 #endif
     57 static int	nvme_identify(struct nvme_softc *, u_int);
     58 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     59 		    void *);
     60 
     61 static int	nvme_ccbs_alloc(struct nvme_queue *, u_int);
     62 static void	nvme_ccbs_free(struct nvme_queue *);
     63 
     64 static struct nvme_ccb *
     65 		nvme_ccb_get(struct nvme_queue *);
     66 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     67 
     68 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     69 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     70 		    struct nvme_ccb *, void *), int);
     71 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     72 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     73 		    struct nvme_cqe *);
     74 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 
     78 static struct nvme_queue *
     79 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     80 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     81 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     82 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     83 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     84 		    struct nvme_ccb *, void *));
     85 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     86 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     87 
     88 static int	nvme_dmamem_alloc(struct nvme_softc *, size_t,
     89 		    struct nvme_dmamem *);
     90 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     91 
     92 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     93 		    void *);
     94 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     95 		    struct nvme_cqe *);
     96 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     97 		    void *);
     98 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
     99 		    struct nvme_cqe *);
    100 
    101 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    102 		    void *);
    103 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    104 		    struct nvme_cqe *);
    105 static int	nvme_command_passthrough(struct nvme_softc *,
    106 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    107 
    108 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    109 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    110 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    111 #define NVME_TIMO_SY		60	/* sync cache timeout */
    112 
    113 #define nvme_read4(_s, _r) \
    114 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    115 #define nvme_write4(_s, _r, _v) \
    116 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    117 #ifdef __LP64__
    118 #define nvme_read8(_s, _r) \
    119 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
    120 #define nvme_write8(_s, _r, _v) \
    121 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    122 #else /* __LP64__ */
    123 static inline uint64_t
    124 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    125 {
    126 	uint64_t v;
    127 	uint32_t *a = (uint32_t *)&v;
    128 
    129 #if _BYTE_ORDER == _LITTLE_ENDIAN
    130 	a[0] = nvme_read4(sc, r);
    131 	a[1] = nvme_read4(sc, r + 4);
    132 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    133 	a[1] = nvme_read4(sc, r);
    134 	a[0] = nvme_read4(sc, r + 4);
    135 #endif
    136 
    137 	return v;
    138 }
    139 
    140 static inline void
    141 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    142 {
    143 	uint32_t *a = (uint32_t *)&v;
    144 
    145 #if _BYTE_ORDER == _LITTLE_ENDIAN
    146 	nvme_write4(sc, r, a[0]);
    147 	nvme_write4(sc, r + 4, a[1]);
    148 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    149 	nvme_write4(sc, r, a[1]);
    150 	nvme_write4(sc, r + 4, a[0]);
    151 #endif
    152 }
    153 #endif /* __LP64__ */
    154 
    155 #define nvme_barrier(_s, _r, _l, _f) \
    156 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    157 #define nvme_dmamem_sync(sc, mem, ops) \
    158 	bus_dmamap_sync((sc)->sc_dmat, NVME_DMA_MAP(mem), \
    159 	    0, NVME_DMA_LEN(mem), (ops));
    160 
    161 static void
    162 nvme_version(struct nvme_softc *sc, uint32_t ver)
    163 {
    164 	const char *v = NULL;
    165 
    166 	switch (ver) {
    167 	case NVME_VS_1_0:
    168 		v = "1.0";
    169 		break;
    170 	case NVME_VS_1_1:
    171 		v = "1.1";
    172 		break;
    173 	case NVME_VS_1_2:
    174 		v = "1.2";
    175 		break;
    176 	default:
    177 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
    178 		return;
    179 	}
    180 
    181 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
    182 }
    183 
    184 #ifdef NVME_DEBUG
    185 static __used void
    186 nvme_dumpregs(struct nvme_softc *sc)
    187 {
    188 	uint64_t r8;
    189 	uint32_t r4;
    190 
    191 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    192 	r8 = nvme_read8(sc, NVME_CAP);
    193 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    194 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    195 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    196 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    197 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    198 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    199 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    200 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    201 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    202 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    203 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    204 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    205 
    206 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    207 
    208 	r4 = nvme_read4(sc, NVME_CC);
    209 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    210 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    211 	    (1 << NVME_CC_IOCQES_R(r4)));
    212 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    213 	    (1 << NVME_CC_IOSQES_R(r4)));
    214 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    215 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    216 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    217 	    (1 << NVME_CC_MPS_R(r4)));
    218 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    219 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    220 
    221 	r4 = nvme_read4(sc, NVME_CSTS);
