nvme.c revision 1.13 1 /* $NetBSD: nvme.c,v 1.13 2016/09/20 21:18:08 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.13 2016/09/20 21:18:08 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 1024;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, u_int);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *), int);
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static int nvme_dmamem_alloc(struct nvme_softc *, size_t,
89 struct nvme_dmamem *);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91
92 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
93 void *);
94 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
95 struct nvme_cqe *);
96 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
97 void *);
98 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
99 struct nvme_cqe *);
100
101 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
102 void *);
103 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105 static int nvme_command_passthrough(struct nvme_softc *,
106 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
107
108 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
109 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
110 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
111 #define NVME_TIMO_SY 60 /* sync cache timeout */
112
113 #define nvme_read4(_s, _r) \
114 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
115 #define nvme_write4(_s, _r, _v) \
116 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
117 #ifdef __LP64__
118 #define nvme_read8(_s, _r) \
119 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
120 #define nvme_write8(_s, _r, _v) \
121 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
122 #else /* __LP64__ */
123 static inline uint64_t
124 nvme_read8(struct nvme_softc *sc, bus_size_t r)
125 {
126 uint64_t v;
127 uint32_t *a = (uint32_t *)&v;
128
129 #if _BYTE_ORDER == _LITTLE_ENDIAN
130 a[0] = nvme_read4(sc, r);
131 a[1] = nvme_read4(sc, r + 4);
132 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
133 a[1] = nvme_read4(sc, r);
134 a[0] = nvme_read4(sc, r + 4);
135 #endif
136
137 return v;
138 }
139
140 static inline void
141 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
142 {
143 uint32_t *a = (uint32_t *)&v;
144
145 #if _BYTE_ORDER == _LITTLE_ENDIAN
146 nvme_write4(sc, r, a[0]);
147 nvme_write4(sc, r + 4, a[1]);
148 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
149 nvme_write4(sc, r, a[1]);
150 nvme_write4(sc, r + 4, a[0]);
151 #endif
152 }
153 #endif /* __LP64__ */
154
155 #define nvme_barrier(_s, _r, _l, _f) \
156 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
157 #define nvme_dmamem_sync(sc, mem, ops) \
158 bus_dmamap_sync((sc)->sc_dmat, NVME_DMA_MAP(mem), \
159 0, NVME_DMA_LEN(mem), (ops));
160
161 static void
162 nvme_version(struct nvme_softc *sc, uint32_t ver)
163 {
164 const char *v = NULL;
165
166 switch (ver) {
167 case NVME_VS_1_0:
168 v = "1.0";
169 break;
170 case NVME_VS_1_1:
171 v = "1.1";
172 break;
173 case NVME_VS_1_2:
174 v = "1.2";
175 break;
176 default:
177 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
178 return;
179 }
180
181 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
182 }
183
184 #ifdef NVME_DEBUG
185 static __used void
186 nvme_dumpregs(struct nvme_softc *sc)
187 {
188 uint64_t r8;
189 uint32_t r4;
190
191 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
192 r8 = nvme_read8(sc, NVME_CAP);
193 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
194 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
195 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
196 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
197 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
198 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
199 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
200 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
201 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
202 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
203 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
204 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
205
206 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
207
208 r4 = nvme_read4(sc, NVME_CC);
209 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
210 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
211 (1 << NVME_CC_IOCQES_R(r4)));
212 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
213 (1 << NVME_CC_IOSQES_R(r4)));
214 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
215 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
216 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
217 (1 << NVME_CC_MPS_R(r4)));
218 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
219 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
220
221 r4 = nvme_read4(sc, NVME_CSTS);
222 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
223 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
224 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
225 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
226
227 r4 = nvme_read4(sc, NVME_AQA);
228 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
229 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
230 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
