nvme.c revision 1.20 1 /* $NetBSD: nvme.c,v 1.20 2016/11/01 14:24:35 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.20 2016/11/01 14:24:35 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 1024;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *), int);
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static struct nvme_dmamem *
89 nvme_dmamem_alloc(struct nvme_softc *, size_t);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
92 int);
93
94 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
95 void *);
96 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
97 struct nvme_cqe *);
98 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
99 void *);
100 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
101 struct nvme_cqe *);
102
103 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static int nvme_command_passthrough(struct nvme_softc *,
108 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
109
110 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
111 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
112 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
113 #define NVME_TIMO_SY 60 /* sync cache timeout */
114
115 #define nvme_read4(_s, _r) \
116 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
117 #define nvme_write4(_s, _r, _v) \
118 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
119 #ifdef __LP64__
120 #define nvme_read8(_s, _r) \
121 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
122 #define nvme_write8(_s, _r, _v) \
123 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
124 #else /* __LP64__ */
125 static inline uint64_t
126 nvme_read8(struct nvme_softc *sc, bus_size_t r)
127 {
128 uint64_t v;
129 uint32_t *a = (uint32_t *)&v;
130
131 #if _BYTE_ORDER == _LITTLE_ENDIAN
132 a[0] = nvme_read4(sc, r);
133 a[1] = nvme_read4(sc, r + 4);
134 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
135 a[1] = nvme_read4(sc, r);
136 a[0] = nvme_read4(sc, r + 4);
137 #endif
138
139 return v;
140 }
141
142 static inline void
143 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
144 {
145 uint32_t *a = (uint32_t *)&v;
146
147 #if _BYTE_ORDER == _LITTLE_ENDIAN
148 nvme_write4(sc, r, a[0]);
149 nvme_write4(sc, r + 4, a[1]);
150 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
151 nvme_write4(sc, r, a[1]);
152 nvme_write4(sc, r + 4, a[0]);
153 #endif
154 }
155 #endif /* __LP64__ */
156 #define nvme_barrier(_s, _r, _l, _f) \
157 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
158
159 static void
160 nvme_version(struct nvme_softc *sc, uint32_t ver)
161 {
162 const char *v = NULL;
163
164 switch (ver) {
165 case NVME_VS_1_0:
166 v = "1.0";
167 break;
168 case NVME_VS_1_1:
169 v = "1.1";
170 break;
171 case NVME_VS_1_2:
172 v = "1.2";
173 break;
174 default:
175 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
176 return;
177 }
178
179 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
180 }
181
182 #ifdef NVME_DEBUG
183 static __used void
184 nvme_dumpregs(struct nvme_softc *sc)
185 {
186 uint64_t r8;
187 uint32_t r4;
188
189 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
190 r8 = nvme_read8(sc, NVME_CAP);
191 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
192 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
193 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
194 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
195 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
196 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
197 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
198 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
199 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
200 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
201 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
202 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
203
204 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
205
206 r4 = nvme_read4(sc, NVME_CC);
207 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
208 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
209 (1 << NVME_CC_IOCQES_R(r4)));
210 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
211 (1 << NVME_CC_IOSQES_R(r4)));
212 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
213 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
214 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
215 (1 << NVME_CC_MPS_R(r4)));
216 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
217 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
218
219 r4 = nvme_read4(sc, NVME_CSTS);
220 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
221 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
222 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
223 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
224
225 r4 = nvme_read4(sc, NVME_AQA);
226 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
227 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
228 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
229
230 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef DEVNAME
233 }
234 #endif /* NVME_DEBUG */
235
236 static int
237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 u_int i = 0;
240 uint32_t cc;
241
242 cc = nvme_read4(sc, NVME_CC);
243 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
