nvme.c revision 1.14 1 /* $NetBSD: nvme.c,v 1.14 2016/09/27 03:33:32 pgoyette Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.14 2016/09/27 03:33:32 pgoyette Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 1024;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, u_int);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *), int);
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static int nvme_dmamem_alloc(struct nvme_softc *, size_t,
89 struct nvme_dmamem *);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91
92 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
93 void *);
94 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
95 struct nvme_cqe *);
96 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
97 void *);
98 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
99 struct nvme_cqe *);
100
101 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
102 void *);
103 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105 static int nvme_command_passthrough(struct nvme_softc *,
106 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
107
108 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
109 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
110 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
111 #define NVME_TIMO_SY 60 /* sync cache timeout */
112
113 #define nvme_read4(_s, _r) \
114 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
115 #define nvme_write4(_s, _r, _v) \
116 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
117 #ifdef __LP64__
118 #define nvme_read8(_s, _r) \
119 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
120 #define nvme_write8(_s, _r, _v) \
121 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
122 #else /* __LP64__ */
123 static inline uint64_t
124 nvme_read8(struct nvme_softc *sc, bus_size_t r)
125 {
126 uint64_t v;
127 uint32_t *a = (uint32_t *)&v;
128
129 #if _BYTE_ORDER == _LITTLE_ENDIAN
130 a[0] = nvme_read4(sc, r);
131 a[1] = nvme_read4(sc, r + 4);
132 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
133 a[1] = nvme_read4(sc, r);
134 a[0] = nvme_read4(sc, r + 4);
135 #endif
136
137 return v;
138 }
139
140 static inline void
141 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
142 {
143 uint32_t *a = (uint32_t *)&v;
144
145 #if _BYTE_ORDER == _LITTLE_ENDIAN
146 nvme_write4(sc, r, a[0]);
147 nvme_write4(sc, r + 4, a[1]);
148 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
149 nvme_write4(sc, r, a[1]);
150 nvme_write4(sc, r + 4, a[0]);
151 #endif
152 }
153 #endif /* __LP64__ */
154
155 #define nvme_barrier(_s, _r, _l, _f) \
156 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
157 #define nvme_dmamem_sync(sc, mem, ops) \
158 bus_dmamap_sync((sc)->sc_dmat, NVME_DMA_MAP(mem), \
159 0, NVME_DMA_LEN(mem), (ops));
160
161 static void
162 nvme_version(struct nvme_softc *sc, uint32_t ver)
163 {
164 const char *v = NULL;
165
166 switch (ver) {
167 case NVME_VS_1_0:
168 v = "1.0";
169 break;
170 case NVME_VS_1_1:
171 v = "1.1";
172 break;
173 case NVME_VS_1_2:
174 v = "1.2";
175 break;
176 default:
177 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
178 return;
179 }
180
181 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
182 }
183
184 #ifdef NVME_DEBUG
185 static __used void
186 nvme_dumpregs(struct nvme_softc *sc)
187 {
188 uint64_t r8;
189 uint32_t r4;
190
191 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
192 r8 = nvme_read8(sc, NVME_CAP);
193 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
194 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
195 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
196 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
197 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
198 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
199 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
200 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
201 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
202 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
203 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
204 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
205
206 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
207
208 r4 = nvme_read4(sc, NVME_CC);
209 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
210 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
211 (1 << NVME_CC_IOCQES_R(r4)));
212 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
213 (1 << NVME_CC_IOSQES_R(r4)));
214 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
215 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
216 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
217 (1 << NVME_CC_MPS_R(r4)));
218 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
219 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
220
221 r4 = nvme_read4(sc, NVME_CSTS);
222 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
223 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
224 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
225 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
226
227 r4 = nvme_read4(sc, NVME_AQA);
228 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
229 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
230 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
231