231
232 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
233 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
234 #undef DEVNAME
235 }
236 #endif /* NVME_DEBUG */
237
238 static int
239 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
240 {
241 u_int i = 0;
242 uint32_t cc;
243
244 cc = nvme_read4(sc, NVME_CC);
245 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
246 aprint_error_dev(sc->sc_dev,
247 "controller enabled status expected %d, found to be %d\n",
248 (rdy != 0), ((cc & NVME_CC_EN) != 0));
249 return ENXIO;
250 }
251
252 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
253 if (i++ > sc->sc_rdy_to)
254 return ENXIO;
255
256 delay(1000);
257 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
258 }
259
260 return 0;
261 }
262
263 static int
264 nvme_enable(struct nvme_softc *sc, u_int mps)
265 {
266 uint32_t cc, csts;
267
268 cc = nvme_read4(sc, NVME_CC);
269 csts = nvme_read4(sc, NVME_CSTS);
270
271 if (ISSET(cc, NVME_CC_EN)) {
272 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
273
274 if (ISSET(csts, NVME_CSTS_RDY))
275 return 1;
276
277 goto waitready;
278 }
279
280 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
281 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
282 delay(5000);
283 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
284 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
285 delay(5000);
286
287 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
288 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
289 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
290 delay(5000);
291
292 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
293 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
294 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
295 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
296 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
297 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
298 SET(cc, NVME_CC_MPS(mps));
299 SET(cc, NVME_CC_EN);
300
301 nvme_write4(sc, NVME_CC, cc);
302 nvme_barrier(sc, 0, sc->sc_ios,
303 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
304 delay(5000);
305
306 waitready:
307 return nvme_ready(sc, NVME_CSTS_RDY);
308 }
309
310 static int
311 nvme_disable(struct nvme_softc *sc)
312 {
313 uint32_t cc, csts;
314
315 cc = nvme_read4(sc, NVME_CC);
316 csts = nvme_read4(sc, NVME_CSTS);
317
318 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
319 nvme_ready(sc, NVME_CSTS_RDY);
320
321 CLR(cc, NVME_CC_EN);
322
323 nvme_write4(sc, NVME_CC, cc);
324 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
325
326 delay(5000);
327
328 return nvme_ready(sc, 0);
329 }
330
331 int
332 nvme_attach(struct nvme_softc *sc)
333 {
334 struct nvme_attach_args naa;
335 uint64_t cap;
336 uint32_t reg;
337 u_int dstrd;
338 u_int mps = PAGE_SHIFT;
339 int adminq_entries = nvme_adminq_size;
340 int ioq_entries = nvme_ioq_size;
341 int i;
342
343 reg = nvme_read4(sc, NVME_VS);
344 if (reg == 0xffffffff) {
345 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
346 return 1;
347 }
348
349 nvme_version(sc, reg);
350
351 cap = nvme_read8(sc, NVME_CAP);
352 dstrd = NVME_CAP_DSTRD(cap);
353 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
354 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
355 "is greater than CPU page size %u\n",
356 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
357 return 1;
358 }
359 if (NVME_CAP_MPSMAX(cap) < mps)
360 mps = NVME_CAP_MPSMAX(cap);
361
362 /* set initial values to be used for admin queue during probe */
363 sc->sc_rdy_to = NVME_CAP_TO(cap);
364 sc->sc_mps = 1 << mps;
365 sc->sc_mdts = MAXPHYS;
366 sc->sc_max_sgl = 2;
367
368 if (nvme_disable(sc) != 0) {
369 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
370 return 1;
371 }
372
373 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
374 if (sc->sc_admin_q == NULL) {
375 aprint_error_dev(sc->sc_dev,
376 "unable to allocate admin queue\n");
377 return 1;
378 }
379 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
380 goto free_admin_q;
381
382 if (nvme_enable(sc, mps) != 0) {
383 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
384 goto disestablish_admin_q;
385 }
386
387 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
388 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
389 goto disable;
390 }
391
392 /* we know how big things are now */
393 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
394
395 /* reallocate ccbs of admin queue with new max sgl. */
396 nvme_ccbs_free(sc->sc_admin_q);
397 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
398
399 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
400 if (sc->sc_q == NULL) {
401 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
402 goto disable;
403 }
404 for (i = 0; i < sc->sc_nq; i++) {
405 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
406 if (sc->sc_q[i] == NULL) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to allocate io queue\n");
409 goto free_q;
410 }
411 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
412 aprint_error_dev(sc->sc_dev,
413 "unable to create io queue\n");
414 nvme_q_free(sc, sc->sc_q[i]);
415 goto free_q;
416 }
417 }
418
419 if (!sc->sc_use_mq)
420 nvme_write4(sc, NVME_INTMC, 1);