244 aprint_error_dev(sc->sc_dev,
245 "controller enabled status expected %d, found to be %d\n",
246 (rdy != 0), ((cc & NVME_CC_EN) != 0));
247 return ENXIO;
248 }
249
250 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
251 if (i++ > sc->sc_rdy_to)
252 return ENXIO;
253
254 delay(1000);
255 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
256 }
257
258 return 0;
259 }
260
261 static int
262 nvme_enable(struct nvme_softc *sc, u_int mps)
263 {
264 uint32_t cc, csts;
265
266 cc = nvme_read4(sc, NVME_CC);
267 csts = nvme_read4(sc, NVME_CSTS);
268
269 if (ISSET(cc, NVME_CC_EN)) {
270 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
271
272 if (ISSET(csts, NVME_CSTS_RDY))
273 return 1;
274
275 goto waitready;
276 }
277
278 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
279 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
280 delay(5000);
281 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
282 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
283 delay(5000);
284
285 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
286 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
287 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
288 delay(5000);
289
290 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
291 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
292 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
293 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
294 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
295 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
296 SET(cc, NVME_CC_MPS(mps));
297 SET(cc, NVME_CC_EN);
298
299 nvme_write4(sc, NVME_CC, cc);
300 nvme_barrier(sc, 0, sc->sc_ios,
301 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
302 delay(5000);
303
304 waitready:
305 return nvme_ready(sc, NVME_CSTS_RDY);
306 }
307
308 static int
309 nvme_disable(struct nvme_softc *sc)
310 {
311 uint32_t cc, csts;
312
313 cc = nvme_read4(sc, NVME_CC);
314 csts = nvme_read4(sc, NVME_CSTS);
315
316 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
317 nvme_ready(sc, NVME_CSTS_RDY);
318
319 CLR(cc, NVME_CC_EN);
320
321 nvme_write4(sc, NVME_CC, cc);
322 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
323
324 delay(5000);
325
326 return nvme_ready(sc, 0);
327 }
328
329 int
330 nvme_attach(struct nvme_softc *sc)
331 {
332 uint64_t cap;
333 uint32_t reg;
334 u_int dstrd;
335 u_int mps = PAGE_SHIFT;
336 uint16_t adminq_entries = nvme_adminq_size;
337 uint16_t ioq_entries = nvme_ioq_size;
338 int i;
339
340 reg = nvme_read4(sc, NVME_VS);
341 if (reg == 0xffffffff) {
342 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
343 return 1;
344 }
345
346 nvme_version(sc, reg);
347
348 cap = nvme_read8(sc, NVME_CAP);
349 dstrd = NVME_CAP_DSTRD(cap);
350 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
351 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
352 "is greater than CPU page size %u\n",
353 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
354 return 1;
355 }
356 if (NVME_CAP_MPSMAX(cap) < mps)
357 mps = NVME_CAP_MPSMAX(cap);
358 if (ioq_entries > NVME_CAP_MQES(cap))
359 ioq_entries = NVME_CAP_MQES(cap);
360
361 /* set initial values to be used for admin queue during probe */
362 sc->sc_rdy_to = NVME_CAP_TO(cap);
363 sc->sc_mps = 1 << mps;
364 sc->sc_mdts = MAXPHYS;
365 sc->sc_max_sgl = 2;
366
367 if (nvme_disable(sc) != 0) {
368 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
369 return 1;
370 }
371
372 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
373 if (sc->sc_admin_q == NULL) {
374 aprint_error_dev(sc->sc_dev,
375 "unable to allocate admin queue\n");
376 return 1;
377 }
378 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
379 goto free_admin_q;
380
381 if (nvme_enable(sc, mps) != 0) {
382 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
383 goto disestablish_admin_q;
384 }
385
386 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
387 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
388 goto disable;
389 }
390
391 /* we know how big things are now */
392 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
393
394 /* reallocate ccbs of admin queue with new max sgl. */
395 nvme_ccbs_free(sc->sc_admin_q);
396 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
397
398 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
399 if (sc->sc_q == NULL) {
400 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
401 goto disable;
402 }
403 for (i = 0; i < sc->sc_nq; i++) {
404 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
405 if (sc->sc_q[i] == NULL) {
406 aprint_error_dev(sc->sc_dev,
407 "unable to allocate io queue\n");
408 goto free_q;
409 }
410 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
411 aprint_error_dev(sc->sc_dev,
412 "unable to create io queue\n");
413 nvme_q_free(sc, sc->sc_q[i]);
414 goto free_q;
415 }
416 }
417
418 if (!sc->sc_use_mq)
419 nvme_write4(sc, NVME_INTMC, 1);
420
421 /* probe subdevices */
422 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
423 KM_SLEEP);
424 if (sc->sc_namespaces == NULL)
425 goto free_q;
426 nvme_rescan(sc->sc_dev, "nvme", &i);
427
428 return 0;
429
430 free_q:
431 while (--i >= 0) {
432 nvme_q_delete(sc, sc->sc_q[i]);
433 nvme_q_free(sc, sc->sc_q[i]);
434 }
435 disable:
436 nvme_disable(sc);
437 disestablish_admin_q:
438 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
439 free_admin_q:
440 nvme_q_free(sc, sc->sc_admin_q);
441
442 return 1;
443 }
444
445 int
446 nvme_rescan(device_t self, const char *attr, const int *flags)
447 {
448 struct nvme_softc *sc = device_private(self);
449 struct nvme_attach_args naa;
450 uint64_t cap;
451 int ioq_entries = nvme_ioq_size;
452 int i;
453
454 cap = nvme_read8(sc, NVME_CAP);
455 if (ioq_entries > NVME_CAP_MQES(cap))
456 ioq_entries = NVME_CAP_MQES(cap);
457
458 for (i = 0; i < sc->sc_nn; i++) {
459 if (sc->sc_namespaces[i].dev)
460 continue;
461 memset(&naa, 0, sizeof(naa));
462 naa.naa_nsid = i + 1;
463 naa.naa_qentries = ioq_entries;
464 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
465 nvme_print);
466 }
467 return 0;
468 }
469
470 static int
471 nvme_print(void *aux, const char *pnp)
472 {
473 struct nvme_attach_args *naa = aux;
474
475 if (pnp)
476 aprint_normal("at %s", pnp);
477
478 if (naa->naa_nsid > 0)
479 aprint_normal(" nsid %d", naa->naa_nsid);
480
481 return UNCONF;
482 }
483
484 int
485 nvme_detach(struct nvme_softc *sc, int flags)
486 {
487 int i, error;
488
489 error = config_detach_children(sc->sc_dev, flags);
490 if (error)
491 return error;
492
493 error = nvme_shutdown(sc);
494 if (error)
495 return error;
496
497 /* from now on we are committed to detach, following will never fail */
498 for (i = 0; i < sc->sc_nq; i++)
499 nvme_q_free(sc, sc->sc_q[i]);
500 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
501 nvme_q_free(sc, sc->sc_admin_q);
502
503 return 0;
504 }
505
506 static int
507 nvme_shutdown(struct nvme_softc *sc)
508 {
509 uint32_t cc, csts;
510 bool disabled = false;
511 int i;
512
513 if (!sc->sc_use_mq)
514 nvme_write4(sc, NVME_INTMS, 1);
515
516 for (i = 0; i < sc->sc_nq; i++) {
517 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
518 aprint_error_dev(sc->sc_dev,
519 "unable to delete io queue %d, disabling\n", i + 1);
520 disabled = true;
521 }
522 }
523 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
524 if (disabled)
525 goto disable;
526
527 cc = nvme_read4(sc, NVME_CC);
528 CLR(cc, NVME_CC_SHN_MASK);
529 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
530 nvme_write4(sc, NVME_CC, cc);
531
532 for (i = 0; i < 4000; i++) {
533 nvme_barrier(sc, 0, sc->sc_ios,
534 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
535 csts = nvme_read4(sc, NVME_CSTS);
536 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
537 return 0;
538
539 delay(1000);
540 }
541
542 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
543
544 disable:
545 nvme_disable(sc);
546 return 0;
547 }
548
549 void
550 nvme_childdet(device_t self, device_t child)
551 {
552 struct nvme_softc *sc = device_private(self);
553 int i;
554
555 for (i = 0; i < sc->sc_nn; i++) {
556 if (sc->sc_namespaces[i].dev == child) {
557 /* Already freed ns->ident. */
558 sc->sc_namespaces[i].dev = NULL;
559 break;
560 }
561 }
562 }
563
564 int
565 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
566 {
567 struct nvme_sqe sqe;
568 struct nvm_identify_namespace *identify;
569 struct nvme_dmamem *mem;
570 struct nvme_ccb *ccb;
571 struct nvme_namespace *ns;
572 int rv;
573
574 KASSERT(nsid > 0);
575
576 ccb = nvme_ccb_get(sc->sc_admin_q);
577 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
578
579 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
580 if (mem == NULL)
581 return ENOMEM;
582
583 memset(&sqe, 0, sizeof(sqe));
584 sqe.opcode = NVM_ADMIN_IDENTIFY;
585 htolem32(&sqe.nsid, nsid);
586 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
587 htolem32(&sqe.cdw10, 0);
588
589 ccb->ccb_done = nvme_empty_done;
590 ccb->ccb_cookie = &sqe;
591
592 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
593 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
594 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
595
596 nvme_ccb_put(sc->sc_admin_q, ccb);
597
598 if (rv != 0) {
599 rv = EIO;
600 goto done;
601 }
602
603 /* commit */
604
605 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
606 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
607 //memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
608
609 ns = nvme_ns_get(sc, nsid);
610 KASSERT(ns);
611 ns->ident = identify;
612
613 done:
614 nvme_dmamem_free(sc, mem);
615
616 return rv;
617 }
618
619 int
620 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
621 struct buf *bp, void *data, size_t datasize,
622 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
623 {
624 struct nvme_queue *q = nvme_get_q(sc);
625 struct nvme_ccb *ccb;
626 bus_dmamap_t dmap;
627 int i, error;
628
629 ccb = nvme_ccb_get(q);
630 if (ccb == NULL)
631 return EAGAIN;
632
633 ccb->ccb_done = nvme_ns_io_done;
634 ccb->ccb_cookie = cookie;
635
636 /* namespace context */
637 ccb->nnc_nsid = nsid;
638 ccb->nnc_flags = flags;
639 ccb->nnc_buf = bp;
640 ccb->nnc_datasize = datasize;
641 ccb->nnc_secsize = secsize;
642 ccb->nnc_blkno = blkno;
643 ccb->nnc_done = nnc_done;
644
645 dmap = ccb->ccb_dmamap;
646 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
647 datasize, NULL,
648 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
649 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
650 (ISSET(flags, NVME_NS_CTX_F_READ) ?
651 BUS_DMA_READ : BUS_DMA_WRITE));
652 if (error) {
653 nvme_ccb_put(q, ccb);
654 return error;