232 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
233 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
234 #undef DEVNAME
235 }
236 #endif /* NVME_DEBUG */
237
238 static int
239 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
240 {
241 u_int i = 0;
242 uint32_t cc;
243
244 cc = nvme_read4(sc, NVME_CC);
245 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
246 aprint_error_dev(sc->sc_dev,
247 "controller enabled status expected %d, found to be %d\n",
248 (rdy != 0), ((cc & NVME_CC_EN) != 0));
249 return ENXIO;
250 }
251
252 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
253 if (i++ > sc->sc_rdy_to)
254 return ENXIO;
255
256 delay(1000);
257 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
258 }
259
260 return 0;
261 }
262
263 static int
264 nvme_enable(struct nvme_softc *sc, u_int mps)
265 {
266 uint32_t cc, csts;
267
268 cc = nvme_read4(sc, NVME_CC);
269 csts = nvme_read4(sc, NVME_CSTS);
270
271 if (ISSET(cc, NVME_CC_EN)) {
272 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
273
274 if (ISSET(csts, NVME_CSTS_RDY))
275 return 1;
276
277 goto waitready;
278 }
279
280 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
281 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
282 delay(5000);
283 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
284 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
285 delay(5000);
286
287 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
288 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
289 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
290 delay(5000);
291
292 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
293 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
294 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
295 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
296 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
297 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
298 SET(cc, NVME_CC_MPS(mps));
299 SET(cc, NVME_CC_EN);
300
301 nvme_write4(sc, NVME_CC, cc);
302 nvme_barrier(sc, 0, sc->sc_ios,
303 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
304 delay(5000);
305
306 waitready:
307 return nvme_ready(sc, NVME_CSTS_RDY);
308 }
309
310 static int
311 nvme_disable(struct nvme_softc *sc)
312 {
313 uint32_t cc, csts;
314
315 cc = nvme_read4(sc, NVME_CC);
316 csts = nvme_read4(sc, NVME_CSTS);
317
318 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
319 nvme_ready(sc, NVME_CSTS_RDY);
320
321 CLR(cc, NVME_CC_EN);
322
323 nvme_write4(sc, NVME_CC, cc);
324 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
325
326 delay(5000);
327
328 return nvme_ready(sc, 0);
329 }
330
331 int
332 nvme_attach(struct nvme_softc *sc)
333 {
334 uint64_t cap;
335 uint32_t reg;
336 u_int dstrd;
337 u_int mps = PAGE_SHIFT;
338 int adminq_entries = nvme_adminq_size;
339 int ioq_entries = nvme_ioq_size;
340 int i;
341
342 reg = nvme_read4(sc, NVME_VS);
343 if (reg == 0xffffffff) {
344 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
345 return 1;
346 }
347
348 nvme_version(sc, reg);
349
350 cap = nvme_read8(sc, NVME_CAP);
351 dstrd = NVME_CAP_DSTRD(cap);
352 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
353 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
354 "is greater than CPU page size %u\n",
355 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
356 return 1;
357 }
358 if (NVME_CAP_MPSMAX(cap) < mps)
359 mps = NVME_CAP_MPSMAX(cap);
360
361 /* set initial values to be used for admin queue during probe */
362 sc->sc_rdy_to = NVME_CAP_TO(cap);
363 sc->sc_mps = 1 << mps;
364 sc->sc_mdts = MAXPHYS;
365 sc->sc_max_sgl = 2;
366
367 if (nvme_disable(sc) != 0) {
368 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
369 return 1;
370 }
371
372 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
373 if (sc->sc_admin_q == NULL) {
374 aprint_error_dev(sc->sc_dev,
375 "unable to allocate admin queue\n");
376 return 1;
377 }
378 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
379 goto free_admin_q;
380
381 if (nvme_enable(sc, mps) != 0) {
382 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
383 goto disestablish_admin_q;
384 }
385
386 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
387 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
388 goto disable;
389 }
390
391 /* we know how big things are now */
392 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
393
394 /* reallocate ccbs of admin queue with new max sgl. */
395 nvme_ccbs_free(sc->sc_admin_q);
396 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
397
398 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
399 if (sc->sc_q == NULL) {
400 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
401 goto disable;
402 }
403 for (i = 0; i < sc->sc_nq; i++) {
404 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
405 if (sc->sc_q[i] == NULL) {
406 aprint_error_dev(sc->sc_dev,
407 "unable to allocate io queue\n");
408 goto free_q;
409 }
410 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
411 aprint_error_dev(sc->sc_dev,
412 "unable to create io queue\n");
413 nvme_q_free(sc, sc->sc_q[i]);
414 goto free_q;
415 }
416 }
417
418 if (!sc->sc_use_mq)
419 nvme_write4(sc, NVME_INTMC, 1);
420
421 /* probe subdevices */
422 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
423 KM_SLEEP);
424 if (sc->sc_namespaces == NULL)
