Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.17
      1 /*	$NetBSD: nvme.c,v 1.17 2016/10/19 19:31:23 jdolecek Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.17 2016/10/19 19:31:23 jdolecek Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 128;
     44 int nvme_ioq_size = 1024;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 static void	nvme_version(struct nvme_softc *, uint32_t);
     54 #ifdef NVME_DEBUG
     55 static void	nvme_dumpregs(struct nvme_softc *);
     56 #endif
     57 static int	nvme_identify(struct nvme_softc *, u_int);
     58 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     59 		    void *);
     60 
     61 static int	nvme_ccbs_alloc(struct nvme_queue *, u_int);
     62 static void	nvme_ccbs_free(struct nvme_queue *);
     63 
     64 static struct nvme_ccb *
     65 		nvme_ccb_get(struct nvme_queue *);
     66 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     67 
     68 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     69 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     70 		    struct nvme_ccb *, void *), int);
     71 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     72 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     73 		    struct nvme_cqe *);
     74 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 
     78 static struct nvme_queue *
     79 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     80 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     81 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     82 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     83 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     84 		    struct nvme_ccb *, void *));
     85 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     86 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     87 
     88 static int	nvme_dmamem_alloc(struct nvme_softc *, size_t,
     89 		    struct nvme_dmamem *);
     90 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     91 
     92 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     93 		    void *);
     94 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     95 		    struct nvme_cqe *);
     96 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     97 		    void *);
     98 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
     99 		    struct nvme_cqe *);
    100 
    101 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    102 		    void *);
    103 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    104 		    struct nvme_cqe *);
    105 static int	nvme_command_passthrough(struct nvme_softc *,
    106 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    107 
    108 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    109 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    110 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    111 #define NVME_TIMO_SY		60	/* sync cache timeout */
    112 
    113 #define nvme_read4(_s, _r) \
    114 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    115 #define nvme_write4(_s, _r, _v) \
    116 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    117 #ifdef __LP64__
    118 #define nvme_read8(_s, _r) \
    119 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
    120 #define nvme_write8(_s, _r, _v) \
    121 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    122 #else /* __LP64__ */
    123 static inline uint64_t
    124 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    125 {
    126 	uint64_t v;
    127 	uint32_t *a = (uint32_t *)&v;
    128 
    129 #if _BYTE_ORDER == _LITTLE_ENDIAN
    130 	a[0] = nvme_read4(sc, r);
    131 	a[1] = nvme_read4(sc, r + 4);
    132 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    133 	a[1] = nvme_read4(sc, r);
    134 	a[0] = nvme_read4(sc, r + 4);
    135 #endif
    136 
    137 	return v;
    138 }
    139 
    140 static inline void
    141 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    142 {
    143 	uint32_t *a = (uint32_t *)&v;
    144 
    145 #if _BYTE_ORDER == _LITTLE_ENDIAN
    146 	nvme_write4(sc, r, a[0]);
    147 	nvme_write4(sc, r + 4, a[1]);
    148 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    149 	nvme_write4(sc, r, a[1]);
    150 	nvme_write4(sc, r + 4, a[0]);
    151 #endif
    152 }
    153 #endif /* __LP64__ */
    154 
    155 #define nvme_barrier(_s, _r, _l, _f) \
    156 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    157 #define nvme_dmamem_sync(sc, mem, ops) \
    158 	bus_dmamap_sync((sc)->sc_dmat, NVME_DMA_MAP(mem), \
    159 	    0, NVME_DMA_LEN(mem), (ops));
    160 
    161 static void
    162 nvme_version(struct nvme_softc *sc, uint32_t ver)
    163 {
    164 	const char *v = NULL;
    165 
    166 	switch (ver) {
    167 	case NVME_VS_1_0:
    168 		v = "1.0";
    169 		break;
    170 	case NVME_VS_1_1:
    171 		v = "1.1";
    172 		break;
    173 	case NVME_VS_1_2:
    174 		v = "1.2";
    175 		break;
    176 	default:
    177 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
    178 		return;
    179 	}
    180 
    181 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
    182 }
    183 
    184 #ifdef NVME_DEBUG
    185 static __used void
    186 nvme_dumpregs(struct nvme_softc *sc)
    187 {
    188 	uint64_t r8;
    189 	uint32_t r4;
    190 
    191 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    192 	r8 = nvme_read8(sc, NVME_CAP);
    193 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    194 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    195 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    196 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    197 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    198 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    199 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    200 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    201 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    202 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    203 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    204 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    205 
    206 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    207 
    208 	r4 = nvme_read4(sc, NVME_CC);
    209 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    210 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    211 	    (1 << NVME_CC_IOCQES_R(r4)));
    212 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    213 	    (1 << NVME_CC_IOSQES_R(r4)));
    214 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    215 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    216 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    217 	    (1 << NVME_CC_MPS_R(r4)));
