Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.2.2.2
      1 /*	$NetBSD: nvme.c,v 1.2.2.2 2016/05/29 08:44:21 skrll Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.2.2.2 2016/05/29 08:44:21 skrll Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/device.h>
     30 #include <sys/kmem.h>
     31 #include <sys/once.h>
     32 #include <sys/queue.h>
     33 #include <sys/mutex.h>
     34 
     35 #include <dev/ic/nvmereg.h>
     36 #include <dev/ic/nvmevar.h>
     37 
     38 int nvme_adminq_size = 128;
     39 int nvme_ioq_size = 128;
     40 
     41 static int	nvme_print(void *, const char *);
     42 
     43 static int	nvme_ready(struct nvme_softc *, uint32_t);
     44 static int	nvme_enable(struct nvme_softc *, u_int);
     45 static int	nvme_disable(struct nvme_softc *);
     46 static int	nvme_shutdown(struct nvme_softc *);
     47 
     48 static void	nvme_version(struct nvme_softc *, uint32_t);
     49 #ifdef NVME_DEBUG
     50 static void	nvme_dumpregs(struct nvme_softc *);
     51 #endif
     52 static int	nvme_identify(struct nvme_softc *, u_int);
     53 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     54 		    void *);
     55 
     56 static int	nvme_ccbs_alloc(struct nvme_queue *, u_int);
     57 static void	nvme_ccbs_free(struct nvme_queue *);
     58 
     59 static struct nvme_ccb *
     60 		nvme_ccb_get(struct nvme_queue *);
     61 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     62 
     63 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     64 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     65 		    struct nvme_ccb *, void *));
     66 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     67 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     68 		    struct nvme_cqe *);
     69 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     70 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     71 		    struct nvme_cqe *);
     72 
     73 static struct nvme_queue *
     74 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     75 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     76 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     77 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     78 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     79 		    struct nvme_ccb *, void *));
     80 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     81 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     82 
     83 static struct nvme_dmamem *
     84 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     85 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     86 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     87 		    int);
     88 
     89 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     90 		    void *);
     91 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     92 		    struct nvme_cqe *);
     93 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     94 		    void *);
     95 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
     96 		    struct nvme_cqe *);
     97 
     98 #define nvme_read4(_s, _r) \
     99 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    100 #define nvme_write4(_s, _r, _v) \
    101 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    102 #ifdef __LP64__
    103 #define nvme_read8(_s, _r) \
    104 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
    105 #define nvme_write8(_s, _r, _v) \
    106 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    107 #else /* __LP64__ */
    108 static inline uint64_t
    109 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    110 {
    111 	uint64_t v;
    112 	uint32_t *a = (uint32_t *)&v;
    113 
    114 #if _BYTE_ORDER == _LITTLE_ENDIAN
    115 	a[0] = nvme_read4(sc, r);
    116 	a[1] = nvme_read4(sc, r + 4);
    117 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    118 	a[1] = nvme_read4(sc, r);
    119 	a[0] = nvme_read4(sc, r + 4);
    120 #endif
    121 
    122 	return v;
    123 }
    124 
    125 static inline void
    126 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    127 {
    128 	uint32_t *a = (uint32_t *)&v;
    129 
    130 #if _BYTE_ORDER == _LITTLE_ENDIAN
    131 	nvme_write4(sc, r, a[0]);
    132 	nvme_write4(sc, r + 4, a[1]);
    133 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    134 	nvme_write4(sc, r, a[1]);
    135 	nvme_write4(sc, r + 4, a[0]);
    136 #endif
    137 }
    138 #endif /* __LP64__ */
    139 #define nvme_barrier(_s, _r, _l, _f) \
    140 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    141 
    142 pool_cache_t nvme_ns_ctx_cache;
    143 ONCE_DECL(nvme_init_once);
    144 
    145 static int
    146 nvme_init(void)
    147 {
    148 	nvme_ns_ctx_cache = pool_cache_init(sizeof(struct nvme_ns_context),
    149 	    0, 0, 0, "nvme_ns_ctx", NULL, IPL_BIO, NULL, NULL, NULL);
    150 	KASSERT(nvme_ns_ctx_cache != NULL);
    151 	return 0;
    152 }
    153 
    154 static void
    155 nvme_version(struct nvme_softc *sc, uint32_t ver)
    156 {
