Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.27
      1 /*	$NetBSD: nvme.c,v 1.27 2017/05/29 02:20:34 nonaka Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.27 2017/05/29 02:20:34 nonaka Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 32;
     44 int nvme_ioq_size = 1024;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 #ifdef NVME_DEBUG
     54 static void	nvme_dumpregs(struct nvme_softc *);
     55 #endif
     56 static int	nvme_identify(struct nvme_softc *, u_int);
     57 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     58 		    void *);
     59 
     60 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     61 static void	nvme_ccbs_free(struct nvme_queue *);
     62 
     63 static struct nvme_ccb *
     64 		nvme_ccb_get(struct nvme_queue *);
     65 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     66 
     67 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     68 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     69 		    struct nvme_ccb *, void *), int);
     70 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     71 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     72 		    struct nvme_cqe *);
     73 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     74 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     75 		    struct nvme_cqe *);
     76 
     77 static struct nvme_queue *
     78 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     79 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     80 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     81 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     82 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     83 		    struct nvme_ccb *, void *));
     84 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     85 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     86 
     87 static struct nvme_dmamem *
     88 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     89 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     90 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     91 		    int);
     92 
     93 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     94 		    void *);
     95 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     96 		    struct nvme_cqe *);
     97 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     98 		    void *);
     99 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    100 		    struct nvme_cqe *);
    101 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    102 		    void *);
    103 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    104 		    struct nvme_cqe *);
    105 
    106 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    107 		    void *);
    108 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    109 		    struct nvme_cqe *);
    110 static int	nvme_command_passthrough(struct nvme_softc *,
    111 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    112 
    113 static int	nvme_get_number_of_queues(struct nvme_softc *, u_int *);
    114 
    115 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    116 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    117 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    118 #define NVME_TIMO_SY		60	/* sync cache timeout */
    119 
    120 #define nvme_read4(_s, _r) \
    121 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    122 #define nvme_write4(_s, _r, _v) \
    123 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    124 #ifdef __LP64__
    125 #define nvme_read8(_s, _r) \
    126 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
    127 #define nvme_write8(_s, _r, _v) \
    128 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    129 #else /* __LP64__ */
    130 static inline uint64_t
    131 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    132 {
    133 	uint64_t v;
    134 	uint32_t *a = (uint32_t *)&v;
    135 
    136 #if _BYTE_ORDER == _LITTLE_ENDIAN
    137 	a[0] = nvme_read4(sc, r);
    138 	a[1] = nvme_read4(sc, r + 4);
    139 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    140 	a[1] = nvme_read4(sc, r);
    141 	a[0] = nvme_read4(sc, r + 4);
    142 #endif
    143 
    144 	return v;
    145 }
    146 
    147 static inline void
    148 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    149 {
    150 	uint32_t *a = (uint32_t *)&v;
    151 
    152 #if _BYTE_ORDER == _LITTLE_ENDIAN
    153 	nvme_write4(sc, r, a[0]);
    154 	nvme_write4(sc, r + 4, a[1]);
    155 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    156 	nvme_write4(sc, r, a[1]);
    157 	nvme_write4(sc, r + 4, a[0]);
    158 #endif
    159 }
    160 #endif /* __LP64__ */
    161 #define nvme_barrier(_s, _r, _l, _f) \
    162 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    163 
    164 #ifdef NVME_DEBUG
    165 static __used void
    166 nvme_dumpregs(struct nvme_softc *sc)
    167 {
    168 	uint64_t r8;
    169 	uint32_t r4;
    170 
    171 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    172 	r8 = nvme_read8(sc, NVME_CAP);
    173 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    174 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    175 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    176 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    177 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    178 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    179 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    180 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    181 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    182 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    183 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    184 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    185 
    186 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    187 
    188 	r4 = nvme_read4(sc, NVME_CC);
    189 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    190 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    191 	    (1 << NVME_CC_IOCQES_R(r4)));
    192 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    193 	    (1 << NVME_CC_IOSQES_R(r4)));
    194 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    195 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    196 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    197 	    (1 << NVME_CC_MPS_R(r4)));
    198 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    199 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    200 
    201 	r4 = nvme_read4(sc, NVME_CSTS);
    202 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    203 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    204 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    205 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    206 
    207 	r4 = nvme_read4(sc, NVME_AQA);
    208 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    209 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    210 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    211 
    212 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    213 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    214 #undef	DEVNAME
    215 }
    216 #endif	/* NVME_DEBUG */
    217 
    218 static int
    219 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    220 {
    221 	u_int i = 0;
    222 	uint32_t cc;
    223 
    224 	cc = nvme_read4(sc, NVME_CC);
    225 	if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
    226 		aprint_error_dev(sc->sc_dev,
    227 		    "controller enabled status expected %d, found to be %d\n",
    228 		    (rdy != 0), ((cc & NVME_CC_EN) != 0));
    229 		return ENXIO;
    230 	}
    231 
    232 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    233 		if (i++ > sc->sc_rdy_to)
    234 			return ENXIO;
    235 
    236 		delay(1000);
    237 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    238 	}
    239 
    240 	return 0;
    241 }
    242 
    243 static int
    244 nvme_enable(struct nvme_softc *sc, u_int mps)
