Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.14
      1 /*	$NetBSD: nvme.c,v 1.14 2016/09/27 03:33:32 pgoyette Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.14 2016/09/27 03:33:32 pgoyette Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 128;
     44 int nvme_ioq_size = 1024;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 static void	nvme_version(struct nvme_softc *, uint32_t);
     54 #ifdef NVME_DEBUG
     55 static void	nvme_dumpregs(struct nvme_softc *);
     56 #endif
     57 static int	nvme_identify(struct nvme_softc *, u_int);
     58 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     59 		    void *);
     60 
     61 static int	nvme_ccbs_alloc(struct nvme_queue *, u_int);
     62 static void	nvme_ccbs_free(struct nvme_queue *);
     63 
     64 static struct nvme_ccb *
     65 		nvme_ccb_get(struct nvme_queue *);
     66 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     67 
     68 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     69 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     70 		    struct nvme_ccb *, void *), int);
     71 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     72 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     73 		    struct nvme_cqe *);
     74 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 
     78 static struct nvme_queue *
     79 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     80 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     81 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     82 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     83 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     84 		    struct nvme_ccb *, void *));
     85 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     86 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     87 
     88 static int	nvme_dmamem_alloc(struct nvme_softc *, size_t,
     89 		    struct nvme_dmamem *);
     90 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     91 
     92 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     93 		    void *);
     94 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     95 		    struct nvme_cqe *);
     96 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     97 		    void *);
     98 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
     99 		    struct nvme_cqe *);
    100 
    101 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    102 		    void *);
    103 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    104 		    struct nvme_cqe *);
    105 static int	nvme_command_passthrough(struct nvme_softc *,
    106 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    107 
    108 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    109 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    110 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    111 #define NVME_TIMO_SY		60	/* sync cache timeout */
    112 
    113 #define nvme_read4(_s, _r) \
    114 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    115 #define nvme_write4(_s, _r, _v) \
    116 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    117 #ifdef __LP64__
    118 #define nvme_read8(_s, _r) \
    119 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
    120 #define nvme_write8(_s, _r, _v) \
    121 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    122 #else /* __LP64__ */
    123 static inline uint64_t
    124 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    125 {
    126 	uint64_t v;
    127 	uint32_t *a = (uint32_t *)&v;
    128 
    129 #if _BYTE_ORDER == _LITTLE_ENDIAN
    130 	a[0] = nvme_read4(sc, r);
    131 	a[1] = nvme_read4(sc, r + 4);
    132 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    133 	a[1] = nvme_read4(sc, r);
    134 	a[0] = nvme_read4(sc, r + 4);
    135 #endif
    136 
    137 	return v;
    138 }
    139 
    140 static inline void
    141 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    142 {
    143 	uint32_t *a = (uint32_t *)&v;
    144 
    145 #if _BYTE_ORDER == _LITTLE_ENDIAN
    146 	nvme_write4(sc, r, a[0]);
    147 	nvme_write4(sc, r + 4, a[1]);
    148 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    149 	nvme_write4(sc, r, a[1]);
    150 	nvme_write4(sc, r + 4, a[0]);
    151 #endif
    152 }
    153 #endif /* __LP64__ */
    154 
    155 #define nvme_barrier(_s, _r, _l, _f) \
    156 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    157 #define nvme_dmamem_sync(sc, mem, ops) \
    158 	bus_dmamap_sync((sc)->sc_dmat, NVME_DMA_MAP(mem), \
    159 	    0, NVME_DMA_LEN(mem), (ops));
    160 
    161 static void
    162 nvme_version(struct nvme_softc *sc, uint32_t ver)
    163 {
    164 	const char *v = NULL;
    165 
    166 	switch (ver) {
    167 	case NVME_VS_1_0:
    168 		v = "1.0";
    169 		break;
    170 	case NVME_VS_1_1:
    171 		v = "1.1";
    172 		break;
    173 	case NVME_VS_1_2:
    174 		v = "1.2";
    175 		break;
    176 	default:
    177 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
    178 		return;
    179 	}
    180 
    181 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
    182 }
    183 
    184 #ifdef NVME_DEBUG
    185 static __used void
    186 nvme_dumpregs(struct nvme_softc *sc)
    187 {
    188 	uint64_t r8;
    189 	uint32_t r4;
    190 
    191 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    192 	r8 = nvme_read8(sc, NVME_CAP);
    193 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    194 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    195 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    196 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    197 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    198 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    199 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    200 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    201 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    202 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    203 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    204 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    205 
    206 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    207 
    208 	r4 = nvme_read4(sc, NVME_CC);
    209 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    210 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    211 	    (1 << NVME_CC_IOCQES_R(r4)));
    212 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    213 	    (1 << NVME_CC_IOSQES_R(r4)));
    214 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    215 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    216 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    217 	    (1 << NVME_CC_MPS_R(r4)));