425 goto free_q;
426 nvme_rescan(sc->sc_dev, "nvme", &i);
427
428 return 0;
429
430 free_q:
431 while (--i >= 0) {
432 nvme_q_delete(sc, sc->sc_q[i]);
433 nvme_q_free(sc, sc->sc_q[i]);
434 }
435 disable:
436 nvme_disable(sc);
437 disestablish_admin_q:
438 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
439 free_admin_q:
440 nvme_q_free(sc, sc->sc_admin_q);
441
442 return 1;
443 }
444
445 int
446 nvme_rescan(device_t self, const char *attr, const int *flags)
447 {
448 int i;
449 struct nvme_softc *sc = device_private(self);
450 struct nvme_attach_args naa;
451
452 for (i = 0; i < sc->sc_nn; i++) {
453 if (sc->sc_namespaces[i].dev)
454 continue;
455 memset(&naa, 0, sizeof(naa));
456 naa.naa_nsid = i + 1;
457 naa.naa_qentries = nvme_ioq_size;
458 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
459 nvme_print);
460 }
461 return 0;
462 }
463
464 static int
465 nvme_print(void *aux, const char *pnp)
466 {
467 struct nvme_attach_args *naa = aux;
468
469 if (pnp)
470 aprint_normal("at %s", pnp);
471
472 if (naa->naa_nsid > 0)
473 aprint_normal(" nsid %d", naa->naa_nsid);
474
475 return UNCONF;
476 }
477
478 int
479 nvme_detach(struct nvme_softc *sc, int flags)
480 {
481 int i, error;
482
483 error = config_detach_children(sc->sc_dev, flags);
484 if (error)
485 return error;
486
487 error = nvme_shutdown(sc);
488 if (error)
489 return error;
490
491 /* from now on we are committed to detach, following will never fail */
492 for (i = 0; i < sc->sc_nq; i++)
493 nvme_q_free(sc, sc->sc_q[i]);
494 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
495 nvme_q_free(sc, sc->sc_admin_q);
496
497 return 0;
498 }
499
500 static int
501 nvme_shutdown(struct nvme_softc *sc)
502 {
503 uint32_t cc, csts;
504 bool disabled = false;
505 int i;
506
507 if (!sc->sc_use_mq)
508 nvme_write4(sc, NVME_INTMS, 1);
509
510 for (i = 0; i < sc->sc_nq; i++) {
511 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
512 aprint_error_dev(sc->sc_dev,
513 "unable to delete io queue %d, disabling\n", i + 1);
514 disabled = true;
515 }
516 }
517 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
518 if (disabled)
519 goto disable;
520
521 cc = nvme_read4(sc, NVME_CC);
522 CLR(cc, NVME_CC_SHN_MASK);
523 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
524 nvme_write4(sc, NVME_CC, cc);
525
526 for (i = 0; i < 4000; i++) {
527 nvme_barrier(sc, 0, sc->sc_ios,
528 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
529 csts = nvme_read4(sc, NVME_CSTS);
530 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
531 return 0;
532
533 delay(1000);
534 }
535
536 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
537
538 disable:
539 nvme_disable(sc);
540 return 0;
541 }
542
543 void
544 nvme_childdet(device_t self, device_t child)
545 {
546 struct nvme_softc *sc = device_private(self);
547 int i;
548
549 for (i = 0; i < sc->sc_nn; i++) {
550 if (sc->sc_namespaces[i].dev == child) {
551 /* Already freed ns->ident. */
552 sc->sc_namespaces[i].dev = NULL;
553 break;
554 }
555 }
556 }
557
558 int
559 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
560 {
561 struct nvme_sqe sqe;
562 struct nvm_identify_namespace *identify;
563 struct nvme_dmamem mem;
564 struct nvme_ccb *ccb;
565 struct nvme_namespace *ns;
566 int error;
567
568 KASSERT(nsid > 0);
569
570 ccb = nvme_ccb_get(sc->sc_admin_q);
571 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
572
573 error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
574 if (error)
575 return error;
576
577 memset(&sqe, 0, sizeof(sqe));
578 sqe.opcode = NVM_ADMIN_IDENTIFY;
579 htolem32(&sqe.nsid, nsid);
580 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
581 htolem32(&sqe.cdw10, 0);
582
583 ccb->ccb_done = nvme_empty_done;
584 ccb->ccb_cookie = &sqe;
585
586 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
587 error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill,
588 NVME_TIMO_IDENT);
589 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
590
591 nvme_ccb_put(sc->sc_admin_q, ccb);
592
593 if (error != 0) {
594 error = EIO;
595 goto done;
596 }
597
598 /* commit */
599
600 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
601 memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
602
603 ns = nvme_ns_get(sc, nsid);
604 KASSERT(ns);
605 ns->ident = identify;
606
607 done:
608 nvme_dmamem_free(sc, &mem);
609
610 return error;
611 }
612
613 int
614 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
615 struct buf *bp, void *data, size_t datasize,
616 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
617 {
618 struct nvme_queue *q = nvme_get_q(sc);
619 struct nvme_ccb *ccb;
620 bus_dmamap_t dmap;
621 int i, error;
622
623 ccb = nvme_ccb_get(q);
624 if (ccb == NULL)
625 return EAGAIN;
626
627 ccb->ccb_done = nvme_ns_io_done;
628 ccb->ccb_cookie = cookie;
629
630 /* namespace context */
631 ccb->nnc_nsid = nsid;
632 ccb->nnc_flags = flags;
633 ccb->nnc_buf = bp;
634 ccb->nnc_datasize = datasize;
635 ccb->nnc_secsize = secsize;
636 ccb->nnc_blkno = blkno;
637 ccb->nnc_done = nnc_done;
638
639 dmap = ccb->ccb_dmamap;
640 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
641 datasize, NULL,
642 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
643 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
644 (ISSET(flags, NVME_NS_CTX_F_READ) ?