    245 {
    246 	uint32_t cc, csts;
    247 
    248 	cc = nvme_read4(sc, NVME_CC);
    249 	csts = nvme_read4(sc, NVME_CSTS);
    250 
    251 	if (ISSET(cc, NVME_CC_EN)) {
    252 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
    253 
    254 		if (ISSET(csts, NVME_CSTS_RDY))
    255 			return 1;
    256 
    257 		goto waitready;
    258 	}
    259 
    260 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    261 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    262 	delay(5000);
    263 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    264 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    265 	delay(5000);
    266 
    267 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    268 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    269 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    270 	delay(5000);
    271 
    272 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    273 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    274 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    275 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    276 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    277 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    278 	SET(cc, NVME_CC_MPS(mps));
    279 	SET(cc, NVME_CC_EN);
    280 
    281 	nvme_write4(sc, NVME_CC, cc);
    282 	nvme_barrier(sc, 0, sc->sc_ios,
    283 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    284 	delay(5000);
    285 
    286     waitready:
    287 	return nvme_ready(sc, NVME_CSTS_RDY);
    288 }
    289 
    290 static int
    291 nvme_disable(struct nvme_softc *sc)
    292 {
    293 	uint32_t cc, csts;
    294 
    295 	cc = nvme_read4(sc, NVME_CC);
    296 	csts = nvme_read4(sc, NVME_CSTS);
    297 
    298 	if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
    299 		nvme_ready(sc, NVME_CSTS_RDY);
    300 
    301 	CLR(cc, NVME_CC_EN);
    302 
    303 	nvme_write4(sc, NVME_CC, cc);
    304 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    305 
    306 	delay(5000);
    307 
    308 	return nvme_ready(sc, 0);
    309 }
    310 
    311 int
    312 nvme_attach(struct nvme_softc *sc)
    313 {
    314 	uint64_t cap;
    315 	uint32_t reg;
    316 	u_int dstrd;
    317 	u_int mps = PAGE_SHIFT;
    318 	u_int ioq_allocated;
    319 	uint16_t adminq_entries = nvme_adminq_size;
    320 	uint16_t ioq_entries = nvme_ioq_size;
    321 	int i;
    322 
    323 	reg = nvme_read4(sc, NVME_VS);
    324 	if (reg == 0xffffffff) {
    325 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    326 		return 1;
    327 	}
    328 
    329 	if (NVME_VS_TER(reg) == 0)
    330 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    331 		    NVME_VS_MNR(reg));
    332 	else
    333 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    334 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    335 
    336 	cap = nvme_read8(sc, NVME_CAP);
    337 	dstrd = NVME_CAP_DSTRD(cap);
    338 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    339 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    340 		    "is greater than CPU page size %u\n",
    341 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    342 		return 1;
    343 	}
    344 	if (NVME_CAP_MPSMAX(cap) < mps)
    345 		mps = NVME_CAP_MPSMAX(cap);
    346 	if (ioq_entries > NVME_CAP_MQES(cap))
    347 		ioq_entries = NVME_CAP_MQES(cap);
    348 
    349 	/* set initial values to be used for admin queue during probe */
    350 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    351 	sc->sc_mps = 1 << mps;
    352 	sc->sc_mdts = MAXPHYS;
    353 	sc->sc_max_sgl = 2;
    354 
    355 	if (nvme_disable(sc) != 0) {
    356 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    357 		return 1;
    358 	}
    359 
    360 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    361 	if (sc->sc_admin_q == NULL) {
    362 		aprint_error_dev(sc->sc_dev,
    363 		    "unable to allocate admin queue\n");
    364 		return 1;
    365 	}
    366 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    367 		goto free_admin_q;
    368 
    369 	if (nvme_enable(sc, mps) != 0) {
    370 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    371 		goto disestablish_admin_q;
    372 	}
    373 
    374 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    375 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    376 		goto disable;
    377 	}
    378 
    379 	/* we know how big things are now */
    380 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    381 
    382 	/* reallocate ccbs of admin queue with new max sgl. */
    383 	nvme_ccbs_free(sc->sc_admin_q);
    384 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    385 
    386 	if (sc->sc_use_mq) {
    387 		/* Limit the number of queues to the number allocated in HW */
    388 		if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
    389 			aprint_error_dev(sc->sc_dev,
    390 			    "unable to get number of queues\n");
    391 			goto disable;
    392 		}
    393 		if (sc->sc_nq > ioq_allocated)
    394 			sc->sc_nq = ioq_allocated;
    395 	}
    396 
    397 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    398 	if (sc->sc_q == NULL) {
    399 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    400 		goto disable;
    401 	}
    402 	for (i = 0; i < sc->sc_nq; i++) {
    403 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    404 		if (sc->sc_q[i] == NULL) {
    405 			aprint_error_dev(sc->sc_dev,
    406 			    "unable to allocate io queue\n");
    407 			goto free_q;
    408 		}
    409 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    410 			aprint_error_dev(sc->sc_dev,
    411 			    "unable to create io queue\n");
    412 			nvme_q_free(sc, sc->sc_q[i]);
    413 			goto free_q;
    414 		}
    415 	}
    416 
    417 	if (!sc->sc_use_mq)
    418 		nvme_write4(sc, NVME_INTMC, 1);
    419 
    420 	/* probe subdevices */
    421 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    422 	    KM_SLEEP);
    423 	if (sc->sc_namespaces == NULL)
    424 		goto free_q;
    425 	nvme_rescan(sc->sc_dev, "nvme", &i);
    426 
    427 	return 0;
    428 
    429 free_q:
    430 	while (--i >= 0) {
    431 		nvme_q_delete(sc, sc->sc_q[i]);
    432 		nvme_q_free(sc, sc->sc_q[i]);
    433 	}
    434 disable:
    435 	nvme_disable(sc);
    436 disestablish_admin_q:
    437 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    438 free_admin_q:
    439 	nvme_q_free(sc, sc->sc_admin_q);
    440 
    441 	return 1;
    442 }
    443 
    444 int
    445 nvme_rescan(device_t self, const char *attr, const int *flags)
    446 {
    447 	struct nvme_softc *sc = device_private(self);
    448 	struct nvme_attach_args naa;
    449 	uint64_t cap;
    450 	int ioq_entries = nvme_ioq_size;
    451 	int i;
    452 
    453 	cap = nvme_read8(sc, NVME_CAP);
    454 	if (ioq_entries > NVME_CAP_MQES(cap))
    455 		ioq_entries = NVME_CAP_MQES(cap);
    456 
    457 	for (i = 0; i < sc->sc_nn; i++) {
    458 		if (sc->sc_namespaces[i].dev)
    459 			continue;
    460 		memset(&naa, 0, sizeof(naa));
    461 		naa.naa_nsid = i + 1;
    462 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    463 		naa.naa_maxphys = sc->sc_mdts;
    464 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    465 		    nvme_print);
    466 	}
    467 	return 0;
    468 }
    469 
    470 static int
    471 nvme_print(void *aux, const char *pnp)
    472 {
    473 	struct nvme_attach_args *naa = aux;
    474 
    475 	if (pnp)
    476 		aprint_normal("at %s", pnp);
    477 
    478 	if (naa->naa_nsid > 0)
    479 		aprint_normal(" nsid %d", naa->naa_nsid);
    480 
    481 	return UNCONF;
    482 }
    483 
    484 int
    485 nvme_detach(struct nvme_softc *sc, int flags)
    486 {
    487 	int i, error;
    488 
    489 	error = config_detach_children(sc->sc_dev, flags);
    490 	if (error)
    491 		return error;
    492 
    493 	error = nvme_shutdown(sc);
    494 	if (error)
    495 		return error;
    496 
