nvme.c revision 1.17 1 /* $NetBSD: nvme.c,v 1.17 2016/10/19 19:31:23 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.17 2016/10/19 19:31:23 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 1024;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, u_int);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *), int);
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static int nvme_dmamem_alloc(struct nvme_softc *, size_t,
89 struct nvme_dmamem *);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91
92 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
93 void *);
94 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
95 struct nvme_cqe *);
96 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
97 void *);
98 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
99 struct nvme_cqe *);
100
101 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
102 void *);
103 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105 static int nvme_command_passthrough(struct nvme_softc *,
106 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
107
108 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
109 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
110 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
111 #define NVME_TIMO_SY 60 /* sync cache timeout */
112
113 #define nvme_read4(_s, _r) \
114 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
115 #define nvme_write4(_s, _r, _v) \
116 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
117 #ifdef __LP64__
118 #define nvme_read8(_s, _r) \
119 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
120 #define nvme_write8(_s, _r, _v) \
121 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
122 #else /* __LP64__ */
123 static inline uint64_t
124 nvme_read8(struct nvme_softc *sc, bus_size_t r)
125 {
126 uint64_t v;
127 uint32_t *a = (uint32_t *)&v;
128
129 #if _BYTE_ORDER == _LITTLE_ENDIAN
130 a[0] = nvme_read4(sc, r);
131 a[1] = nvme_read4(sc, r + 4);
132 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
133 a[1] = nvme_read4(sc, r);
134 a[0] = nvme_read4(sc, r + 4);
135 #endif
136
137 return v;
138 }
139
140 static inline void
141 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
142 {
143 uint32_t *a = (uint32_t *)&v;
144
145 #if _BYTE_ORDER == _LITTLE_ENDIAN
146 nvme_write4(sc, r, a[0]);
147 nvme_write4(sc, r + 4, a[1]);
148 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
149 nvme_write4(sc, r, a[1]);
150 nvme_write4(sc, r + 4, a[0]);
151 #endif
152 }
153 #endif /* __LP64__ */
154
155 #define nvme_barrier(_s, _r, _l, _f) \
156 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
157 #define nvme_dmamem_sync(sc, mem, ops) \
158 bus_dmamap_sync((sc)->sc_dmat, NVME_DMA_MAP(mem), \
159 0, NVME_DMA_LEN(mem), (ops));
160
161 static void
162 nvme_version(struct nvme_softc *sc, uint32_t ver)
163 {
164 const char *v = NULL;
165
166 switch (ver) {
167 case NVME_VS_1_0:
168 v = "1.0";
169 break;
170 case NVME_VS_1_1:
171 v = "1.1";
172 break;
173 case NVME_VS_1_2:
174 v = "1.2";
175 break;
176 default:
177 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
178 return;
179 }
180
181 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
182 }
183
184 #ifdef NVME_DEBUG
185 static __used void
186 nvme_dumpregs(struct nvme_softc *sc)
187 {
188 uint64_t r8;
189 uint32_t r4;
190
191 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
192 r8 = nvme_read8(sc, NVME_CAP);
193 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
194 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
195 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
196 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
197 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
198 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
199 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
200 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
201 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
202 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
203 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
204 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
205
206 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
207
208 r4 = nvme_read4(sc, NVME_CC);
209 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
210 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
211 (1 << NVME_CC_IOCQES_R(r4)));
212 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
213 (1 << NVME_CC_IOSQES_R(r4)));
214 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
215 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
216 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
217 (1 << NVME_CC_MPS_R(r4)));
218 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
219 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
220
221 r4 = nvme_read4(sc, NVME_CSTS);
222 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
223 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
224 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
225 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
226
227 r4 = nvme_read4(sc, NVME_AQA);
228 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
229 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
230 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
231
232 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
233 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