    218 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    219 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    220 
    221 	r4 = nvme_read4(sc, NVME_CSTS);
    222 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    223 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    224 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    225 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    226 
    227 	r4 = nvme_read4(sc, NVME_AQA);
    228 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    229 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    230 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    231 
    232 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    233 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    234 #undef	DEVNAME
    235 }
    236 #endif	/* NVME_DEBUG */
    237 
    238 static int
    239 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    240 {
    241 	u_int i = 0;
    242 	uint32_t cc;
    243 
    244 	cc = nvme_read4(sc, NVME_CC);
    245 	if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
    246 		aprint_error_dev(sc->sc_dev,
    247 		    "controller enabled status expected %d, found to be %d\n",
    248 		    (rdy != 0), ((cc & NVME_CC_EN) != 0));
    249 		return ENXIO;
    250 	}
    251 
    252 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    253 		if (i++ > sc->sc_rdy_to)
    254 			return ENXIO;
    255 
    256 		delay(1000);
    257 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    258 	}
    259 
    260 	return 0;
    261 }
    262 
    263 static int
    264 nvme_enable(struct nvme_softc *sc, u_int mps)
    265 {
    266 	uint32_t cc, csts;
    267 
    268 	cc = nvme_read4(sc, NVME_CC);
    269 	csts = nvme_read4(sc, NVME_CSTS);
    270 
    271 	if (ISSET(cc, NVME_CC_EN)) {
    272 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
    273 
    274 		if (ISSET(csts, NVME_CSTS_RDY))
    275 			return 1;
    276 
    277 		goto waitready;
    278 	}
    279 
    280 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    281 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    282 	delay(5000);
    283 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    284 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    285 	delay(5000);
    286 
    287 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    288 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    289 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    290 	delay(5000);
    291 
    292 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    293 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    294 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    295 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    296 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    297 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    298 	SET(cc, NVME_CC_MPS(mps));
    299 	SET(cc, NVME_CC_EN);
    300 
    301 	nvme_write4(sc, NVME_CC, cc);
    302 	nvme_barrier(sc, 0, sc->sc_ios,
    303 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    304 	delay(5000);
    305 
    306     waitready:
    307 	return nvme_ready(sc, NVME_CSTS_RDY);
    308 }
    309 
    310 static int
    311 nvme_disable(struct nvme_softc *sc)
    312 {
    313 	uint32_t cc, csts;
    314 
    315 	cc = nvme_read4(sc, NVME_CC);
    316 	csts = nvme_read4(sc, NVME_CSTS);
    317 
    318 	if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
    319 		nvme_ready(sc, NVME_CSTS_RDY);
    320 
    321 	CLR(cc, NVME_CC_EN);
    322 
    323 	nvme_write4(sc, NVME_CC, cc);
    324 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    325 
    326 	delay(5000);
    327 
    328 	return nvme_ready(sc, 0);
    329 }
    330 
    331 int
    332 nvme_attach(struct nvme_softc *sc)
    333 {
    334 	uint64_t cap;
    335 	uint32_t reg;
    336 	u_int dstrd;
    337 	u_int mps = PAGE_SHIFT;
    338 	int adminq_entries = nvme_adminq_size;
    339 	int ioq_entries = nvme_ioq_size;
    340 	int i;
    341 
    342 	reg = nvme_read4(sc, NVME_VS);
    343 	if (reg == 0xffffffff) {
    344 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    345 		return 1;
    346 	}
    347 
    348 	nvme_version(sc, reg);
    349 
    350 	cap = nvme_read8(sc, NVME_CAP);
    351 	dstrd = NVME_CAP_DSTRD(cap);
    352 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    353 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    354 		    "is greater than CPU page size %u\n",
    355 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    356 		return 1;
    357 	}
    358 	if (NVME_CAP_MPSMAX(cap) < mps)
    359 		mps = NVME_CAP_MPSMAX(cap);
    360 	if (ioq_entries > NVME_CAP_MQES(cap))
    361 		ioq_entries = NVME_CAP_MQES(cap);
    362 
    363 	/* set initial values to be used for admin queue during probe */
    364 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    365 	sc->sc_mps = 1 << mps;
    366 	sc->sc_mdts = MAXPHYS;
    367 	sc->sc_max_sgl = 2;
    368 
    369 	if (nvme_disable(sc) != 0) {
    370 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    371 		return 1;
    372 	}
    373 
    374 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    375 	if (sc->sc_admin_q == NULL) {
    376 		aprint_error_dev(sc->sc_dev,
    377 		    "unable to allocate admin queue\n");
    378 		return 1;
    379 	}
    380 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    381 		goto free_admin_q;
    382 
    383 	if (nvme_enable(sc, mps) != 0) {
    384 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    385 		goto disestablish_admin_q;
    386 	}
    387 
    388 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    389 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    390 		goto disable;
    391 	}
    392 
    393 	/* we know how big things are now */
    394 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    395 
    396 	/* reallocate ccbs of admin queue with new max sgl. */
    397 	nvme_ccbs_free(sc->sc_admin_q);
    398 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    399 
    400 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    401 	if (sc->sc_q == NULL) {
    402 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    403 		goto disable;
    404 	}
    405 	for (i = 0; i < sc->sc_nq; i++) {
    406 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    407 		if (sc->sc_q[i] == NULL) {
    408 			aprint_error_dev(sc->sc_dev,
    409 			    "unable to allocate io queue\n");
    410 			goto free_q;
    411 		}
    412 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    413 			aprint_error_dev(sc->sc_dev,
    414 			    "unable to create io queue\n");
    415 			nvme_q_free(sc, sc->sc_q[i]);
    416 			goto free_q;
    417 		}