645 BUS_DMA_READ : BUS_DMA_WRITE));
646 if (error) {
647 nvme_ccb_put(q, ccb);
648 return error;
649 }
650
651 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
652 ISSET(flags, NVME_NS_CTX_F_READ) ?
653 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
654
655 if (dmap->dm_nsegs > 2) {
656 for (i = 1; i < dmap->dm_nsegs; i++) {
657 htolem64(&ccb->ccb_prpl[i - 1],
658 dmap->dm_segs[i].ds_addr);
659 }
660 bus_dmamap_sync(sc->sc_dmat,
661 NVME_DMA_MAP(q->q_ccb_prpls),
662 ccb->ccb_prpl_off,
663 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
664 BUS_DMASYNC_PREWRITE);
665 }
666
667 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
668 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
669 return EIO;
670 return 0;
671 }
672
673 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
674 return 0;
675 }
676
677 static void
678 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
679 {
680 struct nvme_sqe_io *sqe = slot;
681 bus_dmamap_t dmap = ccb->ccb_dmamap;
682
683 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
684 NVM_CMD_READ : NVM_CMD_WRITE;
685 htolem32(&sqe->nsid, ccb->nnc_nsid);
686
687 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
688 switch (dmap->dm_nsegs) {
689 case 1:
690 break;
691 case 2:
692 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
693 break;
694 default:
695 /* the prp list is already set up and synced */
696 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
697 break;
698 }
699
700 htolem64(&sqe->slba, ccb->nnc_blkno);
701
702 /* guaranteed by upper layers, but check just in case */
703 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
704 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
705 }
706
707 static void
708 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
709 struct nvme_cqe *cqe)
710 {
711 struct nvme_softc *sc = q->q_sc;
712 bus_dmamap_t dmap = ccb->ccb_dmamap;
713 void *nnc_cookie = ccb->ccb_cookie;
714 nvme_nnc_done nnc_done = ccb->nnc_done;
715 struct buf *bp = ccb->nnc_buf;
716
717 if (dmap->dm_nsegs > 2) {
718 bus_dmamap_sync(sc->sc_dmat,
719 NVME_DMA_MAP(q->q_ccb_prpls),
720 ccb->ccb_prpl_off,
721 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
722 BUS_DMASYNC_POSTWRITE);
723 }
724
725 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
726 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
727 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
728
729 bus_dmamap_unload(sc->sc_dmat, dmap);
730 nvme_ccb_put(q, ccb);
731
732 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
733 }
734
735 int
736 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
737 int flags, nvme_nnc_done nnc_done)
738 {
739 struct nvme_queue *q = nvme_get_q(sc);
740 struct nvme_ccb *ccb;
741
742 ccb = nvme_ccb_get(q);
743 if (ccb == NULL)
744 return EAGAIN;
745
746 ccb->ccb_done = nvme_ns_sync_done;
747 ccb->ccb_cookie = cookie;
748
749 /* namespace context */
750 ccb->nnc_nsid = nsid;
751 ccb->nnc_flags = flags;
752 ccb->nnc_done = nnc_done;
753
754 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
755 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
756 return EIO;
757 return 0;
758 }
759
760 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
761 return 0;
762 }
763
764 static void
765 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
766 {
767 struct nvme_sqe *sqe = slot;
768
769 sqe->opcode = NVM_CMD_FLUSH;
770 htolem32(&sqe->nsid, ccb->nnc_nsid);
771 }
772
773 static void
774 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
775 struct nvme_cqe *cqe)
776 {
777 void *cookie = ccb->ccb_cookie;
778 nvme_nnc_done nnc_done = ccb->nnc_done;
779
780 nvme_ccb_put(q, ccb);
781
782 nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
783 }
784
785 void
786 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
787 {
788 struct nvme_namespace *ns;
789 struct nvm_identify_namespace *identify;
790
791 ns = nvme_ns_get(sc, nsid);
792 KASSERT(ns);
793
794 identify = ns->ident;
795 ns->ident = NULL;
796 if (identify != NULL)
797 kmem_free(identify, sizeof(*identify));
798 }
799
800 static void
801 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
802 {
803 struct nvme_softc *sc = q->q_sc;
804 struct nvme_sqe *sqe = slot;
805 struct nvme_pt_command *pt = ccb->ccb_cookie;
806 bus_dmamap_t dmap = ccb->ccb_dmamap;
807 int i;
808
809 sqe->opcode = pt->cmd.opcode;
810 htolem32(&sqe->nsid, pt->cmd.nsid);
811
812 if (pt->buf != NULL && pt->len > 0) {
813 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
814 switch (dmap->dm_nsegs) {
815 case 1:
816 break;
817 case 2:
818 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
819 break;
820 default:
821 for (i = 1; i < dmap->dm_nsegs; i++) {
822 htolem64(&ccb->ccb_prpl[i - 1],
823 dmap->dm_segs[i].ds_addr);
824 }
825 bus_dmamap_sync(sc->sc_dmat,
826 NVME_DMA_MAP(q->q_ccb_prpls),
827 ccb->ccb_prpl_off,
828 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
829 BUS_DMASYNC_PREWRITE);
830 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
831 break;
832 }
833 }
834
835 htolem32(&sqe->cdw10, pt->cmd.cdw10);
836 htolem32(&sqe->cdw11, pt->cmd.cdw11);
837 htolem32(&sqe->cdw12, pt->cmd.cdw12);
838 htolem32(&sqe->cdw13, pt->cmd.cdw13);
839 htolem32(&sqe->cdw14, pt->cmd.cdw14);
840 htolem32(&sqe->cdw15, pt->cmd.cdw15);
841 }
842
843 static void
844 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
845 {
846 struct nvme_softc *sc = q->q_sc;
847 struct nvme_pt_command *pt = ccb->ccb_cookie;
848 bus_dmamap_t dmap = ccb->ccb_dmamap;
849
850 if (pt->buf != NULL && pt->len > 0) {
851 if (dmap->dm_nsegs > 2) {