655 }
656
657 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
658 ISSET(flags, NVME_NS_CTX_F_READ) ?
659 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
660
661 if (dmap->dm_nsegs > 2) {
662 for (i = 1; i < dmap->dm_nsegs; i++) {
663 htolem64(&ccb->ccb_prpl[i - 1],
664 dmap->dm_segs[i].ds_addr);
665 }
666 bus_dmamap_sync(sc->sc_dmat,
667 NVME_DMA_MAP(q->q_ccb_prpls),
668 ccb->ccb_prpl_off,
669 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
670 BUS_DMASYNC_PREWRITE);
671 }
672
673 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
674 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
675 return EIO;
676 return 0;
677 }
678
679 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
680 return 0;
681 }
682
683 static void
684 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
685 {
686 struct nvme_sqe_io *sqe = slot;
687 bus_dmamap_t dmap = ccb->ccb_dmamap;
688
689 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
690 NVM_CMD_READ : NVM_CMD_WRITE;
691 htolem32(&sqe->nsid, ccb->nnc_nsid);
692
693 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
694 switch (dmap->dm_nsegs) {
695 case 1:
696 break;
697 case 2:
698 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
699 break;
700 default:
701 /* the prp list is already set up and synced */
702 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
703 break;
704 }
705
706 htolem64(&sqe->slba, ccb->nnc_blkno);
707
708 /* guaranteed by upper layers, but check just in case */
709 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
710 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
711 }
712
713 static void
714 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
715 struct nvme_cqe *cqe)
716 {
717 struct nvme_softc *sc = q->q_sc;
718 bus_dmamap_t dmap = ccb->ccb_dmamap;
719 void *nnc_cookie = ccb->ccb_cookie;
720 nvme_nnc_done nnc_done = ccb->nnc_done;
721 struct buf *bp = ccb->nnc_buf;
722
723 if (dmap->dm_nsegs > 2) {
724 bus_dmamap_sync(sc->sc_dmat,
725 NVME_DMA_MAP(q->q_ccb_prpls),
726 ccb->ccb_prpl_off,
727 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
728 BUS_DMASYNC_POSTWRITE);
729 }
730
731 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
732 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
733 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
734
735 bus_dmamap_unload(sc->sc_dmat, dmap);
736 nvme_ccb_put(q, ccb);
737
738 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
739 }
740
741 int
742 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
743 int flags, nvme_nnc_done nnc_done)
744 {
745 struct nvme_queue *q = nvme_get_q(sc);
746 struct nvme_ccb *ccb;
747
748 ccb = nvme_ccb_get(q);
749 if (ccb == NULL)
750 return EAGAIN;
751
752 ccb->ccb_done = nvme_ns_sync_done;
753 ccb->ccb_cookie = cookie;
754
755 /* namespace context */
756 ccb->nnc_nsid = nsid;
757 ccb->nnc_flags = flags;
758 ccb->nnc_done = nnc_done;
759
760 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
761 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
762 return EIO;
763 return 0;
764 }
765
766 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
767 return 0;
768 }
769
770 static void
771 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
772 {
773 struct nvme_sqe *sqe = slot;
774
775 sqe->opcode = NVM_CMD_FLUSH;
776 htolem32(&sqe->nsid, ccb->nnc_nsid);
777 }
778
779 static void
780 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
781 struct nvme_cqe *cqe)
782 {
783 void *cookie = ccb->ccb_cookie;
784 nvme_nnc_done nnc_done = ccb->nnc_done;
785
786 nvme_ccb_put(q, ccb);
787
788 nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
789 }
790
791 void
792 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
793 {
794 struct nvme_namespace *ns;
795 struct nvm_identify_namespace *identify;
796
797 ns = nvme_ns_get(sc, nsid);
798 KASSERT(ns);
799
800 identify = ns->ident;
801 ns->ident = NULL;
802 if (identify != NULL)
803 kmem_free(identify, sizeof(*identify));
804 }
805
806 static void
807 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
808 {
809 struct nvme_softc *sc = q->q_sc;
810 struct nvme_sqe *sqe = slot;
811 struct nvme_pt_command *pt = ccb->ccb_cookie;
812 bus_dmamap_t dmap = ccb->ccb_dmamap;
813 int i;
814
815 sqe->opcode = pt->cmd.opcode;
816 htolem32(&sqe->nsid, pt->cmd.nsid);
817
818 if (pt->buf != NULL && pt->len > 0) {
819 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
820 switch (dmap->dm_nsegs) {
821 case 1:
822 break;
823 case 2:
824 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
825 break;
826 default:
827 for (i = 1; i < dmap->dm_nsegs; i++) {
828 htolem64(&ccb->ccb_prpl[i - 1],
829 dmap->dm_segs[i].ds_addr);
830 }
831 bus_dmamap_sync(sc->sc_dmat,
832 NVME_DMA_MAP(q->q_ccb_prpls),
833 ccb->ccb_prpl_off,
834 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
835 BUS_DMASYNC_PREWRITE);
836 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
837 break;
838 }
839 }
840
841 htolem32(&sqe->cdw10, pt->cmd.cdw10);
842 htolem32(&sqe->cdw11, pt->cmd.cdw11);
843 htolem32(&sqe->cdw12, pt->cmd.cdw12);
844 htolem32(&sqe->cdw13, pt->cmd.cdw13);
845 htolem32(&sqe->cdw14, pt->cmd.cdw14);
846 htolem32(&sqe->cdw15, pt->cmd.cdw15);
847 }
848
849 static void
850 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
851 {
852 struct nvme_softc *sc = q->q_sc;
853 struct nvme_pt_command *pt = ccb->ccb_cookie;
854 bus_dmamap_t dmap = ccb->ccb_dmamap;
855
856 if (pt->buf != NULL && pt->len > 0) {
857 if (dmap->dm_nsegs > 2) {
858 bus_dmamap_sync(sc->sc_dmat,
859 NVME_DMA_MAP(q->q_ccb_prpls),
860 ccb->ccb_prpl_off,
861 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
862 BUS_DMASYNC_POSTWRITE);
863 }
864
865 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