    218 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    219 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    220 
    221 	r4 = nvme_read4(sc, NVME_CSTS);
    222 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    223 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    224 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    225 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    226 
    227 	r4 = nvme_read4(sc, NVME_AQA);
    228 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    229 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    230 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    231 
    232 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    233 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    234 #undef	DEVNAME
    235 }
    236 #endif	/* NVME_DEBUG */
    237 
    238 static int
    239 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    240 {
    241 	u_int i = 0;
    242 	uint32_t cc;
    243 
    244 	cc = nvme_read4(sc, NVME_CC);
    245 	if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
    246 		aprint_error_dev(sc->sc_dev,
    247 		    "controller enabled status expected %d, found to be %d\n",
    248 		    (rdy != 0), ((cc & NVME_CC_EN) != 0));
    249 		return ENXIO;
    250 	}
    251 
    252 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    253 		if (i++ > sc->sc_rdy_to)
    254 			return ENXIO;
    255 
    256 		delay(1000);
    257 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    258 	}
    259 
    260 	return 0;
    261 }
    262 
    263 static int
    264 nvme_enable(struct nvme_softc *sc, u_int mps)
    265 {
    266 	uint32_t cc, csts;
    267 
    268 	cc = nvme_read4(sc, NVME_CC);
    269 	csts = nvme_read4(sc, NVME_CSTS);
    270 
    271 	if (ISSET(cc, NVME_CC_EN)) {
    272 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
    273 
    274 		if (ISSET(csts, NVME_CSTS_RDY))
    275 			return 1;
    276 
    277 		goto waitready;
    278 	}
    279 
    280 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    281 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    282 	delay(5000);
    283 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    284 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    285 	delay(5000);
    286 
    287 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    288 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    289 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    290 	delay(5000);
    291 
    292 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    293 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    294 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    295 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    296 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    297 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    298 	SET(cc, NVME_CC_MPS(mps));
    299 	SET(cc, NVME_CC_EN);
    300 
    301 	nvme_write4(sc, NVME_CC, cc);
    302 	nvme_barrier(sc, 0, sc->sc_ios,
    303 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    304 	delay(5000);
    305 
    306     waitready:
    307 	return nvme_ready(sc, NVME_CSTS_RDY);
    308 }
    309 
    310 static int
    311 nvme_disable(struct nvme_softc *sc)
    312 {
    313 	uint32_t cc, csts;
    314 
    315 	cc = nvme_read4(sc, NVME_CC);
    316 	csts = nvme_read4(sc, NVME_CSTS);
    317 
    318 	if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
    319 		nvme_ready(sc, NVME_CSTS_RDY);
    320 
    321 	CLR(cc, NVME_CC_EN);
    322 
    323 	nvme_write4(sc, NVME_CC, cc);
    324 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    325 
    326 	delay(5000);
    327 
    328 	return nvme_ready(sc, 0);
    329 }
    330 
    331 int
    332 nvme_attach(struct nvme_softc *sc)
    333 {
    334 	uint64_t cap;
    335 	uint32_t reg;
    336 	u_int dstrd;
    337 	u_int mps = PAGE_SHIFT;
    338 	int adminq_entries = nvme_adminq_size;
    339 	int ioq_entries = nvme_ioq_size;
    340 	int i;
    341 
    342 	reg = nvme_read4(sc, NVME_VS);
    343 	if (reg == 0xffffffff) {
    344 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    345 		return 1;
    346 	}
    347 
    348 	nvme_version(sc, reg);
    349 
    350 	cap = nvme_read8(sc, NVME_CAP);
    351 	dstrd = NVME_CAP_DSTRD(cap);
    352 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    353 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    354 		    "is greater than CPU page size %u\n",
    355 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    356 		return 1;
    357 	}
    358 	if (NVME_CAP_MPSMAX(cap) < mps)
    359 		mps = NVME_CAP_MPSMAX(cap);
    360 
    361 	/* set initial values to be used for admin queue during probe */
    362 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    363 	sc->sc_mps = 1 << mps;
    364 	sc->sc_mdts = MAXPHYS;
    365 	sc->sc_max_sgl = 2;
    366 
    367 	if (nvme_disable(sc) != 0) {
    368 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    369 		return 1;
    370 	}
    371 
    372 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    373 	if (sc->sc_admin_q == NULL) {
    374 		aprint_error_dev(sc->sc_dev,
    375 		    "unable to allocate admin queue\n");
    376 		return 1;
    377 	}
    378 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    379 		goto free_admin_q;
    380 
    381 	if (nvme_enable(sc, mps) != 0) {
    382 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    383 		goto disestablish_admin_q;
    384 	}
    385 
    386 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    387 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    388 		goto disable;
    389 	}
    390 
    391 	/* we know how big things are now */
    392 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    393 
    394 	/* reallocate ccbs of admin queue with new max sgl. */
    395 	nvme_ccbs_free(sc->sc_admin_q);
    396 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    397 
    398 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    399 	if (sc->sc_q == NULL) {
    400 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    401 		goto disable;
    402 	}
    403 	for (i = 0; i < sc->sc_nq; i++) {
    404 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    405 		if (sc->sc_q[i] == NULL) {
    406 			aprint_error_dev(sc->sc_dev,
    407 			    "unable to allocate io queue\n");
    408 			goto free_q;
    409 		}
    410 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    411 			aprint_error_dev(sc->sc_dev,
    412 			    "unable to create io queue\n");
    413 			nvme_q_free(sc, sc->sc_q[i]);
    414 			goto free_q;