    497 	/* from now on we are committed to detach, following will never fail */
    498 	for (i = 0; i < sc->sc_nq; i++)
    499 		nvme_q_free(sc, sc->sc_q[i]);
    500 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    501 	nvme_q_free(sc, sc->sc_admin_q);
    502 
    503 	return 0;
    504 }
    505 
    506 static int
    507 nvme_shutdown(struct nvme_softc *sc)
    508 {
    509 	uint32_t cc, csts;
    510 	bool disabled = false;
    511 	int i;
    512 
    513 	if (!sc->sc_use_mq)
    514 		nvme_write4(sc, NVME_INTMS, 1);
    515 
    516 	for (i = 0; i < sc->sc_nq; i++) {
    517 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    518 			aprint_error_dev(sc->sc_dev,
    519 			    "unable to delete io queue %d, disabling\n", i + 1);
    520 			disabled = true;
    521 		}
    522 	}
    523 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    524 	if (disabled)
    525 		goto disable;
    526 
    527 	cc = nvme_read4(sc, NVME_CC);
    528 	CLR(cc, NVME_CC_SHN_MASK);
    529 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    530 	nvme_write4(sc, NVME_CC, cc);
    531 
    532 	for (i = 0; i < 4000; i++) {
    533 		nvme_barrier(sc, 0, sc->sc_ios,
    534 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    535 		csts = nvme_read4(sc, NVME_CSTS);
    536 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    537 			return 0;
    538 
    539 		delay(1000);
    540 	}
    541 
    542 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    543 
    544 disable:
    545 	nvme_disable(sc);
    546 	return 0;
    547 }
    548 
    549 void
    550 nvme_childdet(device_t self, device_t child)
    551 {
    552 	struct nvme_softc *sc = device_private(self);
    553 	int i;
    554 
    555 	for (i = 0; i < sc->sc_nn; i++) {
    556 		if (sc->sc_namespaces[i].dev == child) {
    557 			/* Already freed ns->ident. */
    558 			sc->sc_namespaces[i].dev = NULL;
    559 			break;
    560 		}
    561 	}
    562 }
    563 
    564 int
    565 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    566 {
    567 	struct nvme_sqe sqe;
    568 	struct nvm_identify_namespace *identify;
    569 	struct nvme_dmamem *mem;
    570 	struct nvme_ccb *ccb;
    571 	struct nvme_namespace *ns;
    572 	int rv;
    573 
    574 	KASSERT(nsid > 0);
    575 
    576 	ccb = nvme_ccb_get(sc->sc_admin_q);
    577 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    578 
    579 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    580 	if (mem == NULL)
    581 		return ENOMEM;
    582 
    583 	memset(&sqe, 0, sizeof(sqe));
    584 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    585 	htolem32(&sqe.nsid, nsid);
    586 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    587 	htolem32(&sqe.cdw10, 0);
    588 
    589 	ccb->ccb_done = nvme_empty_done;
    590 	ccb->ccb_cookie = &sqe;
    591 
    592 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    593 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    594 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    595 
    596 	nvme_ccb_put(sc->sc_admin_q, ccb);
    597 
    598 	if (rv != 0) {
    599 		rv = EIO;
    600 		goto done;
    601 	}
    602 
    603 	/* commit */
    604 
    605 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    606 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    607 	//memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    608 
    609 	ns = nvme_ns_get(sc, nsid);
    610 	KASSERT(ns);
    611 	ns->ident = identify;
    612 
    613 done:
    614 	nvme_dmamem_free(sc, mem);
    615 
    616 	return rv;
    617 }
    618 
    619 int
    620 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    621     struct buf *bp, void *data, size_t datasize,
    622     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    623 {
    624 	struct nvme_queue *q = nvme_get_q(sc);
    625 	struct nvme_ccb *ccb;
    626 	bus_dmamap_t dmap;
    627 	int i, error;
    628 
    629 	ccb = nvme_ccb_get(q);
    630 	if (ccb == NULL)
    631 		return EAGAIN;
    632 
    633 	ccb->ccb_done = nvme_ns_io_done;
    634 	ccb->ccb_cookie = cookie;
    635 
    636 	/* namespace context */
    637 	ccb->nnc_nsid = nsid;
    638 	ccb->nnc_flags = flags;
    639 	ccb->nnc_buf = bp;
    640 	ccb->nnc_datasize = datasize;
    641 	ccb->nnc_secsize = secsize;
    642 	ccb->nnc_blkno = blkno;
    643 	ccb->nnc_done = nnc_done;
    644 
    645 	dmap = ccb->ccb_dmamap;
    646 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    647 	    datasize, NULL,
    648 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    649 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    650 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    651 	      BUS_DMA_READ : BUS_DMA_WRITE));
    652 	if (error) {
    653 		nvme_ccb_put(q, ccb);
    654 		return error;
    655 	}
    656 
    657 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    658 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    659 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    660 
    661 	if (dmap->dm_nsegs > 2) {
    662 		for (i = 1; i < dmap->dm_nsegs; i++) {
    663 			htolem64(&ccb->ccb_prpl[i - 1],
    664 			    dmap->dm_segs[i].ds_addr);
    665 		}
    666 		bus_dmamap_sync(sc->sc_dmat,
    667 		    NVME_DMA_MAP(q->q_ccb_prpls),
    668 		    ccb->ccb_prpl_off,
    669 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    670 		    BUS_DMASYNC_PREWRITE);
    671 	}
    672 
    673 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    674 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    675 			return EIO;
    676 		return 0;
    677 	}
    678 
    679 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    680 	return 0;
    681 }
    682 
    683 static void
    684 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    685 {
    686 	struct nvme_sqe_io *sqe = slot;
    687 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    688 
    689 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    690 	    NVM_CMD_READ : NVM_CMD_WRITE;
    691 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    692 
    693 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    694 	switch (dmap->dm_nsegs) {
    695 	case 1:
    696 		break;
    697 	case 2:
    698 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    699 		break;
    700 	default:
    701 		/* the prp list is already set up and synced */
    702 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    703 		break;
    704 	}
    705 
    706 	htolem64(&sqe->slba, ccb->nnc_blkno);
    707 
    708 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    709 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    710 
    711 	/* guaranteed by upper layers, but check just in case */
    712 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    713 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    714 }
    715 
    716 static void
    717 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    718     struct nvme_cqe *cqe)
    719 {
    720 	struct nvme_softc *sc = q->q_sc;
    721 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    722 	void *nnc_cookie = ccb->ccb_cookie;
    723 	nvme_nnc_done nnc_done = ccb->nnc_done;
    724 	struct buf *bp = ccb->nnc_buf;
    725 
    726 	if (dmap->dm_nsegs > 2) {
    727 		bus_dmamap_sync(sc->sc_dmat,
    728 		    NVME_DMA_MAP(q->q_ccb_prpls),
    729 		    ccb->ccb_prpl_off,
    730 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    731 		    BUS_DMASYNC_POSTWRITE);
    732 	}
    733 
    734 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    735 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    736 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    737 
    738 	bus_dmamap_unload(sc->sc_dmat, dmap);
    739 	nvme_ccb_put(q, ccb);
    740 
    741 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    742 }
    743 
    744 /*
    745  * If there is no volatile write cache, it makes no sense to issue
    746  * flush commands or query for the status.