    418 	}
    419 
    420 	if (!sc->sc_use_mq)
    421 		nvme_write4(sc, NVME_INTMC, 1);
    422 
    423 	/* probe subdevices */
    424 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    425 	    KM_SLEEP);
    426 	if (sc->sc_namespaces == NULL)
    427 		goto free_q;
    428 	nvme_rescan(sc->sc_dev, "nvme", &i);
    429 
    430 	return 0;
    431 
    432 free_q:
    433 	while (--i >= 0) {
    434 		nvme_q_delete(sc, sc->sc_q[i]);
    435 		nvme_q_free(sc, sc->sc_q[i]);
    436 	}
    437 disable:
    438 	nvme_disable(sc);
    439 disestablish_admin_q:
    440 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    441 free_admin_q:
    442 	nvme_q_free(sc, sc->sc_admin_q);
    443 
    444 	return 1;
    445 }
    446 
    447 int
    448 nvme_rescan(device_t self, const char *attr, const int *flags)
    449 {
    450 	struct nvme_softc *sc = device_private(self);
    451 	struct nvme_attach_args naa;
    452 	uint64_t cap;
    453 	int ioq_entries = nvme_ioq_size;
    454 	int i;
    455 
    456 	cap = nvme_read8(sc, NVME_CAP);
    457 	if (ioq_entries > NVME_CAP_MQES(cap))
    458 		ioq_entries = NVME_CAP_MQES(cap);
    459 
    460 	for (i = 0; i < sc->sc_nn; i++) {
    461 		if (sc->sc_namespaces[i].dev)
    462 			continue;
    463 		memset(&naa, 0, sizeof(naa));
    464 		naa.naa_nsid = i + 1;
    465 		naa.naa_qentries = ioq_entries;
    466 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    467 		    nvme_print);
    468 	}
    469 	return 0;
    470 }
    471 
    472 static int
    473 nvme_print(void *aux, const char *pnp)
    474 {
    475 	struct nvme_attach_args *naa = aux;
    476 
    477 	if (pnp)
    478 		aprint_normal("at %s", pnp);
    479 
    480 	if (naa->naa_nsid > 0)
    481 		aprint_normal(" nsid %d", naa->naa_nsid);
    482 
    483 	return UNCONF;
    484 }
    485 
    486 int
    487 nvme_detach(struct nvme_softc *sc, int flags)
    488 {
    489 	int i, error;
    490 
    491 	error = config_detach_children(sc->sc_dev, flags);
    492 	if (error)
    493 		return error;
    494 
    495 	error = nvme_shutdown(sc);
    496 	if (error)
    497 		return error;
    498 
    499 	/* from now on we are committed to detach, following will never fail */
    500 	for (i = 0; i < sc->sc_nq; i++)
    501 		nvme_q_free(sc, sc->sc_q[i]);
    502 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    503 	nvme_q_free(sc, sc->sc_admin_q);
    504 
    505 	return 0;
    506 }
    507 
    508 static int
    509 nvme_shutdown(struct nvme_softc *sc)
    510 {
    511 	uint32_t cc, csts;
    512 	bool disabled = false;
    513 	int i;
    514 
    515 	if (!sc->sc_use_mq)
    516 		nvme_write4(sc, NVME_INTMS, 1);
    517 
    518 	for (i = 0; i < sc->sc_nq; i++) {
    519 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    520 			aprint_error_dev(sc->sc_dev,
    521 			    "unable to delete io queue %d, disabling\n", i + 1);
    522 			disabled = true;
    523 		}
    524 	}
    525 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    526 	if (disabled)
    527 		goto disable;
    528 
    529 	cc = nvme_read4(sc, NVME_CC);
    530 	CLR(cc, NVME_CC_SHN_MASK);
    531 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    532 	nvme_write4(sc, NVME_CC, cc);
    533 
    534 	for (i = 0; i < 4000; i++) {
    535 		nvme_barrier(sc, 0, sc->sc_ios,
    536 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    537 		csts = nvme_read4(sc, NVME_CSTS);
    538 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    539 			return 0;
    540 
    541 		delay(1000);
    542 	}
    543 
    544 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    545 
    546 disable:
    547 	nvme_disable(sc);
    548 	return 0;
    549 }
    550 
    551 void
    552 nvme_childdet(device_t self, device_t child)
    553 {
    554 	struct nvme_softc *sc = device_private(self);
    555 	int i;
    556 
    557 	for (i = 0; i < sc->sc_nn; i++) {
    558 		if (sc->sc_namespaces[i].dev == child) {
    559 			/* Already freed ns->ident. */
    560 			sc->sc_namespaces[i].dev = NULL;
    561 			break;
    562 		}
    563 	}
    564 }
    565 
    566 int
    567 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    568 {
    569 	struct nvme_sqe sqe;
    570 	struct nvm_identify_namespace *identify;
    571 	struct nvme_dmamem mem;
    572 	struct nvme_ccb *ccb;
    573 	struct nvme_namespace *ns;
    574 	int error;
    575 
    576 	KASSERT(nsid > 0);
    577 
    578 	ccb = nvme_ccb_get(sc->sc_admin_q);
    579 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    580 
    581 	error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
    582 	if (error)
    583 		return error;
    584 
    585 	memset(&sqe, 0, sizeof(sqe));
    586 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    587 	htolem32(&sqe.nsid, nsid);
    588 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    589 	htolem32(&sqe.cdw10, 0);
    590 
    591 	ccb->ccb_done = nvme_empty_done;
    592 	ccb->ccb_cookie = &sqe;
    593 
    594 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    595 	error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill,
    596 	    NVME_TIMO_IDENT);
    597 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    598 
    599 	nvme_ccb_put(sc->sc_admin_q, ccb);
    600 
    601 	if (error != 0) {
    602 		error = EIO;
    603 		goto done;
    604 	}
    605 
    606 	/* commit */
    607 
    608 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    609 	memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    610 
    611 	ns = nvme_ns_get(sc, nsid);
    612 	KASSERT(ns);
    613 	ns->ident = identify;
    614 
    615 done:
    616 	nvme_dmamem_free(sc, &mem);
    617 
    618 	return error;
    619 }
    620 
    621 int
    622 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    623     struct buf *bp, void *data, size_t datasize,
    624     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    625 {
    626 	struct nvme_queue *q = nvme_get_q(sc);
    627 	struct nvme_ccb *ccb;
    628 	bus_dmamap_t dmap;
    629 	int i, error;
    630 
    631 	ccb = nvme_ccb_get(q);
    632 	if (ccb == NULL)
    633 		return EAGAIN;
    634 
    635 	ccb->ccb_done = nvme_ns_io_done;
    636 	ccb->ccb_cookie = cookie;
    637 
    638 	/* namespace context */
    639 	ccb->nnc_nsid = nsid;
    640 	ccb->nnc_flags = flags;
    641 	ccb->nnc_buf = bp;
    642 	ccb->nnc_datasize = datasize;
    643 	ccb->nnc_secsize = secsize;
    644 	ccb->nnc_blkno = blkno;
    645 	ccb->nnc_done = nnc_done;
    646 
    647 	dmap = ccb->ccb_dmamap;
    648 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    649 	    datasize, NULL,