421
422 /* probe subdevices */
423 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
424 KM_SLEEP);
425 if (sc->sc_namespaces == NULL)
426 goto free_q;
427 for (i = 0; i < sc->sc_nn; i++) {
428 memset(&naa, 0, sizeof(naa));
429 naa.naa_nsid = i + 1;
430 naa.naa_qentries = ioq_entries;
431 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
432 nvme_print);
433 }
434
435 return 0;
436
437 free_q:
438 while (--i >= 0) {
439 nvme_q_delete(sc, sc->sc_q[i]);
440 nvme_q_free(sc, sc->sc_q[i]);
441 }
442 disable:
443 nvme_disable(sc);
444 disestablish_admin_q:
445 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
446 free_admin_q:
447 nvme_q_free(sc, sc->sc_admin_q);
448
449 return 1;
450 }
451
452 static int
453 nvme_print(void *aux, const char *pnp)
454 {
455 struct nvme_attach_args *naa = aux;
456
457 if (pnp)
458 aprint_normal("at %s", pnp);
459
460 if (naa->naa_nsid > 0)
461 aprint_normal(" nsid %d", naa->naa_nsid);
462
463 return UNCONF;
464 }
465
466 int
467 nvme_detach(struct nvme_softc *sc, int flags)
468 {
469 int i, error;
470
471 error = config_detach_children(sc->sc_dev, flags);
472 if (error)
473 return error;
474
475 error = nvme_shutdown(sc);
476 if (error)
477 return error;
478
479 /* from now on we are committed to detach, following will never fail */
480 for (i = 0; i < sc->sc_nq; i++)
481 nvme_q_free(sc, sc->sc_q[i]);
482 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
483 nvme_q_free(sc, sc->sc_admin_q);
484
485 return 0;
486 }
487
488 static int
489 nvme_shutdown(struct nvme_softc *sc)
490 {
491 uint32_t cc, csts;
492 bool disabled = false;
493 int i;
494
495 if (!sc->sc_use_mq)
496 nvme_write4(sc, NVME_INTMS, 1);
497
498 for (i = 0; i < sc->sc_nq; i++) {
499 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
500 aprint_error_dev(sc->sc_dev,
501 "unable to delete io queue %d, disabling\n", i + 1);
502 disabled = true;
503 }
504 }
505 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
506 if (disabled)
507 goto disable;
508
509 cc = nvme_read4(sc, NVME_CC);
510 CLR(cc, NVME_CC_SHN_MASK);
511 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
512 nvme_write4(sc, NVME_CC, cc);
513
514 for (i = 0; i < 4000; i++) {
515 nvme_barrier(sc, 0, sc->sc_ios,
516 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
517 csts = nvme_read4(sc, NVME_CSTS);
518 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
519 return 0;
520
521 delay(1000);
522 }
523
524 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
525
526 disable:
527 nvme_disable(sc);
528 return 0;
529 }
530
531 void
532 nvme_childdet(device_t self, device_t child)
533 {
534 struct nvme_softc *sc = device_private(self);
535 int i;
536
537 for (i = 0; i < sc->sc_nn; i++) {
538 if (sc->sc_namespaces[i].dev == child) {
539 /* Already freed ns->ident. */
540 sc->sc_namespaces[i].dev = NULL;
541 break;
542 }
543 }
544 }
545
546 int
547 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
548 {
549 struct nvme_sqe sqe;
550 struct nvm_identify_namespace *identify;
551 struct nvme_dmamem mem;
552 struct nvme_ccb *ccb;
553 struct nvme_namespace *ns;
554 int error;
555
556 KASSERT(nsid > 0);
557
558 ccb = nvme_ccb_get(sc->sc_admin_q);
559 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
560
561 error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
562 if (error)
563 return error;
564
565 memset(&sqe, 0, sizeof(sqe));
566 sqe.opcode = NVM_ADMIN_IDENTIFY;
567 htolem32(&sqe.nsid, nsid);
568 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
569 htolem32(&sqe.cdw10, 0);
570
571 ccb->ccb_done = nvme_empty_done;
572 ccb->ccb_cookie = &sqe;
573
574 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
575 error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill,
576 NVME_TIMO_IDENT);
577 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
578
579 nvme_ccb_put(sc->sc_admin_q, ccb);
580
581 if (error != 0) {
582 error = EIO;
583 goto done;
584 }
585
586 /* commit */
587
588 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
589 memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
590
591 ns = nvme_ns_get(sc, nsid);
592 KASSERT(ns);
593 ns->ident = identify;
594
595 done:
596 nvme_dmamem_free(sc, &mem);
597
598 return error;
599 }
600
601 int
602 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
603 struct buf *bp, void *data, size_t datasize,
604 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
605 {
606 struct nvme_queue *q = nvme_get_q(sc);
607 struct nvme_ccb *ccb;
608 bus_dmamap_t dmap;
609 int i, error;
610
611 ccb = nvme_ccb_get(q);
612 if (ccb == NULL)
613 return EAGAIN;
614
615 ccb->ccb_done = nvme_ns_io_done;
616 ccb->ccb_cookie = cookie;
617
618 /* namespace context */
619 ccb->nnc_nsid = nsid;
620 ccb->nnc_flags = flags;
621 ccb->nnc_buf = bp;
622 ccb->nnc_datasize = datasize;
623 ccb->nnc_secsize = secsize;
624 ccb->nnc_blkno = blkno;
625 ccb->nnc_done = nnc_done;
626
627 dmap = ccb->ccb_dmamap;
628 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
629 datasize, NULL,
630 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
631 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
632 (ISSET(flags, NVME_NS_CTX_F_READ) ?
633 BUS_DMA_READ : BUS_DMA_WRITE));
634 if (error) {
635 nvme_ccb_put(q, ccb);
636 return error;