866 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
867 bus_dmamap_unload(sc->sc_dmat, dmap);
868 }
869
870 pt->cpl.cdw0 = cqe->cdw0;
871 pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
872 }
873
874 static int
875 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
876 uint16_t nsid, struct lwp *l, bool is_adminq)
877 {
878 struct nvme_queue *q;
879 struct nvme_ccb *ccb;
880 void *buf = NULL;
881 int error;
882
883 /* limit command size to maximum data transfer size */
884 if ((pt->buf == NULL && pt->len > 0) ||
885 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
886 return EINVAL;
887
888 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
889 ccb = nvme_ccb_get(q);
890 if (ccb == NULL)
891 return EBUSY;
892
893 if (pt->buf != NULL) {
894 KASSERT(pt->len > 0);
895 buf = kmem_alloc(pt->len, KM_SLEEP);
896 if (buf == NULL) {
897 error = ENOMEM;
898 goto ccb_put;
899 }
900 if (!pt->is_read) {
901 error = copyin(pt->buf, buf, pt->len);
902 if (error)
903 goto kmem_free;
904 }
905 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
906 pt->len, NULL,
907 BUS_DMA_WAITOK |
908 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
909 if (error)
910 goto kmem_free;
911 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
912 0, ccb->ccb_dmamap->dm_mapsize,
913 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
914 }
915
916 ccb->ccb_done = nvme_pt_done;
917 ccb->ccb_cookie = pt;
918
919 pt->cmd.nsid = nsid;
920 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
921 error = EIO;
922 goto out;
923 }
924
925 error = 0;
926 out:
927 if (buf != NULL) {
928 if (error == 0 && pt->is_read)
929 error = copyout(buf, pt->buf, pt->len);
930 kmem_free:
931 kmem_free(buf, pt->len);
932 }
933 ccb_put:
934 nvme_ccb_put(q, ccb);
935 return error;
936 }
937
938 static void
939 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
940 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
941 {
942 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
943 uint32_t tail;
944
945 mutex_enter(&q->q_sq_mtx);
946 tail = q->q_sq_tail;
947 if (++q->q_sq_tail >= q->q_entries)
948 q->q_sq_tail = 0;
949
950 sqe += tail;
951
952 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
953 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
954 memset(sqe, 0, sizeof(*sqe));
955 (*fill)(q, ccb, sqe);
956 sqe->cid = ccb->ccb_id;
957 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
958 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
959
960 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
961 mutex_exit(&q->q_sq_mtx);
962 }
963
964 struct nvme_poll_state {
965 struct nvme_sqe s;
966 struct nvme_cqe c;
967 };
968
969 static int
970 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
971 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
972 {
973 struct nvme_poll_state state;
974 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
975 void *cookie;
976 uint16_t flags;
977 int step = 10;
978 int maxloop = timo_sec * 1000000 / step;
979 int error = 0;
980
981 memset(&state, 0, sizeof(state));
982 (*fill)(q, ccb, &state.s);
983
984 done = ccb->ccb_done;
985 cookie = ccb->ccb_cookie;
986
987 ccb->ccb_done = nvme_poll_done;
988 ccb->ccb_cookie = &state;
989
990 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
991 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
992 if (nvme_q_complete(sc, q) == 0)
993 delay(step);
994
995 if (timo_sec >= 0 && --maxloop <= 0) {
996 error = ETIMEDOUT;
997 break;
998 }
999 }
1000
1001 ccb->ccb_cookie = cookie;
1002 done(q, ccb, &state.c);
1003
1004 if (error == 0) {
1005 flags = lemtoh16(&state.c.flags);
1006 return flags & ~NVME_CQE_PHASE;
1007 } else {
1008 return 1;
1009 }
1010 }
1011
1012 static void
1013 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1014 {
1015 struct nvme_sqe *sqe = slot;
1016 struct nvme_poll_state *state = ccb->ccb_cookie;
1017
1018 *sqe = state->s;
1019 }
1020
1021 static void
1022 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1023 struct nvme_cqe *cqe)
1024 {
1025 struct nvme_poll_state *state = ccb->ccb_cookie;
1026
1027 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1028 state->c = *cqe;
1029 }
1030
1031 static void
1032 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1033 {
1034 struct nvme_sqe *src = ccb->ccb_cookie;
1035 struct nvme_sqe *dst = slot;
1036
1037 *dst = *src;
1038 }
1039
1040 static void
1041 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1042 struct nvme_cqe *cqe)
1043 {
1044 }
1045
1046 static int
1047 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1048 {
1049 struct nvme_ccb *ccb;
1050 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1051 uint16_t flags;
1052 int rv = 0;
1053
1054 mutex_enter(&q->q_cq_mtx);
1055
1056 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1057 for (;;) {
1058 cqe = &ring[q->q_cq_head];
1059 flags = lemtoh16(&cqe->flags);
1060 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1061 break;
1062
1063 ccb = &q->q_ccbs[cqe->cid];
1064
1065 if (++q->q_cq_head >= q->q_entries) {
1066 q->q_cq_head = 0;
1067 q->q_cq_phase ^= NVME_CQE_PHASE;
1068 }
1069
1070 #ifdef DEBUG
1071 /*
1072 * If we get spurious completion notification, something
1073 * is seriously hosed up. Very likely DMA to some random
1074 * memory place happened, so just bail out.
1075 */
1076 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1077 panic("%s: invalid ccb detected",
1078 device_xname(sc->sc_dev));
1079 /* NOTREACHED */
1080 }
1081 #endif
1082
1083 rv++;
1084
1085 /*
1086 * Unlock the mutex before calling the ccb_done callback
1087 * and re-lock afterwards. The callback triggers lddone()
1088 * which schedules another i/o, and also calls nvme_ccb_put().