852 bus_dmamap_sync(sc->sc_dmat,
853 NVME_DMA_MAP(q->q_ccb_prpls),
854 ccb->ccb_prpl_off,
855 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
856 BUS_DMASYNC_POSTWRITE);
857 }
858
859 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
860 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
861 bus_dmamap_unload(sc->sc_dmat, dmap);
862 }
863
864 pt->cpl.cdw0 = cqe->cdw0;
865 pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
866 }
867
868 static int
869 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
870 uint16_t nsid, struct lwp *l, bool is_adminq)
871 {
872 struct nvme_queue *q;
873 struct nvme_ccb *ccb;
874 void *buf = NULL;
875 int error;
876
877 /* limit command size to maximum data transfer size */
878 if ((pt->buf == NULL && pt->len > 0) ||
879 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
880 return EINVAL;
881
882 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
883 ccb = nvme_ccb_get(q);
884 if (ccb == NULL)
885 return EBUSY;
886
887 if (pt->buf != NULL) {
888 KASSERT(pt->len > 0);
889 buf = kmem_alloc(pt->len, KM_SLEEP);
890 if (buf == NULL) {
891 error = ENOMEM;
892 goto ccb_put;
893 }
894 if (!pt->is_read) {
895 error = copyin(pt->buf, buf, pt->len);
896 if (error)
897 goto kmem_free;
898 }
899 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
900 pt->len, NULL,
901 BUS_DMA_WAITOK |
902 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
903 if (error)
904 goto kmem_free;
905 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
906 0, ccb->ccb_dmamap->dm_mapsize,
907 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
908 }
909
910 ccb->ccb_done = nvme_pt_done;
911 ccb->ccb_cookie = pt;
912
913 pt->cmd.nsid = nsid;
914 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
915 error = EIO;
916 goto out;
917 }
918
919 error = 0;
920 out:
921 if (buf != NULL) {
922 if (error == 0 && pt->is_read)
923 error = copyout(buf, pt->buf, pt->len);
924 kmem_free:
925 kmem_free(buf, pt->len);
926 }
927 ccb_put:
928 nvme_ccb_put(q, ccb);
929 return error;
930 }
931
932 static void
933 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
934 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
935 {
936 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
937 uint32_t tail;
938
939 mutex_enter(&q->q_sq_mtx);
940 tail = q->q_sq_tail;
941 if (++q->q_sq_tail >= q->q_entries)
942 q->q_sq_tail = 0;
943
944 sqe += tail;
945
946 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
947 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
948 memset(sqe, 0, sizeof(*sqe));
949 (*fill)(q, ccb, sqe);
950 sqe->cid = ccb->ccb_id;
951 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
952 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
953
954 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
955 mutex_exit(&q->q_sq_mtx);
956 }
957
958 struct nvme_poll_state {
959 struct nvme_sqe s;
960 struct nvme_cqe c;
961 };
962
963 static int
964 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
965 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
966 {
967 struct nvme_poll_state state;
968 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
969 void *cookie;
970 uint16_t flags;
971 int step = 10;
972 int maxloop = timo_sec * 1000000 / step;
973 int error = 0;
974
975 memset(&state, 0, sizeof(state));
976 (*fill)(q, ccb, &state.s);
977
978 done = ccb->ccb_done;
979 cookie = ccb->ccb_cookie;
980
981 ccb->ccb_done = nvme_poll_done;
982 ccb->ccb_cookie = &state;
983
984 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
985 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
986 if (nvme_q_complete(sc, q) == 0)
987 delay(step);
988
989 if (timo_sec >= 0 && --maxloop <= 0) {
990 error = ETIMEDOUT;
991 break;
992 }
993 }
994
995 ccb->ccb_cookie = cookie;
996 done(q, ccb, &state.c);
997
998 if (error == 0) {
999 flags = lemtoh16(&state.c.flags);
1000 return flags & ~NVME_CQE_PHASE;
1001 } else {
1002 return 1;
1003 }
1004 }
1005
1006 static void
1007 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1008 {
1009 struct nvme_sqe *sqe = slot;
1010 struct nvme_poll_state *state = ccb->ccb_cookie;
1011
1012 *sqe = state->s;
1013 }
1014
1015 static void
1016 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1017 struct nvme_cqe *cqe)
1018 {
1019 struct nvme_poll_state *state = ccb->ccb_cookie;
1020
1021 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1022 state->c = *cqe;
1023 }
1024
1025 static void
1026 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1027 {
1028 struct nvme_sqe *src = ccb->ccb_cookie;
1029 struct nvme_sqe *dst = slot;
1030
1031 *dst = *src;
1032 }
1033
1034 static void
1035 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1036 struct nvme_cqe *cqe)
1037 {
1038 }
1039
1040 static int
1041 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1042 {
1043 struct nvme_ccb *ccb;
1044 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1045 uint16_t flags;
1046 int rv = 0;
1047
1048 mutex_enter(&q->q_cq_mtx);
1049
1050 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1051 for (;;) {
1052 cqe = &ring[q->q_cq_head];
1053 flags = lemtoh16(&cqe->flags);
1054 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1055 break;
1056
1057 ccb = &q->q_ccbs[cqe->cid];
1058
1059 if (++q->q_cq_head >= q->q_entries) {
1060 q->q_cq_head = 0;
1061 q->q_cq_phase ^= NVME_CQE_PHASE;
1062 }
1063
1064 rv = 1;
1065
1066 /*
1067 * Unlock the mutex before calling the ccb_done callback
1068 * and re-lock afterwards. The callback triggers lddone()
1069 * which schedules another i/o, and also calls nvme_ccb_put().