637 }
638
639 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
640 ISSET(flags, NVME_NS_CTX_F_READ) ?
641 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
642
643 if (dmap->dm_nsegs > 2) {
644 for (i = 1; i < dmap->dm_nsegs; i++) {
645 htolem64(&ccb->ccb_prpl[i - 1],
646 dmap->dm_segs[i].ds_addr);
647 }
648 bus_dmamap_sync(sc->sc_dmat,
649 NVME_DMA_MAP(q->q_ccb_prpls),
650 ccb->ccb_prpl_off,
651 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
652 BUS_DMASYNC_PREWRITE);
653 }
654
655 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
656 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
657 return EIO;
658 return 0;
659 }
660
661 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
662 return 0;
663 }
664
665 static void
666 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
667 {
668 struct nvme_sqe_io *sqe = slot;
669 bus_dmamap_t dmap = ccb->ccb_dmamap;
670
671 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
672 NVM_CMD_READ : NVM_CMD_WRITE;
673 htolem32(&sqe->nsid, ccb->nnc_nsid);
674
675 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
676 switch (dmap->dm_nsegs) {
677 case 1:
678 break;
679 case 2:
680 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
681 break;
682 default:
683 /* the prp list is already set up and synced */
684 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
685 break;
686 }
687
688 htolem64(&sqe->slba, ccb->nnc_blkno);
689
690 /* guaranteed by upper layers, but check just in case */
691 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
692 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
693 }
694
695 static void
696 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
697 struct nvme_cqe *cqe)
698 {
699 struct nvme_softc *sc = q->q_sc;
700 bus_dmamap_t dmap = ccb->ccb_dmamap;
701 void *nnc_cookie = ccb->ccb_cookie;
702 nvme_nnc_done nnc_done = ccb->nnc_done;
703 struct buf *bp = ccb->nnc_buf;
704
705 if (dmap->dm_nsegs > 2) {
706 bus_dmamap_sync(sc->sc_dmat,
707 NVME_DMA_MAP(q->q_ccb_prpls),
708 ccb->ccb_prpl_off,
709 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
710 BUS_DMASYNC_POSTWRITE);
711 }
712
713 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
714 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
715 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
716
717 bus_dmamap_unload(sc->sc_dmat, dmap);
718 nvme_ccb_put(q, ccb);
719
720 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
721 }
722
723 int
724 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
725 int flags, nvme_nnc_done nnc_done)
726 {
727 struct nvme_queue *q = nvme_get_q(sc);
728 struct nvme_ccb *ccb;
729
730 ccb = nvme_ccb_get(q);
731 if (ccb == NULL)
732 return EAGAIN;
733
734 ccb->ccb_done = nvme_ns_sync_done;
735 ccb->ccb_cookie = cookie;
736
737 /* namespace context */
738 ccb->nnc_nsid = nsid;
739 ccb->nnc_flags = flags;
740 ccb->nnc_done = nnc_done;
741
742 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
743 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
744 return EIO;
745 return 0;
746 }
747
748 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
749 return 0;
750 }
751
752 static void
753 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
754 {
755 struct nvme_sqe *sqe = slot;
756
757 sqe->opcode = NVM_CMD_FLUSH;
758 htolem32(&sqe->nsid, ccb->nnc_nsid);
759 }
760
761 static void
762 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
763 struct nvme_cqe *cqe)
764 {
765 void *cookie = ccb->ccb_cookie;
766 nvme_nnc_done nnc_done = ccb->nnc_done;
767
768 nvme_ccb_put(q, ccb);
769
770 nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
771 }
772
773 void
774 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
775 {
776 struct nvme_namespace *ns;
777 struct nvm_identify_namespace *identify;
778
779 ns = nvme_ns_get(sc, nsid);
780 KASSERT(ns);
781
782 identify = ns->ident;
783 ns->ident = NULL;
784 if (identify != NULL)
785 kmem_free(identify, sizeof(*identify));
786 }
787
788 static void
789 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
790 {
791 struct nvme_softc *sc = q->q_sc;
792 struct nvme_sqe *sqe = slot;
793 struct nvme_pt_command *pt = ccb->ccb_cookie;
794 bus_dmamap_t dmap = ccb->ccb_dmamap;
795 int i;
796
797 sqe->opcode = pt->cmd.opcode;
798 htolem32(&sqe->nsid, pt->cmd.nsid);
799
800 if (pt->buf != NULL && pt->len > 0) {
801 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
802 switch (dmap->dm_nsegs) {
803 case 1:
804 break;
805 case 2:
806 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
807 break;
808 default:
809 for (i = 1; i < dmap->dm_nsegs; i++) {
810 htolem64(&ccb->ccb_prpl[i - 1],
811 dmap->dm_segs[i].ds_addr);
812 }
813 bus_dmamap_sync(sc->sc_dmat,
814 NVME_DMA_MAP(q->q_ccb_prpls),
815 ccb->ccb_prpl_off,
816 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
817 BUS_DMASYNC_PREWRITE);
818 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
819 break;
820 }
821 }
822
823 htolem32(&sqe->cdw10, pt->cmd.cdw10);
824 htolem32(&sqe->cdw11, pt->cmd.cdw11);
825 htolem32(&sqe->cdw12, pt->cmd.cdw12);
826 htolem32(&sqe->cdw13, pt->cmd.cdw13);
827 htolem32(&sqe->cdw14, pt->cmd.cdw14);
828 htolem32(&sqe->cdw15, pt->cmd.cdw15);
829 }
830
831 static void
832 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
833 {
834 struct nvme_softc *sc = q->q_sc;
835 struct nvme_pt_command *pt = ccb->ccb_cookie;
836 bus_dmamap_t dmap = ccb->ccb_dmamap;
837
838 if (pt->buf != NULL && pt->len > 0) {
839 if (dmap->dm_nsegs > 2) {
840 bus_dmamap_sync(sc->sc_dmat,