    222 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    223 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    224 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    225 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    226 
    227 	r4 = nvme_read4(sc, NVME_AQA);
    228 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    229 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    230 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    231 
    232 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    233 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    234 #undef	DEVNAME
    235 }
    236 #endif	/* NVME_DEBUG */
    237 
    238 static int
    239 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    240 {
    241 	u_int i = 0;
    242 	uint32_t cc;
    243 
    244 	cc = nvme_read4(sc, NVME_CC);
    245 	if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
    246 		aprint_error_dev(sc->sc_dev,
    247 		    "controller enabled status expected %d, found to be %d\n",
    248 		    (rdy != 0), ((cc & NVME_CC_EN) != 0));
    249 		return ENXIO;
    250 	}
    251 
    252 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    253 		if (i++ > sc->sc_rdy_to)
    254 			return ENXIO;
    255 
    256 		delay(1000);
    257 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    258 	}
    259 
    260 	return 0;
    261 }
    262 
    263 static int
    264 nvme_enable(struct nvme_softc *sc, u_int mps)
    265 {
    266 	uint32_t cc, csts;
    267 
    268 	cc = nvme_read4(sc, NVME_CC);
    269 	csts = nvme_read4(sc, NVME_CSTS);
    270 
    271 	if (ISSET(cc, NVME_CC_EN)) {
    272 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
    273 
    274 		if (ISSET(csts, NVME_CSTS_RDY))
    275 			return 1;
    276 
    277 		goto waitready;
    278 	}
    279 
    280 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    281 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    282 	delay(5000);
    283 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    284 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    285 	delay(5000);
    286 
    287 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    288 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    289 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    290 	delay(5000);
    291 
    292 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    293 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    294 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    295 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    296 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    297 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    298 	SET(cc, NVME_CC_MPS(mps));
    299 	SET(cc, NVME_CC_EN);
    300 
    301 	nvme_write4(sc, NVME_CC, cc);
    302 	nvme_barrier(sc, 0, sc->sc_ios,
    303 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    304 	delay(5000);
    305 
    306     waitready:
    307 	return nvme_ready(sc, NVME_CSTS_RDY);
    308 }
    309 
    310 static int
    311 nvme_disable(struct nvme_softc *sc)
    312 {
    313 	uint32_t cc, csts;
    314 
    315 	cc = nvme_read4(sc, NVME_CC);
    316 	csts = nvme_read4(sc, NVME_CSTS);
    317 
    318 	if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
    319 		nvme_ready(sc, NVME_CSTS_RDY);
    320 
    321 	CLR(cc, NVME_CC_EN);
    322 
    323 	nvme_write4(sc, NVME_CC, cc);
    324 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    325 
    326 	delay(5000);
    327 
    328 	return nvme_ready(sc, 0);
    329 }
    330 
    331 int
    332 nvme_attach(struct nvme_softc *sc)
    333 {
    334 	struct nvme_attach_args naa;
    335 	uint64_t cap;
    336 	uint32_t reg;
    337 	u_int dstrd;
    338 	u_int mps = PAGE_SHIFT;
    339 	int adminq_entries = nvme_adminq_size;
    340 	int ioq_entries = nvme_ioq_size;
    341 	int i;
    342 
    343 	reg = nvme_read4(sc, NVME_VS);
    344 	if (reg == 0xffffffff) {
    345 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    346 		return 1;
    347 	}
    348 
    349 	nvme_version(sc, reg);
    350 
    351 	cap = nvme_read8(sc, NVME_CAP);
    352 	dstrd = NVME_CAP_DSTRD(cap);
    353 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    354 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    355 		    "is greater than CPU page size %u\n",
    356 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    357 		return 1;
    358 	}
    359 	if (NVME_CAP_MPSMAX(cap) < mps)
    360 		mps = NVME_CAP_MPSMAX(cap);
    361 
    362 	/* set initial values to be used for admin queue during probe */
    363 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    364 	sc->sc_mps = 1 << mps;
    365 	sc->sc_mdts = MAXPHYS;
    366 	sc->sc_max_sgl = 2;
    367 
    368 	if (nvme_disable(sc) != 0) {
    369 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    370 		return 1;
    371 	}
    372 
    373 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    374 	if (sc->sc_admin_q == NULL) {
    375 		aprint_error_dev(sc->sc_dev,
    376 		    "unable to allocate admin queue\n");
    377 		return 1;
    378 	}
    379 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    380 		goto free_admin_q;
    381 
    382 	if (nvme_enable(sc, mps) != 0) {
    383 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    384 		goto disestablish_admin_q;
    385 	}
    386 
    387 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    388 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    389 		goto disable;
    390 	}
    391 
    392 	/* we know how big things are now */
    393 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    394 
    395 	/* reallocate ccbs of admin queue with new max sgl. */
    396 	nvme_ccbs_free(sc->sc_admin_q);
    397 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    398 
    399 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    400 	if (sc->sc_q == NULL) {
    401 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    402 		goto disable;
    403 	}
    404 	for (i = 0; i < sc->sc_nq; i++) {
    405 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    406 		if (sc->sc_q[i] == NULL) {
    407 			aprint_error_dev(sc->sc_dev,
    408 			    "unable to allocate io queue\n");
    409 			goto free_q;
    410 		}
    411 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    412 			aprint_error_dev(sc->sc_dev,
    413 			    "unable to create io queue\n");
    414 			nvme_q_free(sc, sc->sc_q[i]);
    415 			goto free_q;
    416 		}
    417 	}
    418 
    419 	if (!sc->sc_use_mq)
    420 		nvme_write4(sc, NVME_INTMC, 1);
    421 