234 #undef DEVNAME
235 }
236 #endif /* NVME_DEBUG */
237
238 static int
239 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
240 {
241 u_int i = 0;
242 uint32_t cc;
243
244 cc = nvme_read4(sc, NVME_CC);
245 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
246 aprint_error_dev(sc->sc_dev,
247 "controller enabled status expected %d, found to be %d\n",
248 (rdy != 0), ((cc & NVME_CC_EN) != 0));
249 return ENXIO;
250 }
251
252 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
253 if (i++ > sc->sc_rdy_to)
254 return ENXIO;
255
256 delay(1000);
257 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
258 }
259
260 return 0;
261 }
262
263 static int
264 nvme_enable(struct nvme_softc *sc, u_int mps)
265 {
266 uint32_t cc, csts;
267
268 cc = nvme_read4(sc, NVME_CC);
269 csts = nvme_read4(sc, NVME_CSTS);
270
271 if (ISSET(cc, NVME_CC_EN)) {
272 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
273
274 if (ISSET(csts, NVME_CSTS_RDY))
275 return 1;
276
277 goto waitready;
278 }
279
280 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
281 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
282 delay(5000);
283 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
284 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
285 delay(5000);
286
287 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
288 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
289 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
290 delay(5000);
291
292 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
293 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
294 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
295 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
296 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
297 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
298 SET(cc, NVME_CC_MPS(mps));
299 SET(cc, NVME_CC_EN);
300
301 nvme_write4(sc, NVME_CC, cc);
302 nvme_barrier(sc, 0, sc->sc_ios,
303 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
304 delay(5000);
305
306 waitready:
307 return nvme_ready(sc, NVME_CSTS_RDY);
308 }
309
310 static int
311 nvme_disable(struct nvme_softc *sc)
312 {
313 uint32_t cc, csts;
314
315 cc = nvme_read4(sc, NVME_CC);
316 csts = nvme_read4(sc, NVME_CSTS);
317
318 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
319 nvme_ready(sc, NVME_CSTS_RDY);
320
321 CLR(cc, NVME_CC_EN);
322
323 nvme_write4(sc, NVME_CC, cc);
324 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
325
326 delay(5000);
327
328 return nvme_ready(sc, 0);
329 }
330
331 int
332 nvme_attach(struct nvme_softc *sc)
333 {
334 uint64_t cap;
335 uint32_t reg;
336 u_int dstrd;
337 u_int mps = PAGE_SHIFT;
338 int adminq_entries = nvme_adminq_size;
339 int ioq_entries = nvme_ioq_size;
340 int i;
341
342 reg = nvme_read4(sc, NVME_VS);
343 if (reg == 0xffffffff) {
344 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
345 return 1;
346 }
347
348 nvme_version(sc, reg);
349
350 cap = nvme_read8(sc, NVME_CAP);
351 dstrd = NVME_CAP_DSTRD(cap);
352 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
353 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
354 "is greater than CPU page size %u\n",
355 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
356 return 1;
357 }
358 if (NVME_CAP_MPSMAX(cap) < mps)
359 mps = NVME_CAP_MPSMAX(cap);
360 if (ioq_entries > NVME_CAP_MQES(cap))
361 ioq_entries = NVME_CAP_MQES(cap);
362
363 /* set initial values to be used for admin queue during probe */
364 sc->sc_rdy_to = NVME_CAP_TO(cap);
365 sc->sc_mps = 1 << mps;
366 sc->sc_mdts = MAXPHYS;
367 sc->sc_max_sgl = 2;
368
369 if (nvme_disable(sc) != 0) {
370 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
371 return 1;
372 }
373
374 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
375 if (sc->sc_admin_q == NULL) {
376 aprint_error_dev(sc->sc_dev,
377 "unable to allocate admin queue\n");
378 return 1;
379 }
380 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
381 goto free_admin_q;
382
383 if (nvme_enable(sc, mps) != 0) {
384 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
385 goto disestablish_admin_q;
386 }
387
388 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
389 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
390 goto disable;
391 }
392
393 /* we know how big things are now */
394 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
395
396 /* reallocate ccbs of admin queue with new max sgl. */
397 nvme_ccbs_free(sc->sc_admin_q);
398 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
399
400 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
401 if (sc->sc_q == NULL) {
402 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
403 goto disable;
404 }
405 for (i = 0; i < sc->sc_nq; i++) {
406 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
407 if (sc->sc_q[i] == NULL) {
408 aprint_error_dev(sc->sc_dev,
409 "unable to allocate io queue\n");
410 goto free_q;
411 }
412 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
413 aprint_error_dev(sc->sc_dev,
414 "unable to create io queue\n");
415 nvme_q_free(sc, sc->sc_q[i]);
416 goto free_q;
417 }
418 }
419
420 if (!sc->sc_use_mq)
421 nvme_write4(sc, NVME_INTMC, 1);
422
423 /* probe subdevices */
424 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
425 KM_SLEEP);
426 if (sc->sc_namespaces == NULL)
427 goto free_q;
428 nvme_rescan(sc->sc_dev, "nvme", &i);
429
430 return 0;
431