841 NVME_DMA_MAP(q->q_ccb_prpls),
842 ccb->ccb_prpl_off,
843 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
844 BUS_DMASYNC_POSTWRITE);
845 }
846
847 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
848 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
849 bus_dmamap_unload(sc->sc_dmat, dmap);
850 }
851
852 pt->cpl.cdw0 = cqe->cdw0;
853 pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
854 }
855
856 static int
857 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
858 uint16_t nsid, struct lwp *l, bool is_adminq)
859 {
860 struct nvme_queue *q;
861 struct nvme_ccb *ccb;
862 void *buf = NULL;
863 int error;
864
865 /* limit command size to maximum data transfer size */
866 if ((pt->buf == NULL && pt->len > 0) ||
867 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
868 return EINVAL;
869
870 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
871 ccb = nvme_ccb_get(q);
872 if (ccb == NULL)
873 return EBUSY;
874
875 if (pt->buf != NULL) {
876 KASSERT(pt->len > 0);
877 buf = kmem_alloc(pt->len, KM_SLEEP);
878 if (buf == NULL) {
879 error = ENOMEM;
880 goto ccb_put;
881 }
882 if (!pt->is_read) {
883 error = copyin(pt->buf, buf, pt->len);
884 if (error)
885 goto kmem_free;
886 }
887 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
888 pt->len, NULL,
889 BUS_DMA_WAITOK |
890 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
891 if (error)
892 goto kmem_free;
893 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
894 0, ccb->ccb_dmamap->dm_mapsize,
895 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
896 }
897
898 ccb->ccb_done = nvme_pt_done;
899 ccb->ccb_cookie = pt;
900
901 pt->cmd.nsid = nsid;
902 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
903 error = EIO;
904 goto out;
905 }
906
907 error = 0;
908 out:
909 if (buf != NULL) {
910 if (error == 0 && pt->is_read)
911 error = copyout(buf, pt->buf, pt->len);
912 kmem_free:
913 kmem_free(buf, pt->len);
914 }
915 ccb_put:
916 nvme_ccb_put(q, ccb);
917 return error;
918 }
919
920 static void
921 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
922 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
923 {
924 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
925 uint32_t tail;
926
927 mutex_enter(&q->q_sq_mtx);
928 tail = q->q_sq_tail;
929 if (++q->q_sq_tail >= q->q_entries)
930 q->q_sq_tail = 0;
931
932 sqe += tail;
933
934 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
935 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
936 memset(sqe, 0, sizeof(*sqe));
937 (*fill)(q, ccb, sqe);
938 sqe->cid = ccb->ccb_id;
939 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
940 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
941
942 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
943 mutex_exit(&q->q_sq_mtx);
944 }
945
946 struct nvme_poll_state {
947 struct nvme_sqe s;
948 struct nvme_cqe c;
949 };
950
951 static int
952 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
953 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
954 {
955 struct nvme_poll_state state;
956 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
957 void *cookie;
958 uint16_t flags;
959 int step = 10;
960 int maxloop = timo_sec * 1000000 / step;
961 int error = 0;
962
963 memset(&state, 0, sizeof(state));
964 (*fill)(q, ccb, &state.s);
965
966 done = ccb->ccb_done;
967 cookie = ccb->ccb_cookie;
968
969 ccb->ccb_done = nvme_poll_done;
970 ccb->ccb_cookie = &state;
971
972 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
973 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
974 if (nvme_q_complete(sc, q) == 0)
975 delay(step);
976
977 if (timo_sec >= 0 && --maxloop <= 0) {
978 error = ETIMEDOUT;
979 break;
980 }
981 }
982
983 ccb->ccb_cookie = cookie;
984 done(q, ccb, &state.c);
985
986 if (error == 0) {
987 flags = lemtoh16(&state.c.flags);
988 return flags & ~NVME_CQE_PHASE;
989 } else {
990 return 1;
991 }
992 }
993
994 static void
995 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
996 {
997 struct nvme_sqe *sqe = slot;
998 struct nvme_poll_state *state = ccb->ccb_cookie;
999
1000 *sqe = state->s;
1001 }
1002
1003 static void
1004 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1005 struct nvme_cqe *cqe)
1006 {
1007 struct nvme_poll_state *state = ccb->ccb_cookie;
1008
1009 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1010 state->c = *cqe;
1011 }
1012
1013 static void
1014 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1015 {
1016 struct nvme_sqe *src = ccb->ccb_cookie;
1017 struct nvme_sqe *dst = slot;
1018
1019 *dst = *src;
1020 }
1021
1022 static void
1023 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1024 struct nvme_cqe *cqe)
1025 {
1026 }
1027
1028 static int
1029 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1030 {
1031 struct nvme_ccb *ccb;
1032 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1033 uint16_t flags;
1034 int rv = 0;
1035
1036 mutex_enter(&q->q_cq_mtx);
1037
1038 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1039 for (;;) {
1040 cqe = &ring[q->q_cq_head];
1041 flags = lemtoh16(&cqe->flags);
1042 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1043 break;
1044
1045 ccb = &q->q_ccbs[cqe->cid];
1046
1047 if (++q->q_cq_head >= q->q_entries) {
1048 q->q_cq_head = 0;
1049 q->q_cq_phase ^= NVME_CQE_PHASE;
1050 }
1051
1052 rv = 1;
1053
1054 /*
1055 * Unlock the mutex before calling the ccb_done callback
1056 * and re-lock afterwards. The callback triggers lddone()
1057 * which schedules another i/o, and also calls nvme_ccb_put().
