nvme.c revision 1.24 1 /* $NetBSD: nvme.c,v 1.24 2017/02/13 11:11:32 nonaka Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.24 2017/02/13 11:11:32 nonaka Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 32;
44 int nvme_ioq_size = 1024;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *), int);
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static struct nvme_dmamem *
89 nvme_dmamem_alloc(struct nvme_softc *, size_t);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
92 int);
93
94 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
95 void *);
96 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
97 struct nvme_cqe *);
98 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
99 void *);
100 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
101 struct nvme_cqe *);
102
103 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static int nvme_command_passthrough(struct nvme_softc *,
108 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
109
110 static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
111
112 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
113 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
114 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
115 #define NVME_TIMO_SY 60 /* sync cache timeout */
116
117 #define nvme_read4(_s, _r) \
118 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
119 #define nvme_write4(_s, _r, _v) \
120 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
121 #ifdef __LP64__
122 #define nvme_read8(_s, _r) \
123 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
124 #define nvme_write8(_s, _r, _v) \
125 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
126 #else /* __LP64__ */
127 static inline uint64_t
128 nvme_read8(struct nvme_softc *sc, bus_size_t r)
129 {
130 uint64_t v;
131 uint32_t *a = (uint32_t *)&v;
132
133 #if _BYTE_ORDER == _LITTLE_ENDIAN
134 a[0] = nvme_read4(sc, r);
135 a[1] = nvme_read4(sc, r + 4);
136 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
137 a[1] = nvme_read4(sc, r);
138 a[0] = nvme_read4(sc, r + 4);
139 #endif
140
141 return v;
142 }
143
144 static inline void
145 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
146 {
147 uint32_t *a = (uint32_t *)&v;
148
149 #if _BYTE_ORDER == _LITTLE_ENDIAN
150 nvme_write4(sc, r, a[0]);
151 nvme_write4(sc, r + 4, a[1]);
152 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
153 nvme_write4(sc, r, a[1]);
154 nvme_write4(sc, r + 4, a[0]);
155 #endif
156 }
157 #endif /* __LP64__ */
158 #define nvme_barrier(_s, _r, _l, _f) \
159 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
160
161 static void
162 nvme_version(struct nvme_softc *sc, uint32_t ver)
163 {
164 const char *v = NULL;
165
166 switch (ver) {
167 case NVME_VS_1_0:
168 v = "1.0";
169 break;
170 case NVME_VS_1_1:
171 v = "1.1";
172 break;
173 case NVME_VS_1_2:
174 v = "1.2";
175 break;
176 case NVME_VS_1_2_1:
177 v = "1.2.1";
178 break;
179 default:
180 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
181 return;
182 }
183
184 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
185 }
186
187 #ifdef NVME_DEBUG
188 static __used void
189 nvme_dumpregs(struct nvme_softc *sc)
190 {
191 uint64_t r8;
192 uint32_t r4;
193
194 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
195 r8 = nvme_read8(sc, NVME_CAP);
196 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
197 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
198 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
199 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
200 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
201 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
202 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
203 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
204 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
205 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
206 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
207 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
208
209 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
210
211 r4 = nvme_read4(sc, NVME_CC);
212 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
213 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
214 (1 << NVME_CC_IOCQES_R(r4)));
215 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
216 (1 << NVME_CC_IOSQES_R(r4)));
217 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
218 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
219 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
220 (1 << NVME_CC_MPS_R(r4)));
221 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
222 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
223
224 r4 = nvme_read4(sc, NVME_CSTS);
225 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
226 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
227 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
228 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
229
230 r4 = nvme_read4(sc, NVME_AQA);
231 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
232 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
233 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
234
235 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
236 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
237 #undef DEVNAME
238 }
239 #endif /* NVME_DEBUG */
240
241 static int
242 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
243 {
244 u_int i = 0;
245 uint32_t cc;
246
247 cc = nvme_read4(sc, NVME_CC);
248 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