1070 * Unlock/relock avoids possibility of deadlock.
1071 */
1072 mutex_exit(&q->q_cq_mtx);
1073 ccb->ccb_done(q, ccb, cqe);
1074 mutex_enter(&q->q_cq_mtx);
1075 }
1076 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1077
1078 if (rv)
1079 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1080
1081 mutex_exit(&q->q_cq_mtx);
1082
1083 return rv;
1084 }
1085
1086 static int
1087 nvme_identify(struct nvme_softc *sc, u_int mps)
1088 {
1089 char sn[41], mn[81], fr[17];
1090 struct nvm_identify_controller *identify;
1091 struct nvme_dmamem mem;
1092 struct nvme_ccb *ccb;
1093 u_int mdts;
1094 int error;
1095
1096 ccb = nvme_ccb_get(sc->sc_admin_q);
1097 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1098
1099 error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
1100 if (error)
1101 return error;
1102
1103 ccb->ccb_done = nvme_empty_done;
1104 ccb->ccb_cookie = &mem;
1105
1106 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1107 error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1108 NVME_TIMO_IDENT);
1109 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1110
1111 nvme_ccb_put(sc->sc_admin_q, ccb);
1112
1113 if (error != 0)
1114 goto done;
1115
1116 identify = NVME_DMA_KVA(mem);
1117
1118 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1119 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1120 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1121 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1122 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1123 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1124 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1125 sn);
1126
1127 if (identify->mdts > 0) {
1128 mdts = (1 << identify->mdts) * (1 << mps);
1129 if (mdts < sc->sc_mdts)
1130 sc->sc_mdts = mdts;
1131 }
1132
1133 sc->sc_nn = lemtoh32(&identify->nn);
1134
1135 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1136
1137 done:
1138 nvme_dmamem_free(sc, &mem);
1139
1140 return error;
1141 }
1142
1143 static int
1144 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1145 {
1146 struct nvme_sqe_q sqe;
1147 struct nvme_ccb *ccb;
1148 int rv;
1149
1150 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1151 return 1;
1152
1153 ccb = nvme_ccb_get(sc->sc_admin_q);
1154 KASSERT(ccb != NULL);
1155
1156 ccb->ccb_done = nvme_empty_done;
1157 ccb->ccb_cookie = &sqe;
1158
1159 memset(&sqe, 0, sizeof(sqe));
1160 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1161 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1162 htolem16(&sqe.qsize, q->q_entries - 1);
1163 htolem16(&sqe.qid, q->q_id);
1164 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1165 if (sc->sc_use_mq)
1166 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1167
1168 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1169 if (rv != 0)
1170 goto fail;
1171
1172 ccb->ccb_done = nvme_empty_done;
1173 ccb->ccb_cookie = &sqe;
1174
1175 memset(&sqe, 0, sizeof(sqe));
1176 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1177 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1178 htolem16(&sqe.qsize, q->q_entries - 1);
1179 htolem16(&sqe.qid, q->q_id);
1180 htolem16(&sqe.cqid, q->q_id);
1181 sqe.qflags = NVM_SQE_Q_PC;
1182
1183 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1184 if (rv != 0)
1185 goto fail;
1186
1187 fail:
1188 nvme_ccb_put(sc->sc_admin_q, ccb);
1189 return rv;
1190 }
1191
1192 static int
1193 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1194 {
1195 struct nvme_sqe_q sqe;
1196 struct nvme_ccb *ccb;
1197 int rv;
1198
1199 ccb = nvme_ccb_get(sc->sc_admin_q);
1200 KASSERT(ccb != NULL);
1201
1202 ccb->ccb_done = nvme_empty_done;
1203 ccb->ccb_cookie = &sqe;
1204
1205 memset(&sqe, 0, sizeof(sqe));
1206 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1207 htolem16(&sqe.qid, q->q_id);
1208
1209 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1210 if (rv != 0)
1211 goto fail;
1212
1213 ccb->ccb_done = nvme_empty_done;
1214 ccb->ccb_cookie = &sqe;
1215
1216 memset(&sqe, 0, sizeof(sqe));
1217 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1218 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1219 htolem16(&sqe.qid, q->q_id);
1220
1221 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1222 if (rv != 0)
1223 goto fail;
1224
1225 fail:
1226 nvme_ccb_put(sc->sc_admin_q, ccb);
1227
1228 if (rv == 0 && sc->sc_use_mq) {
1229 if (sc->sc_intr_disestablish(sc, q->q_id))
1230 rv = 1;
1231 }
1232
1233 return rv;
1234 }
1235
1236 static void
1237 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1238 {
1239 struct nvme_sqe *sqe = slot;
1240 struct nvme_dmamem *mem = ccb->ccb_cookie;
1241
1242 sqe->opcode = NVM_ADMIN_IDENTIFY;
1243 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(*mem));