    747  */
    748 bool
    749 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    750 {
    751 	/* sc_identify is filled during attachment */
    752 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    753 }
    754 
    755 int
    756 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    757     int flags, nvme_nnc_done nnc_done)
    758 {
    759 	struct nvme_queue *q = nvme_get_q(sc);
    760 	struct nvme_ccb *ccb;
    761 
    762 	ccb = nvme_ccb_get(q);
    763 	if (ccb == NULL)
    764 		return EAGAIN;
    765 
    766 	ccb->ccb_done = nvme_ns_sync_done;
    767 	ccb->ccb_cookie = cookie;
    768 
    769 	/* namespace context */
    770 	ccb->nnc_nsid = nsid;
    771 	ccb->nnc_flags = flags;
    772 	ccb->nnc_done = nnc_done;
    773 
    774 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    775 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    776 			return EIO;
    777 		return 0;
    778 	}
    779 
    780 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    781 	return 0;
    782 }
    783 
    784 static void
    785 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    786 {
    787 	struct nvme_sqe *sqe = slot;
    788 
    789 	sqe->opcode = NVM_CMD_FLUSH;
    790 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    791 }
    792 
    793 static void
    794 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    795     struct nvme_cqe *cqe)
    796 {
    797 	void *cookie = ccb->ccb_cookie;
    798 	nvme_nnc_done nnc_done = ccb->nnc_done;
    799 
    800 	nvme_ccb_put(q, ccb);
    801 
    802 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    803 }
    804 
    805 /*
    806  * Get status of volatile write cache. Always asynchronous.
    807  */
    808 int
    809 nvme_admin_getcache(struct nvme_softc *sc, void *cookie, nvme_nnc_done nnc_done)
    810 {
    811 	struct nvme_ccb *ccb;
    812 	struct nvme_queue *q = sc->sc_admin_q;
    813 
    814 	ccb = nvme_ccb_get(q);
    815 	if (ccb == NULL)
    816 		return EAGAIN;
    817 
    818 	ccb->ccb_done = nvme_getcache_done;
    819 	ccb->ccb_cookie = cookie;
    820 
    821 	/* namespace context */
    822 	ccb->nnc_flags = 0;
    823 	ccb->nnc_done = nnc_done;
    824 
    825 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
    826 	return 0;
    827 }
    828 
    829 static void
    830 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    831 {
    832 	struct nvme_sqe *sqe = slot;
    833 
    834 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
    835 	sqe->cdw10 = NVM_FEATURE_VOLATILE_WRITE_CACHE;
    836 }
    837 
    838 static void
    839 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    840     struct nvme_cqe *cqe)
    841 {
    842 	void *cookie = ccb->ccb_cookie;
    843 	nvme_nnc_done nnc_done = ccb->nnc_done;
    844 
    845 	nvme_ccb_put(q, ccb);
    846 
    847 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    848 }
    849 
    850 void
    851 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    852 {
    853 	struct nvme_namespace *ns;
    854 	struct nvm_identify_namespace *identify;
    855 
    856 	ns = nvme_ns_get(sc, nsid);
    857 	KASSERT(ns);
    858 
    859 	identify = ns->ident;
    860 	ns->ident = NULL;
    861 	if (identify != NULL)
    862 		kmem_free(identify, sizeof(*identify));
    863 }
    864 
    865 static void
    866 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    867 {
    868 	struct nvme_softc *sc = q->q_sc;
    869 	struct nvme_sqe *sqe = slot;
    870 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    871 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    872 	int i;
    873 
    874 	sqe->opcode = pt->cmd.opcode;
    875 	htolem32(&sqe->nsid, pt->cmd.nsid);
    876 
    877 	if (pt->buf != NULL && pt->len > 0) {
    878 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    879 		switch (dmap->dm_nsegs) {
    880 		case 1:
    881 			break;
    882 		case 2:
    883 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    884 			break;
    885 		default:
    886 			for (i = 1; i < dmap->dm_nsegs; i++) {
    887 				htolem64(&ccb->ccb_prpl[i - 1],
    888 				    dmap->dm_segs[i].ds_addr);
    889 			}
    890 			bus_dmamap_sync(sc->sc_dmat,
    891 			    NVME_DMA_MAP(q->q_ccb_prpls),
    892 			    ccb->ccb_prpl_off,
    893 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    894 			    BUS_DMASYNC_PREWRITE);
    895 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    896 			break;
    897 		}
    898 	}
    899 
    900 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    901 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    902 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    903 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    904 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    905 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    906 }
    907 
    908 static void
    909 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    910 {
    911 	struct nvme_softc *sc = q->q_sc;
    912 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    913 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    914 
    915 	if (pt->buf != NULL && pt->len > 0) {
    916 		if (dmap->dm_nsegs > 2) {
    917 			bus_dmamap_sync(sc->sc_dmat,
    918 			    NVME_DMA_MAP(q->q_ccb_prpls),
    919 			    ccb->ccb_prpl_off,
    920 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    921 			    BUS_DMASYNC_POSTWRITE);
    922 		}
    923 
    924 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    925 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    926 		bus_dmamap_unload(sc->sc_dmat, dmap);
    927 	}
    928 
    929 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
    930 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
    931 }
    932 
    933 static int
    934 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    935     uint16_t nsid, struct lwp *l, bool is_adminq)