    422 	/* probe subdevices */
    423 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    424 	    KM_SLEEP);
    425 	if (sc->sc_namespaces == NULL)
    426 		goto free_q;
    427 	for (i = 0; i < sc->sc_nn; i++) {
    428 		memset(&naa, 0, sizeof(naa));
    429 		naa.naa_nsid = i + 1;
    430 		naa.naa_qentries = ioq_entries;
    431 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    432 		    nvme_print);
    433 	}
    434 
    435 	return 0;
    436 
    437 free_q:
    438 	while (--i >= 0) {
    439 		nvme_q_delete(sc, sc->sc_q[i]);
    440 		nvme_q_free(sc, sc->sc_q[i]);
    441 	}
    442 disable:
    443 	nvme_disable(sc);
    444 disestablish_admin_q:
    445 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    446 free_admin_q:
    447 	nvme_q_free(sc, sc->sc_admin_q);
    448 
    449 	return 1;
    450 }
    451 
    452 static int
    453 nvme_print(void *aux, const char *pnp)
    454 {
    455 	struct nvme_attach_args *naa = aux;
    456 
    457 	if (pnp)
    458 		aprint_normal("at %s", pnp);
    459 
    460 	if (naa->naa_nsid > 0)
    461 		aprint_normal(" nsid %d", naa->naa_nsid);
    462 
    463 	return UNCONF;
    464 }
    465 
    466 int
    467 nvme_detach(struct nvme_softc *sc, int flags)
    468 {
    469 	int i, error;
    470 
    471 	error = config_detach_children(sc->sc_dev, flags);
    472 	if (error)
    473 		return error;
    474 
    475 	error = nvme_shutdown(sc);
    476 	if (error)
    477 		return error;
    478 
    479 	/* from now on we are committed to detach, following will never fail */
    480 	for (i = 0; i < sc->sc_nq; i++)
    481 		nvme_q_free(sc, sc->sc_q[i]);
    482 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    483 	nvme_q_free(sc, sc->sc_admin_q);
    484 
    485 	return 0;
    486 }
    487 
    488 static int
    489 nvme_shutdown(struct nvme_softc *sc)
    490 {
    491 	uint32_t cc, csts;
    492 	bool disabled = false;
    493 	int i;
    494 
    495 	if (!sc->sc_use_mq)
    496 		nvme_write4(sc, NVME_INTMS, 1);
    497 
    498 	for (i = 0; i < sc->sc_nq; i++) {
    499 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    500 			aprint_error_dev(sc->sc_dev,
    501 			    "unable to delete io queue %d, disabling\n", i + 1);
    502 			disabled = true;
    503 		}
    504 	}
    505 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    506 	if (disabled)
    507 		goto disable;
    508 
    509 	cc = nvme_read4(sc, NVME_CC);
    510 	CLR(cc, NVME_CC_SHN_MASK);
    511 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    512 	nvme_write4(sc, NVME_CC, cc);
    513 
    514 	for (i = 0; i < 4000; i++) {
    515 		nvme_barrier(sc, 0, sc->sc_ios,
    516 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    517 		csts = nvme_read4(sc, NVME_CSTS);
    518 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    519 			return 0;
    520 
    521 		delay(1000);
    522 	}
    523 
    524 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    525 
    526 disable:
    527 	nvme_disable(sc);
    528 	return 0;
    529 }
    530 
    531 void
    532 nvme_childdet(device_t self, device_t child)
    533 {
    534 	struct nvme_softc *sc = device_private(self);
    535 	int i;
    536 
    537 	for (i = 0; i < sc->sc_nn; i++) {
    538 		if (sc->sc_namespaces[i].dev == child) {
    539 			/* Already freed ns->ident. */
    540 			sc->sc_namespaces[i].dev = NULL;
    541 			break;
    542 		}
    543 	}
    544 }
    545 
    546 int
    547 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    548 {
    549 	struct nvme_sqe sqe;
    550 	struct nvm_identify_namespace *identify;
    551 	struct nvme_dmamem mem;
    552 	struct nvme_ccb *ccb;
    553 	struct nvme_namespace *ns;
    554 	int error;
    555 
    556 	KASSERT(nsid > 0);
    557 
    558 	ccb = nvme_ccb_get(sc->sc_admin_q);
    559 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    560 
    561 	error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
    562 	if (error)
    563 		return error;
    564 
    565 	memset(&sqe, 0, sizeof(sqe));
    566 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    567 	htolem32(&sqe.nsid, nsid);
    568 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    569 	htolem32(&sqe.cdw10, 0);
    570 
    571 	ccb->ccb_done = nvme_empty_done;
    572 	ccb->ccb_cookie = &sqe;
    573 
    574 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    575 	error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill,
    576 	    NVME_TIMO_IDENT);
    577 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    578 
    579 	nvme_ccb_put(sc->sc_admin_q, ccb);
    580 
    581 	if (error != 0) {
    582 		error = EIO;
    583 		goto done;
    584 	}
    585 
    586 	/* commit */
    587 
    588 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    589 	memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    590 
    591 	ns = nvme_ns_get(sc, nsid);
    592 	KASSERT(ns);
    593 	ns->ident = identify;
    594 
    595 done:
    596 	nvme_dmamem_free(sc, &mem);
    597 
    598 	return error;
    599 }
    600 
    601 int
    602 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    603     struct buf *bp, void *data, size_t datasize,
    604     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    605 {
    606 	struct nvme_queue *q = nvme_get_q(sc);
    607 	struct nvme_ccb *ccb;
    608 	bus_dmamap_t dmap;
    609 	int i, error;
    610 
    611 	ccb = nvme_ccb_get(q);
    612 	if (ccb == NULL)
    613 		return EAGAIN;
    614 
    615 	ccb->ccb_done = nvme_ns_io_done;
    616 	ccb->ccb_cookie = cookie;
    617 
    618 	/* namespace context */
    619 	ccb->nnc_nsid = nsid;
    620 	ccb->nnc_flags = flags;
    621 	ccb->nnc_buf = bp;
    622 	ccb->nnc_datasize = datasize;
    623 	ccb->nnc_secsize = secsize;
    624 	ccb->nnc_blkno = blkno;
    625 	ccb->nnc_done = nnc_done;
    626 
    627 	dmap = ccb->ccb_dmamap;
    628 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    629 	    datasize, NULL,
    630 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    631 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    632 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    633 	      BUS_DMA_READ : BUS_DMA_WRITE));
    634 	if (error) {
    635 		nvme_ccb_put(q, ccb);
    636 		return error;
    637 	}
    638 
    639 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    640 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    641 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    642 