249 aprint_error_dev(sc->sc_dev,
250 "controller enabled status expected %d, found to be %d\n",
251 (rdy != 0), ((cc & NVME_CC_EN) != 0));
252 return ENXIO;
253 }
254
255 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
256 if (i++ > sc->sc_rdy_to)
257 return ENXIO;
258
259 delay(1000);
260 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
261 }
262
263 return 0;
264 }
265
266 static int
267 nvme_enable(struct nvme_softc *sc, u_int mps)
268 {
269 uint32_t cc, csts;
270
271 cc = nvme_read4(sc, NVME_CC);
272 csts = nvme_read4(sc, NVME_CSTS);
273
274 if (ISSET(cc, NVME_CC_EN)) {
275 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
276
277 if (ISSET(csts, NVME_CSTS_RDY))
278 return 1;
279
280 goto waitready;
281 }
282
283 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
284 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
285 delay(5000);
286 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
287 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
288 delay(5000);
289
290 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
291 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
292 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
293 delay(5000);
294
295 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
296 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
297 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
298 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
299 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
300 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
301 SET(cc, NVME_CC_MPS(mps));
302 SET(cc, NVME_CC_EN);
303
304 nvme_write4(sc, NVME_CC, cc);
305 nvme_barrier(sc, 0, sc->sc_ios,
306 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
307 delay(5000);
308
309 waitready:
310 return nvme_ready(sc, NVME_CSTS_RDY);
311 }
312
313 static int
314 nvme_disable(struct nvme_softc *sc)
315 {
316 uint32_t cc, csts;
317
318 cc = nvme_read4(sc, NVME_CC);
319 csts = nvme_read4(sc, NVME_CSTS);
320
321 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
322 nvme_ready(sc, NVME_CSTS_RDY);
323
324 CLR(cc, NVME_CC_EN);
325
326 nvme_write4(sc, NVME_CC, cc);
327 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
328
329 delay(5000);
330
331 return nvme_ready(sc, 0);
332 }
333
334 int
335 nvme_attach(struct nvme_softc *sc)
336 {
337 uint64_t cap;
338 uint32_t reg;
339 u_int dstrd;
340 u_int mps = PAGE_SHIFT;
341 u_int ioq_allocated;
342 uint16_t adminq_entries = nvme_adminq_size;
343 uint16_t ioq_entries = nvme_ioq_size;
344 int i;
345
346 reg = nvme_read4(sc, NVME_VS);
347 if (reg == 0xffffffff) {
348 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
349 return 1;
350 }
351
352 nvme_version(sc, reg);
353
354 cap = nvme_read8(sc, NVME_CAP);
355 dstrd = NVME_CAP_DSTRD(cap);
356 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
357 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
358 "is greater than CPU page size %u\n",
359 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
360 return 1;
361 }
362 if (NVME_CAP_MPSMAX(cap) < mps)
363 mps = NVME_CAP_MPSMAX(cap);
364 if (ioq_entries > NVME_CAP_MQES(cap))
365 ioq_entries = NVME_CAP_MQES(cap);
366
367 /* set initial values to be used for admin queue during probe */
368 sc->sc_rdy_to = NVME_CAP_TO(cap);
369 sc->sc_mps = 1 << mps;
370 sc->sc_mdts = MAXPHYS;
371 sc->sc_max_sgl = 2;
372
373 if (nvme_disable(sc) != 0) {
374 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
375 return 1;
376 }
377
378 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
379 if (sc->sc_admin_q == NULL) {
380 aprint_error_dev(sc->sc_dev,
381 "unable to allocate admin queue\n");
382 return 1;
383 }
384 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
385 goto free_admin_q;
386
387 if (nvme_enable(sc, mps) != 0) {
388 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
389 goto disestablish_admin_q;
390 }
391
392 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
393 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
394 goto disable;
395 }
396
397 /* we know how big things are now */
398 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
399
400 /* reallocate ccbs of admin queue with new max sgl. */
401 nvme_ccbs_free(sc->sc_admin_q);
402 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
403
404 if (sc->sc_use_mq) {
405 /* Limit the number of queues to the number allocated in HW */
406 if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to get number of queues\n");
409 goto disable;
410 }
411 if (sc->sc_nq > ioq_allocated)
412 sc->sc_nq = ioq_allocated;
413 }
414
415 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
416 if (sc->sc_q == NULL) {
417 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
418 goto disable;
419 }
420 for (i = 0; i < sc->sc_nq; i++) {
421 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
422 if (sc->sc_q[i] == NULL) {
423 aprint_error_dev(sc->sc_dev,
424 "unable to allocate io queue\n");
425 goto free_q;
426 }
427 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
428 aprint_error_dev(sc->sc_dev,
429 "unable to create io queue\n");
430 nvme_q_free(sc, sc->sc_q[i]);
431 goto free_q;
432 }
433 }
434
435 if (!sc->sc_use_mq)
436 nvme_write4(sc, NVME_INTMC, 1);
437
438 /* probe subdevices */
439 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
440 KM_SLEEP);
441 if (sc->sc_namespaces == NULL)
442 goto free_q;
443 nvme_rescan(sc->sc_dev, "nvme", &i);
444
445 return 0;
446
447 free_q:
448 while (--i >= 0) {