    650 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    651 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    652 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    653 	      BUS_DMA_READ : BUS_DMA_WRITE));
    654 	if (error) {
    655 		nvme_ccb_put(q, ccb);
    656 		return error;
    657 	}
    658 
    659 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    660 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    661 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    662 
    663 	if (dmap->dm_nsegs > 2) {
    664 		for (i = 1; i < dmap->dm_nsegs; i++) {
    665 			htolem64(&ccb->ccb_prpl[i - 1],
    666 			    dmap->dm_segs[i].ds_addr);
    667 		}
    668 		bus_dmamap_sync(sc->sc_dmat,
    669 		    NVME_DMA_MAP(q->q_ccb_prpls),
    670 		    ccb->ccb_prpl_off,
    671 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    672 		    BUS_DMASYNC_PREWRITE);
    673 	}
    674 
    675 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    676 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    677 			return EIO;
    678 		return 0;
    679 	}
    680 
    681 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    682 	return 0;
    683 }
    684 
    685 static void
    686 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    687 {
    688 	struct nvme_sqe_io *sqe = slot;
    689 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    690 
    691 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    692 	    NVM_CMD_READ : NVM_CMD_WRITE;
    693 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    694 
    695 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    696 	switch (dmap->dm_nsegs) {
    697 	case 1:
    698 		break;
    699 	case 2:
    700 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    701 		break;
    702 	default:
    703 		/* the prp list is already set up and synced */
    704 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    705 		break;
    706 	}
    707 
    708 	htolem64(&sqe->slba, ccb->nnc_blkno);
    709 
    710 	/* guaranteed by upper layers, but check just in case */
    711 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    712 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    713 }
    714 
    715 static void
    716 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    717     struct nvme_cqe *cqe)
    718 {
    719 	struct nvme_softc *sc = q->q_sc;
    720 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    721 	void *nnc_cookie = ccb->ccb_cookie;
    722 	nvme_nnc_done nnc_done = ccb->nnc_done;
    723 	struct buf *bp = ccb->nnc_buf;
    724 
    725 	if (dmap->dm_nsegs > 2) {
    726 		bus_dmamap_sync(sc->sc_dmat,
    727 		    NVME_DMA_MAP(q->q_ccb_prpls),
    728 		    ccb->ccb_prpl_off,
    729 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    730 		    BUS_DMASYNC_POSTWRITE);
    731 	}
    732 
    733 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    734 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    735 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    736 
    737 	bus_dmamap_unload(sc->sc_dmat, dmap);
    738 	nvme_ccb_put(q, ccb);
    739 
    740 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
    741 }
    742 
    743 int
    744 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    745     int flags, nvme_nnc_done nnc_done)
    746 {
    747 	struct nvme_queue *q = nvme_get_q(sc);
    748 	struct nvme_ccb *ccb;
    749 
    750 	ccb = nvme_ccb_get(q);
    751 	if (ccb == NULL)
    752 		return EAGAIN;
    753 
    754 	ccb->ccb_done = nvme_ns_sync_done;
    755 	ccb->ccb_cookie = cookie;
    756 
    757 	/* namespace context */
    758 	ccb->nnc_nsid = nsid;
    759 	ccb->nnc_flags = flags;
    760 	ccb->nnc_done = nnc_done;
    761 
    762 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    763 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    764 			return EIO;
    765 		return 0;
    766 	}
    767 
    768 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    769 	return 0;
    770 }
    771 
    772 static void
    773 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    774 {
    775 	struct nvme_sqe *sqe = slot;
    776 
    777 	sqe->opcode = NVM_CMD_FLUSH;
    778 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    779 }
    780 
    781 static void
    782 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    783     struct nvme_cqe *cqe)
    784 {
    785 	void *cookie = ccb->ccb_cookie;
    786 	nvme_nnc_done nnc_done = ccb->nnc_done;
    787 
    788 	nvme_ccb_put(q, ccb);
    789 
    790 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
    791 }
    792 
    793 void
    794 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    795 {
    796 	struct nvme_namespace *ns;
    797 	struct nvm_identify_namespace *identify;
    798 
    799 	ns = nvme_ns_get(sc, nsid);
    800 	KASSERT(ns);
    801 
    802 	identify = ns->ident;
    803 	ns->ident = NULL;
    804 	if (identify != NULL)
    805 		kmem_free(identify, sizeof(*identify));
    806 }
    807 
    808 static void
    809 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    810 {
    811 	struct nvme_softc *sc = q->q_sc;
    812 	struct nvme_sqe *sqe = slot;
    813 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    814 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    815 	int i;
    816 
    817 	sqe->opcode = pt->cmd.opcode;
    818 	htolem32(&sqe->nsid, pt->cmd.nsid);
    819 
    820 	if (pt->buf != NULL && pt->len > 0) {
    821 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    822 		switch (dmap->dm_nsegs) {
    823 		case 1:
    824 			break;
    825 		case 2:
    826 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    827 			break;
    828 		default:
    829 			for (i = 1; i < dmap->dm_nsegs; i++) {
    830 				htolem64(&ccb->ccb_prpl[i - 1],
    831 				    dmap->dm_segs[i].ds_addr);
    832 			}
    833 			bus_dmamap_sync(sc->sc_dmat,
    834 			    NVME_DMA_MAP(q->q_ccb_prpls),
    835 			    ccb->ccb_prpl_off,
    836 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    837 			    BUS_DMASYNC_PREWRITE);
    838 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    839 			break;
    840 		}
    841 	}
    842 
    843 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    844 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    845 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    846 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    847 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    848 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    849 }
    850 
    851 static void
    852 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    853 {
    854 	struct nvme_softc *sc = q->q_sc;
    855 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    856 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    857 