    415 		}
    416 	}
    417 
    418 	if (!sc->sc_use_mq)
    419 		nvme_write4(sc, NVME_INTMC, 1);
    420 
    421 	/* probe subdevices */
    422 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    423 	    KM_SLEEP);
    424 	if (sc->sc_namespaces == NULL)
    425 		goto free_q;
    426 	nvme_rescan(sc->sc_dev, "nvme", &i);
    427 
    428 	return 0;
    429 
    430 free_q:
    431 	while (--i >= 0) {
    432 		nvme_q_delete(sc, sc->sc_q[i]);
    433 		nvme_q_free(sc, sc->sc_q[i]);
    434 	}
    435 disable:
    436 	nvme_disable(sc);
    437 disestablish_admin_q:
    438 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    439 free_admin_q:
    440 	nvme_q_free(sc, sc->sc_admin_q);
    441 
    442 	return 1;
    443 }
    444 
    445 int
    446 nvme_rescan(device_t self, const char *attr, const int *flags)
    447 {
    448 	int i;
    449 	struct nvme_softc *sc = device_private(self);
    450 	struct nvme_attach_args naa;
    451 
    452 	for (i = 0; i < sc->sc_nn; i++) {
    453 		if (sc->sc_namespaces[i].dev)
    454 			continue;
    455 		memset(&naa, 0, sizeof(naa));
    456 		naa.naa_nsid = i + 1;
    457 		naa.naa_qentries = nvme_ioq_size;
    458 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    459 		    nvme_print);
    460 	}
    461 	return 0;
    462 }
    463 
    464 static int
    465 nvme_print(void *aux, const char *pnp)
    466 {
    467 	struct nvme_attach_args *naa = aux;
    468 
    469 	if (pnp)
    470 		aprint_normal("at %s", pnp);
    471 
    472 	if (naa->naa_nsid > 0)
    473 		aprint_normal(" nsid %d", naa->naa_nsid);
    474 
    475 	return UNCONF;
    476 }
    477 
    478 int
    479 nvme_detach(struct nvme_softc *sc, int flags)
    480 {
    481 	int i, error;
    482 
    483 	error = config_detach_children(sc->sc_dev, flags);
    484 	if (error)
    485 		return error;
    486 
    487 	error = nvme_shutdown(sc);
    488 	if (error)
    489 		return error;
    490 
    491 	/* from now on we are committed to detach, following will never fail */
    492 	for (i = 0; i < sc->sc_nq; i++)
    493 		nvme_q_free(sc, sc->sc_q[i]);
    494 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    495 	nvme_q_free(sc, sc->sc_admin_q);
    496 
    497 	return 0;
    498 }
    499 
    500 static int
    501 nvme_shutdown(struct nvme_softc *sc)
    502 {
    503 	uint32_t cc, csts;
    504 	bool disabled = false;
    505 	int i;
    506 
    507 	if (!sc->sc_use_mq)
    508 		nvme_write4(sc, NVME_INTMS, 1);
    509 
    510 	for (i = 0; i < sc->sc_nq; i++) {
    511 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    512 			aprint_error_dev(sc->sc_dev,
    513 			    "unable to delete io queue %d, disabling\n", i + 1);
    514 			disabled = true;
    515 		}
    516 	}
    517 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    518 	if (disabled)
    519 		goto disable;
    520 
    521 	cc = nvme_read4(sc, NVME_CC);
    522 	CLR(cc, NVME_CC_SHN_MASK);
    523 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    524 	nvme_write4(sc, NVME_CC, cc);
    525 
    526 	for (i = 0; i < 4000; i++) {
    527 		nvme_barrier(sc, 0, sc->sc_ios,
    528 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    529 		csts = nvme_read4(sc, NVME_CSTS);
    530 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    531 			return 0;
    532 
    533 		delay(1000);
    534 	}
    535 
    536 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    537 
    538 disable:
    539 	nvme_disable(sc);
    540 	return 0;
    541 }
    542 
    543 void
    544 nvme_childdet(device_t self, device_t child)
    545 {
    546 	struct nvme_softc *sc = device_private(self);
    547 	int i;
    548 
    549 	for (i = 0; i < sc->sc_nn; i++) {
    550 		if (sc->sc_namespaces[i].dev == child) {
    551 			/* Already freed ns->ident. */
    552 			sc->sc_namespaces[i].dev = NULL;
    553 			break;
    554 		}
    555 	}
    556 }
    557 
    558 int
    559 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    560 {
    561 	struct nvme_sqe sqe;
    562 	struct nvm_identify_namespace *identify;
    563 	struct nvme_dmamem mem;
    564 	struct nvme_ccb *ccb;
    565 	struct nvme_namespace *ns;
    566 	int error;
    567 
    568 	KASSERT(nsid > 0);
    569 
    570 	ccb = nvme_ccb_get(sc->sc_admin_q);
    571 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    572 
    573 	error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
    574 	if (error)
    575 		return error;
    576 
    577 	memset(&sqe, 0, sizeof(sqe));
    578 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    579 	htolem32(&sqe.nsid, nsid);
    580 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    581 	htolem32(&sqe.cdw10, 0);
    582 
    583 	ccb->ccb_done = nvme_empty_done;
    584 	ccb->ccb_cookie = &sqe;
    585 
    586 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    587 	error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill,
    588 	    NVME_TIMO_IDENT);
    589 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    590 
    591 	nvme_ccb_put(sc->sc_admin_q, ccb);
    592 
    593 	if (error != 0) {
    594 		error = EIO;
    595 		goto done;
    596 	}
    597 
    598 	/* commit */
    599 
    600 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    601 	memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    602 
    603 	ns = nvme_ns_get(sc, nsid);
    604 	KASSERT(ns);
    605 	ns->ident = identify;
    606 
    607 done:
    608 	nvme_dmamem_free(sc, &mem);
    609 
    610 	return error;
    611 }
    612 
    613 int
    614 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    615     struct buf *bp, void *data, size_t datasize,
    616     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    617 {
    618 	struct nvme_queue *q = nvme_get_q(sc);
    619 	struct nvme_ccb *ccb;
    620 	bus_dmamap_t dmap;
    621 	int i, error;
    622 
    623 	ccb = nvme_ccb_get(q);
    624 	if (ccb == NULL)
    625 		return EAGAIN;
    626 
    627 	ccb->ccb_done = nvme_ns_io_done;
    628 	ccb->ccb_cookie = cookie;
    629 
    630 	/* namespace context */
    631 	ccb->nnc_nsid = nsid;
    632 	ccb->nnc_flags = flags;
    633 	ccb->nnc_buf = bp;
    634 	ccb->nnc_datasize = datasize;
    635 	ccb->nnc_secsize = secsize;
    636 	ccb->nnc_blkno = blkno;
    637 	ccb->nnc_done = nnc_done;
    638 
    639 	dmap = ccb->ccb_dmamap;
    640 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    641 	    datasize, NULL,
    642 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    643 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    644 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    645 	      BUS_DMA_READ : BUS_DMA_WRITE));