432 free_q:
433 while (--i >= 0) {
434 nvme_q_delete(sc, sc->sc_q[i]);
435 nvme_q_free(sc, sc->sc_q[i]);
436 }
437 disable:
438 nvme_disable(sc);
439 disestablish_admin_q:
440 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
441 free_admin_q:
442 nvme_q_free(sc, sc->sc_admin_q);
443
444 return 1;
445 }
446
447 int
448 nvme_rescan(device_t self, const char *attr, const int *flags)
449 {
450 struct nvme_softc *sc = device_private(self);
451 struct nvme_attach_args naa;
452 uint64_t cap;
453 int ioq_entries = nvme_ioq_size;
454 int i;
455
456 cap = nvme_read8(sc, NVME_CAP);
457 if (ioq_entries > NVME_CAP_MQES(cap))
458 ioq_entries = NVME_CAP_MQES(cap);
459
460 for (i = 0; i < sc->sc_nn; i++) {
461 if (sc->sc_namespaces[i].dev)
462 continue;
463 memset(&naa, 0, sizeof(naa));
464 naa.naa_nsid = i + 1;
465 naa.naa_qentries = ioq_entries;
466 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
467 nvme_print);
468 }
469 return 0;
470 }
471
472 static int
473 nvme_print(void *aux, const char *pnp)
474 {
475 struct nvme_attach_args *naa = aux;
476
477 if (pnp)
478 aprint_normal("at %s", pnp);
479
480 if (naa->naa_nsid > 0)
481 aprint_normal(" nsid %d", naa->naa_nsid);
482
483 return UNCONF;
484 }
485
486 int
487 nvme_detach(struct nvme_softc *sc, int flags)
488 {
489 int i, error;
490
491 error = config_detach_children(sc->sc_dev, flags);
492 if (error)
493 return error;
494
495 error = nvme_shutdown(sc);
496 if (error)
497 return error;
498
499 /* from now on we are committed to detach, following will never fail */
500 for (i = 0; i < sc->sc_nq; i++)
501 nvme_q_free(sc, sc->sc_q[i]);
502 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
503 nvme_q_free(sc, sc->sc_admin_q);
504
505 return 0;
506 }
507
508 static int
509 nvme_shutdown(struct nvme_softc *sc)
510 {
511 uint32_t cc, csts;
512 bool disabled = false;
513 int i;
514
515 if (!sc->sc_use_mq)
516 nvme_write4(sc, NVME_INTMS, 1);
517
518 for (i = 0; i < sc->sc_nq; i++) {
519 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
520 aprint_error_dev(sc->sc_dev,
521 "unable to delete io queue %d, disabling\n", i + 1);
522 disabled = true;
523 }
524 }
525 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
526 if (disabled)
527 goto disable;
528
529 cc = nvme_read4(sc, NVME_CC);
530 CLR(cc, NVME_CC_SHN_MASK);
531 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
532 nvme_write4(sc, NVME_CC, cc);
533
534 for (i = 0; i < 4000; i++) {
535 nvme_barrier(sc, 0, sc->sc_ios,
536 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
537 csts = nvme_read4(sc, NVME_CSTS);
538 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
539 return 0;
540
541 delay(1000);
542 }
543
544 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
545
546 disable:
547 nvme_disable(sc);
548 return 0;
549 }
550
551 void
552 nvme_childdet(device_t self, device_t child)
553 {
554 struct nvme_softc *sc = device_private(self);
555 int i;
556
557 for (i = 0; i < sc->sc_nn; i++) {
558 if (sc->sc_namespaces[i].dev == child) {
559 /* Already freed ns->ident. */
560 sc->sc_namespaces[i].dev = NULL;
561 break;
562 }
563 }
564 }
565
566 int
567 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
568 {
569 struct nvme_sqe sqe;
570 struct nvm_identify_namespace *identify;
571 struct nvme_dmamem mem;
572 struct nvme_ccb *ccb;
573 struct nvme_namespace *ns;
574 int error;
575
576 KASSERT(nsid > 0);
577
578 ccb = nvme_ccb_get(sc->sc_admin_q);
579 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
580
581 error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
582 if (error)
583 return error;
584
585 memset(&sqe, 0, sizeof(sqe));
586 sqe.opcode = NVM_ADMIN_IDENTIFY;
587 htolem32(&sqe.nsid, nsid);
588 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
589 htolem32(&sqe.cdw10, 0);
590
591 ccb->ccb_done = nvme_empty_done;
592 ccb->ccb_cookie = &sqe;
593
594 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
595 error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill,
596 NVME_TIMO_IDENT);
597 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
598
599 nvme_ccb_put(sc->sc_admin_q, ccb);
600
601 if (error != 0) {
602 error = EIO;
603 goto done;
604 }
605
606 /* commit */
607
608 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
609 memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
610
611 ns = nvme_ns_get(sc, nsid);
612 KASSERT(ns);
613 ns->ident = identify;
614
615 done:
616 nvme_dmamem_free(sc, &mem);
617
618 return error;
619 }
620
621 int
622 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
623 struct buf *bp, void *data, size_t datasize,
624 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
625 {
626 struct nvme_queue *q = nvme_get_q(sc);
627 struct nvme_ccb *ccb;
628 bus_dmamap_t dmap;
629 int i, error;
630
631 ccb = nvme_ccb_get(q);
632 if (ccb == NULL)
633 return EAGAIN;
634
635 ccb->ccb_done = nvme_ns_io_done;
636 ccb->ccb_cookie = cookie;
637
638 /* namespace context */
639 ccb->nnc_nsid = nsid;
640 ccb->nnc_flags = flags;
641 ccb->nnc_buf = bp;
642 ccb->nnc_datasize = datasize;
643 ccb->nnc_secsize = secsize;
644 ccb->nnc_blkno = blkno;
645 ccb->nnc_done = nnc_done;
646
647 dmap = ccb->ccb_dmamap;
648 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
649 datasize, NULL,
650 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
651 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
652 (ISSET(flags, NVME_NS_CTX_F_READ) ?