    643 	if (dmap->dm_nsegs > 2) {
    644 		for (i = 1; i < dmap->dm_nsegs; i++) {
    645 			htolem64(&ccb->ccb_prpl[i - 1],
    646 			    dmap->dm_segs[i].ds_addr);
    647 		}
    648 		bus_dmamap_sync(sc->sc_dmat,
    649 		    NVME_DMA_MAP(q->q_ccb_prpls),
    650 		    ccb->ccb_prpl_off,
    651 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    652 		    BUS_DMASYNC_PREWRITE);
    653 	}
    654 
    655 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    656 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    657 			return EIO;
    658 		return 0;
    659 	}
    660 
    661 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    662 	return 0;
    663 }
    664 
    665 static void
    666 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    667 {
    668 	struct nvme_sqe_io *sqe = slot;
    669 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    670 
    671 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    672 	    NVM_CMD_READ : NVM_CMD_WRITE;
    673 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    674 
    675 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    676 	switch (dmap->dm_nsegs) {
    677 	case 1:
    678 		break;
    679 	case 2:
    680 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    681 		break;
    682 	default:
    683 		/* the prp list is already set up and synced */
    684 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    685 		break;
    686 	}
    687 
    688 	htolem64(&sqe->slba, ccb->nnc_blkno);
    689 
    690 	/* guaranteed by upper layers, but check just in case */
    691 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    692 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    693 }
    694 
    695 static void
    696 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    697     struct nvme_cqe *cqe)
    698 {
    699 	struct nvme_softc *sc = q->q_sc;
    700 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    701 	void *nnc_cookie = ccb->ccb_cookie;
    702 	nvme_nnc_done nnc_done = ccb->nnc_done;
    703 	struct buf *bp = ccb->nnc_buf;
    704 
    705 	if (dmap->dm_nsegs > 2) {
    706 		bus_dmamap_sync(sc->sc_dmat,
    707 		    NVME_DMA_MAP(q->q_ccb_prpls),
    708 		    ccb->ccb_prpl_off,
    709 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    710 		    BUS_DMASYNC_POSTWRITE);
    711 	}
    712 
    713 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    714 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    715 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    716 
    717 	bus_dmamap_unload(sc->sc_dmat, dmap);
    718 	nvme_ccb_put(q, ccb);
    719 
    720 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
    721 }
    722 
    723 int
    724 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    725     int flags, nvme_nnc_done nnc_done)
    726 {
    727 	struct nvme_queue *q = nvme_get_q(sc);
    728 	struct nvme_ccb *ccb;
    729 
    730 	ccb = nvme_ccb_get(q);
    731 	if (ccb == NULL)
    732 		return EAGAIN;
    733 
    734 	ccb->ccb_done = nvme_ns_sync_done;
    735 	ccb->ccb_cookie = cookie;
    736 
    737 	/* namespace context */
    738 	ccb->nnc_nsid = nsid;
    739 	ccb->nnc_flags = flags;
    740 	ccb->nnc_done = nnc_done;
    741 
    742 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    743 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    744 			return EIO;
    745 		return 0;
    746 	}
    747 
    748 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    749 	return 0;
    750 }
    751 
    752 static void
    753 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    754 {
    755 	struct nvme_sqe *sqe = slot;
    756 
    757 	sqe->opcode = NVM_CMD_FLUSH;
    758 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    759 }
    760 
    761 static void
    762 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    763     struct nvme_cqe *cqe)
    764 {
    765 	void *cookie = ccb->ccb_cookie;
    766 	nvme_nnc_done nnc_done = ccb->nnc_done;
    767 
    768 	nvme_ccb_put(q, ccb);
    769 
    770 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
    771 }
    772 
    773 void
    774 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    775 {
    776 	struct nvme_namespace *ns;
    777 	struct nvm_identify_namespace *identify;
    778 
    779 	ns = nvme_ns_get(sc, nsid);
    780 	KASSERT(ns);
    781 
    782 	identify = ns->ident;
    783 	ns->ident = NULL;
    784 	if (identify != NULL)
    785 		kmem_free(identify, sizeof(*identify));
    786 }
    787 
    788 static void
    789 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    790 {
    791 	struct nvme_softc *sc = q->q_sc;
    792 	struct nvme_sqe *sqe = slot;
    793 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    794 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    795 	int i;
    796 
    797 	sqe->opcode = pt->cmd.opcode;
    798 	htolem32(&sqe->nsid, pt->cmd.nsid);
    799 
    800 	if (pt->buf != NULL && pt->len > 0) {
    801 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    802 		switch (dmap->dm_nsegs) {
    803 		case 1:
    804 			break;
    805 		case 2:
    806 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    807 			break;
    808 		default:
    809 			for (i = 1; i < dmap->dm_nsegs; i++) {
    810 				htolem64(&ccb->ccb_prpl[i - 1],
    811 				    dmap->dm_segs[i].ds_addr);
    812 			}
    813 			bus_dmamap_sync(sc->sc_dmat,
    814 			    NVME_DMA_MAP(q->q_ccb_prpls),
    815 			    ccb->ccb_prpl_off,
    816 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    817 			    BUS_DMASYNC_PREWRITE);
    818 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    819 			break;
    820 		}
    821 	}
    822 
    823 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    824 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    825 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    826 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    827 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    828 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    829 }
    830 
    831 static void
    832 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    833 {
    834 	struct nvme_softc *sc = q->q_sc;
    835 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    836 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    837 
    838 	if (pt->buf != NULL && pt->len > 0) {
    839 		if (dmap->dm_nsegs > 2) {
    840 			bus_dmamap_sync(sc->sc_dmat,
    841 			    NVME_DMA_MAP(q->q_ccb_prpls),