1058 * Unlock/relock avoids possibility of deadlock.
1059 */
1060 mutex_exit(&q->q_cq_mtx);
1061 ccb->ccb_done(q, ccb, cqe);
1062 mutex_enter(&q->q_cq_mtx);
1063 }
1064 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1065
1066 if (rv)
1067 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1068
1069 mutex_exit(&q->q_cq_mtx);
1070
1071 return rv;
1072 }
1073
1074 static int
1075 nvme_identify(struct nvme_softc *sc, u_int mps)
1076 {
1077 char sn[41], mn[81], fr[17];
1078 struct nvm_identify_controller *identify;
1079 struct nvme_dmamem mem;
1080 struct nvme_ccb *ccb;
1081 u_int mdts;
1082 int error;
1083
1084 ccb = nvme_ccb_get(sc->sc_admin_q);
1085 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1086
1087 error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
1088 if (error)
1089 return error;
1090
1091 ccb->ccb_done = nvme_empty_done;
1092 ccb->ccb_cookie = &mem;
1093
1094 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1095 error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1096 NVME_TIMO_IDENT);
1097 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1098
1099 nvme_ccb_put(sc->sc_admin_q, ccb);
1100
1101 if (error != 0)
1102 goto done;
1103
1104 identify = NVME_DMA_KVA(mem);
1105
1106 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1107 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1108 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1109 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1110 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1111 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1112 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1113 sn);
1114
1115 if (identify->mdts > 0) {
1116 mdts = (1 << identify->mdts) * (1 << mps);
1117 if (mdts < sc->sc_mdts)
1118 sc->sc_mdts = mdts;
1119 }
1120
1121 sc->sc_nn = lemtoh32(&identify->nn);
1122
1123 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1124
1125 done:
1126 nvme_dmamem_free(sc, &mem);
1127
1128 return error;
1129 }
1130
1131 static int
1132 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1133 {
1134 struct nvme_sqe_q sqe;
1135 struct nvme_ccb *ccb;
1136 int rv;
1137
1138 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1139 return 1;
1140
1141 ccb = nvme_ccb_get(sc->sc_admin_q);
1142 KASSERT(ccb != NULL);
1143
1144 ccb->ccb_done = nvme_empty_done;
1145 ccb->ccb_cookie = &sqe;
1146
1147 memset(&sqe, 0, sizeof(sqe));
1148 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1149 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1150 htolem16(&sqe.qsize, q->q_entries - 1);
1151 htolem16(&sqe.qid, q->q_id);
1152 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1153 if (sc->sc_use_mq)
1154 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1155
1156 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1157 if (rv != 0)
1158 goto fail;
1159
1160 ccb->ccb_done = nvme_empty_done;
1161 ccb->ccb_cookie = &sqe;
1162
1163 memset(&sqe, 0, sizeof(sqe));
1164 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1165 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1166 htolem16(&sqe.qsize, q->q_entries - 1);
1167 htolem16(&sqe.qid, q->q_id);
1168 htolem16(&sqe.cqid, q->q_id);
1169 sqe.qflags = NVM_SQE_Q_PC;
1170
1171 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1172 if (rv != 0)
1173 goto fail;
1174
1175 fail:
1176 nvme_ccb_put(sc->sc_admin_q, ccb);
1177 return rv;
1178 }
1179
1180 static int
1181 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1182 {
1183 struct nvme_sqe_q sqe;
1184 struct nvme_ccb *ccb;
1185 int rv;
1186
1187 ccb = nvme_ccb_get(sc->sc_admin_q);
1188 KASSERT(ccb != NULL);
1189
1190 ccb->ccb_done = nvme_empty_done;
1191 ccb->ccb_cookie = &sqe;
1192
1193 memset(&sqe, 0, sizeof(sqe));
1194 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1195 htolem16(&sqe.qid, q->q_id);
1196
1197 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1198 if (rv != 0)
1199 goto fail;
1200
1201 ccb->ccb_done = nvme_empty_done;
1202 ccb->ccb_cookie = &sqe;
1203
1204 memset(&sqe, 0, sizeof(sqe));
1205 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1206 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1207 htolem16(&sqe.qid, q->q_id);
1208
1209 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1210 if (rv != 0)
1211 goto fail;
1212
1213 fail:
1214 nvme_ccb_put(sc->sc_admin_q, ccb);
1215
1216 if (rv == 0 && sc->sc_use_mq) {
1217 if (sc->sc_intr_disestablish(sc, q->q_id))
1218 rv = 1;
1219 }
1220
1221 return rv;
1222 }
1223
1224 static void
1225 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1226 {
1227 struct nvme_sqe *sqe = slot;
1228 struct nvme_dmamem *mem = ccb->ccb_cookie;
1229
1230 sqe->opcode = NVM_ADMIN_IDENTIFY;
1231 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(*mem));