653 BUS_DMA_READ : BUS_DMA_WRITE));
654 if (error) {
655 nvme_ccb_put(q, ccb);
656 return error;
657 }
658
659 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
660 ISSET(flags, NVME_NS_CTX_F_READ) ?
661 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
662
663 if (dmap->dm_nsegs > 2) {
664 for (i = 1; i < dmap->dm_nsegs; i++) {
665 htolem64(&ccb->ccb_prpl[i - 1],
666 dmap->dm_segs[i].ds_addr);
667 }
668 bus_dmamap_sync(sc->sc_dmat,
669 NVME_DMA_MAP(q->q_ccb_prpls),
670 ccb->ccb_prpl_off,
671 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
672 BUS_DMASYNC_PREWRITE);
673 }
674
675 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
676 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
677 return EIO;
678 return 0;
679 }
680
681 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
682 return 0;
683 }
684
685 static void
686 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
687 {
688 struct nvme_sqe_io *sqe = slot;
689 bus_dmamap_t dmap = ccb->ccb_dmamap;
690
691 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
692 NVM_CMD_READ : NVM_CMD_WRITE;
693 htolem32(&sqe->nsid, ccb->nnc_nsid);
694
695 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
696 switch (dmap->dm_nsegs) {
697 case 1:
698 break;
699 case 2:
700 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
701 break;
702 default:
703 /* the prp list is already set up and synced */
704 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
705 break;
706 }
707
708 htolem64(&sqe->slba, ccb->nnc_blkno);
709
710 /* guaranteed by upper layers, but check just in case */
711 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
712 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
713 }
714
715 static void
716 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
717 struct nvme_cqe *cqe)
718 {
719 struct nvme_softc *sc = q->q_sc;
720 bus_dmamap_t dmap = ccb->ccb_dmamap;
721 void *nnc_cookie = ccb->ccb_cookie;
722 nvme_nnc_done nnc_done = ccb->nnc_done;
723 struct buf *bp = ccb->nnc_buf;
724
725 if (dmap->dm_nsegs > 2) {
726 bus_dmamap_sync(sc->sc_dmat,
727 NVME_DMA_MAP(q->q_ccb_prpls),
728 ccb->ccb_prpl_off,
729 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
730 BUS_DMASYNC_POSTWRITE);
731 }
732
733 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
734 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
735 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
736
737 bus_dmamap_unload(sc->sc_dmat, dmap);
738 nvme_ccb_put(q, ccb);
739
740 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
741 }
742
743 int
744 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
745 int flags, nvme_nnc_done nnc_done)
746 {
747 struct nvme_queue *q = nvme_get_q(sc);
748 struct nvme_ccb *ccb;
749
750 ccb = nvme_ccb_get(q);
751 if (ccb == NULL)
752 return EAGAIN;
753
754 ccb->ccb_done = nvme_ns_sync_done;
755 ccb->ccb_cookie = cookie;
756
757 /* namespace context */
758 ccb->nnc_nsid = nsid;
759 ccb->nnc_flags = flags;
760 ccb->nnc_done = nnc_done;
761
762 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
763 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
764 return EIO;
765 return 0;
766 }
767
768 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
769 return 0;
770 }
771
772 static void
773 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
774 {
775 struct nvme_sqe *sqe = slot;
776
777 sqe->opcode = NVM_CMD_FLUSH;
778 htolem32(&sqe->nsid, ccb->nnc_nsid);
779 }
780
781 static void
782 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
783 struct nvme_cqe *cqe)
784 {
785 void *cookie = ccb->ccb_cookie;
786 nvme_nnc_done nnc_done = ccb->nnc_done;
787
788 nvme_ccb_put(q, ccb);
789
790 nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
791 }
792
793 void
794 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
795 {
796 struct nvme_namespace *ns;
797 struct nvm_identify_namespace *identify;
798
799 ns = nvme_ns_get(sc, nsid);
800 KASSERT(ns);
801
802 identify = ns->ident;
803 ns->ident = NULL;
804 if (identify != NULL)
805 kmem_free(identify, sizeof(*identify));
806 }
807
808 static void
809 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
810 {
811 struct nvme_softc *sc = q->q_sc;
812 struct nvme_sqe *sqe = slot;
813 struct nvme_pt_command *pt = ccb->ccb_cookie;
814 bus_dmamap_t dmap = ccb->ccb_dmamap;
815 int i;
816
817 sqe->opcode = pt->cmd.opcode;
818 htolem32(&sqe->nsid, pt->cmd.nsid);
819
820 if (pt->buf != NULL && pt->len > 0) {
821 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
822 switch (dmap->dm_nsegs) {
823 case 1:
824 break;
825 case 2:
826 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
827 break;
828 default:
829 for (i = 1; i < dmap->dm_nsegs; i++) {
830 htolem64(&ccb->ccb_prpl[i - 1],
831 dmap->dm_segs[i].ds_addr);
832 }
833 bus_dmamap_sync(sc->sc_dmat,
834 NVME_DMA_MAP(q->q_ccb_prpls),
835 ccb->ccb_prpl_off,
836 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
837 BUS_DMASYNC_PREWRITE);
838 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
839 break;
840 }
841 }
842
843 htolem32(&sqe->cdw10, pt->cmd.cdw10);
844 htolem32(&sqe->cdw11, pt->cmd.cdw11);
845 htolem32(&sqe->cdw12, pt->cmd.cdw12);
846 htolem32(&sqe->cdw13, pt->cmd.cdw13);
847 htolem32(&sqe->cdw14, pt->cmd.cdw14);
848 htolem32(&sqe->cdw15, pt->cmd.cdw15);
849 }
850
851 static void
852 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
853 {
854 struct nvme_softc *sc = q->q_sc;
855 struct nvme_pt_command *pt = ccb->ccb_cookie;
856 bus_dmamap_t dmap = ccb->ccb_dmamap;
857
858 if (pt->buf != NULL && pt->len > 0) {
859 if (dmap->dm_nsegs > 2) {