449 nvme_q_delete(sc, sc->sc_q[i]);
450 nvme_q_free(sc, sc->sc_q[i]);
451 }
452 disable:
453 nvme_disable(sc);
454 disestablish_admin_q:
455 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
456 free_admin_q:
457 nvme_q_free(sc, sc->sc_admin_q);
458
459 return 1;
460 }
461
462 int
463 nvme_rescan(device_t self, const char *attr, const int *flags)
464 {
465 struct nvme_softc *sc = device_private(self);
466 struct nvme_attach_args naa;
467 uint64_t cap;
468 int ioq_entries = nvme_ioq_size;
469 int i;
470
471 cap = nvme_read8(sc, NVME_CAP);
472 if (ioq_entries > NVME_CAP_MQES(cap))
473 ioq_entries = NVME_CAP_MQES(cap);
474
475 for (i = 0; i < sc->sc_nn; i++) {
476 if (sc->sc_namespaces[i].dev)
477 continue;
478 memset(&naa, 0, sizeof(naa));
479 naa.naa_nsid = i + 1;
480 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
481 naa.naa_maxphys = sc->sc_mdts;
482 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
483 nvme_print);
484 }
485 return 0;
486 }
487
488 static int
489 nvme_print(void *aux, const char *pnp)
490 {
491 struct nvme_attach_args *naa = aux;
492
493 if (pnp)
494 aprint_normal("at %s", pnp);
495
496 if (naa->naa_nsid > 0)
497 aprint_normal(" nsid %d", naa->naa_nsid);
498
499 return UNCONF;
500 }
501
502 int
503 nvme_detach(struct nvme_softc *sc, int flags)
504 {
505 int i, error;
506
507 error = config_detach_children(sc->sc_dev, flags);
508 if (error)
509 return error;
510
511 error = nvme_shutdown(sc);
512 if (error)
513 return error;
514
515 /* from now on we are committed to detach, following will never fail */
516 for (i = 0; i < sc->sc_nq; i++)
517 nvme_q_free(sc, sc->sc_q[i]);
518 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
519 nvme_q_free(sc, sc->sc_admin_q);
520
521 return 0;
522 }
523
524 static int
525 nvme_shutdown(struct nvme_softc *sc)
526 {
527 uint32_t cc, csts;
528 bool disabled = false;
529 int i;
530
531 if (!sc->sc_use_mq)
532 nvme_write4(sc, NVME_INTMS, 1);
533
534 for (i = 0; i < sc->sc_nq; i++) {
535 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
536 aprint_error_dev(sc->sc_dev,
537 "unable to delete io queue %d, disabling\n", i + 1);
538 disabled = true;
539 }
540 }
541 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
542 if (disabled)
543 goto disable;
544
545 cc = nvme_read4(sc, NVME_CC);
546 CLR(cc, NVME_CC_SHN_MASK);
547 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
548 nvme_write4(sc, NVME_CC, cc);
549
550 for (i = 0; i < 4000; i++) {
551 nvme_barrier(sc, 0, sc->sc_ios,
552 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
553 csts = nvme_read4(sc, NVME_CSTS);
554 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
555 return 0;
556
557 delay(1000);
558 }
559
560 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
561
562 disable:
563 nvme_disable(sc);
564 return 0;
565 }
566
567 void
568 nvme_childdet(device_t self, device_t child)
569 {
570 struct nvme_softc *sc = device_private(self);
571 int i;
572
573 for (i = 0; i < sc->sc_nn; i++) {
574 if (sc->sc_namespaces[i].dev == child) {
575 /* Already freed ns->ident. */
576 sc->sc_namespaces[i].dev = NULL;
577 break;
578 }
579 }
580 }
581
582 int
583 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
584 {
585 struct nvme_sqe sqe;
586 struct nvm_identify_namespace *identify;
587 struct nvme_dmamem *mem;
588 struct nvme_ccb *ccb;
589 struct nvme_namespace *ns;
590 int rv;
591
592 KASSERT(nsid > 0);
593
594 ccb = nvme_ccb_get(sc->sc_admin_q);
595 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
596
597 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
598 if (mem == NULL)
599 return ENOMEM;
600
601 memset(&sqe, 0, sizeof(sqe));
602 sqe.opcode = NVM_ADMIN_IDENTIFY;
603 htolem32(&sqe.nsid, nsid);
604 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
605 htolem32(&sqe.cdw10, 0);
606
607 ccb->ccb_done = nvme_empty_done;
608 ccb->ccb_cookie = &sqe;
609
610 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
611 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
612 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
613
614 nvme_ccb_put(sc->sc_admin_q, ccb);
615
616 if (rv != 0) {
617 rv = EIO;
618 goto done;
619 }
620
621 /* commit */
622
623 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
624 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
625 //memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
626
627 ns = nvme_ns_get(sc, nsid);
628 KASSERT(ns);
629 ns->ident = identify;
630
631 done:
632 nvme_dmamem_free(sc, mem);
633
634 return rv;
635 }
636
637 int
638 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
639 struct buf *bp, void *data, size_t datasize,
640 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
641 {
642 struct nvme_queue *q = nvme_get_q(sc);
643 struct nvme_ccb *ccb;
644 bus_dmamap_t dmap;
645 int i, error;
646
647 ccb = nvme_ccb_get(q);
648 if (ccb == NULL)
649 return EAGAIN;
650
651 ccb->ccb_done = nvme_ns_io_done;
652 ccb->ccb_cookie = cookie;
653
654 /* namespace context */
655 ccb->nnc_nsid = nsid;
656 ccb->nnc_flags = flags;
657 ccb->nnc_buf = bp;
658 ccb->nnc_datasize = datasize;
659 ccb->nnc_secsize = secsize;
660 ccb->nnc_blkno = blkno;
661 ccb->nnc_done = nnc_done;
662
663 dmap = ccb->ccb_dmamap;
664 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
665 datasize, NULL,
666 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
667 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
668 (ISSET(flags, NVME_NS_CTX_F_READ) ?
669 BUS_DMA_READ : BUS_DMA_WRITE));
670 if (error) {
671 nvme_ccb_put(q, ccb);
672 return error;