    646 	if (error) {
    647 		nvme_ccb_put(q, ccb);
    648 		return error;
    649 	}
    650 
    651 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    652 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    653 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    654 
    655 	if (dmap->dm_nsegs > 2) {
    656 		for (i = 1; i < dmap->dm_nsegs; i++) {
    657 			htolem64(&ccb->ccb_prpl[i - 1],
    658 			    dmap->dm_segs[i].ds_addr);
    659 		}
    660 		bus_dmamap_sync(sc->sc_dmat,
    661 		    NVME_DMA_MAP(q->q_ccb_prpls),
    662 		    ccb->ccb_prpl_off,
    663 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    664 		    BUS_DMASYNC_PREWRITE);
    665 	}
    666 
    667 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    668 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    669 			return EIO;
    670 		return 0;
    671 	}
    672 
    673 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    674 	return 0;
    675 }
    676 
    677 static void
    678 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    679 {
    680 	struct nvme_sqe_io *sqe = slot;
    681 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    682 
    683 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    684 	    NVM_CMD_READ : NVM_CMD_WRITE;
    685 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    686 
    687 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    688 	switch (dmap->dm_nsegs) {
    689 	case 1:
    690 		break;
    691 	case 2:
    692 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    693 		break;
    694 	default:
    695 		/* the prp list is already set up and synced */
    696 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    697 		break;
    698 	}
    699 
    700 	htolem64(&sqe->slba, ccb->nnc_blkno);
    701 
    702 	/* guaranteed by upper layers, but check just in case */
    703 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    704 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    705 }
    706 
    707 static void
    708 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    709     struct nvme_cqe *cqe)
    710 {
    711 	struct nvme_softc *sc = q->q_sc;
    712 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    713 	void *nnc_cookie = ccb->ccb_cookie;
    714 	nvme_nnc_done nnc_done = ccb->nnc_done;
    715 	struct buf *bp = ccb->nnc_buf;
    716 
    717 	if (dmap->dm_nsegs > 2) {
    718 		bus_dmamap_sync(sc->sc_dmat,
    719 		    NVME_DMA_MAP(q->q_ccb_prpls),
    720 		    ccb->ccb_prpl_off,
    721 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    722 		    BUS_DMASYNC_POSTWRITE);
    723 	}
    724 
    725 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    726 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    727 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    728 
    729 	bus_dmamap_unload(sc->sc_dmat, dmap);
    730 	nvme_ccb_put(q, ccb);
    731 
    732 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
    733 }
    734 
    735 int
    736 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    737     int flags, nvme_nnc_done nnc_done)
    738 {
    739 	struct nvme_queue *q = nvme_get_q(sc);
    740 	struct nvme_ccb *ccb;
    741 
    742 	ccb = nvme_ccb_get(q);
    743 	if (ccb == NULL)
    744 		return EAGAIN;
    745 
    746 	ccb->ccb_done = nvme_ns_sync_done;
    747 	ccb->ccb_cookie = cookie;
    748 
    749 	/* namespace context */
    750 	ccb->nnc_nsid = nsid;
    751 	ccb->nnc_flags = flags;
    752 	ccb->nnc_done = nnc_done;
    753 
    754 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    755 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    756 			return EIO;
    757 		return 0;
    758 	}
    759 
    760 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    761 	return 0;
    762 }
    763 
    764 static void
    765 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    766 {
    767 	struct nvme_sqe *sqe = slot;
    768 
    769 	sqe->opcode = NVM_CMD_FLUSH;
    770 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    771 }
    772 
    773 static void
    774 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    775     struct nvme_cqe *cqe)
    776 {
    777 	void *cookie = ccb->ccb_cookie;
    778 	nvme_nnc_done nnc_done = ccb->nnc_done;
    779 
    780 	nvme_ccb_put(q, ccb);
    781 
    782 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
    783 }
    784 
    785 void
    786 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    787 {
    788 	struct nvme_namespace *ns;
    789 	struct nvm_identify_namespace *identify;
    790 
    791 	ns = nvme_ns_get(sc, nsid);
    792 	KASSERT(ns);
    793 
    794 	identify = ns->ident;
    795 	ns->ident = NULL;
    796 	if (identify != NULL)
    797 		kmem_free(identify, sizeof(*identify));
    798 }
    799 
    800 static void
    801 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    802 {
    803 	struct nvme_softc *sc = q->q_sc;
    804 	struct nvme_sqe *sqe = slot;
    805 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    806 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    807 	int i;
    808 
    809 	sqe->opcode = pt->cmd.opcode;
    810 	htolem32(&sqe->nsid, pt->cmd.nsid);
    811 
    812 	if (pt->buf != NULL && pt->len > 0) {
    813 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    814 		switch (dmap->dm_nsegs) {
    815 		case 1:
    816 			break;
    817 		case 2:
    818 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    819 			break;
    820 		default:
    821 			for (i = 1; i < dmap->dm_nsegs; i++) {
    822 				htolem64(&ccb->ccb_prpl[i - 1],
    823 				    dmap->dm_segs[i].ds_addr);
    824 			}
    825 			bus_dmamap_sync(sc->sc_dmat,
    826 			    NVME_DMA_MAP(q->q_ccb_prpls),
    827 			    ccb->ccb_prpl_off,
    828 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    829 			    BUS_DMASYNC_PREWRITE);
    830 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    831 			break;
    832 		}
    833 	}
    834 
    835 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    836 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    837 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    838 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    839 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    840 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    841 }
    842 
    843 static void
    844 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    845 {
    846 	struct nvme_softc *sc = q->q_sc;
    847 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    848 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    849 