860 bus_dmamap_sync(sc->sc_dmat,
861 NVME_DMA_MAP(q->q_ccb_prpls),
862 ccb->ccb_prpl_off,
863 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
864 BUS_DMASYNC_POSTWRITE);
865 }
866
867 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
868 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
869 bus_dmamap_unload(sc->sc_dmat, dmap);
870 }
871
872 pt->cpl.cdw0 = cqe->cdw0;
873 pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
874 }
875
876 static int
877 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
878 uint16_t nsid, struct lwp *l, bool is_adminq)
879 {
880 struct nvme_queue *q;
881 struct nvme_ccb *ccb;
882 void *buf = NULL;
883 int error;
884
885 /* limit command size to maximum data transfer size */
886 if ((pt->buf == NULL && pt->len > 0) ||
887 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
888 return EINVAL;
889
890 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
891 ccb = nvme_ccb_get(q);
892 if (ccb == NULL)
893 return EBUSY;
894
895 if (pt->buf != NULL) {
896 KASSERT(pt->len > 0);
897 buf = kmem_alloc(pt->len, KM_SLEEP);
898 if (buf == NULL) {
899 error = ENOMEM;
900 goto ccb_put;
901 }
902 if (!pt->is_read) {
903 error = copyin(pt->buf, buf, pt->len);
904 if (error)
905 goto kmem_free;
906 }
907 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
908 pt->len, NULL,
909 BUS_DMA_WAITOK |
910 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
911 if (error)
912 goto kmem_free;
913 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
914 0, ccb->ccb_dmamap->dm_mapsize,
915 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
916 }
917
918 ccb->ccb_done = nvme_pt_done;
919 ccb->ccb_cookie = pt;
920
921 pt->cmd.nsid = nsid;
922 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
923 error = EIO;
924 goto out;
925 }
926
927 error = 0;
928 out:
929 if (buf != NULL) {
930 if (error == 0 && pt->is_read)
931 error = copyout(buf, pt->buf, pt->len);
932 kmem_free:
933 kmem_free(buf, pt->len);
934 }
935 ccb_put:
936 nvme_ccb_put(q, ccb);
937 return error;
938 }
939
940 static void
941 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
942 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
943 {
944 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
945 uint32_t tail;
946
947 mutex_enter(&q->q_sq_mtx);
948 tail = q->q_sq_tail;
949 if (++q->q_sq_tail >= q->q_entries)
950 q->q_sq_tail = 0;
951
952 sqe += tail;
953
954 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
955 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
956 memset(sqe, 0, sizeof(*sqe));
957 (*fill)(q, ccb, sqe);
958 sqe->cid = ccb->ccb_id;
959 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
960 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
961
962 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
963 mutex_exit(&q->q_sq_mtx);
964 }
965
966 struct nvme_poll_state {
967 struct nvme_sqe s;
968 struct nvme_cqe c;
969 };
970
971 static int
972 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
973 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
974 {
975 struct nvme_poll_state state;
976 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
977 void *cookie;
978 uint16_t flags;
979 int step = 10;
980 int maxloop = timo_sec * 1000000 / step;
981 int error = 0;
982
983 memset(&state, 0, sizeof(state));
984 (*fill)(q, ccb, &state.s);
985
986 done = ccb->ccb_done;
987 cookie = ccb->ccb_cookie;
988
989 ccb->ccb_done = nvme_poll_done;
990 ccb->ccb_cookie = &state;
991
992 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
993 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
994 if (nvme_q_complete(sc, q) == 0)
995 delay(step);
996
997 if (timo_sec >= 0 && --maxloop <= 0) {
998 error = ETIMEDOUT;
999 break;
1000 }
1001 }
1002
1003 ccb->ccb_cookie = cookie;
1004 done(q, ccb, &state.c);
1005
1006 if (error == 0) {
1007 flags = lemtoh16(&state.c.flags);
1008 return flags & ~NVME_CQE_PHASE;
1009 } else {
1010 return 1;
1011 }
1012 }
1013
1014 static void
1015 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1016 {
1017 struct nvme_sqe *sqe = slot;
1018 struct nvme_poll_state *state = ccb->ccb_cookie;
1019
1020 *sqe = state->s;
1021 }
1022
1023 static void
1024 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1025 struct nvme_cqe *cqe)
1026 {
1027 struct nvme_poll_state *state = ccb->ccb_cookie;
1028
1029 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1030 state->c = *cqe;
1031 }
1032
1033 static void
1034 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1035 {
1036 struct nvme_sqe *src = ccb->ccb_cookie;
1037 struct nvme_sqe *dst = slot;
1038
1039 *dst = *src;
1040 }
1041
1042 static void
1043 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1044 struct nvme_cqe *cqe)
1045 {
1046 }
1047
1048 static int
1049 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1050 {
1051 struct nvme_ccb *ccb;
1052 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1053 uint16_t flags;
1054 int rv = 0;
1055
1056 mutex_enter(&q->q_cq_mtx);
1057
1058 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1059 for (;;) {
1060 cqe = &ring[q->q_cq_head];
1061 flags = lemtoh16(&cqe->flags);
1062 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1063 break;
1064
1065 ccb = &q->q_ccbs[cqe->cid];
1066
1067 if (++q->q_cq_head >= q->q_entries) {
1068 q->q_cq_head = 0;
1069 q->q_cq_phase ^= NVME_CQE_PHASE;
1070 }
1071
1072 rv = 1;
1073
1074 /*
1075 * Unlock the mutex before calling the ccb_done callback
1076 * and re-lock afterwards. The callback triggers lddone()
1077 * which schedules another i/o, and also calls nvme_ccb_put().