1232 htolem32(&sqe->cdw10, 1);
1233 }
1234
1235 static int
1236 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
1237 {
1238 struct nvme_softc *sc = q->q_sc;
1239 struct nvme_ccb *ccb;
1240 bus_addr_t off;
1241 uint64_t *prpl;
1242 u_int i;
1243 int error;
1244
1245 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1246 SIMPLEQ_INIT(&q->q_ccb_list);
1247
1248 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1249 if (q->q_ccbs == NULL)
1250 return 1;
1251
1252 q->q_nccbs = nccbs;
1253 error = nvme_dmamem_alloc(sc, sizeof(*prpl) * sc->sc_max_sgl * nccbs,
1254 &q->q_ccb_prpls);
1255 if (error) {
1256 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1257 return error;
1258 }
1259
1260 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1261 off = 0;
1262
1263 for (i = 0; i < nccbs; i++) {
1264 ccb = &q->q_ccbs[i];
1265
1266 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1267 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1268 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1269 &ccb->ccb_dmamap) != 0)
1270 goto free_maps;
1271
1272 ccb->ccb_id = i;
1273 ccb->ccb_prpl = prpl;
1274 ccb->ccb_prpl_off = off;
1275 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1276
1277 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1278
1279 prpl += sc->sc_max_sgl;
1280 off += sizeof(*prpl) * sc->sc_max_sgl;
1281 }
1282
1283 return 0;
1284
1285 free_maps:
1286 nvme_ccbs_free(q);
1287 return 1;
1288 }
1289
1290 static struct nvme_ccb *
1291 nvme_ccb_get(struct nvme_queue *q)
1292 {
1293 struct nvme_ccb *ccb;
1294
1295 mutex_enter(&q->q_ccb_mtx);
1296 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1297 if (ccb != NULL)
1298 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1299 mutex_exit(&q->q_ccb_mtx);
1300
1301 return ccb;
1302 }
1303
1304 static void
1305 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1306 {
1307
1308 mutex_enter(&q->q_ccb_mtx);
1309 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1310 mutex_exit(&q->q_ccb_mtx);
1311 }
1312
1313 static void
1314 nvme_ccbs_free(struct nvme_queue *q)
1315 {
1316 struct nvme_softc *sc = q->q_sc;
1317 struct nvme_ccb *ccb;
1318
1319 mutex_enter(&q->q_ccb_mtx);
1320 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1321 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1322 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1323 }
1324 mutex_exit(&q->q_ccb_mtx);
1325
1326 nvme_dmamem_free(sc, &q->q_ccb_prpls);
1327 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1328 q->q_ccbs = NULL;
1329 mutex_destroy(&q->q_ccb_mtx);
1330 }
1331
1332 static struct nvme_queue *
1333 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1334 {
1335 struct nvme_queue *q;
1336 int error;
1337
1338 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1339 if (q == NULL)
1340 return NULL;
1341
1342 q->q_sc = sc;
1343 error = nvme_dmamem_alloc(sc, sizeof(struct nvme_sqe) * entries,
1344 &q->q_sq_dmamem);
1345 if (error)
1346 goto free;
1347
1348 error = nvme_dmamem_alloc(sc, sizeof(struct nvme_cqe) * entries,
1349 &q->q_cq_dmamem);
1350 if (error)
1351 goto free_sq;
1352
1353 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1354 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1355
1356 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1357 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1358 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1359 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1360 q->q_id = id;
1361 q->q_entries = entries;
1362 q->q_sq_tail = 0;
1363 q->q_cq_head = 0;
1364 q->q_cq_phase = NVME_CQE_PHASE;
1365
1366 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1367 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1368
1369 if (nvme_ccbs_alloc(q, entries) != 0) {
1370 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1371 goto free_cq;
1372 }
1373
1374 return q;
1375
1376 free_cq:
1377 nvme_dmamem_free(sc, &q->q_cq_dmamem);
1378 free_sq:
1379 nvme_dmamem_free(sc, &q->q_sq_dmamem);
1380 free:
1381 kmem_free(q, sizeof(*q));
1382
1383 return NULL;
1384 }
1385
1386 static void
1387 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1388 {
1389 nvme_ccbs_free(q);
1390 mutex_destroy(&q->q_sq_mtx);
1391 mutex_destroy(&q->q_cq_mtx);
1392 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1393 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1394 nvme_dmamem_free(sc, &q->q_cq_dmamem);
1395 nvme_dmamem_free(sc, &q->q_sq_dmamem);
1396 kmem_free(q, sizeof(*q));
1397 }
1398
1399 int
1400 nvme_intr(void *xsc)
1401 {
1402 struct nvme_softc *sc = xsc;
1403 int rv = 0;
1404
1405 /*
1406 * INTx is level triggered, controller deasserts the interrupt only
1407 * when we advance command queue head via write to the doorbell.