    850 	if (pt->buf != NULL && pt->len > 0) {
    851 		if (dmap->dm_nsegs > 2) {
    852 			bus_dmamap_sync(sc->sc_dmat,
    853 			    NVME_DMA_MAP(q->q_ccb_prpls),
    854 			    ccb->ccb_prpl_off,
    855 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    856 			    BUS_DMASYNC_POSTWRITE);
    857 		}
    858 
    859 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    860 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    861 		bus_dmamap_unload(sc->sc_dmat, dmap);
    862 	}
    863 
    864 	pt->cpl.cdw0 = cqe->cdw0;
    865 	pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
    866 }
    867 
    868 static int
    869 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    870     uint16_t nsid, struct lwp *l, bool is_adminq)
    871 {
    872 	struct nvme_queue *q;
    873 	struct nvme_ccb *ccb;
    874 	void *buf = NULL;
    875 	int error;
    876 
    877 	/* limit command size to maximum data transfer size */
    878 	if ((pt->buf == NULL && pt->len > 0) ||
    879 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
    880 		return EINVAL;
    881 
    882 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    883 	ccb = nvme_ccb_get(q);
    884 	if (ccb == NULL)
    885 		return EBUSY;
    886 
    887 	if (pt->buf != NULL) {
    888 		KASSERT(pt->len > 0);
    889 		buf = kmem_alloc(pt->len, KM_SLEEP);
    890 		if (buf == NULL) {
    891 			error = ENOMEM;
    892 			goto ccb_put;
    893 		}
    894 		if (!pt->is_read) {
    895 			error = copyin(pt->buf, buf, pt->len);
    896 			if (error)
    897 				goto kmem_free;
    898 		}
    899 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    900 		    pt->len, NULL,
    901 		    BUS_DMA_WAITOK |
    902 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    903 		if (error)
    904 			goto kmem_free;
    905 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    906 		    0, ccb->ccb_dmamap->dm_mapsize,
    907 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    908 	}
    909 
    910 	ccb->ccb_done = nvme_pt_done;
    911 	ccb->ccb_cookie = pt;
    912 
    913 	pt->cmd.nsid = nsid;
    914 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
    915 		error = EIO;
    916 		goto out;
    917 	}
    918 
    919 	error = 0;
    920 out:
    921 	if (buf != NULL) {
    922 		if (error == 0 && pt->is_read)
    923 			error = copyout(buf, pt->buf, pt->len);
    924 kmem_free:
    925 		kmem_free(buf, pt->len);
    926 	}
    927 ccb_put:
    928 	nvme_ccb_put(q, ccb);
    929 	return error;
    930 }
    931 
    932 static void
    933 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    934     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    935 {
    936 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    937 	uint32_t tail;
    938 
    939 	mutex_enter(&q->q_sq_mtx);
    940 	tail = q->q_sq_tail;
    941 	if (++q->q_sq_tail >= q->q_entries)
    942 		q->q_sq_tail = 0;
    943 
    944 	sqe += tail;
    945 
    946 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    947 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
    948 	memset(sqe, 0, sizeof(*sqe));
    949 	(*fill)(q, ccb, sqe);
    950 	sqe->cid = ccb->ccb_id;
    951 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    952 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
    953 
    954 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
    955 	mutex_exit(&q->q_sq_mtx);
    956 }
    957 
    958 struct nvme_poll_state {
    959 	struct nvme_sqe s;
    960 	struct nvme_cqe c;
    961 };
    962 
    963 static int
    964 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    965     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
    966 {
    967 	struct nvme_poll_state state;
    968 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
    969 	void *cookie;
    970 	uint16_t flags;
    971 	int step = 10;
    972 	int maxloop = timo_sec * 1000000 / step;
    973 	int error = 0;
    974 
    975 	memset(&state, 0, sizeof(state));
    976 	(*fill)(q, ccb, &state.s);
    977 
    978 	done = ccb->ccb_done;
    979 	cookie = ccb->ccb_cookie;
    980 
    981 	ccb->ccb_done = nvme_poll_done;
    982 	ccb->ccb_cookie = &state;
    983 
    984 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
    985 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
    986 		if (nvme_q_complete(sc, q) == 0)
    987 			delay(step);
    988 
    989 		if (timo_sec >= 0 && --maxloop <= 0) {
    990 			error = ETIMEDOUT;
    991 			break;
    992 		}
    993 	}
    994 
    995 	ccb->ccb_cookie = cookie;
    996 	done(q, ccb, &state.c);
    997 
    998 	if (error == 0) {
    999 		flags = lemtoh16(&state.c.flags);
   1000 		return flags & ~NVME_CQE_PHASE;
   1001 	} else {
   1002 		return 1;
   1003 	}
   1004 }
   1005 
   1006 static void
   1007 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1008 {
   1009 	struct nvme_sqe *sqe = slot;
   1010 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1011 
   1012 	*sqe = state->s;
   1013 }
   1014 
   1015 static void
   1016 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1017     struct nvme_cqe *cqe)
   1018 {
   1019 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1020 
   1021 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
   1022 	state->c = *cqe;
   1023 }
   1024 
   1025 static void
   1026 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1027 {
   1028 	struct nvme_sqe *src = ccb->ccb_cookie;
   1029 	struct nvme_sqe *dst = slot;
   1030 
   1031 	*dst = *src;
   1032 }
   1033 
   1034 static void
   1035 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1036     struct nvme_cqe *cqe)
   1037 {
   1038 }
   1039 
   1040 static int
   1041 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1042 {
   1043 	struct nvme_ccb *ccb;
   1044 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1045 	uint16_t flags;
   1046 	int rv = 0;
   1047 
   1048 	mutex_enter(&q->q_cq_mtx);
   1049 
   1050 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1051 	for (;;) {
   1052 		cqe = &ring[q->q_cq_head];
   1053 		flags = lemtoh16(&cqe->flags);
   1054 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1055 			break;
   1056 
   1057 		ccb = &q->q_ccbs[cqe->cid];
   1058 
   1059 		if (++q->q_cq_head >= q->q_entries) {
   1060 			q->q_cq_head = 0;
   1061 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1062 		}
   1063 
   1064 		rv = 1;
   1065 
   1066 		/*
   1067 		 * Unlock the mutex before calling the ccb_done callback
   1068 		 * and re-lock afterwards. The callback triggers lddone()
   1069 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1070 		 * Unlock/relock avoids possibility of deadlock.