673 }
674
675 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
676 ISSET(flags, NVME_NS_CTX_F_READ) ?
677 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
678
679 if (dmap->dm_nsegs > 2) {
680 for (i = 1; i < dmap->dm_nsegs; i++) {
681 htolem64(&ccb->ccb_prpl[i - 1],
682 dmap->dm_segs[i].ds_addr);
683 }
684 bus_dmamap_sync(sc->sc_dmat,
685 NVME_DMA_MAP(q->q_ccb_prpls),
686 ccb->ccb_prpl_off,
687 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
688 BUS_DMASYNC_PREWRITE);
689 }
690
691 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
692 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
693 return EIO;
694 return 0;
695 }
696
697 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
698 return 0;
699 }
700
701 static void
702 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
703 {
704 struct nvme_sqe_io *sqe = slot;
705 bus_dmamap_t dmap = ccb->ccb_dmamap;
706
707 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
708 NVM_CMD_READ : NVM_CMD_WRITE;
709 htolem32(&sqe->nsid, ccb->nnc_nsid);
710
711 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
712 switch (dmap->dm_nsegs) {
713 case 1:
714 break;
715 case 2:
716 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
717 break;
718 default:
719 /* the prp list is already set up and synced */
720 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
721 break;
722 }
723
724 htolem64(&sqe->slba, ccb->nnc_blkno);
725
726 /* guaranteed by upper layers, but check just in case */
727 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
728 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
729 }
730
731 static void
732 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
733 struct nvme_cqe *cqe)
734 {
735 struct nvme_softc *sc = q->q_sc;
736 bus_dmamap_t dmap = ccb->ccb_dmamap;
737 void *nnc_cookie = ccb->ccb_cookie;
738 nvme_nnc_done nnc_done = ccb->nnc_done;
739 struct buf *bp = ccb->nnc_buf;
740
741 if (dmap->dm_nsegs > 2) {
742 bus_dmamap_sync(sc->sc_dmat,
743 NVME_DMA_MAP(q->q_ccb_prpls),
744 ccb->ccb_prpl_off,
745 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
746 BUS_DMASYNC_POSTWRITE);
747 }
748
749 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
750 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
751 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
752
753 bus_dmamap_unload(sc->sc_dmat, dmap);
754 nvme_ccb_put(q, ccb);
755
756 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
757 }
758
759 int
760 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
761 int flags, nvme_nnc_done nnc_done)
762 {
763 struct nvme_queue *q = nvme_get_q(sc);
764 struct nvme_ccb *ccb;
765
766 ccb = nvme_ccb_get(q);
767 if (ccb == NULL)
768 return EAGAIN;
769
770 ccb->ccb_done = nvme_ns_sync_done;
771 ccb->ccb_cookie = cookie;
772
773 /* namespace context */
774 ccb->nnc_nsid = nsid;
775 ccb->nnc_flags = flags;
776 ccb->nnc_done = nnc_done;
777
778 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
779 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
780 return EIO;
781 return 0;
782 }
783
784 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
785 return 0;
786 }
787
788 static void
789 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
790 {
791 struct nvme_sqe *sqe = slot;
792
793 sqe->opcode = NVM_CMD_FLUSH;
794 htolem32(&sqe->nsid, ccb->nnc_nsid);
795 }
796
797 static void
798 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
799 struct nvme_cqe *cqe)
800 {
801 void *cookie = ccb->ccb_cookie;
802 nvme_nnc_done nnc_done = ccb->nnc_done;
803
804 nvme_ccb_put(q, ccb);
805
806 nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
807 }
808
809 void
810 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
811 {
812 struct nvme_namespace *ns;
813 struct nvm_identify_namespace *identify;
814
815 ns = nvme_ns_get(sc, nsid);
816 KASSERT(ns);
817
818 identify = ns->ident;
819 ns->ident = NULL;
820 if (identify != NULL)
821 kmem_free(identify, sizeof(*identify));
822 }
823
824 static void
825 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
826 {
827 struct nvme_softc *sc = q->q_sc;
828 struct nvme_sqe *sqe = slot;
829 struct nvme_pt_command *pt = ccb->ccb_cookie;
830 bus_dmamap_t dmap = ccb->ccb_dmamap;
831 int i;
832
833 sqe->opcode = pt->cmd.opcode;
834 htolem32(&sqe->nsid, pt->cmd.nsid);
835
836 if (pt->buf != NULL && pt->len > 0) {
837 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
838 switch (dmap->dm_nsegs) {
839 case 1:
840 break;
841 case 2:
842 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
843 break;
844 default:
845 for (i = 1; i < dmap->dm_nsegs; i++) {
846 htolem64(&ccb->ccb_prpl[i - 1],
847 dmap->dm_segs[i].ds_addr);
848 }
849 bus_dmamap_sync(sc->sc_dmat,
850 NVME_DMA_MAP(q->q_ccb_prpls),
851 ccb->ccb_prpl_off,
852 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
853 BUS_DMASYNC_PREWRITE);
854 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
855 break;
856 }
857 }
858
859 htolem32(&sqe->cdw10, pt->cmd.cdw10);
860 htolem32(&sqe->cdw11, pt->cmd.cdw11);
861 htolem32(&sqe->cdw12, pt->cmd.cdw12);
862 htolem32(&sqe->cdw13, pt->cmd.cdw13);
863 htolem32(&sqe->cdw14, pt->cmd.cdw14);
864 htolem32(&sqe->cdw15, pt->cmd.cdw15);
865 }
866
867 static void
868 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
869 {
870 struct nvme_softc *sc = q->q_sc;
871 struct nvme_pt_command *pt = ccb->ccb_cookie;
872 bus_dmamap_t dmap = ccb->ccb_dmamap;
873
874 if (pt->buf != NULL && pt->len > 0) {
875 if (dmap->dm_nsegs > 2) {
876 bus_dmamap_sync(sc->sc_dmat,
877 NVME_DMA_MAP(q->q_ccb_prpls),
878 ccb->ccb_prpl_off,
879 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
880 BUS_DMASYNC_POSTWRITE);
881 }
882
883 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
884 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