1244 htolem32(&sqe->cdw10, 1);
1245 }
1246
1247 static int
1248 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
1249 {
1250 struct nvme_softc *sc = q->q_sc;
1251 struct nvme_ccb *ccb;
1252 bus_addr_t off;
1253 uint64_t *prpl;
1254 u_int i;
1255 int error;
1256
1257 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1258 SIMPLEQ_INIT(&q->q_ccb_list);
1259
1260 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1261 if (q->q_ccbs == NULL)
1262 return 1;
1263
1264 q->q_nccbs = nccbs;
1265 error = nvme_dmamem_alloc(sc, sizeof(*prpl) * sc->sc_max_sgl * nccbs,
1266 &q->q_ccb_prpls);
1267 if (error) {
1268 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1269 return error;
1270 }
1271
1272 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1273 off = 0;
1274
1275 for (i = 0; i < nccbs; i++) {
1276 ccb = &q->q_ccbs[i];
1277
1278 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1279 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1280 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1281 &ccb->ccb_dmamap) != 0)
1282 goto free_maps;
1283
1284 ccb->ccb_id = i;
1285 ccb->ccb_prpl = prpl;
1286 ccb->ccb_prpl_off = off;
1287 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1288
1289 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1290
1291 prpl += sc->sc_max_sgl;
1292 off += sizeof(*prpl) * sc->sc_max_sgl;
1293 }
1294
1295 return 0;
1296
1297 free_maps:
1298 nvme_ccbs_free(q);
1299 return 1;
1300 }
1301
1302 static struct nvme_ccb *
1303 nvme_ccb_get(struct nvme_queue *q)
1304 {
1305 struct nvme_ccb *ccb;
1306
1307 mutex_enter(&q->q_ccb_mtx);
1308 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1309 if (ccb != NULL)
1310 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1311 mutex_exit(&q->q_ccb_mtx);
1312
1313 return ccb;
1314 }
1315
1316 static void
1317 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1318 {
1319
1320 mutex_enter(&q->q_ccb_mtx);
1321 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1322 mutex_exit(&q->q_ccb_mtx);
1323 }
1324
1325 static void
1326 nvme_ccbs_free(struct nvme_queue *q)
1327 {
1328 struct nvme_softc *sc = q->q_sc;
1329 struct nvme_ccb *ccb;
1330
1331 mutex_enter(&q->q_ccb_mtx);
1332 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1333 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1334 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1335 }
1336 mutex_exit(&q->q_ccb_mtx);
1337
1338 nvme_dmamem_free(sc, &q->q_ccb_prpls);
1339 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1340 q->q_ccbs = NULL;
1341 mutex_destroy(&q->q_ccb_mtx);
1342 }
1343
1344 static struct nvme_queue *
1345 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1346 {
1347 struct nvme_queue *q;
1348 int error;
1349
1350 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1351 if (q == NULL)
1352 return NULL;
1353
1354 q->q_sc = sc;
1355 error = nvme_dmamem_alloc(sc, sizeof(struct nvme_sqe) * entries,
1356 &q->q_sq_dmamem);
1357 if (error)
1358 goto free;
1359
1360 error = nvme_dmamem_alloc(sc, sizeof(struct nvme_cqe) * entries,
1361 &q->q_cq_dmamem);
1362 if (error)
1363 goto free_sq;
1364
1365 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1366 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1367
1368 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1369 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1370 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1371 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1372 q->q_id = id;
1373 q->q_entries = entries;
1374 q->q_sq_tail = 0;
1375 q->q_cq_head = 0;
1376 q->q_cq_phase = NVME_CQE_PHASE;
1377
1378 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1379 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1380
1381 if (nvme_ccbs_alloc(q, entries) != 0) {
1382 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1383 goto free_cq;
1384 }
1385
1386 return q;
1387
1388 free_cq:
1389 nvme_dmamem_free(sc, &q->q_cq_dmamem);
1390 free_sq:
1391 nvme_dmamem_free(sc, &q->q_sq_dmamem);
1392 free:
1393 kmem_free(q, sizeof(*q));
1394
1395 return NULL;
1396 }
1397
1398 static void
1399 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1400 {
1401 nvme_ccbs_free(q);
1402 mutex_destroy(&q->q_sq_mtx);
1403 mutex_destroy(&q->q_cq_mtx);
1404 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1405 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1406 nvme_dmamem_free(sc, &q->q_cq_dmamem);
1407 nvme_dmamem_free(sc, &q->q_sq_dmamem);
1408 kmem_free(q, sizeof(*q));
1409 }
1410
1411 int
1412 nvme_intr(void *xsc)
1413 {
1414 struct nvme_softc *sc = xsc;
1415 int rv = 0;
1416
1417 /*
1418 * INTx is level triggered, controller deasserts the interrupt only
1419 * when we advance command queue head via write to the doorbell.
