Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.28
      1 /*	$NetBSD: nvme.c,v 1.28 2017/05/29 02:24:00 nonaka Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.28 2017/05/29 02:24:00 nonaka Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 32;
     44 int nvme_ioq_size = 1024;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 #ifdef NVME_DEBUG
     54 static void	nvme_dumpregs(struct nvme_softc *);
     55 #endif
     56 static int	nvme_identify(struct nvme_softc *, u_int);
     57 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     58 		    void *);
     59 
     60 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     61 static void	nvme_ccbs_free(struct nvme_queue *);
     62 
     63 static struct nvme_ccb *
     64 		nvme_ccb_get(struct nvme_queue *);
     65 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     66 
     67 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     68 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     69 		    struct nvme_ccb *, void *), int);
     70 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     71 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     72 		    struct nvme_cqe *);
     73 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     74 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     75 		    struct nvme_cqe *);
     76 
     77 static struct nvme_queue *
     78 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     79 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     80 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     81 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     82 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     83 		    struct nvme_ccb *, void *));
     84 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     85 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     86 
     87 static struct nvme_dmamem *
     88 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     89 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     90 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     91 		    int);
     92 
     93 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     94 		    void *);
     95 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     96 		    struct nvme_cqe *);
     97 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     98 		    void *);
     99 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    100 		    struct nvme_cqe *);
    101 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    102 		    void *);
    103 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    104 		    struct nvme_cqe *);
    105 
    106 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    107 		    void *);
    108 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    109 		    struct nvme_cqe *);
    110 static int	nvme_command_passthrough(struct nvme_softc *,
    111 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    112 
    113 static int	nvme_get_number_of_queues(struct nvme_softc *, u_int *);
    114 
    115 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    116 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    117 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    118 #define NVME_TIMO_SY		60	/* sync cache timeout */
    119 
    120 #define nvme_read4(_s, _r) \
    121 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    122 #define nvme_write4(_s, _r, _v) \
    123 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    124 /*
    125  * Some controllers, at least Apple NVMe, always require split
    126  * transfers, so don't use bus_space_{read,write}_8() on LP64.
    127  */
    128 static inline uint64_t
    129 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    130 {
    131 	uint64_t v;
    132 	uint32_t *a = (uint32_t *)&v;
    133 
    134 #if _BYTE_ORDER == _LITTLE_ENDIAN
    135 	a[0] = nvme_read4(sc, r);
    136 	a[1] = nvme_read4(sc, r + 4);
    137 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    138 	a[1] = nvme_read4(sc, r);
    139 	a[0] = nvme_read4(sc, r + 4);
    140 #endif
    141 
    142 	return v;
    143 }
    144 
    145 static inline void
    146 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    147 {
    148 	uint32_t *a = (uint32_t *)&v;
    149 
    150 #if _BYTE_ORDER == _LITTLE_ENDIAN
    151 	nvme_write4(sc, r, a[0]);
    152 	nvme_write4(sc, r + 4, a[1]);
    153 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    154 	nvme_write4(sc, r, a[1]);
    155 	nvme_write4(sc, r + 4, a[0]);
    156 #endif
    157 }
    158 #define nvme_barrier(_s, _r, _l, _f) \
    159 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    160 
    161 #ifdef NVME_DEBUG
    162 static __used void
    163 nvme_dumpregs(struct nvme_softc *sc)
    164 {
    165 	uint64_t r8;
    166 	uint32_t r4;
    167 
    168 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    169 	r8 = nvme_read8(sc, NVME_CAP);
    170 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    171 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    172 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    173 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    174 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    175 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    176 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    177 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    178 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    179 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    180 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    181 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    182 