885 bus_dmamap_unload(sc->sc_dmat, dmap);
886 }
887
888 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
889 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
890 }
891
892 static int
893 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
894 uint16_t nsid, struct lwp *l, bool is_adminq)
895 {
896 struct nvme_queue *q;
897 struct nvme_ccb *ccb;
898 void *buf = NULL;
899 int error;
900
901 /* limit command size to maximum data transfer size */
902 if ((pt->buf == NULL && pt->len > 0) ||
903 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
904 return EINVAL;
905
906 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
907 ccb = nvme_ccb_get(q);
908 if (ccb == NULL)
909 return EBUSY;
910
911 if (pt->buf != NULL) {
912 KASSERT(pt->len > 0);
913 buf = kmem_alloc(pt->len, KM_SLEEP);
914 if (buf == NULL) {
915 error = ENOMEM;
916 goto ccb_put;
917 }
918 if (!pt->is_read) {
919 error = copyin(pt->buf, buf, pt->len);
920 if (error)
921 goto kmem_free;
922 }
923 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
924 pt->len, NULL,
925 BUS_DMA_WAITOK |
926 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
927 if (error)
928 goto kmem_free;
929 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
930 0, ccb->ccb_dmamap->dm_mapsize,
931 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
932 }
933
934 ccb->ccb_done = nvme_pt_done;
935 ccb->ccb_cookie = pt;
936
937 pt->cmd.nsid = nsid;
938 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
939 error = EIO;
940 goto out;
941 }
942
943 error = 0;
944 out:
945 if (buf != NULL) {
946 if (error == 0 && pt->is_read)
947 error = copyout(buf, pt->buf, pt->len);
948 kmem_free:
949 kmem_free(buf, pt->len);
950 }
951 ccb_put:
952 nvme_ccb_put(q, ccb);
953 return error;
954 }
955
956 static void
957 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
958 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
959 {
960 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
961 uint32_t tail;
962
963 mutex_enter(&q->q_sq_mtx);
964 tail = q->q_sq_tail;
965 if (++q->q_sq_tail >= q->q_entries)
966 q->q_sq_tail = 0;
967
968 sqe += tail;
969
970 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
971 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
972 memset(sqe, 0, sizeof(*sqe));
973 (*fill)(q, ccb, sqe);
974 sqe->cid = ccb->ccb_id;
975 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
976 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
977
978 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
979 mutex_exit(&q->q_sq_mtx);
980 }
981
982 struct nvme_poll_state {
983 struct nvme_sqe s;
984 struct nvme_cqe c;
985 };
986
987 static int
988 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
989 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
990 {
991 struct nvme_poll_state state;
992 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
993 void *cookie;
994 uint16_t flags;
995 int step = 10;
996 int maxloop = timo_sec * 1000000 / step;
997 int error = 0;
998
999 memset(&state, 0, sizeof(state));
1000 (*fill)(q, ccb, &state.s);
1001
1002 done = ccb->ccb_done;
1003 cookie = ccb->ccb_cookie;
1004
1005 ccb->ccb_done = nvme_poll_done;
1006 ccb->ccb_cookie = &state;
1007
1008 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1009 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1010 if (nvme_q_complete(sc, q) == 0)
1011 delay(step);
1012
1013 if (timo_sec >= 0 && --maxloop <= 0) {
1014 error = ETIMEDOUT;
1015 break;
1016 }
1017 }
1018
1019 ccb->ccb_cookie = cookie;
1020 done(q, ccb, &state.c);
1021
1022 if (error == 0) {
1023 flags = lemtoh16(&state.c.flags);
1024 return flags & ~NVME_CQE_PHASE;
1025 } else {
1026 return 1;
1027 }
1028 }
1029
1030 static void
1031 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1032 {
1033 struct nvme_sqe *sqe = slot;
1034 struct nvme_poll_state *state = ccb->ccb_cookie;
1035
1036 *sqe = state->s;
1037 }
1038
1039 static void
1040 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1041 struct nvme_cqe *cqe)
1042 {
1043 struct nvme_poll_state *state = ccb->ccb_cookie;
1044
1045 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1046 state->c = *cqe;
1047 }
1048
1049 static void
1050 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1051 {
1052 struct nvme_sqe *src = ccb->ccb_cookie;
1053 struct nvme_sqe *dst = slot;
1054
1055 *dst = *src;
1056 }
1057
1058 static void
1059 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1060 struct nvme_cqe *cqe)
1061 {
1062 }
1063
1064 static int
1065 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1066 {
1067 struct nvme_ccb *ccb;
1068 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1069 uint16_t flags;
1070 int rv = 0;
1071
1072 mutex_enter(&q->q_cq_mtx);
1073
1074 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1075 for (;;) {
1076 cqe = &ring[q->q_cq_head];
1077 flags = lemtoh16(&cqe->flags);
1078 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1079 break;
1080
1081 ccb = &q->q_ccbs[cqe->cid];
1082
1083 if (++q->q_cq_head >= q->q_entries) {
1084 q->q_cq_head = 0;
1085 q->q_cq_phase ^= NVME_CQE_PHASE;
1086 }
1087
1088 #ifdef DEBUG
1089 /*
1090 * If we get spurious completion notification, something
1091 * is seriously hosed up. Very likely DMA to some random
1092 * memory place happened, so just bail out.
1093 */
1094 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1095 panic("%s: invalid ccb detected",
1096 device_xname(sc->sc_dev));
1097 /* NOTREACHED */
1098 }
1099 #endif
1100
1101 rv++;
1102
1103 /*
1104 * Unlock the mutex before calling the ccb_done callback
1105 * and re-lock afterwards. The callback triggers lddone()
1106 * which schedules another i/o, and also calls nvme_ccb_put().
1107 * Unlock/relock avoids possibility of deadlock.