1420 */
1421 if (nvme_q_complete(sc, sc->sc_admin_q))
1422 rv = 1;
1423 if (sc->sc_q != NULL)
1424 if (nvme_q_complete(sc, sc->sc_q[0]))
1425 rv = 1;
1426
1427 return rv;
1428 }
1429
1430 int
1431 nvme_intr_msi(void *xq)
1432 {
1433 struct nvme_queue *q = xq;
1434
1435 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1436 && q->q_sc->sc_softih[q->q_id]);
1437
1438 /* MSI are edge triggered, so can handover processing to softint */
1439 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1440
1441 return 1;
1442 }
1443
1444 void
1445 nvme_softintr_msi(void *xq)
1446 {
1447 struct nvme_queue *q = xq;
1448 struct nvme_softc *sc = q->q_sc;
1449
1450 nvme_q_complete(sc, q);
1451 }
1452
1453 static int
1454 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size, struct nvme_dmamem *ndm)
1455 {
1456 int nsegs;
1457
1458 memset(ndm, 0, sizeof(*ndm));
1459 ndm->ndm_size = size;
1460
1461 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1462 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1463 goto ndmfree;
1464
1465 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1466 1, &nsegs, BUS_DMA_WAITOK) != 0)
1467 goto destroy;
1468
1469 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1470 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1471 goto free;
1472 memset(ndm->ndm_kva, 0, size);
1473
1474 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1475 NULL, BUS_DMA_WAITOK) != 0)
1476 goto unmap;
1477
1478 return 0;
1479
1480 unmap:
1481 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1482 free:
1483 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1484 destroy:
1485 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1486 ndmfree:
1487 return ENOMEM;
1488 }
1489
1490 void
1491 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1492 {
1493 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1494 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1495 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1496 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1497 }
1498
1499 /*
1500 * ioctl
1501 */
1502
1503 dev_type_open(nvmeopen);
1504 dev_type_close(nvmeclose);
1505 dev_type_ioctl(nvmeioctl);
1506
1507 const struct cdevsw nvme_cdevsw = {
1508 .d_open = nvmeopen,
1509 .d_close = nvmeclose,
1510 .d_read = noread,
1511 .d_write = nowrite,
1512 .d_ioctl = nvmeioctl,
1513 .d_stop = nostop,
1514 .d_tty = notty,
1515 .d_poll = nopoll,
1516 .d_mmap = nommap,
1517 .d_kqfilter = nokqfilter,
1518 .d_discard = nodiscard,
1519 .d_flag = D_OTHER,
1520 };
1521
1522 extern struct cfdriver nvme_cd;
1523
1524 /*
1525 * Accept an open operation on the control device.
1526 */
1527 int
1528 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1529 {
1530 struct nvme_softc *sc;
1531 int unit = minor(dev) / 0x10000;
1532 int nsid = minor(dev) & 0xffff;
1533 int nsidx;
1534
1535 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1536 return ENXIO;
1537 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1538 return ENXIO;
1539
1540 if (nsid == 0) {
1541 /* controller */
1542 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1543 return EBUSY;
1544 SET(sc->sc_flags, NVME_F_OPEN);
1545 } else {
1546 /* namespace */
1547 nsidx = nsid - 1;
1548 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1549 return ENXIO;
1550 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1551 return EBUSY;
1552 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1553 }
1554 return 0;
1555 }
1556
1557 /*
1558 * Accept the last close on the control device.
1559 */
1560 int
1561 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1562 {
1563 struct nvme_softc *sc;
1564 int unit = minor(dev) / 0x10000;
1565 int nsid = minor(dev) & 0xffff;
1566 int nsidx;
1567
1568 sc = device_lookup_private(&nvme_cd, unit);
1569 if (sc == NULL)
1570 return ENXIO;
1571
1572 if (nsid == 0) {
1573 /* controller */
1574 CLR(sc->sc_flags, NVME_F_OPEN);
1575 } else {
1576 /* namespace */
1577 nsidx = nsid - 1;
1578 if (nsidx >= sc->sc_nn)
1579 return ENXIO;
1580 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1581 }
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * Handle control operations.
1588 */
1589 int
1590 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1591 {
1592 struct nvme_softc *sc;
1593 int unit = minor(dev) / 0x10000;
1594 int nsid = minor(dev) & 0xffff;
1595 struct nvme_pt_command *pt;
1596
1597 sc = device_lookup_private(&nvme_cd, unit);
1598 if (sc == NULL)
1599 return ENXIO;
1600
1601 switch (cmd) {
1602 case NVME_PASSTHROUGH_CMD:
1603 pt = data;
1604 return nvme_command_passthrough(sc, data,
1605 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1606 }
1607
1608 return ENOTTY;
1609 }
1610