    183 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    184 
    185 	r4 = nvme_read4(sc, NVME_CC);
    186 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    187 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    188 	    (1 << NVME_CC_IOCQES_R(r4)));
    189 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    190 	    (1 << NVME_CC_IOSQES_R(r4)));
    191 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    192 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    193 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    194 	    (1 << NVME_CC_MPS_R(r4)));
    195 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    196 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    197 
    198 	r4 = nvme_read4(sc, NVME_CSTS);
    199 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    200 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    201 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    202 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    203 
    204 	r4 = nvme_read4(sc, NVME_AQA);
    205 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    206 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    207 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    208 
    209 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    210 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    211 #undef	DEVNAME
    212 }
    213 #endif	/* NVME_DEBUG */
    214 
    215 static int
    216 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    217 {
    218 	u_int i = 0;
    219 	uint32_t cc;
    220 
    221 	cc = nvme_read4(sc, NVME_CC);
    222 	if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
    223 		aprint_error_dev(sc->sc_dev,
    224 		    "controller enabled status expected %d, found to be %d\n",
    225 		    (rdy != 0), ((cc & NVME_CC_EN) != 0));
    226 		return ENXIO;
    227 	}
    228 
    229 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    230 		if (i++ > sc->sc_rdy_to)
    231 			return ENXIO;
    232 
    233 		delay(1000);
    234 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 static int
    241 nvme_enable(struct nvme_softc *sc, u_int mps)
    242 {
    243 	uint32_t cc, csts;
    244 
    245 	cc = nvme_read4(sc, NVME_CC);
    246 	csts = nvme_read4(sc, NVME_CSTS);
    247 
    248 	if (ISSET(cc, NVME_CC_EN)) {
    249 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
    250 
    251 		if (ISSET(csts, NVME_CSTS_RDY))
    252 			return 1;
    253 
    254 		goto waitready;
    255 	}
    256 
    257 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    258 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    259 	delay(5000);
    260 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    261 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    262 	delay(5000);
    263 
    264 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    265 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    266 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    267 	delay(5000);
    268 
    269 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    270 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    271 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    272 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    273 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    274 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    275 	SET(cc, NVME_CC_MPS(mps));
    276 	SET(cc, NVME_CC_EN);
    277 
    278 	nvme_write4(sc, NVME_CC, cc);
    279 	nvme_barrier(sc, 0, sc->sc_ios,
    280 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    281 	delay(5000);
    282 
    283     waitready:
    284 	return nvme_ready(sc, NVME_CSTS_RDY);
    285 }
    286 
    287 static int
    288 nvme_disable(struct nvme_softc *sc)
    289 {
    290 	uint32_t cc, csts;
    291 
    292 	cc = nvme_read4(sc, NVME_CC);
    293 	csts = nvme_read4(sc, NVME_CSTS);
    294 
    295 	if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
    296 		nvme_ready(sc, NVME_CSTS_RDY);
    297 
    298 	CLR(cc, NVME_CC_EN);
    299 
    300 	nvme_write4(sc, NVME_CC, cc);
    301 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    302 
    303 	delay(5000);
    304 
    305 	return nvme_ready(sc, 0);
    306 }
    307 
    308 int
    309 nvme_attach(struct nvme_softc *sc)
    310 {
    311 	uint64_t cap;
    312 	uint32_t reg;
    313 	u_int dstrd;
    314 	u_int mps = PAGE_SHIFT;
    315 	u_int ioq_allocated;
    316 	uint16_t adminq_entries = nvme_adminq_size;
    317 	uint16_t ioq_entries = nvme_ioq_size;
    318 	int i;
    319 
    320 	reg = nvme_read4(sc, NVME_VS);
    321 	if (reg == 0xffffffff) {
    322 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    323 		return 1;
    324 	}
    325 
    326 	if (NVME_VS_TER(reg) == 0)
    327 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    328 		    NVME_VS_MNR(reg));
    329 	else
    330 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    331 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    332 
    333 	cap = nvme_read8(sc, NVME_CAP);
    334 	dstrd = NVME_CAP_DSTRD(cap);
    335 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    336 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    337 		    "is greater than CPU page size %u\n",
    338 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    339 		return 1;
    340 	}
    341 	if (NVME_CAP_MPSMAX(cap) < mps)
    342 		mps = NVME_CAP_MPSMAX(cap);
    343 	if (ioq_entries > NVME_CAP_MQES(cap))
    344 		ioq_entries = NVME_CAP_MQES(cap);
    345 
    346 	/* set initial values to be used for admin queue during probe */