1089 * Unlock/relock avoids possibility of deadlock.
1090 */
1091 mutex_exit(&q->q_cq_mtx);
1092 ccb->ccb_done(q, ccb, cqe);
1093 mutex_enter(&q->q_cq_mtx);
1094 }
1095 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1096
1097 if (rv)
1098 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1099
1100 mutex_exit(&q->q_cq_mtx);
1101
1102 if (rv) {
1103 mutex_enter(&q->q_ccb_mtx);
1104 q->q_nccbs_avail += rv;
1105 mutex_exit(&q->q_ccb_mtx);
1106 }
1107
1108 return rv;
1109 }
1110
1111 static int
1112 nvme_identify(struct nvme_softc *sc, u_int mps)
1113 {
1114 char sn[41], mn[81], fr[17];
1115 struct nvm_identify_controller *identify;
1116 struct nvme_dmamem *mem;
1117 struct nvme_ccb *ccb;
1118 u_int mdts;
1119 int rv = 1;
1120
1121 ccb = nvme_ccb_get(sc->sc_admin_q);
1122 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1123
1124 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1125 if (mem == NULL)
1126 return 1;
1127
1128 ccb->ccb_done = nvme_empty_done;
1129 ccb->ccb_cookie = mem;
1130
1131 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1132 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1133 NVME_TIMO_IDENT);
1134 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1135
1136 nvme_ccb_put(sc->sc_admin_q, ccb);
1137
1138 if (rv != 0)
1139 goto done;
1140
1141 identify = NVME_DMA_KVA(mem);
1142
1143 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1144 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1145 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1146 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1147 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1148 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1149 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1150 sn);
1151
1152 if (identify->mdts > 0) {
1153 mdts = (1 << identify->mdts) * (1 << mps);
1154 if (mdts < sc->sc_mdts)
1155 sc->sc_mdts = mdts;
1156 }
1157
1158 sc->sc_nn = lemtoh32(&identify->nn);
1159
1160 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1161
1162 done:
1163 nvme_dmamem_free(sc, mem);
1164
1165 return rv;
1166 }
1167
1168 static int
1169 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1170 {
1171 struct nvme_sqe_q sqe;
1172 struct nvme_ccb *ccb;
1173 int rv;
1174
1175 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1176 return 1;
1177
1178 ccb = nvme_ccb_get(sc->sc_admin_q);
1179 KASSERT(ccb != NULL);
1180
1181 ccb->ccb_done = nvme_empty_done;
1182 ccb->ccb_cookie = &sqe;
1183
1184 memset(&sqe, 0, sizeof(sqe));
1185 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1186 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1187 htolem16(&sqe.qsize, q->q_entries - 1);
1188 htolem16(&sqe.qid, q->q_id);
1189 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1190 if (sc->sc_use_mq)
1191 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1192
1193 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1194 if (rv != 0)
1195 goto fail;
1196
1197 ccb->ccb_done = nvme_empty_done;
1198 ccb->ccb_cookie = &sqe;
1199
1200 memset(&sqe, 0, sizeof(sqe));
1201 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1202 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1203 htolem16(&sqe.qsize, q->q_entries - 1);
1204 htolem16(&sqe.qid, q->q_id);
1205 htolem16(&sqe.cqid, q->q_id);
1206 sqe.qflags = NVM_SQE_Q_PC;
1207
1208 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1209 if (rv != 0)
1210 goto fail;
1211
1212 fail:
1213 nvme_ccb_put(sc->sc_admin_q, ccb);
1214 return rv;
1215 }
1216
1217 static int
1218 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1219 {
1220 struct nvme_sqe_q sqe;
1221 struct nvme_ccb *ccb;
1222 int rv;
1223
1224 ccb = nvme_ccb_get(sc->sc_admin_q);
1225 KASSERT(ccb != NULL);
1226
1227 ccb->ccb_done = nvme_empty_done;
1228 ccb->ccb_cookie = &sqe;
1229
1230 memset(&sqe, 0, sizeof(sqe));
1231 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1232 htolem16(&sqe.qid, q->q_id);
1233
1234 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1235 if (rv != 0)
1236 goto fail;
1237
1238 ccb->ccb_done = nvme_empty_done;
1239 ccb->ccb_cookie = &sqe;
1240
1241 memset(&sqe, 0, sizeof(sqe));
1242 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1243 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1244 htolem16(&sqe.qid, q->q_id);
1245
1246 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1247 if (rv != 0)
1248 goto fail;
1249
1250 fail:
1251 nvme_ccb_put(sc->sc_admin_q, ccb);
1252
1253 if (rv == 0 && sc->sc_use_mq) {
1254 if (sc->sc_intr_disestablish(sc, q->q_id))
1255 rv = 1;
1256 }
1257
1258 return rv;
1259 }
1260
1261 static void
1262 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1263 {
1264 struct nvme_sqe *sqe = slot;
1265 struct nvme_dmamem *mem = ccb->ccb_cookie;
1266
1267 sqe->opcode = NVM_ADMIN_IDENTIFY;
1268 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1269 htolem32(&sqe->cdw10, 1);
1270 }
1271
1272 static int
1273 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1274 {
1275 struct nvme_softc *sc = q->q_sc;
1276 struct nvme_ccb *ccb;
1277 bus_addr_t off;
1278 uint64_t *prpl;
1279 u_int i;
1280
1281 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1282 SIMPLEQ_INIT(&q->q_ccb_list);
1283
1284 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1285 if (q->q_ccbs == NULL)
1286 return 1;
1287
1288 q->q_nccbs = nccbs;
1289 q->q_nccbs_avail = nccbs;