    157 	const char *v = NULL;
    158 
    159 	switch (ver) {
    160 	case NVME_VS_1_0:
    161 		v = "1.0";
    162 		break;
    163 	case NVME_VS_1_1:
    164 		v = "1.1";
    165 		break;
    166 	case NVME_VS_1_2:
    167 		v = "1.2";
    168 		break;
    169 	default:
    170 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
    171 		return;
    172 	}
    173 
    174 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
    175 }
    176 
    177 #ifdef NVME_DEBUG
    178 static void
    179 nvme_dumpregs(struct nvme_softc *sc)
    180 {
    181 	uint64_t r8;
    182 	uint32_t r4;
    183 
    184 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    185 	r8 = nvme_read8(sc, NVME_CAP);
    186 	printf("%s: cap  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    187 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    188 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    189 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    190 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    191 	printf("%s:  css %llu\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    192 	printf("%s:  nssrs %llu\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    193 	printf("%s:  dstrd %u\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    194 	printf("%s:  to %llu msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    195 	printf("%s:  ams %llu\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    196 	printf("%s:  cqr %llu\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    197 	printf("%s:  mqes %llu\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    198 
    199 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    200 
    201 	r4 = nvme_read4(sc, NVME_CC);
    202 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    203 	printf("%s:  iocqes %u\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4));
    204 	printf("%s:  iosqes %u\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4));
    205 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    206 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    207 	printf("%s:  mps %u\n", DEVNAME(sc), NVME_CC_MPS_R(r4));
    208 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    209 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN));
    210 
    211 	printf("%s: csts 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_CSTS));
    212 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_AQA));
    213 	printf("%s: asq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    214 	printf("%s: acq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    215 #undef	DEVNAME
    216 }
    217 #endif	/* NVME_DEBUG */
    218 
    219 static int
    220 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    221 {
    222 	u_int i = 0;
    223 
    224 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    225 		if (i++ > sc->sc_rdy_to)
    226 			return 1;
    227 
    228 		delay(1000);
    229 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    230 	}
    231 
    232 	return 0;
    233 }
    234 
    235 static int
    236 nvme_enable(struct nvme_softc *sc, u_int mps)
    237 {
    238 	uint32_t cc;
    239 
    240 	cc = nvme_read4(sc, NVME_CC);
    241 	if (ISSET(cc, NVME_CC_EN))
    242 		return nvme_ready(sc, NVME_CSTS_RDY);
    243 
    244 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    245 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    246 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    247 
    248 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    249 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    250 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    251 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    252 
    253 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    254 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    255 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    256 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    257 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    258 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    259 	SET(cc, NVME_CC_MPS(mps));
    260 	SET(cc, NVME_CC_EN);
    261 
    262 	nvme_write4(sc, NVME_CC, cc);
    263 	nvme_barrier(sc, 0, sc->sc_ios,
    264 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    265 
    266 	return nvme_ready(sc, NVME_CSTS_RDY);
    267 }
    268 
    269 static int
    270 nvme_disable(struct nvme_softc *sc)
    271 {
    272 	uint32_t cc, csts;
    273 
    274 	cc = nvme_read4(sc, NVME_CC);
    275 	if (ISSET(cc, NVME_CC_EN)) {
    276 		csts = nvme_read4(sc, NVME_CSTS);
    277 		if (!ISSET(csts, NVME_CSTS_CFS) &&
    278 		    nvme_ready(sc, NVME_CSTS_RDY) != 0)
    279 			return 1;
    280 	}
    281 
    282 	CLR(cc, NVME_CC_EN);
    283 
    284 	nvme_write4(sc, NVME_CC, cc);
    285 	nvme_barrier(sc, 0, sc->sc_ios,
    286 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    287 
    288 	return nvme_ready(sc, 0);
    289 }
    290 
    291 int