1108 */
1109 mutex_exit(&q->q_cq_mtx);
1110 ccb->ccb_done(q, ccb, cqe);
1111 mutex_enter(&q->q_cq_mtx);
1112 }
1113 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1114
1115 if (rv)
1116 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1117
1118 mutex_exit(&q->q_cq_mtx);
1119
1120 if (rv) {
1121 mutex_enter(&q->q_ccb_mtx);
1122 q->q_nccbs_avail += rv;
1123 mutex_exit(&q->q_ccb_mtx);
1124 }
1125
1126 return rv;
1127 }
1128
1129 static int
1130 nvme_identify(struct nvme_softc *sc, u_int mps)
1131 {
1132 char sn[41], mn[81], fr[17];
1133 struct nvm_identify_controller *identify;
1134 struct nvme_dmamem *mem;
1135 struct nvme_ccb *ccb;
1136 u_int mdts;
1137 int rv = 1;
1138
1139 ccb = nvme_ccb_get(sc->sc_admin_q);
1140 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1141
1142 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1143 if (mem == NULL)
1144 return 1;
1145
1146 ccb->ccb_done = nvme_empty_done;
1147 ccb->ccb_cookie = mem;
1148
1149 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1150 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1151 NVME_TIMO_IDENT);
1152 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1153
1154 nvme_ccb_put(sc->sc_admin_q, ccb);
1155
1156 if (rv != 0)
1157 goto done;
1158
1159 identify = NVME_DMA_KVA(mem);
1160
1161 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1162 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1163 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1164 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1165 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1166 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1167 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1168 sn);
1169
1170 if (identify->mdts > 0) {
1171 mdts = (1 << identify->mdts) * (1 << mps);
1172 if (mdts < sc->sc_mdts)
1173 sc->sc_mdts = mdts;
1174 }
1175
1176 sc->sc_nn = lemtoh32(&identify->nn);
1177
1178 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1179
1180 done:
1181 nvme_dmamem_free(sc, mem);
1182
1183 return rv;
1184 }
1185
1186 static int
1187 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1188 {
1189 struct nvme_sqe_q sqe;
1190 struct nvme_ccb *ccb;
1191 int rv;
1192
1193 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1194 return 1;
1195
1196 ccb = nvme_ccb_get(sc->sc_admin_q);
1197 KASSERT(ccb != NULL);
1198
1199 ccb->ccb_done = nvme_empty_done;
1200 ccb->ccb_cookie = &sqe;
1201
1202 memset(&sqe, 0, sizeof(sqe));
1203 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1204 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1205 htolem16(&sqe.qsize, q->q_entries - 1);
1206 htolem16(&sqe.qid, q->q_id);
1207 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1208 if (sc->sc_use_mq)
1209 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1210
1211 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1212 if (rv != 0)
1213 goto fail;
1214
1215 ccb->ccb_done = nvme_empty_done;
1216 ccb->ccb_cookie = &sqe;
1217
1218 memset(&sqe, 0, sizeof(sqe));
1219 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1220 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1221 htolem16(&sqe.qsize, q->q_entries - 1);
1222 htolem16(&sqe.qid, q->q_id);
1223 htolem16(&sqe.cqid, q->q_id);
1224 sqe.qflags = NVM_SQE_Q_PC;
1225
1226 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1227 if (rv != 0)
1228 goto fail;
1229
1230 fail:
1231 nvme_ccb_put(sc->sc_admin_q, ccb);
1232 return rv;
1233 }
1234
1235 static int
1236 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1237 {
1238 struct nvme_sqe_q sqe;
1239 struct nvme_ccb *ccb;
1240 int rv;
1241
1242 ccb = nvme_ccb_get(sc->sc_admin_q);
1243 KASSERT(ccb != NULL);
1244
1245 ccb->ccb_done = nvme_empty_done;
1246 ccb->ccb_cookie = &sqe;
1247
1248 memset(&sqe, 0, sizeof(sqe));
1249 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1250 htolem16(&sqe.qid, q->q_id);
1251
1252 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1253 if (rv != 0)
1254 goto fail;
1255
1256 ccb->ccb_done = nvme_empty_done;
1257 ccb->ccb_cookie = &sqe;
1258
1259 memset(&sqe, 0, sizeof(sqe));
1260 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1261 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1262 htolem16(&sqe.qid, q->q_id);
1263
1264 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1265 if (rv != 0)
1266 goto fail;
1267
1268 fail:
1269 nvme_ccb_put(sc->sc_admin_q, ccb);
1270
1271 if (rv == 0 && sc->sc_use_mq) {
1272 if (sc->sc_intr_disestablish(sc, q->q_id))
1273 rv = 1;
1274 }
1275
1276 return rv;
1277 }
1278
1279 static void
1280 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1281 {
1282 struct nvme_sqe *sqe = slot;
1283 struct nvme_dmamem *mem = ccb->ccb_cookie;
1284
1285 sqe->opcode = NVM_ADMIN_IDENTIFY;
1286 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1287 htolem32(&sqe->cdw10, 1);
1288 }
1289
1290 static int
1291 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
1292 {
1293 struct nvme_pt_command pt;
1294 struct nvme_ccb *ccb;
1295 uint16_t ncqa, nsqa;
1296 int rv;
1297
1298 ccb = nvme_ccb_get(sc->sc_admin_q);
1299 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1300
1301 memset(&pt, 0, sizeof(pt));
1302 pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
1303 pt.cmd.cdw10 = 7 /*NVME_FEAT_NUMBER_OF_QUEUES*/;
1304
1305 ccb->ccb_done = nvme_pt_done;
1306 ccb->ccb_cookie = &pt;
1307
1308 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1309