    936 {
    937 	struct nvme_queue *q;
    938 	struct nvme_ccb *ccb;
    939 	void *buf = NULL;
    940 	int error;
    941 
    942 	/* limit command size to maximum data transfer size */
    943 	if ((pt->buf == NULL && pt->len > 0) ||
    944 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
    945 		return EINVAL;
    946 
    947 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    948 	ccb = nvme_ccb_get(q);
    949 	if (ccb == NULL)
    950 		return EBUSY;
    951 
    952 	if (pt->buf != NULL) {
    953 		KASSERT(pt->len > 0);
    954 		buf = kmem_alloc(pt->len, KM_SLEEP);
    955 		if (buf == NULL) {
    956 			error = ENOMEM;
    957 			goto ccb_put;
    958 		}
    959 		if (!pt->is_read) {
    960 			error = copyin(pt->buf, buf, pt->len);
    961 			if (error)
    962 				goto kmem_free;
    963 		}
    964 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    965 		    pt->len, NULL,
    966 		    BUS_DMA_WAITOK |
    967 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    968 		if (error)
    969 			goto kmem_free;
    970 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    971 		    0, ccb->ccb_dmamap->dm_mapsize,
    972 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    973 	}
    974 
    975 	ccb->ccb_done = nvme_pt_done;
    976 	ccb->ccb_cookie = pt;
    977 
    978 	pt->cmd.nsid = nsid;
    979 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
    980 		error = EIO;
    981 		goto out;
    982 	}
    983 
    984 	error = 0;
    985 out:
    986 	if (buf != NULL) {
    987 		if (error == 0 && pt->is_read)
    988 			error = copyout(buf, pt->buf, pt->len);
    989 kmem_free:
    990 		kmem_free(buf, pt->len);
    991 	}
    992 ccb_put:
    993 	nvme_ccb_put(q, ccb);
    994 	return error;
    995 }
    996 
    997 static void
    998 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    999     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
   1000 {
   1001 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
   1002 	uint32_t tail;
   1003 
   1004 	mutex_enter(&q->q_sq_mtx);
   1005 	tail = q->q_sq_tail;
   1006 	if (++q->q_sq_tail >= q->q_entries)
   1007 		q->q_sq_tail = 0;
   1008 
   1009 	sqe += tail;
   1010 
   1011 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1012 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
   1013 	memset(sqe, 0, sizeof(*sqe));
   1014 	(*fill)(q, ccb, sqe);
   1015 	sqe->cid = ccb->ccb_id;
   1016 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1017 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1018 
   1019 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
   1020 	mutex_exit(&q->q_sq_mtx);
   1021 }
   1022 
   1023 struct nvme_poll_state {
   1024 	struct nvme_sqe s;
   1025 	struct nvme_cqe c;
   1026 };
   1027 
   1028 static int
   1029 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1030     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1031 {
   1032 	struct nvme_poll_state state;
   1033 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1034 	void *cookie;
   1035 	uint16_t flags;
   1036 	int step = 10;
   1037 	int maxloop = timo_sec * 1000000 / step;
   1038 	int error = 0;
   1039 
   1040 	memset(&state, 0, sizeof(state));
   1041 	(*fill)(q, ccb, &state.s);
   1042 
   1043 	done = ccb->ccb_done;
   1044 	cookie = ccb->ccb_cookie;
   1045 
   1046 	ccb->ccb_done = nvme_poll_done;
   1047 	ccb->ccb_cookie = &state;
   1048 
   1049 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1050 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1051 		if (nvme_q_complete(sc, q) == 0)
   1052 			delay(step);
   1053 
   1054 		if (timo_sec >= 0 && --maxloop <= 0) {
   1055 			error = ETIMEDOUT;
   1056 			break;
   1057 		}
   1058 	}
   1059 
   1060 	ccb->ccb_cookie = cookie;
   1061 	done(q, ccb, &state.c);
   1062 
   1063 	if (error == 0) {
   1064 		flags = lemtoh16(&state.c.flags);
   1065 		return flags & ~NVME_CQE_PHASE;
   1066 	} else {
   1067 		return 1;
   1068 	}
   1069 }
   1070 
   1071 static void
   1072 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1073 {
   1074 	struct nvme_sqe *sqe = slot;
   1075 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1076 
   1077 	*sqe = state->s;
   1078 }
   1079 
   1080 static void
   1081 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1082     struct nvme_cqe *cqe)
   1083 {
   1084 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1085 
   1086 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
   1087 	state->c = *cqe;
   1088 }
   1089 
   1090 static void
   1091 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1092 {
   1093 	struct nvme_sqe *src = ccb->ccb_cookie;
   1094 	struct nvme_sqe *dst = slot;
   1095 
   1096 	*dst = *src;
   1097 }
   1098 
   1099 static void
   1100 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1101     struct nvme_cqe *cqe)
   1102 {
   1103 }
   1104 
   1105 static int
   1106 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1107 {
   1108 	struct nvme_ccb *ccb;
   1109 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1110 	uint16_t flags;
   1111 	int rv = 0;
   1112 
   1113 	mutex_enter(&q->q_cq_mtx);
   1114 
   1115 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1116 	for (;;) {
   1117 		cqe = &ring[q->q_cq_head];
   1118 		flags = lemtoh16(&cqe->flags);
   1119 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1120 			break;
   1121 
   1122 		ccb = &q->q_ccbs[cqe->cid];
   1123 
   1124 		if (++q->q_cq_head >= q->q_entries) {
   1125 			q->q_cq_head = 0;
   1126 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1127 		}
   1128 
   1129 #ifdef DEBUG
   1130 		/*
   1131 		 * If we get spurious completion notification, something
   1132 		 * is seriously hosed up. Very likely DMA to some random
   1133 		 * memory place happened, so just bail out.