1078 * Unlock/relock avoids possibility of deadlock.
1079 */
1080 mutex_exit(&q->q_cq_mtx);
1081 ccb->ccb_done(q, ccb, cqe);
1082 mutex_enter(&q->q_cq_mtx);
1083 }
1084 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1085
1086 if (rv)
1087 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1088
1089 mutex_exit(&q->q_cq_mtx);
1090
1091 return rv;
1092 }
1093
1094 static int
1095 nvme_identify(struct nvme_softc *sc, u_int mps)
1096 {
1097 char sn[41], mn[81], fr[17];
1098 struct nvm_identify_controller *identify;
1099 struct nvme_dmamem mem;
1100 struct nvme_ccb *ccb;
1101 u_int mdts;
1102 int error;
1103
1104 ccb = nvme_ccb_get(sc->sc_admin_q);
1105 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1106
1107 error = nvme_dmamem_alloc(sc, sizeof(*identify), &mem);
1108 if (error)
1109 return error;
1110
1111 ccb->ccb_done = nvme_empty_done;
1112 ccb->ccb_cookie = &mem;
1113
1114 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1115 error = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1116 NVME_TIMO_IDENT);
1117 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1118
1119 nvme_ccb_put(sc->sc_admin_q, ccb);
1120
1121 if (error != 0)
1122 goto done;
1123
1124 identify = NVME_DMA_KVA(mem);
1125
1126 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1127 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1128 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1129 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1130 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1131 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1132 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1133 sn);
1134
1135 if (identify->mdts > 0) {
1136 mdts = (1 << identify->mdts) * (1 << mps);
1137 if (mdts < sc->sc_mdts)
1138 sc->sc_mdts = mdts;
1139 }
1140
1141 sc->sc_nn = lemtoh32(&identify->nn);
1142
1143 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1144
1145 done:
1146 nvme_dmamem_free(sc, &mem);
1147
1148 return error;
1149 }
1150
1151 static int
1152 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1153 {
1154 struct nvme_sqe_q sqe;
1155 struct nvme_ccb *ccb;
1156 int rv;
1157
1158 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1159 return 1;
1160
1161 ccb = nvme_ccb_get(sc->sc_admin_q);
1162 KASSERT(ccb != NULL);
1163
1164 ccb->ccb_done = nvme_empty_done;
1165 ccb->ccb_cookie = &sqe;
1166
1167 memset(&sqe, 0, sizeof(sqe));
1168 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1169 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1170 htolem16(&sqe.qsize, q->q_entries - 1);
1171 htolem16(&sqe.qid, q->q_id);
1172 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1173 if (sc->sc_use_mq)
1174 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1175
1176 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1177 if (rv != 0)
1178 goto fail;
1179
1180 ccb->ccb_done = nvme_empty_done;
1181 ccb->ccb_cookie = &sqe;
1182
1183 memset(&sqe, 0, sizeof(sqe));
1184 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1185 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1186 htolem16(&sqe.qsize, q->q_entries - 1);
1187 htolem16(&sqe.qid, q->q_id);
1188 htolem16(&sqe.cqid, q->q_id);
1189 sqe.qflags = NVM_SQE_Q_PC;
1190
1191 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1192 if (rv != 0)
1193 goto fail;
1194
1195 fail:
1196 nvme_ccb_put(sc->sc_admin_q, ccb);
1197 return rv;
1198 }
1199
1200 static int
1201 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1202 {
1203 struct nvme_sqe_q sqe;
1204 struct nvme_ccb *ccb;
1205 int rv;
1206
1207 ccb = nvme_ccb_get(sc->sc_admin_q);
1208 KASSERT(ccb != NULL);
1209
1210 ccb->ccb_done = nvme_empty_done;
1211 ccb->ccb_cookie = &sqe;
1212
1213 memset(&sqe, 0, sizeof(sqe));
1214 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1215 htolem16(&sqe.qid, q->q_id);
1216
1217 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1218 if (rv != 0)
1219 goto fail;
1220
1221 ccb->ccb_done = nvme_empty_done;
1222 ccb->ccb_cookie = &sqe;
1223
1224 memset(&sqe, 0, sizeof(sqe));
1225 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1226 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1227 htolem16(&sqe.qid, q->q_id);
1228
1229 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1230 if (rv != 0)
1231 goto fail;
1232
1233 fail:
1234 nvme_ccb_put(sc->sc_admin_q, ccb);
1235
1236 if (rv == 0 && sc->sc_use_mq) {
1237 if (sc->sc_intr_disestablish(sc, q->q_id))
1238 rv = 1;
1239 }
1240
1241 return rv;
1242 }
1243
1244 static void
1245 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1246 {
1247 struct nvme_sqe *sqe = slot;
1248 struct nvme_dmamem *mem = ccb->ccb_cookie;
1249
1250 sqe->opcode = NVM_ADMIN_IDENTIFY;
1251 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(*mem));
1252 htolem32(&sqe->cdw10, 1);