    858 	if (pt->buf != NULL && pt->len > 0) {
    859 		if (dmap->dm_nsegs > 2) {
    860 			bus_dmamap_sync(sc->sc_dmat,
    861 			    NVME_DMA_MAP(q->q_ccb_prpls),
    862 			    ccb->ccb_prpl_off,
    863 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    864 			    BUS_DMASYNC_POSTWRITE);
    865 		}
    866 
    867 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    868 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    869 		bus_dmamap_unload(sc->sc_dmat, dmap);
    870 	}
    871 
    872 	pt->cpl.cdw0 = cqe->cdw0;
    873 	pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
    874 }
    875 
    876 static int
    877 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    878     uint16_t nsid, struct lwp *l, bool is_adminq)
    879 {
    880 	struct nvme_queue *q;
    881 	struct nvme_ccb *ccb;
    882 	void *buf = NULL;
    883 	int error;
    884 
    885 	/* limit command size to maximum data transfer size */
    886 	if ((pt->buf == NULL && pt->len > 0) ||
    887 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
    888 		return EINVAL;
    889 
    890 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    891 	ccb = nvme_ccb_get(q);
    892 	if (ccb == NULL)
    893 		return EBUSY;
    894 
    895 	if (pt->buf != NULL) {
    896 		KASSERT(pt->len > 0);
    897 		buf = kmem_alloc(pt->len, KM_SLEEP);
    898 		if (buf == NULL) {
    899 			error = ENOMEM;
    900 			goto ccb_put;
    901 		}
    902 		if (!pt->is_read) {
    903 			error = copyin(pt->buf, buf, pt->len);
    904 			if (error)
    905 				goto kmem_free;
    906 		}
    907 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    908 		    pt->len, NULL,
    909 		    BUS_DMA_WAITOK |
    910 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    911 		if (error)
    912 			goto kmem_free;
    913 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    914 		    0, ccb->ccb_dmamap->dm_mapsize,
    915 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    916 	}
    917 
    918 	ccb->ccb_done = nvme_pt_done;
    919 	ccb->ccb_cookie = pt;
    920 
    921 	pt->cmd.nsid = nsid;
    922 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
    923 		error = EIO;
    924 		goto out;
    925 	}
    926 
    927 	error = 0;
    928 out:
    929 	if (buf != NULL) {
    930 		if (error == 0 && pt->is_read)
    931 			error = copyout(buf, pt->buf, pt->len);
    932 kmem_free:
    933 		kmem_free(buf, pt->len);
    934 	}
    935 ccb_put:
    936 	nvme_ccb_put(q, ccb);
    937 	return error;
    938 }
    939 
    940 static void
    941 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    942     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    943 {
    944 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    945 	uint32_t tail;
    946 
    947 	mutex_enter(&q->q_sq_mtx);
    948 	tail = q->q_sq_tail;
    949 	if (++q->q_sq_tail >= q->q_entries)
    950 		q->q_sq_tail = 0;
    951 
    952 	sqe += tail;
    953 
    954 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    955 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
    956 	memset(sqe, 0, sizeof(*sqe));
    957 	(*fill)(q, ccb, sqe);
    958 	sqe->cid = ccb->ccb_id;
    959 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    960 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
    961 
    962 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
    963 	mutex_exit(&q->q_sq_mtx);
    964 }
    965 
    966 struct nvme_poll_state {
    967 	struct nvme_sqe s;
    968 	struct nvme_cqe c;
    969 };
    970 
    971 static int
    972 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    973     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
    974 {
    975 	struct nvme_poll_state state;
    976 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
    977 	void *cookie;
    978 	uint16_t flags;
    979 	int step = 10;
    980 	int maxloop = timo_sec * 1000000 / step;
    981 	int error = 0;
    982 
    983 	memset(&state, 0, sizeof(state));
    984 	(*fill)(q, ccb, &state.s);
    985 
    986 	done = ccb->ccb_done;
    987 	cookie = ccb->ccb_cookie;
    988 
    989 	ccb->ccb_done = nvme_poll_done;
    990 	ccb->ccb_cookie = &state;
    991 
    992 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
    993 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
    994 		if (nvme_q_complete(sc, q) == 0)
    995 			delay(step);
    996 
    997 		if (timo_sec >= 0 && --maxloop <= 0) {
    998 			error = ETIMEDOUT;
    999 			break;
   1000 		}
   1001 	}
   1002 
   1003 	ccb->ccb_cookie = cookie;
   1004 	done(q, ccb, &state.c);
   1005 
   1006 	if (error == 0) {
   1007 		flags = lemtoh16(&state.c.flags);
   1008 		return flags & ~NVME_CQE_PHASE;
   1009 	} else {
   1010 		return 1;
   1011 	}
   1012 }
   1013 
   1014 static void
   1015 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1016 {
   1017 	struct nvme_sqe *sqe = slot;
   1018 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1019 
   1020 	*sqe = state->s;
   1021 }
   1022 
   1023 static void
   1024 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1025     struct nvme_cqe *cqe)
   1026 {
   1027 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1028 
   1029 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
   1030 	state->c = *cqe;
   1031 }
   1032 
   1033 static void
   1034 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1035 {
   1036 	struct nvme_sqe *src = ccb->ccb_cookie;
   1037 	struct nvme_sqe *dst = slot;
   1038 
   1039 	*dst = *src;
   1040 }
   1041 
   1042 static void
   1043 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1044     struct nvme_cqe *cqe)
   1045 {
   1046 }
   1047 
   1048 static int
   1049 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1050 {
   1051 	struct nvme_ccb *ccb;
   1052 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1053 	uint16_t flags;
   1054 	int rv = 0;
   1055 
   1056 	mutex_enter(&q->q_cq_mtx);
   1057 
   1058 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1059 	for (;;) {
   1060 		cqe = &ring[q->q_cq_head];
   1061 		flags = lemtoh16(&cqe->flags);
   1062 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1063 			break;
   1064 
   1065 		ccb = &q->q_ccbs[cqe->cid];
   1066 
   1067 		if (++q->q_cq_head >= q->q_entries) {
   1068 			q->q_cq_head = 0;
   1069 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1070 		}
   1071 
   1072 		rv = 1;
   1073 
   1074 		/*
   1075 		 * Unlock the mutex before calling the ccb_done callback
   1076 		 * and re-lock afterwards. The callback triggers lddone()
   1077 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1078 		 * Unlock/relock avoids possibility of deadlock.