    842 			    ccb->ccb_prpl_off,
    843 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    844 			    BUS_DMASYNC_POSTWRITE);
    845 		}
    846 
    847 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    848 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    849 		bus_dmamap_unload(sc->sc_dmat, dmap);
    850 	}
    851 
    852 	pt->cpl.cdw0 = cqe->cdw0;
    853 	pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
    854 }
    855 
    856 static int
    857 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    858     uint16_t nsid, struct lwp *l, bool is_adminq)
    859 {
    860 	struct nvme_queue *q;
    861 	struct nvme_ccb *ccb;
    862 	void *buf = NULL;
    863 	int error;
    864 
    865 	/* limit command size to maximum data transfer size */
    866 	if ((pt->buf == NULL && pt->len > 0) ||
    867 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
    868 		return EINVAL;
    869 
    870 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    871 	ccb = nvme_ccb_get(q);
    872 	if (ccb == NULL)
    873 		return EBUSY;
    874 
    875 	if (pt->buf != NULL) {
    876 		KASSERT(pt->len > 0);
    877 		buf = kmem_alloc(pt->len, KM_SLEEP);
    878 		if (buf == NULL) {
    879 			error = ENOMEM;
    880 			goto ccb_put;
    881 		}
    882 		if (!pt->is_read) {
    883 			error = copyin(pt->buf, buf, pt->len);
    884 			if (error)
    885 				goto kmem_free;
    886 		}
    887 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    888 		    pt->len, NULL,
    889 		    BUS_DMA_WAITOK |
    890 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    891 		if (error)
    892 			goto kmem_free;
    893 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    894 		    0, ccb->ccb_dmamap->dm_mapsize,
    895 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    896 	}
    897 
    898 	ccb->ccb_done = nvme_pt_done;
    899 	ccb->ccb_cookie = pt;
    900 
    901 	pt->cmd.nsid = nsid;
    902 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
    903 		error = EIO;
    904 		goto out;
    905 	}
    906 
    907 	error = 0;
    908 out:
    909 	if (buf != NULL) {
    910 		if (error == 0 && pt->is_read)
    911 			error = copyout(buf, pt->buf, pt->len);
    912 kmem_free:
    913 		kmem_free(buf, pt->len);
    914 	}
    915 ccb_put:
    916 	nvme_ccb_put(q, ccb);
    917 	return error;
    918 }
    919 
    920 static void
    921 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    922     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    923 {
    924 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    925 	uint32_t tail;
    926 
    927 	mutex_enter(&q->q_sq_mtx);
    928 	tail = q->q_sq_tail;
    929 	if (++q->q_sq_tail >= q->q_entries)
    930 		q->q_sq_tail = 0;
    931 
    932 	sqe += tail;
    933 
    934 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    935 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
    936 	memset(sqe, 0, sizeof(*sqe));
    937 	(*fill)(q, ccb, sqe);
    938 	sqe->cid = ccb->ccb_id;
    939 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    940 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
    941 
    942 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
    943 	mutex_exit(&q->q_sq_mtx);
    944 }
    945 
    946 struct nvme_poll_state {
    947 	struct nvme_sqe s;
    948 	struct nvme_cqe c;
    949 };
    950 
    951 static int
    952 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    953     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
    954 {
    955 	struct nvme_poll_state state;
    956 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
    957 	void *cookie;
    958 	uint16_t flags;
    959 	int step = 10;
    960 	int maxloop = timo_sec * 1000000 / step;
    961 	int error = 0;
    962 
    963 	memset(&state, 0, sizeof(state));
    964 	(*fill)(q, ccb, &state.s);
    965 
    966 	done = ccb->ccb_done;
    967 	cookie = ccb->ccb_cookie;
    968 
    969 	ccb->ccb_done = nvme_poll_done;
    970 	ccb->ccb_cookie = &state;
    971 
    972 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
    973 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
    974 		if (nvme_q_complete(sc, q) == 0)
    975 			delay(step);
    976 
    977 		if (timo_sec >= 0 && --maxloop <= 0) {
    978 			error = ETIMEDOUT;
    979 			break;
    980 		}
    981 	}
    982 
    983 	ccb->ccb_cookie = cookie;
    984 	done(q, ccb, &state.c);
    985 
    986 	if (error == 0) {
    987 		flags = lemtoh16(&state.c.flags);
    988 		return flags & ~NVME_CQE_PHASE;
    989 	} else {
    990 		return 1;
    991 	}
    992 }
    993 
    994 static void
    995 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    996 {
    997 	struct nvme_sqe *sqe = slot;
    998 	struct nvme_poll_state *state = ccb->ccb_cookie;
    999 
   1000 	*sqe = state->s;
   1001 }
   1002 
   1003 static void
   1004 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1005     struct nvme_cqe *cqe)
   1006 {
   1007 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1008 
   1009 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
   1010 	state->c = *cqe;
   1011 }
   1012 
   1013 static void
   1014 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1015 {
   1016 	struct nvme_sqe *src = ccb->ccb_cookie;
   1017 	struct nvme_sqe *dst = slot;
   1018 
   1019 	*dst = *src;
   1020 }
   1021 
   1022 static void
   1023 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1024     struct nvme_cqe *cqe)
   1025 {
   1026 }
   1027 
   1028 static int
   1029 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1030 {
   1031 	struct nvme_ccb *ccb;
   1032 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1033 	uint16_t flags;
   1034 	int rv = 0;
   1035 
   1036 	mutex_enter(&q->q_cq_mtx);
   1037 
   1038 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1039 	for (;;) {
   1040 		cqe = &ring[q->q_cq_head];
   1041 		flags = lemtoh16(&cqe->flags);
   1042 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1043 			break;
   1044 
   1045 		ccb = &q->q_ccbs[cqe->cid];
   1046 
   1047 		if (++q->q_cq_head >= q->q_entries) {
   1048 			q->q_cq_head = 0;
   1049 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1050 		}
   1051 
   1052 		rv = 1;
   1053 
   1054 		/*
   1055 		 * Unlock the mutex before calling the ccb_done callback
   1056 		 * and re-lock afterwards. The callback triggers lddone()
   1057 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1058 		 * Unlock/relock avoids possibility of deadlock.