   1134 		 */
   1135 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1136 			panic("%s: invalid ccb detected",
   1137 			    device_xname(sc->sc_dev));
   1138 			/* NOTREACHED */
   1139 		}
   1140 #endif
   1141 
   1142 		rv++;
   1143 
   1144 		/*
   1145 		 * Unlock the mutex before calling the ccb_done callback
   1146 		 * and re-lock afterwards. The callback triggers lddone()
   1147 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1148 		 * Unlock/relock avoids possibility of deadlock.
   1149 		 */
   1150 		mutex_exit(&q->q_cq_mtx);
   1151 		ccb->ccb_done(q, ccb, cqe);
   1152 		mutex_enter(&q->q_cq_mtx);
   1153 	}
   1154 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1155 
   1156 	if (rv)
   1157 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1158 
   1159 	mutex_exit(&q->q_cq_mtx);
   1160 
   1161 	if (rv) {
   1162 		mutex_enter(&q->q_ccb_mtx);
   1163 		q->q_nccbs_avail += rv;
   1164 		mutex_exit(&q->q_ccb_mtx);
   1165 	}
   1166 
   1167 	return rv;
   1168 }
   1169 
   1170 static int
   1171 nvme_identify(struct nvme_softc *sc, u_int mps)
   1172 {
   1173 	char sn[41], mn[81], fr[17];
   1174 	struct nvm_identify_controller *identify;
   1175 	struct nvme_dmamem *mem;
   1176 	struct nvme_ccb *ccb;
   1177 	u_int mdts;
   1178 	int rv = 1;
   1179 
   1180 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1181 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1182 
   1183 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1184 	if (mem == NULL)
   1185 		return 1;
   1186 
   1187 	ccb->ccb_done = nvme_empty_done;
   1188 	ccb->ccb_cookie = mem;
   1189 
   1190 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1191 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1192 	    NVME_TIMO_IDENT);
   1193 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1194 
   1195 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1196 
   1197 	if (rv != 0)
   1198 		goto done;
   1199 
   1200 	identify = NVME_DMA_KVA(mem);
   1201 
   1202 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1203 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1204 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1205 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1206 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1207 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1208 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1209 	    sn);
   1210 
   1211 	if (identify->mdts > 0) {
   1212 		mdts = (1 << identify->mdts) * (1 << mps);
   1213 		if (mdts < sc->sc_mdts)
   1214 			sc->sc_mdts = mdts;
   1215 	}
   1216 
   1217 	sc->sc_nn = lemtoh32(&identify->nn);
   1218 
   1219 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1220 
   1221 done:
   1222 	nvme_dmamem_free(sc, mem);
   1223 
   1224 	return rv;
   1225 }
   1226 
   1227 static int
   1228 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1229 {
   1230 	struct nvme_sqe_q sqe;
   1231 	struct nvme_ccb *ccb;
   1232 	int rv;
   1233 
   1234 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1235 		return 1;
   1236 
   1237 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1238 	KASSERT(ccb != NULL);
   1239 
   1240 	ccb->ccb_done = nvme_empty_done;
   1241 	ccb->ccb_cookie = &sqe;
   1242 
   1243 	memset(&sqe, 0, sizeof(sqe));
   1244 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1245 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1246 	htolem16(&sqe.qsize, q->q_entries - 1);
   1247 	htolem16(&sqe.qid, q->q_id);
   1248 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1249 	if (sc->sc_use_mq)
   1250 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1251 
   1252 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1253 	if (rv != 0)
   1254 		goto fail;
   1255 
   1256 	ccb->ccb_done = nvme_empty_done;
   1257 	ccb->ccb_cookie = &sqe;
   1258 
   1259 	memset(&sqe, 0, sizeof(sqe));
   1260 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1261 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1262 	htolem16(&sqe.qsize, q->q_entries - 1);
   1263 	htolem16(&sqe.qid, q->q_id);
   1264 	htolem16(&sqe.cqid, q->q_id);
   1265 	sqe.qflags = NVM_SQE_Q_PC;
   1266 
   1267 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1268 	if (rv != 0)
   1269 		goto fail;
   1270 
   1271 fail:
   1272 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1273 	return rv;
   1274 }
   1275 
   1276 static int
   1277 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1278 {
   1279 	struct nvme_sqe_q sqe;
   1280 	struct nvme_ccb *ccb;
   1281 	int rv;
   1282 
   1283 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1284 	KASSERT(ccb != NULL);
   1285 
   1286 	ccb->ccb_done = nvme_empty_done;
   1287 	ccb->ccb_cookie = &sqe;
   1288 
   1289 	memset(&sqe, 0, sizeof(sqe));
   1290 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1291 	htolem16(&sqe.qid, q->q_id);
   1292 
   1293 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1294 	if (rv != 0)
   1295 		goto fail;
   1296 
   1297 	ccb->ccb_done = nvme_empty_done;
   1298 	ccb->ccb_cookie = &sqe;
   1299 
   1300 	memset(&sqe, 0, sizeof(sqe));
   1301 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1302 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1303 	htolem16(&sqe.qid, q->q_id);
   1304 
   1305 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1306 	if (rv != 0)
   1307 		goto fail;
   1308 
   1309 fail:
   1310 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1311 
   1312 	if (rv == 0 && sc->sc_use_mq) {
   1313 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1314 			rv = 1;
   1315 	}
   1316 
   1317 	return rv;
   1318 }
   1319 
   1320 static void
   1321 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1322 {
   1323 	struct nvme_sqe *sqe = slot;
   1324 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1325 
   1326 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1327 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1328 	htolem32(&sqe->cdw10, 1);
   1329 }
   1330 
   1331 static int
   1332 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
   1333 {
   1334 	struct nvme_pt_command pt;
   1335 	struct nvme_ccb *ccb;
   1336 	uint16_t ncqa, nsqa;
   1337 	int rv;
   1338 
   1339 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1340 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1341 
   1342 	memset(&pt, 0, sizeof(pt));