   1079 		 */
   1080 		mutex_exit(&q->q_cq_mtx);
   1081 		ccb->ccb_done(q, ccb, cqe);
   1082 		mutex_enter(&q->q_cq_mtx);
   1083 	}
   1084 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1085 
   1086 	if (rv)
   1087 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1088 
   1089 	mutex_exit(&q->q_cq_mtx);
   1090 
   1091 	return rv;
   1092 }
   1093 
   1094 static int
   1095 nvme_identify(struct nvme_softc *sc, u_int mps)
   1096 {
   1097 	char sn[41], mn[81], fr[17];
   1098 	struct nvm_identify_controller *identify;
   1099 	struct nvme_dmamem mem;
   1100 	struct nvme_ccb *ccb;
   1101 	u_int mdts;
   1102 	int error;
   1103 
   1104 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1105 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1106 
   1107 	error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
   1108 	if (error)
   1109 		return error;
   1110 
   1111 	ccb->ccb_done = nvme_empty_done;
   1112 	ccb->ccb_cookie = &mem;
   1113 
   1114 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1115 	error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1116 	    NVME_TIMO_IDENT);
   1117 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1118 
   1119 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1120 
   1121 	if (error != 0)
   1122 		goto done;
   1123 
   1124 	identify = NVME_DMA_KVA(mem);
   1125 
   1126 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1127 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1128 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1129 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1130 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1131 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1132 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1133 	    sn);
   1134 
   1135 	if (identify->mdts > 0) {
   1136 		mdts = (1 << identify->mdts) * (1 << mps);
   1137 		if (mdts < sc->sc_mdts)
   1138 			sc->sc_mdts = mdts;
   1139 	}
   1140 
   1141 	sc->sc_nn = lemtoh32(&identify->nn);
   1142 
   1143 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1144 
   1145 done:
   1146 	nvme_dmamem_free(sc, &mem);
   1147 
   1148 	return error;
   1149 }
   1150 
   1151 static int
   1152 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1153 {
   1154 	struct nvme_sqe_q sqe;
   1155 	struct nvme_ccb *ccb;
   1156 	int rv;
   1157 
   1158 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1159 		return 1;
   1160 
   1161 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1162 	KASSERT(ccb != NULL);
   1163 
   1164 	ccb->ccb_done = nvme_empty_done;
   1165 	ccb->ccb_cookie = &sqe;
   1166 
   1167 	memset(&sqe, 0, sizeof(sqe));
   1168 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1169 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1170 	htolem16(&sqe.qsize, q->q_entries - 1);
   1171 	htolem16(&sqe.qid, q->q_id);
   1172 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1173 	if (sc->sc_use_mq)
   1174 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1175 
   1176 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1177 	if (rv != 0)
   1178 		goto fail;
   1179 
   1180 	ccb->ccb_done = nvme_empty_done;
   1181 	ccb->ccb_cookie = &sqe;
   1182 
   1183 	memset(&sqe, 0, sizeof(sqe));
   1184 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1185 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1186 	htolem16(&sqe.qsize, q->q_entries - 1);
   1187 	htolem16(&sqe.qid, q->q_id);
   1188 	htolem16(&sqe.cqid, q->q_id);
   1189 	sqe.qflags = NVM_SQE_Q_PC;
   1190 
   1191 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1192 	if (rv != 0)
   1193 		goto fail;
   1194 
   1195 fail:
   1196 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1197 	return rv;
   1198 }
   1199 
   1200 static int
   1201 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1202 {
   1203 	struct nvme_sqe_q sqe;
   1204 	struct nvme_ccb *ccb;
   1205 	int rv;
   1206 
   1207 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1208 	KASSERT(ccb != NULL);
   1209 
   1210 	ccb->ccb_done = nvme_empty_done;
   1211 	ccb->ccb_cookie = &sqe;
   1212 
   1213 	memset(&sqe, 0, sizeof(sqe));
   1214 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1215 	htolem16(&sqe.qid, q->q_id);
   1216 
   1217 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1218 	if (rv != 0)
   1219 		goto fail;
   1220 
   1221 	ccb->ccb_done = nvme_empty_done;
   1222 	ccb->ccb_cookie = &sqe;
   1223 
   1224 	memset(&sqe, 0, sizeof(sqe));
   1225 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1226 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1227 	htolem16(&sqe.qid, q->q_id);
   1228 
   1229 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1230 	if (rv != 0)
   1231 		goto fail;
   1232 
   1233 fail:
   1234 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1235 
   1236 	if (rv == 0 && sc->sc_use_mq) {
   1237 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1238 			rv = 1;
   1239 	}
   1240 
   1241 	return rv;
   1242 }
   1243 
   1244 static void
   1245 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1246 {
   1247 	struct nvme_sqe *sqe = slot;
   1248 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1249 
   1250 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1251 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(*mem));