    292 nvme_attach(struct nvme_softc *sc)
    293 {
    294 	struct nvme_attach_args naa;
    295 	uint64_t cap;
    296 	uint32_t reg;
    297 	u_int dstrd;
    298 	u_int mps = PAGE_SHIFT;
    299 	int adminq_entries = nvme_adminq_size;
    300 	int ioq_entries = nvme_ioq_size;
    301 	int i;
    302 
    303 	RUN_ONCE(&nvme_init_once, nvme_init);
    304 
    305 	reg = nvme_read4(sc, NVME_VS);
    306 	if (reg == 0xffffffff) {
    307 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    308 		return 1;
    309 	}
    310 
    311 	nvme_version(sc, reg);
    312 
    313 	cap = nvme_read8(sc, NVME_CAP);
    314 	dstrd = NVME_CAP_DSTRD(cap);
    315 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    316 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    317 		    "is greater than CPU page size %u\n",
    318 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    319 		return 1;
    320 	}
    321 	if (NVME_CAP_MPSMAX(cap) < mps)
    322 		mps = NVME_CAP_MPSMAX(cap);
    323 
    324 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    325 	sc->sc_mps = 1 << mps;
    326 	sc->sc_mdts = MAXPHYS;
    327 	sc->sc_max_sgl = 2;
    328 
    329 	if (nvme_disable(sc) != 0) {
    330 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    331 		return 1;
    332 	}
    333 
    334 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    335 	if (sc->sc_admin_q == NULL) {
    336 		aprint_error_dev(sc->sc_dev,
    337 		    "unable to allocate admin queue\n");
    338 		return 1;
    339 	}
    340 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    341 		goto free_admin_q;
    342 
    343 	if (nvme_enable(sc, mps) != 0) {
    344 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    345 		goto disestablish_admin_q;
    346 	}
    347 
    348 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    349 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    350 		goto disable;
    351 	}
    352 
    353 	/* we know how big things are now */
    354 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    355 
    356 	/* reallocate ccbs of admin queue with new max sgl. */
    357 	nvme_ccbs_free(sc->sc_admin_q);
    358 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    359 
    360 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    361 	if (sc->sc_q == NULL) {
    362 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    363 		goto disable;
    364 	}
    365 	for (i = 0; i < sc->sc_nq; i++) {
    366 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    367 		if (sc->sc_q[i] == NULL) {
    368 			aprint_error_dev(sc->sc_dev,
    369 			    "unable to allocate io queue\n");
    370 			goto free_q;
    371 		}
    372 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    373 			aprint_error_dev(sc->sc_dev,
    374 			    "unable to create io queue\n");
    375 			nvme_q_free(sc, sc->sc_q[i]);
    376 			goto free_q;
    377 		}
    378 	}
    379 
    380 	if (!sc->sc_use_mq)
    381 		nvme_write4(sc, NVME_INTMC, 1);
    382 
    383 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    384 	    KM_SLEEP);
    385 	for (i = 0; i < sc->sc_nn; i++) {
    386 		memset(&naa, 0, sizeof(naa));
    387 		naa.naa_nsid = i + 1;
    388 		naa.naa_qentries = ioq_entries;
    389 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    390 		    nvme_print);
    391 	}
    392 
    393 	return 0;
    394 
    395 free_q:
    396 	while (--i >= 0) {
    397 		nvme_q_delete(sc, sc->sc_q[i]);
    398 		nvme_q_free(sc, sc->sc_q[i]);
    399 	}
    400 disable:
    401 	nvme_disable(sc);
    402 disestablish_admin_q:
    403 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    404 free_admin_q:
    405 	nvme_q_free(sc, sc->sc_admin_q);
    406 
    407 	return 1;
    408 }
    409 
    410 static int
    411 nvme_print(void *aux, const char *pnp)
    412 {
    413 	struct nvme_attach_args *naa = aux;
    414 
    415 	if (pnp)
    416 		aprint_normal("at %s", pnp);
    417 
    418 	if (naa->naa_nsid > 0)
    419 		aprint_normal(" nsid %d", naa->naa_nsid);
    420 
    421 	return UNCONF;
    422 }
    423 
    424 int
    425 nvme_detach(struct nvme_softc *sc, int flags)
    426 {
    427 	int i, error;
    428 
    429 	error = config_detach_children(sc->sc_dev, flags);
    430 	if (error)
    431 		return error;
    432 
    433 	error = nvme_shutdown(sc);
    434 	if (error)
    435 		return error;
    436 
    437 	for (i = 0; i < sc->sc_nq; i++)
    438 		nvme_q_free(sc, sc->sc_q[i]);
    439 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    440 	nvme_q_free(sc, sc->sc_admin_q);
    441 
    442 	return 0;
    443 }
    444 
    445 static int
    446 nvme_shutdown(struct nvme_softc *sc)
    447 {
    448 	uint32_t cc, csts;
    449 	bool disabled = false;
    450 	int i;
    451 
    452 	if (!sc->sc_use_mq)
    453 		nvme_write4(sc, NVME_INTMS, 1);
    454 
    455 	for (i = 0; i < sc->sc_nq; i++) {
    456 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    457 			aprint_error_dev(sc->sc_dev,