   1059 		 */
   1060 		mutex_exit(&q->q_cq_mtx);
   1061 		ccb->ccb_done(q, ccb, cqe);
   1062 		mutex_enter(&q->q_cq_mtx);
   1063 	}
   1064 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1065 
   1066 	if (rv)
   1067 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1068 
   1069 	mutex_exit(&q->q_cq_mtx);
   1070 
   1071 	return rv;
   1072 }
   1073 
   1074 static int
   1075 nvme_identify(struct nvme_softc *sc, u_int mps)
   1076 {
   1077 	char sn[41], mn[81], fr[17];
   1078 	struct nvm_identify_controller *identify;
   1079 	struct nvme_dmamem mem;
   1080 	struct nvme_ccb *ccb;
   1081 	u_int mdts;
   1082 	int error;
   1083 
   1084 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1085 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1086 
   1087 	error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
   1088 	if (error)
   1089 		return error;
   1090 
   1091 	ccb->ccb_done = nvme_empty_done;
   1092 	ccb->ccb_cookie = &mem;
   1093 
   1094 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1095 	error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1096 	    NVME_TIMO_IDENT);
   1097 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1098 
   1099 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1100 
   1101 	if (error != 0)
   1102 		goto done;
   1103 
   1104 	identify = NVME_DMA_KVA(mem);
   1105 
   1106 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1107 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1108 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1109 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1110 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1111 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1112 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1113 	    sn);
   1114 
   1115 	if (identify->mdts > 0) {
   1116 		mdts = (1 << identify->mdts) * (1 << mps);
   1117 		if (mdts < sc->sc_mdts)
   1118 			sc->sc_mdts = mdts;
   1119 	}
   1120 
   1121 	sc->sc_nn = lemtoh32(&identify->nn);
   1122 
   1123 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1124 
   1125 done:
   1126 	nvme_dmamem_free(sc, &mem);
   1127 
   1128 	return error;
   1129 }
   1130 
   1131 static int
   1132 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1133 {
   1134 	struct nvme_sqe_q sqe;
   1135 	struct nvme_ccb *ccb;
   1136 	int rv;
   1137 
   1138 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1139 		return 1;
   1140 
   1141 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1142 	KASSERT(ccb != NULL);
   1143 
   1144 	ccb->ccb_done = nvme_empty_done;
   1145 	ccb->ccb_cookie = &sqe;
   1146 
   1147 	memset(&sqe, 0, sizeof(sqe));
   1148 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1149 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1150 	htolem16(&sqe.qsize, q->q_entries - 1);
   1151 	htolem16(&sqe.qid, q->q_id);
   1152 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1153 	if (sc->sc_use_mq)
   1154 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1155 
   1156 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1157 	if (rv != 0)
   1158 		goto fail;
   1159 
   1160 	ccb->ccb_done = nvme_empty_done;
   1161 	ccb->ccb_cookie = &sqe;
   1162 
   1163 	memset(&sqe, 0, sizeof(sqe));
   1164 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1165 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1166 	htolem16(&sqe.qsize, q->q_entries - 1);
   1167 	htolem16(&sqe.qid, q->q_id);
   1168 	htolem16(&sqe.cqid, q->q_id);
   1169 	sqe.qflags = NVM_SQE_Q_PC;
   1170 
   1171 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1172 	if (rv != 0)
   1173 		goto fail;
   1174 
   1175 fail:
   1176 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1177 	return rv;
   1178 }
   1179 
   1180 static int
   1181 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1182 {
   1183 	struct nvme_sqe_q sqe;
   1184 	struct nvme_ccb *ccb;
   1185 	int rv;
   1186 
   1187 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1188 	KASSERT(ccb != NULL);
   1189 
   1190 	ccb->ccb_done = nvme_empty_done;
   1191 	ccb->ccb_cookie = &sqe;
   1192 
   1193 	memset(&sqe, 0, sizeof(sqe));
   1194 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1195 	htolem16(&sqe.qid, q->q_id);
   1196 
   1197 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1198 	if (rv != 0)
   1199 		goto fail;
   1200 
   1201 	ccb->ccb_done = nvme_empty_done;
   1202 	ccb->ccb_cookie = &sqe;
   1203 
   1204 	memset(&sqe, 0, sizeof(sqe));
   1205 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1206 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1207 	htolem16(&sqe.qid, q->q_id);
   1208 
   1209 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1210 	if (rv != 0)
   1211 		goto fail;
   1212 
   1213 fail:
   1214 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1215 
   1216 	if (rv == 0 && sc->sc_use_mq) {
   1217 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1218 			rv = 1;
   1219 	}
   1220 
   1221 	return rv;
   1222 }
   1223 
   1224 static void
   1225 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1226 {
   1227 	struct nvme_sqe *sqe = slot;
   1228 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1229 
   1230 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1231 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(*mem));