   1252 	htolem32(&sqe->cdw10, 1);
   1253 }
   1254 
   1255 static int
   1256 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
   1257 {
   1258 	struct nvme_softc *sc = q->q_sc;
   1259 	struct nvme_ccb *ccb;
   1260 	bus_addr_t off;
   1261 	uint64_t *prpl;
   1262 	u_int i;
   1263 	int error;
   1264 
   1265 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1266 	SIMPLEQ_INIT(&q->q_ccb_list);
   1267 
   1268 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1269 	if (q->q_ccbs == NULL)
   1270 		return 1;
   1271 
   1272 	q->q_nccbs = nccbs;
   1273 	error = nvme_dmamem_alloc(sc, sizeof(*prpl) * sc->sc_max_sgl * nccbs,
   1274 	    &q->q_ccb_prpls);
   1275 	if (error) {
   1276 		kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1277 		return error;
   1278 	}
   1279 
   1280 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1281 	off = 0;
   1282 
   1283 	for (i = 0; i < nccbs; i++) {
   1284 		ccb = &q->q_ccbs[i];
   1285 
   1286 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1287 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1288 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1289 		    &ccb->ccb_dmamap) != 0)
   1290 			goto free_maps;
   1291 
   1292 		ccb->ccb_id = i;
   1293 		ccb->ccb_prpl = prpl;
   1294 		ccb->ccb_prpl_off = off;
   1295 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1296 
   1297 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1298 
   1299 		prpl += sc->sc_max_sgl;
   1300 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1301 	}
   1302 
   1303 	return 0;
   1304 
   1305 free_maps:
   1306 	nvme_ccbs_free(q);
   1307 	return 1;
   1308 }
   1309 
   1310 static struct nvme_ccb *
   1311 nvme_ccb_get(struct nvme_queue *q)
   1312 {
   1313 	struct nvme_ccb *ccb;
   1314 
   1315 	mutex_enter(&q->q_ccb_mtx);
   1316 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1317 	if (ccb != NULL)
   1318 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1319 	mutex_exit(&q->q_ccb_mtx);
   1320 
   1321 	return ccb;
   1322 }
   1323 
   1324 static void
   1325 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1326 {
   1327 
   1328 	mutex_enter(&q->q_ccb_mtx);
   1329 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1330 	mutex_exit(&q->q_ccb_mtx);
   1331 }
   1332 
   1333 static void
   1334 nvme_ccbs_free(struct nvme_queue *q)
   1335 {
   1336 	struct nvme_softc *sc = q->q_sc;
   1337 	struct nvme_ccb *ccb;
   1338 
   1339 	mutex_enter(&q->q_ccb_mtx);
   1340 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1341 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1342 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1343 	}
   1344 	mutex_exit(&q->q_ccb_mtx);
   1345 
   1346 	nvme_dmamem_free(sc, &q->q_ccb_prpls);
   1347 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1348 	q->q_ccbs = NULL;
   1349 	mutex_destroy(&q->q_ccb_mtx);
   1350 }
   1351 
   1352 static struct nvme_queue *
   1353 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1354 {
   1355 	struct nvme_queue *q;
   1356 	int error;
   1357 
   1358 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1359 	if (q == NULL)
   1360 		return NULL;
   1361 
   1362 	q->q_sc = sc;
   1363 	error = nvme_dmamem_alloc(sc, sizeof(struct nvme_sqe) * entries,
   1364 	    &q->q_sq_dmamem);
   1365 	if (error)
   1366 		goto free;
   1367 
   1368 	error = nvme_dmamem_alloc(sc, sizeof(struct nvme_cqe) * entries,
   1369 	    &q->q_cq_dmamem);
   1370 	if (error)
   1371 		goto free_sq;
   1372 
   1373 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1374 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1375 
   1376 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1377 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1378 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1379 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1380 	q->q_id = id;
   1381 	q->q_entries = entries;
   1382 	q->q_sq_tail = 0;
   1383 	q->q_cq_head = 0;
   1384 	q->q_cq_phase = NVME_CQE_PHASE;
   1385 
   1386 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1387 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1388 
   1389 	if (nvme_ccbs_alloc(q, entries) != 0) {
   1390 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1391 		goto free_cq;
   1392 	}
   1393 
   1394 	return q;
   1395 
   1396 free_cq:
   1397 	nvme_dmamem_free(sc, &q->q_cq_dmamem);
   1398 free_sq:
   1399 	nvme_dmamem_free(sc, &q->q_sq_dmamem);
   1400 free:
   1401 	kmem_free(q, sizeof(*q));
   1402 
   1403 	return NULL;
   1404 }
   1405 
   1406 static void
   1407 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1408 {
   1409 	nvme_ccbs_free(q);
   1410 	mutex_destroy(&q->q_sq_mtx);
   1411 	mutex_destroy(&q->q_cq_mtx);
   1412 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1413 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1414 	nvme_dmamem_free(sc, &q->q_cq_dmamem);
   1415 	nvme_dmamem_free(sc, &q->q_sq_dmamem);
   1416 	kmem_free(q, sizeof(*q));
   1417 }
   1418 
   1419 int
   1420 nvme_intr(void *xsc)
   1421 {
   1422 	struct nvme_softc *sc = xsc;
   1423 
   1424 	/*
   1425 	 * INTx is level triggered, controller deasserts the interrupt only
   1426 	 * when we advance command queue head via write to the doorbell.
   1427 	 * Tell the controller to block the interrupts while we process
   1428 	 * the queue(s).