    458 			    "unable to delete io queue %d, disabling\n", i + 1);
    459 			disabled = true;
    460 		}
    461 	}
    462 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    463 	if (disabled)
    464 		goto disable;
    465 
    466 	cc = nvme_read4(sc, NVME_CC);
    467 	CLR(cc, NVME_CC_SHN_MASK);
    468 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    469 	nvme_write4(sc, NVME_CC, cc);
    470 
    471 	for (i = 0; i < 4000; i++) {
    472 		nvme_barrier(sc, 0, sc->sc_ios,
    473 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    474 		csts = nvme_read4(sc, NVME_CSTS);
    475 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    476 			return 0;
    477 
    478 		delay(1000);
    479 	}
    480 
    481 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    482 
    483 disable:
    484 	nvme_disable(sc);
    485 	return 0;
    486 }
    487 
    488 void
    489 nvme_childdet(device_t self, device_t child)
    490 {
    491 	struct nvme_softc *sc = device_private(self);
    492 	int i;
    493 
    494 	for (i = 0; i < sc->sc_nn; i++) {
    495 		if (sc->sc_namespaces[i].dev == child) {
    496 			/* Already freed ns->ident. */
    497 			sc->sc_namespaces[i].dev = NULL;
    498 			break;
    499 		}
    500 	}
    501 }
    502 
    503 int
    504 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    505 {
    506 	struct nvme_sqe sqe;
    507 	struct nvm_identify_namespace *identify;
    508 	struct nvme_dmamem *mem;
    509 	struct nvme_ccb *ccb;
    510 	struct nvme_namespace *ns;
    511 	int rv;
    512 
    513 	KASSERT(nsid > 0);
    514 
    515 	ccb = nvme_ccb_get(sc->sc_admin_q);
    516 	KASSERT(ccb != NULL);
    517 
    518 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    519 	if (mem == NULL)
    520 		return ENOMEM;
    521 
    522 	memset(&sqe, 0, sizeof(sqe));
    523 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    524 	htolem32(&sqe.nsid, nsid);
    525 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    526 	htolem32(&sqe.cdw10, 0);
    527 
    528 	ccb->ccb_done = nvme_empty_done;
    529 	ccb->ccb_cookie = &sqe;
    530 
    531 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    532 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
    533 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    534 
    535 	nvme_ccb_put(sc->sc_admin_q, ccb);
    536 
    537 	if (rv != 0) {
    538 		rv = EIO;
    539 		goto done;
    540 	}
    541 
    542 	/* commit */
    543 
    544 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    545 	memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    546 
    547 	ns = nvme_ns_get(sc, nsid);
    548 	KASSERT(ns);
    549 	ns->ident = identify;
    550 
    551 done:
    552 	nvme_dmamem_free(sc, mem);
    553 
    554 	return rv;
    555 }
    556 
    557 int
    558 nvme_ns_dobio(struct nvme_softc *sc, struct nvme_ns_context *ctx)
    559 {
    560 	struct nvme_queue *q = nvme_get_q(sc);
    561 	struct nvme_ccb *ccb;
    562 	bus_dmamap_t dmap;
    563 	int i, error;
    564 
    565 	ccb = nvme_ccb_get(q);
    566 	if (ccb == NULL)
    567 		return EAGAIN;
    568 
    569 	ccb->ccb_done = nvme_ns_io_done;
    570 	ccb->ccb_cookie = ctx;
    571 
    572 	dmap = ccb->ccb_dmamap;
    573 	error = bus_dmamap_load(sc->sc_dmat, dmap, ctx->nnc_data,
    574 	    ctx->nnc_datasize, NULL,
    575 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL) ?
    576 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    577 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    578 	      BUS_DMA_READ : BUS_DMA_WRITE));
    579 	if (error) {
    580 		nvme_ccb_put(q, ccb);
    581 		return error;
    582 	}
    583 
    584 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    585 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    586 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    587 
    588 	if (dmap->dm_nsegs > 2) {
    589 		for (i = 1; i < dmap->dm_nsegs; i++) {
    590 			htolem64(&ccb->ccb_prpl[i - 1],
    591 			    dmap->dm_segs[i].ds_addr);
    592 		}
    593 		bus_dmamap_sync(sc->sc_dmat,
    594 		    NVME_DMA_MAP(q->q_ccb_prpls),
    595 		    ccb->ccb_prpl_off,
    596 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    597 		    BUS_DMASYNC_PREWRITE);
    598 	}
    599 
    600 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
    601 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill) != 0)
    602 			return EIO;
    603 		return 0;
    604 	}
    605 
    606 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    607 	return 0;
    608 }
    609 
    610 static void
    611 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    612 {
    613 	struct nvme_sqe_io *sqe = slot;
    614 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    615 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    616 
    617 	sqe->opcode = ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    618 	    NVM_CMD_READ : NVM_CMD_WRITE;
    619 	htolem32(&sqe->nsid, ctx->nnc_nsid);