   1232 	htolem32(&sqe->cdw10, 1);
   1233 }
   1234 
   1235 static int
   1236 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
   1237 {
   1238 	struct nvme_softc *sc = q->q_sc;
   1239 	struct nvme_ccb *ccb;
   1240 	bus_addr_t off;
   1241 	uint64_t *prpl;
   1242 	u_int i;
   1243 	int error;
   1244 
   1245 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1246 	SIMPLEQ_INIT(&q->q_ccb_list);
   1247 
   1248 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1249 	if (q->q_ccbs == NULL)
   1250 		return 1;
   1251 
   1252 	q->q_nccbs = nccbs;
   1253 	error = nvme_dmamem_alloc(sc, sizeof(*prpl) * sc->sc_max_sgl * nccbs,
   1254 	    &q->q_ccb_prpls);
   1255 	if (error) {
   1256 		kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1257 		return error;
   1258 	}
   1259 
   1260 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1261 	off = 0;
   1262 
   1263 	for (i = 0; i < nccbs; i++) {
   1264 		ccb = &q->q_ccbs[i];
   1265 
   1266 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1267 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1268 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1269 		    &ccb->ccb_dmamap) != 0)
   1270 			goto free_maps;
   1271 
   1272 		ccb->ccb_id = i;
   1273 		ccb->ccb_prpl = prpl;
   1274 		ccb->ccb_prpl_off = off;
   1275 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1276 
   1277 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1278 
   1279 		prpl += sc->sc_max_sgl;
   1280 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1281 	}
   1282 
   1283 	return 0;
   1284 
   1285 free_maps:
   1286 	nvme_ccbs_free(q);
   1287 	return 1;
   1288 }
   1289 
   1290 static struct nvme_ccb *
   1291 nvme_ccb_get(struct nvme_queue *q)
   1292 {
   1293 	struct nvme_ccb *ccb;
   1294 
   1295 	mutex_enter(&q->q_ccb_mtx);
   1296 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1297 	if (ccb != NULL)
   1298 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1299 	mutex_exit(&q->q_ccb_mtx);
   1300 
   1301 	return ccb;
   1302 }
   1303 
   1304 static void
   1305 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1306 {
   1307 
   1308 	mutex_enter(&q->q_ccb_mtx);
   1309 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1310 	mutex_exit(&q->q_ccb_mtx);
   1311 }
   1312 
   1313 static void
   1314 nvme_ccbs_free(struct nvme_queue *q)
   1315 {
   1316 	struct nvme_softc *sc = q->q_sc;
   1317 	struct nvme_ccb *ccb;
   1318 
   1319 	mutex_enter(&q->q_ccb_mtx);
   1320 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1321 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1322 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1323 	}
   1324 	mutex_exit(&q->q_ccb_mtx);
   1325 
   1326 	nvme_dmamem_free(sc, &q->q_ccb_prpls);
   1327 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1328 	q->q_ccbs = NULL;
   1329 	mutex_destroy(&q->q_ccb_mtx);
   1330 }
   1331 
   1332 static struct nvme_queue *
   1333 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1334 {
   1335 	struct nvme_queue *q;
   1336 	int error;
   1337 
   1338 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1339 	if (q == NULL)
   1340 		return NULL;
   1341 
   1342 	q->q_sc = sc;
   1343 	error = nvme_dmamem_alloc(sc, sizeof(struct nvme_sqe) * entries,
   1344 	    &q->q_sq_dmamem);
   1345 	if (error)
   1346 		goto free;
   1347 
   1348 	error = nvme_dmamem_alloc(sc, sizeof(struct nvme_cqe) * entries,
   1349 	    &q->q_cq_dmamem);
   1350 	if (error)
   1351 		goto free_sq;
   1352 
   1353 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1354 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1355 
   1356 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1357 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1358 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1359 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1360 	q->q_id = id;
   1361 	q->q_entries = entries;
   1362 	q->q_sq_tail = 0;
   1363 	q->q_cq_head = 0;
   1364 	q->q_cq_phase = NVME_CQE_PHASE;
   1365 
   1366 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1367 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1368 
   1369 	if (nvme_ccbs_alloc(q, entries) != 0) {
   1370 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1371 		goto free_cq;
   1372 	}
   1373 
   1374 	return q;
   1375 
   1376 free_cq:
   1377 	nvme_dmamem_free(sc, &q->q_cq_dmamem);
   1378 free_sq:
   1379 	nvme_dmamem_free(sc, &q->q_sq_dmamem);
   1380 free:
   1381 	kmem_free(q, sizeof(*q));
   1382 
   1383 	return NULL;
   1384 }
   1385 
   1386 static void
   1387 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1388 {
   1389 	nvme_ccbs_free(q);
   1390 	mutex_destroy(&q->q_sq_mtx);
   1391 	mutex_destroy(&q->q_cq_mtx);
   1392 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1393 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1394 	nvme_dmamem_free(sc, &q->q_cq_dmamem);
   1395 	nvme_dmamem_free(sc, &q->q_sq_dmamem);
   1396 	kmem_free(q, sizeof(*q));
   1397 }
   1398 
   1399 int
   1400 nvme_intr(void *xsc)
   1401 {
   1402 	struct nvme_softc *sc = xsc;
   1403 	int rv = 0;
   1404 
   1405 	/*
   1406 	 * INTx is level triggered, controller deasserts the interrupt only
   1407 	 * when we advance command queue head via write to the doorbell.