   1429 	 */
   1430 	nvme_write4(sc, NVME_INTMS, 1);
   1431 
   1432 	softint_schedule(sc->sc_softih[0]);
   1433 
   1434 	/* don't know, might not have been for us */
   1435 	return 1;
   1436 }
   1437 
   1438 void
   1439 nvme_softintr_intx(void *xq)
   1440 {
   1441 	struct nvme_queue *q = xq;
   1442 	struct nvme_softc *sc = q->q_sc;
   1443 
   1444 	nvme_q_complete(sc, sc->sc_admin_q);
   1445 	if (sc->sc_q != NULL)
   1446 	        nvme_q_complete(sc, sc->sc_q[0]);
   1447 
   1448 	/*
   1449 	 * Processing done, tell controller to issue interrupts again. There
   1450 	 * is no race, as NVMe spec requires the controller to maintain state,
   1451 	 * and assert the interrupt whenever there are unacknowledged
   1452 	 * completion queue entries.
   1453 	 */
   1454 	nvme_write4(sc, NVME_INTMC, 1);
   1455 }
   1456 
   1457 int
   1458 nvme_intr_msi(void *xq)
   1459 {
   1460 	struct nvme_queue *q = xq;
   1461 
   1462 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1463 	    && q->q_sc->sc_softih[q->q_id]);
   1464 
   1465 	/*
   1466 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1467 	 * without masking the interrupt.
   1468 	 */
   1469 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1470 
   1471 	return 1;
   1472 }
   1473 
   1474 void
   1475 nvme_softintr_msi(void *xq)
   1476 {
   1477 	struct nvme_queue *q = xq;
   1478 	struct nvme_softc *sc = q->q_sc;
   1479 
   1480 	nvme_q_complete(sc, q);
   1481 }
   1482 
   1483 static int
   1484 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size, struct nvme_dmamem *ndm)
   1485 {
   1486 	int nsegs;
   1487 
   1488 	memset(ndm, 0, sizeof(*ndm));
   1489 	ndm->ndm_size = size;
   1490 
   1491 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1492 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1493 		goto ndmfree;
   1494 
   1495 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1496 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1497 		goto destroy;
   1498 
   1499 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1500 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1501 		goto free;
   1502 	memset(ndm->ndm_kva, 0, size);
   1503 
   1504 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1505 	    NULL, BUS_DMA_WAITOK) != 0)
   1506 		goto unmap;
   1507 
   1508 	return 0;
   1509 
   1510 unmap:
   1511 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1512 free:
   1513 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1514 destroy:
   1515 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1516 ndmfree:
   1517 	return ENOMEM;
   1518 }
   1519 
   1520 void
   1521 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1522 {
   1523 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1524 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1525 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1526 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1527 }
   1528 
   1529 /*
   1530  * ioctl
   1531  */
   1532 
   1533 dev_type_open(nvmeopen);
   1534 dev_type_close(nvmeclose);
   1535 dev_type_ioctl(nvmeioctl);
   1536 
   1537 const struct cdevsw nvme_cdevsw = {
   1538 	.d_open = nvmeopen,
   1539 	.d_close = nvmeclose,
   1540 	.d_read = noread,
   1541 	.d_write = nowrite,
   1542 	.d_ioctl = nvmeioctl,
   1543 	.d_stop = nostop,
   1544 	.d_tty = notty,
   1545 	.d_poll = nopoll,
   1546 	.d_mmap = nommap,
   1547 	.d_kqfilter = nokqfilter,
   1548 	.d_discard = nodiscard,
   1549 	.d_flag = D_OTHER,
   1550 };
   1551 
   1552 extern struct cfdriver nvme_cd;
   1553 
   1554 /*
   1555  * Accept an open operation on the control device.
   1556  */
   1557 int
   1558 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1559 {
   1560 	struct nvme_softc *sc;
   1561 	int unit = minor(dev) / 0x10000;
   1562 	int nsid = minor(dev) & 0xffff;
   1563 	int nsidx;
   1564 
   1565 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1566 		return ENXIO;
   1567 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1568 		return ENXIO;
   1569 
   1570 	if (nsid == 0) {
   1571 		/* controller */
   1572 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1573 			return EBUSY;
   1574 		SET(sc->sc_flags, NVME_F_OPEN);
   1575 	} else {
   1576 		/* namespace */
   1577 		nsidx = nsid - 1;
   1578 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1579 			return ENXIO;
   1580 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1581 			return EBUSY;
   1582 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1583 	}
   1584 	return 0;
   1585 }
   1586 
   1587 /*
   1588  * Accept the last close on the control device.
   1589  */
   1590 int
   1591 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1592 {
   1593 	struct nvme_softc *sc;
   1594 	int unit = minor(dev) / 0x10000;
   1595 	int nsid = minor(dev) & 0xffff;
   1596 	int nsidx;
   1597 
   1598 	sc = device_lookup_private(&nvme_cd, unit);
   1599 	if (sc == NULL)
   1600 		return ENXIO;
   1601 
   1602 	if (nsid == 0) {
   1603 		/* controller */
   1604 		CLR(sc->sc_flags, NVME_F_OPEN);
   1605 	} else {
   1606 		/* namespace */
   1607 		nsidx = nsid - 1;
   1608 		if (nsidx >= sc->sc_nn)
   1609 			return ENXIO;
   1610 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1611 	}
   1612 
   1613 	return 0;
   1614 }
   1615 
   1616 /*
   1617  * Handle control operations.
   1618  */
   1619 int
   1620 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1621 {
   1622 	struct nvme_softc *sc;
   1623 	int unit = minor(dev) / 0x10000;
   1624 	int nsid = minor(dev) & 0xffff;
   1625 	struct nvme_pt_command *pt;
   1626 
   1627 	sc = device_lookup_private(&nvme_cd, unit);
   1628 	if (sc == NULL)
   1629 		return ENXIO;
   1630 
   1631 	switch (cmd) {
   1632 	case NVME_PASSTHROUGH_CMD:
   1633 		pt = data;
   1634 		return nvme_command_passthrough(sc, data,
   1635 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1636 	}
   1637 
   1638 	return ENOTTY;
   1639 }
   1640