   1071 		 */
   1072 		mutex_exit(&q->q_cq_mtx);
   1073 		ccb->ccb_done(q, ccb, cqe);
   1074 		mutex_enter(&q->q_cq_mtx);
   1075 	}
   1076 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1077 
   1078 	if (rv)
   1079 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1080 
   1081 	mutex_exit(&q->q_cq_mtx);
   1082 
   1083 	return rv;
   1084 }
   1085 
   1086 static int
   1087 nvme_identify(struct nvme_softc *sc, u_int mps)
   1088 {
   1089 	char sn[41], mn[81], fr[17];
   1090 	struct nvm_identify_controller *identify;
   1091 	struct nvme_dmamem mem;
   1092 	struct nvme_ccb *ccb;
   1093 	u_int mdts;
   1094 	int error;
   1095 
   1096 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1097 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1098 
   1099 	error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
   1100 	if (error)
   1101 		return error;
   1102 
   1103 	ccb->ccb_done = nvme_empty_done;
   1104 	ccb->ccb_cookie = &mem;
   1105 
   1106 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1107 	error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1108 	    NVME_TIMO_IDENT);
   1109 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1110 
   1111 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1112 
   1113 	if (error != 0)
   1114 		goto done;
   1115 
   1116 	identify = NVME_DMA_KVA(mem);
   1117 
   1118 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1119 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1120 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1121 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1122 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1123 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1124 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1125 	    sn);
   1126 
   1127 	if (identify->mdts > 0) {
   1128 		mdts = (1 << identify->mdts) * (1 << mps);
   1129 		if (mdts < sc->sc_mdts)
   1130 			sc->sc_mdts = mdts;
   1131 	}
   1132 
   1133 	sc->sc_nn = lemtoh32(&identify->nn);
   1134 
   1135 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1136 
   1137 done:
   1138 	nvme_dmamem_free(sc, &mem);
   1139 
   1140 	return error;
   1141 }
   1142 
   1143 static int
   1144 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1145 {
   1146 	struct nvme_sqe_q sqe;
   1147 	struct nvme_ccb *ccb;
   1148 	int rv;
   1149 
   1150 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1151 		return 1;
   1152 
   1153 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1154 	KASSERT(ccb != NULL);
   1155 
   1156 	ccb->ccb_done = nvme_empty_done;
   1157 	ccb->ccb_cookie = &sqe;
   1158 
   1159 	memset(&sqe, 0, sizeof(sqe));
   1160 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1161 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1162 	htolem16(&sqe.qsize, q->q_entries - 1);
   1163 	htolem16(&sqe.qid, q->q_id);
   1164 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1165 	if (sc->sc_use_mq)
   1166 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1167 
   1168 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1169 	if (rv != 0)
   1170 		goto fail;
   1171 
   1172 	ccb->ccb_done = nvme_empty_done;
   1173 	ccb->ccb_cookie = &sqe;
   1174 
   1175 	memset(&sqe, 0, sizeof(sqe));
   1176 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1177 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1178 	htolem16(&sqe.qsize, q->q_entries - 1);
   1179 	htolem16(&sqe.qid, q->q_id);
   1180 	htolem16(&sqe.cqid, q->q_id);
   1181 	sqe.qflags = NVM_SQE_Q_PC;
   1182 
   1183 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1184 	if (rv != 0)
   1185 		goto fail;
   1186 
   1187 fail:
   1188 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1189 	return rv;
   1190 }
   1191 
   1192 static int
   1193 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1194 {
   1195 	struct nvme_sqe_q sqe;
   1196 	struct nvme_ccb *ccb;
   1197 	int rv;
   1198 
   1199 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1200 	KASSERT(ccb != NULL);
   1201 
   1202 	ccb->ccb_done = nvme_empty_done;
   1203 	ccb->ccb_cookie = &sqe;
   1204 
   1205 	memset(&sqe, 0, sizeof(sqe));
   1206 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1207 	htolem16(&sqe.qid, q->q_id);
   1208 
   1209 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1210 	if (rv != 0)
   1211 		goto fail;
   1212 
   1213 	ccb->ccb_done = nvme_empty_done;
   1214 	ccb->ccb_cookie = &sqe;
   1215 
   1216 	memset(&sqe, 0, sizeof(sqe));
   1217 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1218 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1219 	htolem16(&sqe.qid, q->q_id);
   1220 
   1221 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1222 	if (rv != 0)
   1223 		goto fail;
   1224 
   1225 fail:
   1226 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1227 
   1228 	if (rv == 0 && sc->sc_use_mq) {
   1229 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1230 			rv = 1;
   1231 	}
   1232 
   1233 	return rv;
   1234 }
   1235 
   1236 static void
   1237 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1238 {
   1239 	struct nvme_sqe *sqe = slot;
   1240 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1241 
   1242 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1243 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(*mem));