    620 
    621 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    622 	switch (dmap->dm_nsegs) {
    623 	case 1:
    624 		break;
    625 	case 2:
    626 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    627 		break;
    628 	default:
    629 		/* the prp list is already set up and synced */
    630 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    631 		break;
    632 	}
    633 
    634 	htolem64(&sqe->slba, ctx->nnc_blkno);
    635 	htolem16(&sqe->nlb, (ctx->nnc_datasize / ctx->nnc_secsize) - 1);
    636 }
    637 
    638 static void
    639 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    640     struct nvme_cqe *cqe)
    641 {
    642 	struct nvme_softc *sc = q->q_sc;
    643 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    644 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    645 	uint16_t flags;
    646 
    647 	if (dmap->dm_nsegs > 2) {
    648 		bus_dmamap_sync(sc->sc_dmat,
    649 		    NVME_DMA_MAP(q->q_ccb_prpls),
    650 		    ccb->ccb_prpl_off,
    651 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    652 		    BUS_DMASYNC_POSTWRITE);
    653 	}
    654 
    655 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    656 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    657 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    658 
    659 	bus_dmamap_unload(sc->sc_dmat, dmap);
    660 	nvme_ccb_put(q, ccb);
    661 
    662 	flags = lemtoh16(&cqe->flags);
    663 
    664 	ctx->nnc_status = flags;
    665 	(*ctx->nnc_done)(ctx);
    666 }
    667 
    668 int
    669 nvme_ns_sync(struct nvme_softc *sc, struct nvme_ns_context *ctx)
    670 {
    671 	struct nvme_queue *q = nvme_get_q(sc);
    672 	struct nvme_ccb *ccb;
    673 
    674 	ccb = nvme_ccb_get(q);
    675 	if (ccb == NULL)
    676 		return EAGAIN;
    677 
    678 	ccb->ccb_done = nvme_ns_sync_done;
    679 	ccb->ccb_cookie = ctx;
    680 
    681 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
    682 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill) != 0)
    683 			return EIO;
    684 		return 0;
    685 	}
    686 
    687 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    688 	return 0;
    689 }
    690 
    691 static void
    692 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    693 {
    694 	struct nvme_sqe *sqe = slot;
    695 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    696 
    697 	sqe->opcode = NVM_CMD_FLUSH;
    698 	htolem32(&sqe->nsid, ctx->nnc_nsid);
    699 }
    700 
    701 static void
    702 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    703     struct nvme_cqe *cqe)
    704 {
    705 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    706 	uint16_t flags;
    707 
    708 	nvme_ccb_put(q, ccb);
    709 
    710 	flags = lemtoh16(&cqe->flags);
    711 
    712 	ctx->nnc_status = flags;
    713 	(*ctx->nnc_done)(ctx);
    714 }
    715 
    716 void
    717 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    718 {
    719 	struct nvme_namespace *ns;
    720 	struct nvm_identify_namespace *identify;
    721 
    722 	ns = nvme_ns_get(sc, nsid);
    723 	KASSERT(ns);
    724 
    725 	identify = ns->ident;
    726 	ns->ident = NULL;
    727 	if (identify != NULL)
    728 		kmem_free(identify, sizeof(*identify));
    729 }
    730 
    731 static void
    732 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    733     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    734 {
    735 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    736 	uint32_t tail;
    737 
    738 	mutex_enter(&q->q_sq_mtx);
    739 	tail = q->q_sq_tail;
    740 	if (++q->q_sq_tail >= q->q_entries)
    741 		q->q_sq_tail = 0;
    742 
    743 	sqe += tail;
    744 
    745 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    746 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
    747 	memset(sqe, 0, sizeof(*sqe));
    748 	(*fill)(q, ccb, sqe);
    749 	sqe->cid = ccb->ccb_id;
    750 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    751 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
    752 
    753 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
    754 	mutex_exit(&q->q_sq_mtx);
    755 }
    756 
    757 struct nvme_poll_state {
    758 	struct nvme_sqe s;
    759 	struct nvme_cqe c;
    760 };
    761 
    762 static int
    763 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    764     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    765 {
    766 	struct nvme_poll_state state;
    767 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
    768 	void *cookie;
    769 	uint16_t flags;
    770 
    771 	memset(&state, 0, sizeof(state));
    772 	(*fill)(q, ccb, &state.s);
    773 
    774 	done = ccb->ccb_done;
    775 	cookie = ccb->ccb_cookie;
    776 
    777 	ccb->ccb_done = nvme_poll_done;
    778 	ccb->ccb_cookie = &state;
    779 
    780 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
    781 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