1290 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1291 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1292
1293 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1294 off = 0;
1295
1296 for (i = 0; i < nccbs; i++) {
1297 ccb = &q->q_ccbs[i];
1298
1299 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1300 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1301 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1302 &ccb->ccb_dmamap) != 0)
1303 goto free_maps;
1304
1305 ccb->ccb_id = i;
1306 ccb->ccb_prpl = prpl;
1307 ccb->ccb_prpl_off = off;
1308 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1309
1310 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1311
1312 prpl += sc->sc_max_sgl;
1313 off += sizeof(*prpl) * sc->sc_max_sgl;
1314 }
1315
1316 return 0;
1317
1318 free_maps:
1319 nvme_ccbs_free(q);
1320 return 1;
1321 }
1322
1323 static struct nvme_ccb *
1324 nvme_ccb_get(struct nvme_queue *q)
1325 {
1326 struct nvme_ccb *ccb = NULL;
1327
1328 mutex_enter(&q->q_ccb_mtx);
1329 if (q->q_nccbs_avail > 0) {
1330 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1331 KASSERT(ccb != NULL);
1332 q->q_nccbs_avail--;
1333
1334 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1335 #ifdef DEBUG
1336 ccb->ccb_cookie = NULL;
1337 #endif
1338 }
1339 mutex_exit(&q->q_ccb_mtx);
1340
1341 return ccb;
1342 }
1343
1344 static void
1345 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1346 {
1347
1348 mutex_enter(&q->q_ccb_mtx);
1349 #ifdef DEBUG
1350 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1351 #endif
1352 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1353 mutex_exit(&q->q_ccb_mtx);
1354 }
1355
1356 static void
1357 nvme_ccbs_free(struct nvme_queue *q)
1358 {
1359 struct nvme_softc *sc = q->q_sc;
1360 struct nvme_ccb *ccb;
1361
1362 mutex_enter(&q->q_ccb_mtx);
1363 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1364 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1365 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1366 }
1367 mutex_exit(&q->q_ccb_mtx);
1368
1369 nvme_dmamem_free(sc, q->q_ccb_prpls);
1370 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1371 q->q_ccbs = NULL;
1372 mutex_destroy(&q->q_ccb_mtx);
1373 }
1374
1375 static struct nvme_queue *
1376 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1377 {
1378 struct nvme_queue *q;
1379
1380 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1381 if (q == NULL)
1382 return NULL;
1383
1384 q->q_sc = sc;
1385 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1386 sizeof(struct nvme_sqe) * entries);
1387 if (q->q_sq_dmamem == NULL)
1388 goto free;
1389
1390 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1391 sizeof(struct nvme_cqe) * entries);
1392 if (q->q_cq_dmamem == NULL)
1393 goto free_sq;
1394
1395 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1396 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1397
1398 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1399 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1400 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1401 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1402 q->q_id = id;
1403 q->q_entries = entries;
1404 q->q_sq_tail = 0;
1405 q->q_cq_head = 0;
1406 q->q_cq_phase = NVME_CQE_PHASE;
1407
1408 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1409 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1410
1411 /*
1412 * Due to definition of full and empty queue (queue is empty
1413 * when head == tail, full when tail is one less then head),
1414 * we can actually only have (entries - 1) in-flight commands.
1415 */
1416 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1417 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1418 goto free_cq;
1419 }
1420
1421 return q;
1422
1423 free_cq:
1424 nvme_dmamem_free(sc, q->q_cq_dmamem);
1425 free_sq:
1426 nvme_dmamem_free(sc, q->q_sq_dmamem);
1427 free:
1428 kmem_free(q, sizeof(*q));
1429
1430 return NULL;
1431 }
1432
1433 static void
1434 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1435 {
1436 nvme_ccbs_free(q);
1437 mutex_destroy(&q->q_sq_mtx);
1438 mutex_destroy(&q->q_cq_mtx);
1439 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1440 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1441 nvme_dmamem_free(sc, q->q_cq_dmamem);
1442 nvme_dmamem_free(sc, q->q_sq_dmamem);
1443 kmem_free(q, sizeof(*q));
1444 }
1445
1446 int
1447 nvme_intr(void *xsc)
1448 {
1449 struct nvme_softc *sc = xsc;
1450
1451 /*
1452 * INTx is level triggered, controller deasserts the interrupt only
1453 * when we advance command queue head via write to the doorbell.
1454 * Tell the controller to block the interrupts while we process
1455 * the queue(s).
1456 */
1457 nvme_write4(sc, NVME_INTMS, 1);
1458
1459 softint_schedule(sc->sc_softih[0]);
1460
1461 /* don't know, might not have been for us */
1462 return 1;
1463 }
1464
1465 void
1466 nvme_softintr_intx(void *xq)
1467 {
1468 struct nvme_queue *q = xq;
1469 struct nvme_softc *sc = q->q_sc;
1470
1471 nvme_q_complete(sc, sc->sc_admin_q);
1472 if (sc->sc_q != NULL)
1473 nvme_q_complete(sc, sc->sc_q[0]);
1474
1475 /*
1476 * Processing done, tell controller to issue interrupts again. There
1477 * is no race, as NVMe spec requires the controller to maintain state,
1478 * and assert the interrupt whenever there are unacknowledged
1479 * completion queue entries.