1408 */
1409 if (nvme_q_complete(sc, sc->sc_admin_q))
1410 rv = 1;
1411 if (sc->sc_q != NULL)
1412 if (nvme_q_complete(sc, sc->sc_q[0]))
1413 rv = 1;
1414
1415 return rv;
1416 }
1417
1418 int
1419 nvme_intr_msi(void *xq)
1420 {
1421 struct nvme_queue *q = xq;
1422
1423 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1424 && q->q_sc->sc_softih[q->q_id]);
1425
1426 /* MSI are edge triggered, so can handover processing to softint */
1427 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1428
1429 return 1;
1430 }
1431
1432 void
1433 nvme_softintr_msi(void *xq)
1434 {
1435 struct nvme_queue *q = xq;
1436 struct nvme_softc *sc = q->q_sc;
1437
1438 nvme_q_complete(sc, q);
1439 }
1440
1441 static int
1442 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size, struct nvme_dmamem *ndm)
1443 {
1444 int nsegs;
1445
1446 memset(ndm, 0, sizeof(*ndm));
1447 ndm->ndm_size = size;
1448
1449 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1450 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1451 goto ndmfree;
1452
1453 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1454 1, &nsegs, BUS_DMA_WAITOK) != 0)
1455 goto destroy;
1456
1457 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1458 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1459 goto free;
1460 memset(ndm->ndm_kva, 0, size);
1461
1462 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1463 NULL, BUS_DMA_WAITOK) != 0)
1464 goto unmap;
1465
1466 return 0;
1467
1468 unmap:
1469 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1470 free:
1471 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1472 destroy:
1473 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1474 ndmfree:
1475 return ENOMEM;
1476 }
1477
1478 void
1479 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1480 {
1481 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1482 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1483 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1484 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1485 }
1486
1487 /*
1488 * ioctl
1489 */
1490
1491 dev_type_open(nvmeopen);
1492 dev_type_close(nvmeclose);
1493 dev_type_ioctl(nvmeioctl);
1494
1495 const struct cdevsw nvme_cdevsw = {
1496 .d_open = nvmeopen,
1497 .d_close = nvmeclose,
1498 .d_read = noread,
1499 .d_write = nowrite,
1500 .d_ioctl = nvmeioctl,
1501 .d_stop = nostop,
1502 .d_tty = notty,
1503 .d_poll = nopoll,
1504 .d_mmap = nommap,
1505 .d_kqfilter = nokqfilter,
1506 .d_discard = nodiscard,
1507 .d_flag = D_OTHER,
1508 };
1509
1510 extern struct cfdriver nvme_cd;
1511
1512 /*
1513 * Accept an open operation on the control device.
1514 */
1515 int
1516 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1517 {
1518 struct nvme_softc *sc;
1519 int unit = minor(dev) / 0x10000;
1520 int nsid = minor(dev) & 0xffff;
1521 int nsidx;
1522
1523 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1524 return ENXIO;
1525 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1526 return ENXIO;
1527
1528 if (nsid == 0) {
1529 /* controller */
1530 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1531 return EBUSY;
1532 SET(sc->sc_flags, NVME_F_OPEN);
1533 } else {
1534 /* namespace */
1535 nsidx = nsid - 1;
1536 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1537 return ENXIO;
1538 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1539 return EBUSY;
1540 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1541 }
1542 return 0;
1543 }
1544
1545 /*
1546 * Accept the last close on the control device.
1547 */
1548 int
1549 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1550 {
1551 struct nvme_softc *sc;
1552 int unit = minor(dev) / 0x10000;
1553 int nsid = minor(dev) & 0xffff;
1554 int nsidx;
1555
1556 sc = device_lookup_private(&nvme_cd, unit);
1557 if (sc == NULL)
1558 return ENXIO;
1559
1560 if (nsid == 0) {
1561 /* controller */
1562 CLR(sc->sc_flags, NVME_F_OPEN);
1563 } else {
1564 /* namespace */
1565 nsidx = nsid - 1;
1566 if (nsidx >= sc->sc_nn)
1567 return ENXIO;
1568 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1569 }
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Handle control operations.
1576 */
1577 int
1578 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1579 {
1580 struct nvme_softc *sc;
1581 int unit = minor(dev) / 0x10000;
1582 int nsid = minor(dev) & 0xffff;
1583 struct nvme_pt_command *pt;
1584
1585 sc = device_lookup_private(&nvme_cd, unit);
1586 if (sc == NULL)
1587 return ENXIO;
1588
1589 switch (cmd) {
1590 case NVME_PASSTHROUGH_CMD:
1591 pt = data;
1592 return nvme_command_passthrough(sc, data,
1593 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1594 }
1595
1596 return ENOTTY;
1597 }
1598