   1408 	 */
   1409 	if (nvme_q_complete(sc, sc->sc_admin_q))
   1410 	        rv = 1;
   1411 	if (sc->sc_q != NULL)
   1412 	        if (nvme_q_complete(sc, sc->sc_q[0]))
   1413 	                rv = 1;
   1414 
   1415 	return rv;
   1416 }
   1417 
   1418 int
   1419 nvme_intr_msi(void *xq)
   1420 {
   1421 	struct nvme_queue *q = xq;
   1422 
   1423 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1424 	    && q->q_sc->sc_softih[q->q_id]);
   1425 
   1426 	/* MSI are edge triggered, so can handover processing to softint */
   1427 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1428 
   1429 	return 1;
   1430 }
   1431 
   1432 void
   1433 nvme_softintr_msi(void *xq)
   1434 {
   1435 	struct nvme_queue *q = xq;
   1436 	struct nvme_softc *sc = q->q_sc;
   1437 
   1438 	nvme_q_complete(sc, q);
   1439 }
   1440 
   1441 static int
   1442 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size, struct nvme_dmamem *ndm)
   1443 {
   1444 	int nsegs;
   1445 
   1446 	memset(ndm, 0, sizeof(*ndm));
   1447 	ndm->ndm_size = size;
   1448 
   1449 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1450 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1451 		goto ndmfree;
   1452 
   1453 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1454 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1455 		goto destroy;
   1456 
   1457 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1458 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1459 		goto free;
   1460 	memset(ndm->ndm_kva, 0, size);
   1461 
   1462 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1463 	    NULL, BUS_DMA_WAITOK) != 0)
   1464 		goto unmap;
   1465 
   1466 	return 0;
   1467 
   1468 unmap:
   1469 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1470 free:
   1471 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1472 destroy:
   1473 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1474 ndmfree:
   1475 	return ENOMEM;
   1476 }
   1477 
   1478 void
   1479 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1480 {
   1481 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1482 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1483 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1484 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1485 }
   1486 
   1487 /*
   1488  * ioctl
   1489  */
   1490 
   1491 dev_type_open(nvmeopen);
   1492 dev_type_close(nvmeclose);
   1493 dev_type_ioctl(nvmeioctl);
   1494 
   1495 const struct cdevsw nvme_cdevsw = {
   1496 	.d_open = nvmeopen,
   1497 	.d_close = nvmeclose,
   1498 	.d_read = noread,
   1499 	.d_write = nowrite,
   1500 	.d_ioctl = nvmeioctl,
   1501 	.d_stop = nostop,
   1502 	.d_tty = notty,
   1503 	.d_poll = nopoll,
   1504 	.d_mmap = nommap,
   1505 	.d_kqfilter = nokqfilter,
   1506 	.d_discard = nodiscard,
   1507 	.d_flag = D_OTHER,
   1508 };
   1509 
   1510 extern struct cfdriver nvme_cd;
   1511 
   1512 /*
   1513  * Accept an open operation on the control device.
   1514  */
   1515 int
   1516 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1517 {
   1518 	struct nvme_softc *sc;
   1519 	int unit = minor(dev) / 0x10000;
   1520 	int nsid = minor(dev) & 0xffff;
   1521 	int nsidx;
   1522 
   1523 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1524 		return ENXIO;
   1525 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1526 		return ENXIO;
   1527 
   1528 	if (nsid == 0) {
   1529 		/* controller */
   1530 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1531 			return EBUSY;
   1532 		SET(sc->sc_flags, NVME_F_OPEN);
   1533 	} else {
   1534 		/* namespace */
   1535 		nsidx = nsid - 1;
   1536 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1537 			return ENXIO;
   1538 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1539 			return EBUSY;
   1540 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1541 	}
   1542 	return 0;
   1543 }
   1544 
   1545 /*
   1546  * Accept the last close on the control device.
   1547  */
   1548 int
   1549 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1550 {
   1551 	struct nvme_softc *sc;
   1552 	int unit = minor(dev) / 0x10000;
   1553 	int nsid = minor(dev) & 0xffff;
   1554 	int nsidx;
   1555 
   1556 	sc = device_lookup_private(&nvme_cd, unit);
   1557 	if (sc == NULL)
   1558 		return ENXIO;
   1559 
   1560 	if (nsid == 0) {
   1561 		/* controller */
   1562 		CLR(sc->sc_flags, NVME_F_OPEN);
   1563 	} else {
   1564 		/* namespace */
   1565 		nsidx = nsid - 1;
   1566 		if (nsidx >= sc->sc_nn)
   1567 			return ENXIO;
   1568 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1569 	}
   1570 
   1571 	return 0;
   1572 }
   1573 
   1574 /*
   1575  * Handle control operations.
   1576  */
   1577 int
   1578 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1579 {
   1580 	struct nvme_softc *sc;
   1581 	int unit = minor(dev) / 0x10000;
   1582 	int nsid = minor(dev) & 0xffff;
   1583 	struct nvme_pt_command *pt;
   1584 
   1585 	sc = device_lookup_private(&nvme_cd, unit);
   1586 	if (sc == NULL)
   1587 		return ENXIO;
   1588 
   1589 	switch (cmd) {
   1590 	case NVME_PASSTHROUGH_CMD:
   1591 		pt = data;
   1592 		return nvme_command_passthrough(sc, data,
   1593 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1594 	}
   1595 
   1596 	return ENOTTY;
   1597 }
   1598