1480 */
1481 nvme_write4(sc, NVME_INTMC, 1);
1482 }
1483
1484 int
1485 nvme_intr_msi(void *xq)
1486 {
1487 struct nvme_queue *q = xq;
1488
1489 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1490 && q->q_sc->sc_softih[q->q_id]);
1491
1492 /*
1493 * MSI/MSI-X are edge triggered, so can handover processing to softint
1494 * without masking the interrupt.
1495 */
1496 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1497
1498 return 1;
1499 }
1500
1501 void
1502 nvme_softintr_msi(void *xq)
1503 {
1504 struct nvme_queue *q = xq;
1505 struct nvme_softc *sc = q->q_sc;
1506
1507 nvme_q_complete(sc, q);
1508 }
1509
1510 static struct nvme_dmamem *
1511 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1512 {
1513 struct nvme_dmamem *ndm;
1514 int nsegs;
1515
1516 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1517 if (ndm == NULL)
1518 return NULL;
1519
1520 ndm->ndm_size = size;
1521
1522 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1523 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1524 goto ndmfree;
1525
1526 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1527 1, &nsegs, BUS_DMA_WAITOK) != 0)
1528 goto destroy;
1529
1530 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1531 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1532 goto free;
1533 memset(ndm->ndm_kva, 0, size);
1534
1535 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1536 NULL, BUS_DMA_WAITOK) != 0)
1537 goto unmap;
1538
1539 return ndm;
1540
1541 unmap:
1542 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1543 free:
1544 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1545 destroy:
1546 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1547 ndmfree:
1548 kmem_free(ndm, sizeof(*ndm));
1549 return NULL;
1550 }
1551
1552 static void
1553 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1554 {
1555 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1556 0, NVME_DMA_LEN(mem), ops);
1557 }
1558
1559 void
1560 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1561 {
1562 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1563 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1564 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1565 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1566 kmem_free(ndm, sizeof(*ndm));
1567 }
1568
1569 /*
1570 * ioctl
1571 */
1572
1573 dev_type_open(nvmeopen);
1574 dev_type_close(nvmeclose);
1575 dev_type_ioctl(nvmeioctl);
1576
1577 const struct cdevsw nvme_cdevsw = {
1578 .d_open = nvmeopen,
1579 .d_close = nvmeclose,
1580 .d_read = noread,
1581 .d_write = nowrite,
1582 .d_ioctl = nvmeioctl,
1583 .d_stop = nostop,
1584 .d_tty = notty,
1585 .d_poll = nopoll,
1586 .d_mmap = nommap,
1587 .d_kqfilter = nokqfilter,
1588 .d_discard = nodiscard,
1589 .d_flag = D_OTHER,
1590 };
1591
1592 extern struct cfdriver nvme_cd;
1593
1594 /*
1595 * Accept an open operation on the control device.
1596 */
1597 int
1598 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1599 {
1600 struct nvme_softc *sc;
1601 int unit = minor(dev) / 0x10000;
1602 int nsid = minor(dev) & 0xffff;
1603 int nsidx;
1604
1605 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1606 return ENXIO;
1607 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1608 return ENXIO;
1609
1610 if (nsid == 0) {
1611 /* controller */
1612 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1613 return EBUSY;
1614 SET(sc->sc_flags, NVME_F_OPEN);
1615 } else {
1616 /* namespace */
1617 nsidx = nsid - 1;
1618 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1619 return ENXIO;
1620 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1621 return EBUSY;
1622 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1623 }
1624 return 0;
1625 }
1626
1627 /*
1628 * Accept the last close on the control device.
1629 */
1630 int
1631 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1632 {
1633 struct nvme_softc *sc;
1634 int unit = minor(dev) / 0x10000;
1635 int nsid = minor(dev) & 0xffff;
1636 int nsidx;
1637
1638 sc = device_lookup_private(&nvme_cd, unit);
1639 if (sc == NULL)
1640 return ENXIO;
1641
1642 if (nsid == 0) {
1643 /* controller */
1644 CLR(sc->sc_flags, NVME_F_OPEN);
1645 } else {
1646 /* namespace */
1647 nsidx = nsid - 1;
1648 if (nsidx >= sc->sc_nn)
1649 return ENXIO;
1650 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1651 }
1652
1653 return 0;
1654 }
1655
1656 /*
1657 * Handle control operations.
1658 */
1659 int
1660 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1661 {
1662 struct nvme_softc *sc;
1663 int unit = minor(dev) / 0x10000;
1664 int nsid = minor(dev) & 0xffff;
1665 struct nvme_pt_command *pt;
1666
1667 sc = device_lookup_private(&nvme_cd, unit);
1668 if (sc == NULL)
1669 return ENXIO;
1670
1671 switch (cmd) {
1672 case NVME_PASSTHROUGH_CMD:
1673 pt = data;
1674 return nvme_command_passthrough(sc, data,
1675 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1676 }
1677
1678 return ENOTTY;
1679 }
1680