   1343 	pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
   1344 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
   1345 
   1346 	ccb->ccb_done = nvme_pt_done;
   1347 	ccb->ccb_cookie = &pt;
   1348 
   1349 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1350 
   1351 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1352 
   1353 	if (rv != 0) {
   1354 		*nqap = 0;
   1355 		return EIO;
   1356 	}
   1357 
   1358 	ncqa = pt.cpl.cdw0 >> 16;
   1359 	nsqa = pt.cpl.cdw0 & 0xffff;
   1360 	*nqap = MIN(ncqa, nsqa) + 1;
   1361 
   1362 	return 0;
   1363 }
   1364 
   1365 static int
   1366 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1367 {
   1368 	struct nvme_softc *sc = q->q_sc;
   1369 	struct nvme_ccb *ccb;
   1370 	bus_addr_t off;
   1371 	uint64_t *prpl;
   1372 	u_int i;
   1373 
   1374 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1375 	SIMPLEQ_INIT(&q->q_ccb_list);
   1376 
   1377 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1378 	if (q->q_ccbs == NULL)
   1379 		return 1;
   1380 
   1381 	q->q_nccbs = nccbs;
   1382 	q->q_nccbs_avail = nccbs;
   1383 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1384 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1385 
   1386 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1387 	off = 0;
   1388 
   1389 	for (i = 0; i < nccbs; i++) {
   1390 		ccb = &q->q_ccbs[i];
   1391 
   1392 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1393 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1394 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1395 		    &ccb->ccb_dmamap) != 0)
   1396 			goto free_maps;
   1397 
   1398 		ccb->ccb_id = i;
   1399 		ccb->ccb_prpl = prpl;
   1400 		ccb->ccb_prpl_off = off;
   1401 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1402 
   1403 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1404 
   1405 		prpl += sc->sc_max_sgl;
   1406 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1407 	}
   1408 
   1409 	return 0;
   1410 
   1411 free_maps:
   1412 	nvme_ccbs_free(q);
   1413 	return 1;
   1414 }
   1415 
   1416 static struct nvme_ccb *
   1417 nvme_ccb_get(struct nvme_queue *q)
   1418 {
   1419 	struct nvme_ccb *ccb = NULL;
   1420 
   1421 	mutex_enter(&q->q_ccb_mtx);
   1422 	if (q->q_nccbs_avail > 0) {
   1423 		ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1424 		KASSERT(ccb != NULL);
   1425 		q->q_nccbs_avail--;
   1426 
   1427 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1428 #ifdef DEBUG
   1429 		ccb->ccb_cookie = NULL;
   1430 #endif
   1431 	}
   1432 	mutex_exit(&q->q_ccb_mtx);
   1433 
   1434 	return ccb;
   1435 }
   1436 
   1437 static void
   1438 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1439 {
   1440 
   1441 	mutex_enter(&q->q_ccb_mtx);
   1442 #ifdef DEBUG
   1443 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1444 #endif
   1445 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1446 	mutex_exit(&q->q_ccb_mtx);
   1447 }
   1448 
   1449 static void
   1450 nvme_ccbs_free(struct nvme_queue *q)
   1451 {
   1452 	struct nvme_softc *sc = q->q_sc;
   1453 	struct nvme_ccb *ccb;
   1454 
   1455 	mutex_enter(&q->q_ccb_mtx);
   1456 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1457 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1458 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1459 	}
   1460 	mutex_exit(&q->q_ccb_mtx);
   1461 
   1462 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1463 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1464 	q->q_ccbs = NULL;
   1465 	mutex_destroy(&q->q_ccb_mtx);
   1466 }
   1467 
   1468 static struct nvme_queue *
   1469 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1470 {
   1471 	struct nvme_queue *q;
   1472 
   1473 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1474 	if (q == NULL)
   1475 		return NULL;
   1476 
   1477 	q->q_sc = sc;
   1478 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1479 	    sizeof(struct nvme_sqe) * entries);
   1480 	if (q->q_sq_dmamem == NULL)
   1481 		goto free;
   1482 
   1483 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1484 	    sizeof(struct nvme_cqe) * entries);
   1485 	if (q->q_cq_dmamem == NULL)
   1486 		goto free_sq;
   1487 
   1488 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1489 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1490 
   1491 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1492 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1493 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1494 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1495 	q->q_id = id;
   1496 	q->q_entries = entries;
   1497 	q->q_sq_tail = 0;
   1498 	q->q_cq_head = 0;
   1499 	q->q_cq_phase = NVME_CQE_PHASE;
   1500 
   1501 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1502 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1503 
   1504 	/*
   1505 	 * Due to definition of full and empty queue (queue is empty
   1506 	 * when head == tail, full when tail is one less then head),
   1507 	 * we can actually only have (entries - 1) in-flight commands.
   1508 	 */
   1509 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1510 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1511 		goto free_cq;
   1512 	}
   1513 
   1514 	return q;
   1515 
   1516 free_cq:
   1517 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1518 free_sq:
   1519 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1520 free:
   1521 	kmem_free(q, sizeof(*q));
   1522 
   1523 	return NULL;
   1524 }
   1525 
   1526 static void
   1527 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1528 {
   1529 	nvme_ccbs_free(q);
   1530 	mutex_destroy(&q->q_sq_mtx);
   1531 	mutex_destroy(&q->q_cq_mtx);
   1532 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1533 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1534 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1535 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1536 	kmem_free(q, sizeof(*q));
   1537 }
   1538 
   1539 int
   1540 nvme_intr(void *xsc)
   1541 {
   1542 	struct nvme_softc *sc = xsc;
   1543 
   1544 	/*
   1545 	 * INTx is level triggered, controller deasserts the interrupt only
   1546 	 * when we advance command queue head via write to the doorbell.
   1547 	 * Tell the controller to block the interrupts while we process
   1548 	 * the queue(s).