    782 		if (nvme_q_complete(sc, q) == 0)
    783 			delay(10);
    784 
    785 		/* XXX no timeout? */
    786 	}
    787 
    788 	ccb->ccb_cookie = cookie;
    789 	done(q, ccb, &state.c);
    790 
    791 	flags = lemtoh16(&state.c.flags);
    792 
    793 	return flags & ~NVME_CQE_PHASE;
    794 }
    795 
    796 static void
    797 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    798 {
    799 	struct nvme_sqe *sqe = slot;
    800 	struct nvme_poll_state *state = ccb->ccb_cookie;
    801 
    802 	*sqe = state->s;
    803 }
    804 
    805 static void
    806 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    807     struct nvme_cqe *cqe)
    808 {
    809 	struct nvme_poll_state *state = ccb->ccb_cookie;
    810 
    811 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
    812 	state->c = *cqe;
    813 }
    814 
    815 static void
    816 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    817 {
    818 	struct nvme_sqe *src = ccb->ccb_cookie;
    819 	struct nvme_sqe *dst = slot;
    820 
    821 	*dst = *src;
    822 }
    823 
    824 static void
    825 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    826     struct nvme_cqe *cqe)
    827 {
    828 }
    829 
    830 static int
    831 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
    832 {
    833 	struct nvme_ccb *ccb;
    834 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
    835 	uint32_t head;
    836 	uint16_t flags;
    837 	int rv = 0;
    838 
    839 	if (!mutex_tryenter(&q->q_cq_mtx))
    840 		return -1;
    841 
    842 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
    843 	head = q->q_cq_head;
    844 	for (;;) {
    845 		cqe = &ring[head];
    846 		flags = lemtoh16(&cqe->flags);
    847 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
    848 			break;
    849 
    850 		ccb = &q->q_ccbs[cqe->cid];
    851 		ccb->ccb_done(q, ccb, cqe);
    852 
    853 		if (++head >= q->q_entries) {
    854 			head = 0;
    855 			q->q_cq_phase ^= NVME_CQE_PHASE;
    856 		}
    857 
    858 		rv = 1;
    859 	}
    860 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
    861 
    862 	if (rv)
    863 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head = head);
    864 	mutex_exit(&q->q_cq_mtx);
    865 
    866 	return rv;
    867 }
    868 
    869 static int
    870 nvme_identify(struct nvme_softc *sc, u_int mps)
    871 {
    872 	char sn[41], mn[81], fr[17];
    873 	struct nvm_identify_controller *identify;
    874 	struct nvme_dmamem *mem;
    875 	struct nvme_ccb *ccb;
    876 	u_int mdts;
    877 	int rv = 1;
    878 
    879 	ccb = nvme_ccb_get(sc->sc_admin_q);
    880 	if (ccb == NULL)
    881 		panic("%s: nvme_ccb_get returned NULL", __func__);
    882 
    883 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    884 	if (mem == NULL)
    885 		return 1;
    886 
    887 	ccb->ccb_done = nvme_empty_done;
    888 	ccb->ccb_cookie = mem;
    889 
    890 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    891 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify);
    892 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    893 
    894 	nvme_ccb_put(sc->sc_admin_q, ccb);
    895 
    896 	if (rv != 0)
    897 		goto done;
    898 
    899 	identify = NVME_DMA_KVA(mem);
    900 
    901 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
    902 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
    903 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
    904 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
    905 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
    906 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
    907 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
    908 	    sn);
    909 
    910 	if (identify->mdts > 0) {
    911 		mdts = (1 << identify->mdts) * (1 << mps);
    912 		if (mdts < sc->sc_mdts)
    913 			sc->sc_mdts = mdts;
    914 	}
    915 
    916 	sc->sc_nn = lemtoh32(&identify->nn);
    917 
    918 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
    919 
    920 done:
    921 	nvme_dmamem_free(sc, mem);
    922 
    923 	return rv;
    924 }
    925 
    926 static int
    927 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
    928 {
    929 	struct nvme_sqe_q sqe;
    930 	struct nvme_ccb *ccb;
    931 	int rv;
    932 
    933 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q))
    934 		return 1;
    935 
    936 	ccb = nvme_ccb_get(sc->sc_admin_q);
    937 	KASSERT(ccb != NULL);
    938 
    939 	ccb->ccb_done = nvme_empty_done;
    940 	ccb->ccb_cookie = &sqe;
    941 
    942 	memset(&sqe, 0, sizeof(sqe));
    943 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
    944 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
    945 	htolem16(&sqe.qsize, q->q_entries - 1);
    946 	htolem16(&sqe.qid, q->q_id);
    947 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
    948 	if (sc->sc_use_mq)
    949 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
    950 
    951 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