1310 nvme_ccb_put(sc->sc_admin_q, ccb);
1311
1312 if (rv != 0) {
1313 *nqap = 0;
1314 return EIO;
1315 }
1316
1317 ncqa = pt.cpl.cdw0 >> 16;
1318 nsqa = pt.cpl.cdw0 & 0xffff;
1319 *nqap = MIN(ncqa, nsqa) + 1;
1320
1321 return 0;
1322 }
1323
1324 static int
1325 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1326 {
1327 struct nvme_softc *sc = q->q_sc;
1328 struct nvme_ccb *ccb;
1329 bus_addr_t off;
1330 uint64_t *prpl;
1331 u_int i;
1332
1333 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1334 SIMPLEQ_INIT(&q->q_ccb_list);
1335
1336 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1337 if (q->q_ccbs == NULL)
1338 return 1;
1339
1340 q->q_nccbs = nccbs;
1341 q->q_nccbs_avail = nccbs;
1342 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1343 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1344
1345 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1346 off = 0;
1347
1348 for (i = 0; i < nccbs; i++) {
1349 ccb = &q->q_ccbs[i];
1350
1351 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1352 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1353 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1354 &ccb->ccb_dmamap) != 0)
1355 goto free_maps;
1356
1357 ccb->ccb_id = i;
1358 ccb->ccb_prpl = prpl;
1359 ccb->ccb_prpl_off = off;
1360 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1361
1362 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1363
1364 prpl += sc->sc_max_sgl;
1365 off += sizeof(*prpl) * sc->sc_max_sgl;
1366 }
1367
1368 return 0;
1369
1370 free_maps:
1371 nvme_ccbs_free(q);
1372 return 1;
1373 }
1374
1375 static struct nvme_ccb *
1376 nvme_ccb_get(struct nvme_queue *q)
1377 {
1378 struct nvme_ccb *ccb = NULL;
1379
1380 mutex_enter(&q->q_ccb_mtx);
1381 if (q->q_nccbs_avail > 0) {
1382 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1383 KASSERT(ccb != NULL);
1384 q->q_nccbs_avail--;
1385
1386 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1387 #ifdef DEBUG
1388 ccb->ccb_cookie = NULL;
1389 #endif
1390 }
1391 mutex_exit(&q->q_ccb_mtx);
1392
1393 return ccb;
1394 }
1395
1396 static void
1397 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1398 {
1399
1400 mutex_enter(&q->q_ccb_mtx);
1401 #ifdef DEBUG
1402 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1403 #endif
1404 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1405 mutex_exit(&q->q_ccb_mtx);
1406 }
1407
1408 static void
1409 nvme_ccbs_free(struct nvme_queue *q)
1410 {
1411 struct nvme_softc *sc = q->q_sc;
1412 struct nvme_ccb *ccb;
1413
1414 mutex_enter(&q->q_ccb_mtx);
1415 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1416 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1417 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1418 }
1419 mutex_exit(&q->q_ccb_mtx);
1420
1421 nvme_dmamem_free(sc, q->q_ccb_prpls);
1422 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1423 q->q_ccbs = NULL;
1424 mutex_destroy(&q->q_ccb_mtx);
1425 }
1426
1427 static struct nvme_queue *
1428 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1429 {
1430 struct nvme_queue *q;
1431
1432 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1433 if (q == NULL)
1434 return NULL;
1435
1436 q->q_sc = sc;
1437 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1438 sizeof(struct nvme_sqe) * entries);
1439 if (q->q_sq_dmamem == NULL)
1440 goto free;
1441
1442 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1443 sizeof(struct nvme_cqe) * entries);
1444 if (q->q_cq_dmamem == NULL)
1445 goto free_sq;
1446
1447 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1448 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1449
1450 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1451 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1452 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1453 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1454 q->q_id = id;
1455 q->q_entries = entries;
1456 q->q_sq_tail = 0;
1457 q->q_cq_head = 0;
1458 q->q_cq_phase = NVME_CQE_PHASE;
1459
1460 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1461 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1462
1463 /*
1464 * Due to definition of full and empty queue (queue is empty
1465 * when head == tail, full when tail is one less then head),
1466 * we can actually only have (entries - 1) in-flight commands.
1467 */
1468 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1469 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1470 goto free_cq;
1471 }
1472
1473 return q;
1474
1475 free_cq:
1476 nvme_dmamem_free(sc, q->q_cq_dmamem);
1477 free_sq:
1478 nvme_dmamem_free(sc, q->q_sq_dmamem);
1479 free:
1480 kmem_free(q, sizeof(*q));
1481
1482 return NULL;
1483 }
1484
1485 static void
1486 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1487 {
1488 nvme_ccbs_free(q);
1489 mutex_destroy(&q->q_sq_mtx);
1490 mutex_destroy(&q->q_cq_mtx);
1491 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1492 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1493 nvme_dmamem_free(sc, q->q_cq_dmamem);
1494 nvme_dmamem_free(sc, q->q_sq_dmamem);
1495 kmem_free(q, sizeof(*q));
1496 }
1497
1498 int
1499 nvme_intr(void *xsc)
1500 {
1501 struct nvme_softc *sc = xsc;
1502
1503 /*
1504 * INTx is level triggered, controller deasserts the interrupt only
1505 * when we advance command queue head via write to the doorbell.
1506 * Tell the controller to block the interrupts while we process
1507 * the queue(s).