   1549 	 */
   1550 	nvme_write4(sc, NVME_INTMS, 1);
   1551 
   1552 	softint_schedule(sc->sc_softih[0]);
   1553 
   1554 	/* don't know, might not have been for us */
   1555 	return 1;
   1556 }
   1557 
   1558 void
   1559 nvme_softintr_intx(void *xq)
   1560 {
   1561 	struct nvme_queue *q = xq;
   1562 	struct nvme_softc *sc = q->q_sc;
   1563 
   1564 	nvme_q_complete(sc, sc->sc_admin_q);
   1565 	if (sc->sc_q != NULL)
   1566 	        nvme_q_complete(sc, sc->sc_q[0]);
   1567 
   1568 	/*
   1569 	 * Processing done, tell controller to issue interrupts again. There
   1570 	 * is no race, as NVMe spec requires the controller to maintain state,
   1571 	 * and assert the interrupt whenever there are unacknowledged
   1572 	 * completion queue entries.
   1573 	 */
   1574 	nvme_write4(sc, NVME_INTMC, 1);
   1575 }
   1576 
   1577 int
   1578 nvme_intr_msi(void *xq)
   1579 {
   1580 	struct nvme_queue *q = xq;
   1581 
   1582 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1583 	    && q->q_sc->sc_softih[q->q_id]);
   1584 
   1585 	/*
   1586 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1587 	 * without masking the interrupt.
   1588 	 */
   1589 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1590 
   1591 	return 1;
   1592 }
   1593 
   1594 void
   1595 nvme_softintr_msi(void *xq)
   1596 {
   1597 	struct nvme_queue *q = xq;
   1598 	struct nvme_softc *sc = q->q_sc;
   1599 
   1600 	nvme_q_complete(sc, q);
   1601 }
   1602 
   1603 static struct nvme_dmamem *
   1604 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1605 {
   1606 	struct nvme_dmamem *ndm;
   1607 	int nsegs;
   1608 
   1609 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1610 	if (ndm == NULL)
   1611 		return NULL;
   1612 
   1613 	ndm->ndm_size = size;
   1614 
   1615 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1616 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1617 		goto ndmfree;
   1618 
   1619 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1620 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1621 		goto destroy;
   1622 
   1623 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1624 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1625 		goto free;
   1626 	memset(ndm->ndm_kva, 0, size);
   1627 
   1628 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1629 	    NULL, BUS_DMA_WAITOK) != 0)
   1630 		goto unmap;
   1631 
   1632 	return ndm;
   1633 
   1634 unmap:
   1635 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1636 free:
   1637 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1638 destroy:
   1639 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1640 ndmfree:
   1641 	kmem_free(ndm, sizeof(*ndm));
   1642 	return NULL;
   1643 }
   1644 
   1645 static void
   1646 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1647 {
   1648 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1649 	    0, NVME_DMA_LEN(mem), ops);
   1650 }
   1651 
   1652 void
   1653 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1654 {
   1655 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1656 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1657 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1658 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1659 	kmem_free(ndm, sizeof(*ndm));
   1660 }
   1661 
   1662 /*
   1663  * ioctl
   1664  */
   1665 
   1666 dev_type_open(nvmeopen);
   1667 dev_type_close(nvmeclose);
   1668 dev_type_ioctl(nvmeioctl);
   1669 
   1670 const struct cdevsw nvme_cdevsw = {
   1671 	.d_open = nvmeopen,
   1672 	.d_close = nvmeclose,
   1673 	.d_read = noread,
   1674 	.d_write = nowrite,
   1675 	.d_ioctl = nvmeioctl,
   1676 	.d_stop = nostop,
   1677 	.d_tty = notty,
   1678 	.d_poll = nopoll,
   1679 	.d_mmap = nommap,
   1680 	.d_kqfilter = nokqfilter,
   1681 	.d_discard = nodiscard,
   1682 	.d_flag = D_OTHER,
   1683 };
   1684 
   1685 extern struct cfdriver nvme_cd;
   1686 
   1687 /*
   1688  * Accept an open operation on the control device.
   1689  */
   1690 int
   1691 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1692 {
   1693 	struct nvme_softc *sc;
   1694 	int unit = minor(dev) / 0x10000;
   1695 	int nsid = minor(dev) & 0xffff;
   1696 	int nsidx;
   1697 
   1698 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1699 		return ENXIO;
   1700 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1701 		return ENXIO;
   1702 
   1703 	if (nsid == 0) {
   1704 		/* controller */
   1705 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1706 			return EBUSY;
   1707 		SET(sc->sc_flags, NVME_F_OPEN);
   1708 	} else {
   1709 		/* namespace */
   1710 		nsidx = nsid - 1;
   1711 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1712 			return ENXIO;
   1713 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1714 			return EBUSY;
   1715 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1716 	}
   1717 	return 0;
   1718 }
   1719 
   1720 /*
   1721  * Accept the last close on the control device.
   1722  */
   1723 int
   1724 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1725 {
   1726 	struct nvme_softc *sc;
   1727 	int unit = minor(dev) / 0x10000;
   1728 	int nsid = minor(dev) & 0xffff;
   1729 	int nsidx;
   1730 
   1731 	sc = device_lookup_private(&nvme_cd, unit);
   1732 	if (sc == NULL)
   1733 		return ENXIO;
   1734 
   1735 	if (nsid == 0) {
   1736 		/* controller */
   1737 		CLR(sc->sc_flags, NVME_F_OPEN);
   1738 	} else {
   1739 		/* namespace */
   1740 		nsidx = nsid - 1;
   1741 		if (nsidx >= sc->sc_nn)
   1742 			return ENXIO;
   1743 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1744 	}
   1745 
   1746 	return 0;
   1747 }
   1748 
   1749 /*
   1750  * Handle control operations.
   1751  */
   1752 int
   1753 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1754 {
   1755 	struct nvme_softc *sc;
   1756 	int unit = minor(dev) / 0x10000;
   1757 	int nsid = minor(dev) & 0xffff;
   1758 	struct nvme_pt_command *pt;
   1759 
   1760 	sc = device_lookup_private(&nvme_cd, unit);
   1761 	if (sc == NULL)
   1762 		return ENXIO;
   1763 
   1764 	switch (cmd) {
   1765 	case NVME_PASSTHROUGH_CMD:
   1766 		pt = data;
   1767 		return nvme_command_passthrough(sc, data,
   1768 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1769 	}
   1770 
   1771 	return ENOTTY;
   1772 }
   1773