1253 }
1254
1255 static int
1256 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
1257 {
1258 struct nvme_softc *sc = q->q_sc;
1259 struct nvme_ccb *ccb;
1260 bus_addr_t off;
1261 uint64_t *prpl;
1262 u_int i;
1263 int error;
1264
1265 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1266 SIMPLEQ_INIT(&q->q_ccb_list);
1267
1268 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1269 if (q->q_ccbs == NULL)
1270 return 1;
1271
1272 q->q_nccbs = nccbs;
1273 error = nvme_dmamem_alloc(sc, sizeof(*prpl) * sc->sc_max_sgl * nccbs,
1274 &q->q_ccb_prpls);
1275 if (error) {
1276 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1277 return error;
1278 }
1279
1280 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1281 off = 0;
1282
1283 for (i = 0; i < nccbs; i++) {
1284 ccb = &q->q_ccbs[i];
1285
1286 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1287 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1288 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1289 &ccb->ccb_dmamap) != 0)
1290 goto free_maps;
1291
1292 ccb->ccb_id = i;
1293 ccb->ccb_prpl = prpl;
1294 ccb->ccb_prpl_off = off;
1295 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1296
1297 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1298
1299 prpl += sc->sc_max_sgl;
1300 off += sizeof(*prpl) * sc->sc_max_sgl;
1301 }
1302
1303 return 0;
1304
1305 free_maps:
1306 nvme_ccbs_free(q);
1307 return 1;
1308 }
1309
1310 static struct nvme_ccb *
1311 nvme_ccb_get(struct nvme_queue *q)
1312 {
1313 struct nvme_ccb *ccb;
1314
1315 mutex_enter(&q->q_ccb_mtx);
1316 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1317 if (ccb != NULL)
1318 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1319 mutex_exit(&q->q_ccb_mtx);
1320
1321 return ccb;
1322 }
1323
1324 static void
1325 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1326 {
1327
1328 mutex_enter(&q->q_ccb_mtx);
1329 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1330 mutex_exit(&q->q_ccb_mtx);
1331 }
1332
1333 static void
1334 nvme_ccbs_free(struct nvme_queue *q)
1335 {
1336 struct nvme_softc *sc = q->q_sc;
1337 struct nvme_ccb *ccb;
1338
1339 mutex_enter(&q->q_ccb_mtx);
1340 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1341 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1342 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1343 }
1344 mutex_exit(&q->q_ccb_mtx);
1345
1346 nvme_dmamem_free(sc, &q->q_ccb_prpls);
1347 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1348 q->q_ccbs = NULL;
1349 mutex_destroy(&q->q_ccb_mtx);
1350 }
1351
1352 static struct nvme_queue *
1353 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1354 {
1355 struct nvme_queue *q;
1356 int error;
1357
1358 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1359 if (q == NULL)
1360 return NULL;
1361
1362 q->q_sc = sc;
1363 error = nvme_dmamem_alloc(sc, sizeof(struct nvme_sqe) * entries,
1364 &q->q_sq_dmamem);
1365 if (error)
1366 goto free;
1367
1368 error = nvme_dmamem_alloc(sc, sizeof(struct nvme_cqe) * entries,
1369 &q->q_cq_dmamem);
1370 if (error)
1371 goto free_sq;
1372
1373 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1374 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1375
1376 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1377 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1378 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1379 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1380 q->q_id = id;
1381 q->q_entries = entries;
1382 q->q_sq_tail = 0;
1383 q->q_cq_head = 0;
1384 q->q_cq_phase = NVME_CQE_PHASE;
1385
1386 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1387 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1388
1389 if (nvme_ccbs_alloc(q, entries) != 0) {
1390 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1391 goto free_cq;
1392 }
1393
1394 return q;
1395
1396 free_cq:
1397 nvme_dmamem_free(sc, &q->q_cq_dmamem);
1398 free_sq:
1399 nvme_dmamem_free(sc, &q->q_sq_dmamem);
1400 free:
1401 kmem_free(q, sizeof(*q));
1402
1403 return NULL;
1404 }
1405
1406 static void
1407 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1408 {
1409 nvme_ccbs_free(q);
1410 mutex_destroy(&q->q_sq_mtx);
1411 mutex_destroy(&q->q_cq_mtx);
1412 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1413 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1414 nvme_dmamem_free(sc, &q->q_cq_dmamem);
1415 nvme_dmamem_free(sc, &q->q_sq_dmamem);
1416 kmem_free(q, sizeof(*q));
1417 }
1418
1419 int
1420 nvme_intr(void *xsc)
1421 {
1422 struct nvme_softc *sc = xsc;
1423
1424 /*
1425 * INTx is level triggered, controller deasserts the interrupt only
1426 * when we advance command queue head via write to the doorbell.
1427 * Tell the controller to block the interrupts while we process
1428 * the queue(s).