    952 	if (rv != 0)
    953 		goto fail;
    954 
    955 	ccb->ccb_done = nvme_empty_done;
    956 	ccb->ccb_cookie = &sqe;
    957 
    958 	memset(&sqe, 0, sizeof(sqe));
    959 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
    960 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
    961 	htolem16(&sqe.qsize, q->q_entries - 1);
    962 	htolem16(&sqe.qid, q->q_id);
    963 	htolem16(&sqe.cqid, q->q_id);
    964 	sqe.qflags = NVM_SQE_Q_PC;
    965 
    966 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
    967 	if (rv != 0)
    968 		goto fail;
    969 
    970 fail:
    971 	nvme_ccb_put(sc->sc_admin_q, ccb);
    972 	return rv;
    973 }
    974 
    975 static int
    976 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
    977 {
    978 	struct nvme_sqe_q sqe;
    979 	struct nvme_ccb *ccb;
    980 	int rv;
    981 
    982 	ccb = nvme_ccb_get(sc->sc_admin_q);
    983 	KASSERT(ccb != NULL);
    984 
    985 	ccb->ccb_done = nvme_empty_done;
    986 	ccb->ccb_cookie = &sqe;
    987 
    988 	memset(&sqe, 0, sizeof(sqe));
    989 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
    990 	htolem16(&sqe.qid, q->q_id);
    991 
    992 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
    993 	if (rv != 0)
    994 		goto fail;
    995 
    996 	ccb->ccb_done = nvme_empty_done;
    997 	ccb->ccb_cookie = &sqe;
    998 
    999 	memset(&sqe, 0, sizeof(sqe));
   1000 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1001 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1002 	htolem16(&sqe.qid, q->q_id);
   1003 
   1004 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
   1005 	if (rv != 0)
   1006 		goto fail;
   1007 
   1008 fail:
   1009 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1010 
   1011 	if (rv == 0 && sc->sc_use_mq) {
   1012 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1013 			rv = 1;
   1014 	}
   1015 
   1016 	return rv;
   1017 }
   1018 
   1019 static void
   1020 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1021 {
   1022 	struct nvme_sqe *sqe = slot;
   1023 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1024 
   1025 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1026 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1027 	htolem32(&sqe->cdw10, 1);
   1028 }
   1029 
   1030 static int
   1031 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
   1032 {
   1033 	struct nvme_softc *sc = q->q_sc;
   1034 	struct nvme_ccb *ccb;
   1035 	bus_addr_t off;
   1036 	uint64_t *prpl;
   1037 	u_int i;
   1038 
   1039 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1040 	SIMPLEQ_INIT(&q->q_ccb_list);
   1041 
   1042 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1043 	if (q->q_ccbs == NULL)
   1044 		return 1;
   1045 
   1046 	q->q_nccbs = nccbs;
   1047 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1048 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1049 
   1050 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1051 	off = 0;
   1052 
   1053 	for (i = 0; i < nccbs; i++) {
   1054 		ccb = &q->q_ccbs[i];
   1055 
   1056 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1057 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1058 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1059 		    &ccb->ccb_dmamap) != 0)
   1060 			goto free_maps;
   1061 
   1062 		ccb->ccb_id = i;
   1063 		ccb->ccb_prpl = prpl;
   1064 		ccb->ccb_prpl_off = off;
   1065 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1066 
   1067 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1068 
   1069 		prpl += sc->sc_max_sgl;
   1070 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1071 	}
   1072 
   1073 	return 0;
   1074 
   1075 free_maps:
   1076 	nvme_ccbs_free(q);
   1077 	return 1;
   1078 }
   1079 
   1080 static struct nvme_ccb *
   1081 nvme_ccb_get(struct nvme_queue *q)
   1082 {
   1083 	struct nvme_ccb *ccb;
   1084 
   1085 	mutex_enter(&q->q_ccb_mtx);
   1086 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1087 	if (ccb != NULL)
   1088 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1089 	mutex_exit(&q->q_ccb_mtx);
   1090 
   1091 	return ccb;
   1092 }
   1093 
   1094 static void
   1095 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1096 {
   1097 
   1098 	mutex_enter(&q->q_ccb_mtx);
   1099 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1100 	mutex_exit(&q->q_ccb_mtx);
   1101 }
   1102 
   1103 static void
   1104 nvme_ccbs_free(struct nvme_queue *q)
   1105 {
   1106 	struct nvme_softc *sc = q->q_sc;
   1107 	struct nvme_ccb *ccb;
   1108 
   1109 	mutex_enter(&q->q_ccb_mtx);
   1110 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1111 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1112 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1113 	}
   1114 	mutex_exit(&q->q_ccb_mtx);
   1115 
   1116 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1117 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1118 	q->q_ccbs = NULL;
   1119 	mutex_destroy(&q->q_ccb_mtx);