   1244 	htolem32(&sqe->cdw10, 1);
   1245 }
   1246 
   1247 static int
   1248 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
   1249 {
   1250 	struct nvme_softc *sc = q->q_sc;
   1251 	struct nvme_ccb *ccb;
   1252 	bus_addr_t off;
   1253 	uint64_t *prpl;
   1254 	u_int i;
   1255 	int error;
   1256 
   1257 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1258 	SIMPLEQ_INIT(&q->q_ccb_list);
   1259 
   1260 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1261 	if (q->q_ccbs == NULL)
   1262 		return 1;
   1263 
   1264 	q->q_nccbs = nccbs;
   1265 	error = nvme_dmamem_alloc(sc, sizeof(*prpl) * sc->sc_max_sgl * nccbs,
   1266 	    &q->q_ccb_prpls);
   1267 	if (error) {
   1268 		kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1269 		return error;
   1270 	}
   1271 
   1272 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1273 	off = 0;
   1274 
   1275 	for (i = 0; i < nccbs; i++) {
   1276 		ccb = &q->q_ccbs[i];
   1277 
   1278 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1279 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1280 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1281 		    &ccb->ccb_dmamap) != 0)
   1282 			goto free_maps;
   1283 
   1284 		ccb->ccb_id = i;
   1285 		ccb->ccb_prpl = prpl;
   1286 		ccb->ccb_prpl_off = off;
   1287 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1288 
   1289 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1290 
   1291 		prpl += sc->sc_max_sgl;
   1292 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1293 	}
   1294 
   1295 	return 0;
   1296 
   1297 free_maps:
   1298 	nvme_ccbs_free(q);
   1299 	return 1;
   1300 }
   1301 
   1302 static struct nvme_ccb *
   1303 nvme_ccb_get(struct nvme_queue *q)
   1304 {
   1305 	struct nvme_ccb *ccb;
   1306 
   1307 	mutex_enter(&q->q_ccb_mtx);
   1308 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1309 	if (ccb != NULL)
   1310 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1311 	mutex_exit(&q->q_ccb_mtx);
   1312 
   1313 	return ccb;
   1314 }
   1315 
   1316 static void
   1317 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1318 {
   1319 
   1320 	mutex_enter(&q->q_ccb_mtx);
   1321 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1322 	mutex_exit(&q->q_ccb_mtx);
   1323 }
   1324 
   1325 static void
   1326 nvme_ccbs_free(struct nvme_queue *q)
   1327 {
   1328 	struct nvme_softc *sc = q->q_sc;
   1329 	struct nvme_ccb *ccb;
   1330 
   1331 	mutex_enter(&q->q_ccb_mtx);
   1332 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1333 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1334 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1335 	}
   1336 	mutex_exit(&q->q_ccb_mtx);
   1337 
   1338 	nvme_dmamem_free(sc, &q->q_ccb_prpls);
   1339 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1340 	q->q_ccbs = NULL;
   1341 	mutex_destroy(&q->q_ccb_mtx);
   1342 }
   1343 
   1344 static struct nvme_queue *
   1345 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1346 {
   1347 	struct nvme_queue *q;
   1348 	int error;
   1349 
   1350 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1351 	if (q == NULL)
   1352 		return NULL;
   1353 
   1354 	q->q_sc = sc;
   1355 	error = nvme_dmamem_alloc(sc, sizeof(struct nvme_sqe) * entries,
   1356 	    &q->q_sq_dmamem);
   1357 	if (error)
   1358 		goto free;
   1359 
   1360 	error = nvme_dmamem_alloc(sc, sizeof(struct nvme_cqe) * entries,
   1361 	    &q->q_cq_dmamem);
   1362 	if (error)
   1363 		goto free_sq;
   1364 
   1365 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1366 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1367 
   1368 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1369 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1370 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1371 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1372 	q->q_id = id;
   1373 	q->q_entries = entries;
   1374 	q->q_sq_tail = 0;
   1375 	q->q_cq_head = 0;
   1376 	q->q_cq_phase = NVME_CQE_PHASE;
   1377 
   1378 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1379 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1380 
   1381 	if (nvme_ccbs_alloc(q, entries) != 0) {
   1382 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1383 		goto free_cq;
   1384 	}
   1385 
   1386 	return q;
   1387 
   1388 free_cq:
   1389 	nvme_dmamem_free(sc, &q->q_cq_dmamem);
   1390 free_sq:
   1391 	nvme_dmamem_free(sc, &q->q_sq_dmamem);
   1392 free:
   1393 	kmem_free(q, sizeof(*q));
   1394 
   1395 	return NULL;
   1396 }
   1397 
   1398 static void
   1399 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1400 {
   1401 	nvme_ccbs_free(q);
   1402 	mutex_destroy(&q->q_sq_mtx);
   1403 	mutex_destroy(&q->q_cq_mtx);
   1404 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1405 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1406 	nvme_dmamem_free(sc, &q->q_cq_dmamem);
   1407 	nvme_dmamem_free(sc, &q->q_sq_dmamem);
   1408 	kmem_free(q, sizeof(*q));
   1409 }
   1410 
   1411 int
   1412 nvme_intr(void *xsc)
   1413 {
   1414 	struct nvme_softc *sc = xsc;
   1415 	int rv = 0;
   1416 
   1417 	/*
   1418 	 * INTx is level triggered, controller deasserts the interrupt only
   1419 	 * when we advance command queue head via write to the doorbell.