1429 */
1430 nvme_write4(sc, NVME_INTMS, 1);
1431
1432 softint_schedule(sc->sc_softih[0]);
1433
1434 /* don't know, might not have been for us */
1435 return 1;
1436 }
1437
1438 void
1439 nvme_softintr_intx(void *xq)
1440 {
1441 struct nvme_queue *q = xq;
1442 struct nvme_softc *sc = q->q_sc;
1443
1444 nvme_q_complete(sc, sc->sc_admin_q);
1445 if (sc->sc_q != NULL)
1446 nvme_q_complete(sc, sc->sc_q[0]);
1447
1448 /*
1449 * Processing done, tell controller to issue interrupts again. There
1450 * is no race, as NVMe spec requires the controller to maintain state,
1451 * and assert the interrupt whenever there are unacknowledged
1452 * completion queue entries.
1453 */
1454 nvme_write4(sc, NVME_INTMC, 1);
1455 }
1456
1457 int
1458 nvme_intr_msi(void *xq)
1459 {
1460 struct nvme_queue *q = xq;
1461
1462 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1463 && q->q_sc->sc_softih[q->q_id]);
1464
1465 /*
1466 * MSI/MSI-X are edge triggered, so can handover processing to softint
1467 * without masking the interrupt.
1468 */
1469 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1470
1471 return 1;
1472 }
1473
1474 void
1475 nvme_softintr_msi(void *xq)
1476 {
1477 struct nvme_queue *q = xq;
1478 struct nvme_softc *sc = q->q_sc;
1479
1480 nvme_q_complete(sc, q);
1481 }
1482
1483 static int
1484 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size, struct nvme_dmamem *ndm)
1485 {
1486 int nsegs;
1487
1488 memset(ndm, 0, sizeof(*ndm));
1489 ndm->ndm_size = size;
1490
1491 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1492 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1493 goto ndmfree;
1494
1495 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1496 1, &nsegs, BUS_DMA_WAITOK) != 0)
1497 goto destroy;
1498
1499 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1500 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1501 goto free;
1502 memset(ndm->ndm_kva, 0, size);
1503
1504 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1505 NULL, BUS_DMA_WAITOK) != 0)
1506 goto unmap;
1507
1508 return 0;
1509
1510 unmap:
1511 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1512 free:
1513 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1514 destroy:
1515 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1516 ndmfree:
1517 return ENOMEM;
1518 }
1519
1520 void
1521 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1522 {
1523 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1524 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1525 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1526 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1527 }
1528
1529 /*
1530 * ioctl
1531 */
1532
1533 dev_type_open(nvmeopen);
1534 dev_type_close(nvmeclose);
1535 dev_type_ioctl(nvmeioctl);
1536
1537 const struct cdevsw nvme_cdevsw = {
1538 .d_open = nvmeopen,
1539 .d_close = nvmeclose,
1540 .d_read = noread,
1541 .d_write = nowrite,
1542 .d_ioctl = nvmeioctl,
1543 .d_stop = nostop,
1544 .d_tty = notty,
1545 .d_poll = nopoll,
1546 .d_mmap = nommap,
1547 .d_kqfilter = nokqfilter,
1548 .d_discard = nodiscard,
1549 .d_flag = D_OTHER,
1550 };
1551
1552 extern struct cfdriver nvme_cd;
1553
1554 /*
1555 * Accept an open operation on the control device.
1556 */
1557 int
1558 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1559 {
1560 struct nvme_softc *sc;
1561 int unit = minor(dev) / 0x10000;
1562 int nsid = minor(dev) & 0xffff;
1563 int nsidx;
1564
1565 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1566 return ENXIO;
1567 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1568 return ENXIO;
1569
1570 if (nsid == 0) {
1571 /* controller */
1572 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1573 return EBUSY;
1574 SET(sc->sc_flags, NVME_F_OPEN);
1575 } else {
1576 /* namespace */
1577 nsidx = nsid - 1;
1578 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1579 return ENXIO;
1580 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1581 return EBUSY;
1582 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1583 }
1584 return 0;
1585 }
1586
1587 /*
1588 * Accept the last close on the control device.
1589 */
1590 int
1591 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1592 {
1593 struct nvme_softc *sc;
1594 int unit = minor(dev) / 0x10000;
1595 int nsid = minor(dev) & 0xffff;
1596 int nsidx;
1597
1598 sc = device_lookup_private(&nvme_cd, unit);
1599 if (sc == NULL)
1600 return ENXIO;
1601
1602 if (nsid == 0) {
1603 /* controller */
1604 CLR(sc->sc_flags, NVME_F_OPEN);
1605 } else {
1606 /* namespace */
1607 nsidx = nsid - 1;
1608 if (nsidx >= sc->sc_nn)
1609 return ENXIO;
1610 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1611 }
1612
1613 return 0;
1614 }
1615
1616 /*
1617 * Handle control operations.
1618 */
1619 int
1620 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1621 {
1622 struct nvme_softc *sc;
1623 int unit = minor(dev) / 0x10000;
1624 int nsid = minor(dev) & 0xffff;
1625 struct nvme_pt_command *pt;
1626
1627 sc = device_lookup_private(&nvme_cd, unit);
1628 if (sc == NULL)
1629 return ENXIO;
1630
1631 switch (cmd) {
1632 case NVME_PASSTHROUGH_CMD:
1633 pt = data;
1634 return nvme_command_passthrough(sc, data,
1635 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1636 }
1637
1638 return ENOTTY;
1639 }
1640