   1120 }
   1121 
   1122 static struct nvme_queue *
   1123 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1124 {
   1125 	struct nvme_queue *q;
   1126 
   1127 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1128 	if (q == NULL)
   1129 		return NULL;
   1130 
   1131 	q->q_sc = sc;
   1132 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1133 	    sizeof(struct nvme_sqe) * entries);
   1134 	if (q->q_sq_dmamem == NULL)
   1135 		goto free;
   1136 
   1137 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1138 	    sizeof(struct nvme_cqe) * entries);
   1139 	if (q->q_cq_dmamem == NULL)
   1140 		goto free_sq;
   1141 
   1142 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1143 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1144 
   1145 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1146 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1147 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1148 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1149 	q->q_id = id;
   1150 	q->q_entries = entries;
   1151 	q->q_sq_tail = 0;
   1152 	q->q_cq_head = 0;
   1153 	q->q_cq_phase = NVME_CQE_PHASE;
   1154 
   1155 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1156 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1157 
   1158 	if (nvme_ccbs_alloc(q, entries) != 0) {
   1159 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1160 		goto free_cq;
   1161 	}
   1162 
   1163 	return q;
   1164 
   1165 free_cq:
   1166 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1167 free_sq:
   1168 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1169 free:
   1170 	kmem_free(q, sizeof(*q));
   1171 
   1172 	return NULL;
   1173 }
   1174 
   1175 static void
   1176 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1177 {
   1178 	nvme_ccbs_free(q);
   1179 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1180 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1181 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1182 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1183 	kmem_free(q, sizeof(*q));
   1184 }
   1185 
   1186 int
   1187 nvme_intr(void *xsc)
   1188 {
   1189 	struct nvme_softc *sc = xsc;
   1190 	int rv = 0;
   1191 
   1192 	nvme_write4(sc, NVME_INTMS, 1);
   1193 
   1194 	if (nvme_q_complete(sc, sc->sc_admin_q))
   1195 		rv = 1;
   1196 	if (sc->sc_q != NULL)
   1197 		if (nvme_q_complete(sc, sc->sc_q[0]))
   1198 			rv = 1;
   1199 
   1200 	nvme_write4(sc, NVME_INTMC, 1);
   1201 
   1202 	return rv;
   1203 }
   1204 
   1205 int
   1206 nvme_mq_msi_intr(void *xq)
   1207 {
   1208 	struct nvme_queue *q = xq;
   1209 	struct nvme_softc *sc = q->q_sc;
   1210 	int rv = 0;
   1211 
   1212 	nvme_write4(sc, NVME_INTMS, 1U << q->q_id);
   1213 
   1214 	if (nvme_q_complete(sc, q))
   1215 		rv = 1;
   1216 
   1217 	nvme_write4(sc, NVME_INTMC, 1U << q->q_id);
   1218 
   1219 	return rv;
   1220 }
   1221 
   1222 int
   1223 nvme_mq_msix_intr(void *xq)
   1224 {
   1225 	struct nvme_queue *q = xq;
   1226 	int rv = 0;
   1227 
   1228 	if (nvme_q_complete(q->q_sc, q))
   1229 		rv = 1;
   1230 
   1231 	return rv;
   1232 }
   1233 
   1234 static struct nvme_dmamem *
   1235 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1236 {
   1237 	struct nvme_dmamem *ndm;
   1238 	int nsegs;
   1239 
   1240 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1241 	if (ndm == NULL)
   1242 		return NULL;
   1243 
   1244 	ndm->ndm_size = size;
   1245 
   1246 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1247 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1248 		goto ndmfree;
   1249 
   1250 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1251 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1252 		goto destroy;
   1253 
   1254 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1255 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1256 		goto free;
   1257 	memset(ndm->ndm_kva, 0, size);
   1258 
   1259 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1260 	    NULL, BUS_DMA_WAITOK) != 0)
   1261 		goto unmap;
   1262 
   1263 	return ndm;
   1264 
   1265 unmap:
   1266 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1267 free:
   1268 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1269 destroy:
   1270 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1271 ndmfree:
   1272 	kmem_free(ndm, sizeof(*ndm));
   1273 	return NULL;
   1274 }
   1275 
   1276 static void
   1277 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1278 {
   1279 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1280 	    0, NVME_DMA_LEN(mem), ops);
   1281 }
   1282 
   1283 void
   1284 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1285 {
   1286 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1287 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1288 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1289 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1290 	kmem_free(ndm, sizeof(*ndm));
   1291 }
   1292