   1420 	 */
   1421 	if (nvme_q_complete(sc, sc->sc_admin_q))
   1422 	        rv = 1;
   1423 	if (sc->sc_q != NULL)
   1424 	        if (nvme_q_complete(sc, sc->sc_q[0]))
   1425 	                rv = 1;
   1426 
   1427 	return rv;
   1428 }
   1429 
   1430 int
   1431 nvme_intr_msi(void *xq)
   1432 {
   1433 	struct nvme_queue *q = xq;
   1434 
   1435 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1436 	    && q->q_sc->sc_softih[q->q_id]);
   1437 
   1438 	/* MSI are edge triggered, so can handover processing to softint */
   1439 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1440 
   1441 	return 1;
   1442 }
   1443 
   1444 void
   1445 nvme_softintr_msi(void *xq)
   1446 {
   1447 	struct nvme_queue *q = xq;
   1448 	struct nvme_softc *sc = q->q_sc;
   1449 
   1450 	nvme_q_complete(sc, q);
   1451 }
   1452 
   1453 static int
   1454 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size, struct nvme_dmamem *ndm)
   1455 {
   1456 	int nsegs;
   1457 
   1458 	memset(ndm, 0, sizeof(*ndm));
   1459 	ndm->ndm_size = size;
   1460 
   1461 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1462 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1463 		goto ndmfree;
   1464 
   1465 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1466 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1467 		goto destroy;
   1468 
   1469 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1470 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1471 		goto free;
   1472 	memset(ndm->ndm_kva, 0, size);
   1473 
   1474 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1475 	    NULL, BUS_DMA_WAITOK) != 0)
   1476 		goto unmap;
   1477 
   1478 	return 0;
   1479 
   1480 unmap:
   1481 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1482 free:
   1483 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1484 destroy:
   1485 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1486 ndmfree:
   1487 	return ENOMEM;
   1488 }
   1489 
   1490 void
   1491 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1492 {
   1493 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1494 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1495 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1496 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1497 }
   1498 
   1499 /*
   1500  * ioctl
   1501  */
   1502 
   1503 dev_type_open(nvmeopen);
   1504 dev_type_close(nvmeclose);
   1505 dev_type_ioctl(nvmeioctl);
   1506 
   1507 const struct cdevsw nvme_cdevsw = {
   1508 	.d_open = nvmeopen,
   1509 	.d_close = nvmeclose,
   1510 	.d_read = noread,
   1511 	.d_write = nowrite,
   1512 	.d_ioctl = nvmeioctl,
   1513 	.d_stop = nostop,
   1514 	.d_tty = notty,
   1515 	.d_poll = nopoll,
   1516 	.d_mmap = nommap,
   1517 	.d_kqfilter = nokqfilter,
   1518 	.d_discard = nodiscard,
   1519 	.d_flag = D_OTHER,
   1520 };
   1521 
   1522 extern struct cfdriver nvme_cd;
   1523 
   1524 /*
   1525  * Accept an open operation on the control device.
   1526  */
   1527 int
   1528 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1529 {
   1530 	struct nvme_softc *sc;
   1531 	int unit = minor(dev) / 0x10000;
   1532 	int nsid = minor(dev) & 0xffff;
   1533 	int nsidx;
   1534 
   1535 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1536 		return ENXIO;
   1537 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1538 		return ENXIO;
   1539 
   1540 	if (nsid == 0) {
   1541 		/* controller */
   1542 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1543 			return EBUSY;
   1544 		SET(sc->sc_flags, NVME_F_OPEN);
   1545 	} else {
   1546 		/* namespace */
   1547 		nsidx = nsid - 1;
   1548 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1549 			return ENXIO;
   1550 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1551 			return EBUSY;
   1552 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1553 	}
   1554 	return 0;
   1555 }
   1556 
   1557 /*
   1558  * Accept the last close on the control device.
   1559  */
   1560 int
   1561 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1562 {
   1563 	struct nvme_softc *sc;
   1564 	int unit = minor(dev) / 0x10000;
   1565 	int nsid = minor(dev) & 0xffff;
   1566 	int nsidx;
   1567 
   1568 	sc = device_lookup_private(&nvme_cd, unit);
   1569 	if (sc == NULL)
   1570 		return ENXIO;
   1571 
   1572 	if (nsid == 0) {
   1573 		/* controller */
   1574 		CLR(sc->sc_flags, NVME_F_OPEN);
   1575 	} else {
   1576 		/* namespace */
   1577 		nsidx = nsid - 1;
   1578 		if (nsidx >= sc->sc_nn)
   1579 			return ENXIO;
   1580 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1581 	}
   1582 
   1583 	return 0;
   1584 }
   1585 
   1586 /*
   1587  * Handle control operations.
   1588  */
   1589 int
   1590 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1591 {
   1592 	struct nvme_softc *sc;
   1593 	int unit = minor(dev) / 0x10000;
   1594 	int nsid = minor(dev) & 0xffff;
   1595 	struct nvme_pt_command *pt;
   1596 
   1597 	sc = device_lookup_private(&nvme_cd, unit);
   1598 	if (sc == NULL)
   1599 		return ENXIO;
   1600 
   1601 	switch (cmd) {
   1602 	case NVME_PASSTHROUGH_CMD:
   1603 		pt = data;
   1604 		return nvme_command_passthrough(sc, data,
   1605 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1606 	}
   1607 
   1608 	return ENOTTY;
   1609 }
   1610