1508 */
1509 nvme_write4(sc, NVME_INTMS, 1);
1510
1511 softint_schedule(sc->sc_softih[0]);
1512
1513 /* don't know, might not have been for us */
1514 return 1;
1515 }
1516
1517 void
1518 nvme_softintr_intx(void *xq)
1519 {
1520 struct nvme_queue *q = xq;
1521 struct nvme_softc *sc = q->q_sc;
1522
1523 nvme_q_complete(sc, sc->sc_admin_q);
1524 if (sc->sc_q != NULL)
1525 nvme_q_complete(sc, sc->sc_q[0]);
1526
1527 /*
1528 * Processing done, tell controller to issue interrupts again. There
1529 * is no race, as NVMe spec requires the controller to maintain state,
1530 * and assert the interrupt whenever there are unacknowledged
1531 * completion queue entries.
1532 */
1533 nvme_write4(sc, NVME_INTMC, 1);
1534 }
1535
1536 int
1537 nvme_intr_msi(void *xq)
1538 {
1539 struct nvme_queue *q = xq;
1540
1541 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1542 && q->q_sc->sc_softih[q->q_id]);
1543
1544 /*
1545 * MSI/MSI-X are edge triggered, so can handover processing to softint
1546 * without masking the interrupt.
1547 */
1548 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1549
1550 return 1;
1551 }
1552
1553 void
1554 nvme_softintr_msi(void *xq)
1555 {
1556 struct nvme_queue *q = xq;
1557 struct nvme_softc *sc = q->q_sc;
1558
1559 nvme_q_complete(sc, q);
1560 }
1561
1562 static struct nvme_dmamem *
1563 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1564 {
1565 struct nvme_dmamem *ndm;
1566 int nsegs;
1567
1568 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1569 if (ndm == NULL)
1570 return NULL;
1571
1572 ndm->ndm_size = size;
1573
1574 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1575 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1576 goto ndmfree;
1577
1578 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1579 1, &nsegs, BUS_DMA_WAITOK) != 0)
1580 goto destroy;
1581
1582 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1583 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1584 goto free;
1585 memset(ndm->ndm_kva, 0, size);
1586
1587 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1588 NULL, BUS_DMA_WAITOK) != 0)
1589 goto unmap;
1590
1591 return ndm;
1592
1593 unmap:
1594 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1595 free:
1596 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1597 destroy:
1598 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1599 ndmfree:
1600 kmem_free(ndm, sizeof(*ndm));
1601 return NULL;
1602 }
1603
1604 static void
1605 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1606 {
1607 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1608 0, NVME_DMA_LEN(mem), ops);
1609 }
1610
1611 void
1612 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1613 {
1614 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1615 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1616 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1617 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1618 kmem_free(ndm, sizeof(*ndm));
1619 }
1620
1621 /*
1622 * ioctl
1623 */
1624
1625 dev_type_open(nvmeopen);
1626 dev_type_close(nvmeclose);
1627 dev_type_ioctl(nvmeioctl);
1628
1629 const struct cdevsw nvme_cdevsw = {
1630 .d_open = nvmeopen,
1631 .d_close = nvmeclose,
1632 .d_read = noread,
1633 .d_write = nowrite,
1634 .d_ioctl = nvmeioctl,
1635 .d_stop = nostop,
1636 .d_tty = notty,
1637 .d_poll = nopoll,
1638 .d_mmap = nommap,
1639 .d_kqfilter = nokqfilter,
1640 .d_discard = nodiscard,
1641 .d_flag = D_OTHER,
1642 };
1643
1644 extern struct cfdriver nvme_cd;
1645
1646 /*
1647 * Accept an open operation on the control device.
1648 */
1649 int
1650 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1651 {
1652 struct nvme_softc *sc;
1653 int unit = minor(dev) / 0x10000;
1654 int nsid = minor(dev) & 0xffff;
1655 int nsidx;
1656
1657 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1658 return ENXIO;
1659 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1660 return ENXIO;
1661
1662 if (nsid == 0) {
1663 /* controller */
1664 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1665 return EBUSY;
1666 SET(sc->sc_flags, NVME_F_OPEN);
1667 } else {
1668 /* namespace */
1669 nsidx = nsid - 1;
1670 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1671 return ENXIO;
1672 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1673 return EBUSY;
1674 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1675 }
1676 return 0;
1677 }
1678
1679 /*
1680 * Accept the last close on the control device.
1681 */
1682 int
1683 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1684 {
1685 struct nvme_softc *sc;
1686 int unit = minor(dev) / 0x10000;
1687 int nsid = minor(dev) & 0xffff;
1688 int nsidx;
1689
1690 sc = device_lookup_private(&nvme_cd, unit);
1691 if (sc == NULL)
1692 return ENXIO;
1693
1694 if (nsid == 0) {
1695 /* controller */
1696 CLR(sc->sc_flags, NVME_F_OPEN);
1697 } else {
1698 /* namespace */
1699 nsidx = nsid - 1;
1700 if (nsidx >= sc->sc_nn)
1701 return ENXIO;
1702 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1703 }
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * Handle control operations.
1710 */
1711 int
1712 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1713 {
1714 struct nvme_softc *sc;
1715 int unit = minor(dev) / 0x10000;
1716 int nsid = minor(dev) & 0xffff;
1717 struct nvme_pt_command *pt;
1718
1719 sc = device_lookup_private(&nvme_cd, unit);
1720 if (sc == NULL)
1721 return ENXIO;
1722
1723 switch (cmd) {
1724 case NVME_PASSTHROUGH_CMD:
1725 pt = data;
1726 return nvme_command_passthrough(sc, data,
1727 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1728 }
1729
1730 return ENOTTY;
1731 }
1732