    347 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    348 	sc->sc_mps = 1 << mps;
    349 	sc->sc_mdts = MAXPHYS;
    350 	sc->sc_max_sgl = 2;
    351 
    352 	if (nvme_disable(sc) != 0) {
    353 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    354 		return 1;
    355 	}
    356 
    357 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    358 	if (sc->sc_admin_q == NULL) {
    359 		aprint_error_dev(sc->sc_dev,
    360 		    "unable to allocate admin queue\n");
    361 		return 1;
    362 	}
    363 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    364 		goto free_admin_q;
    365 
    366 	if (nvme_enable(sc, mps) != 0) {
    367 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    368 		goto disestablish_admin_q;
    369 	}
    370 
    371 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    372 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    373 		goto disable;
    374 	}
    375 
    376 	/* we know how big things are now */
    377 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    378 
    379 	/* reallocate ccbs of admin queue with new max sgl. */
    380 	nvme_ccbs_free(sc->sc_admin_q);
    381 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    382 
    383 	if (sc->sc_use_mq) {
    384 		/* Limit the number of queues to the number allocated in HW */
    385 		if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
    386 			aprint_error_dev(sc->sc_dev,
    387 			    "unable to get number of queues\n");
    388 			goto disable;
    389 		}
    390 		if (sc->sc_nq > ioq_allocated)
    391 			sc->sc_nq = ioq_allocated;
    392 	}
    393 
    394 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    395 	if (sc->sc_q == NULL) {
    396 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    397 		goto disable;
    398 	}
    399 	for (i = 0; i < sc->sc_nq; i++) {
    400 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    401 		if (sc->sc_q[i] == NULL) {
    402 			aprint_error_dev(sc->sc_dev,
    403 			    "unable to allocate io queue\n");
    404 			goto free_q;
    405 		}
    406 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    407 			aprint_error_dev(sc->sc_dev,
    408 			    "unable to create io queue\n");
    409 			nvme_q_free(sc, sc->sc_q[i]);
    410 			goto free_q;
    411 		}
    412 	}
    413 
    414 	if (!sc->sc_use_mq)
    415 		nvme_write4(sc, NVME_INTMC, 1);
    416 
    417 	/* probe subdevices */
    418 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    419 	    KM_SLEEP);
    420 	if (sc->sc_namespaces == NULL)
    421 		goto free_q;
    422 	nvme_rescan(sc->sc_dev, "nvme", &i);
    423 
    424 	return 0;
    425 
    426 free_q:
    427 	while (--i >= 0) {
    428 		nvme_q_delete(sc, sc->sc_q[i]);
    429 		nvme_q_free(sc, sc->sc_q[i]);
    430 	}
    431 disable:
    432 	nvme_disable(sc);
    433 disestablish_admin_q:
    434 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    435 free_admin_q:
    436 	nvme_q_free(sc, sc->sc_admin_q);
    437 
    438 	return 1;
    439 }
    440 
    441 int
    442 nvme_rescan(device_t self, const char *attr, const int *flags)
    443 {
    444 	struct nvme_softc *sc = device_private(self);
    445 	struct nvme_attach_args naa;
    446 	uint64_t cap;
    447 	int ioq_entries = nvme_ioq_size;
    448 	int i;
    449 
    450 	cap = nvme_read8(sc, NVME_CAP);
    451 	if (ioq_entries > NVME_CAP_MQES(cap))
    452 		ioq_entries = NVME_CAP_MQES(cap);
    453 
    454 	for (i = 0; i < sc->sc_nn; i++) {
    455 		if (sc->sc_namespaces[i].dev)
    456 			continue;
    457 		memset(&naa, 0, sizeof(naa));
    458 		naa.naa_nsid = i + 1;
    459 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    460 		naa.naa_maxphys = sc->sc_mdts;
    461 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    462 		    nvme_print);
    463 	}
    464 	return 0;
    465 }
    466 
    467 static int
    468 nvme_print(void *aux, const char *pnp)
    469 {
    470 	struct nvme_attach_args *naa = aux;
    471 
    472 	if (pnp)
    473 		aprint_normal("at %s", pnp);
    474 
    475 	if (naa->naa_nsid > 0)
    476 		aprint_normal(" nsid %d", naa->naa_nsid);
    477 
    478 	return UNCONF;
    479 }
    480 
    481 int
    482 nvme_detach(struct nvme_softc *sc, int flags)
    483 {
    484 	int i, error;
    485 
    486 	error = config_detach_children(sc->sc_dev, flags);
    487 	if (error)
    488 		return error;
    489 
    490 	error = nvme_shutdown(sc);
    491 	if (error)
    492 		return error;
    493 
    494 	/* from now on we are committed to detach, following will never fail */
    495 	for (i = 0; i < sc->sc_nq; i++)
    496 		nvme_q_free(sc, sc->sc_q[i]);
    497 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    498 	nvme_q_free(sc, sc->sc_admin_q);
    499 
    500 	return 0;
    501 }
    502 
    503 static int
    504 nvme_shutdown(struct nvme_softc *sc)
    505 {
    506 	uint32_t cc, csts;
    507 	bool disabled = false;
    508 	int i;
    509 
    510 	if (!sc->sc_use_mq)
    511 		nvme_write4(sc, NVME_INTMS, 1);
    512 
    513 	for (i = 0; i < sc->sc_nq; i++) {
    514 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    515 			aprint_error_dev(sc->sc_dev,
    516 			    "unable to delete io queue %d, disabling\n", i + 1);
    517 			disabled = true;
    518 		}
    519 	}
    520 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    521 	if (disabled)
    522 		goto disable;
    523 
    524 	cc = nvme_read4(sc, NVME_CC);
    525 	CLR(cc, NVME_CC_SHN_MASK);
    526 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    527 	nvme_write4(sc, NVME_CC, cc);
    528 
    529 	for (i = 0; i < 4000; i++) {
    530 		nvme_barrier(sc, 0, sc->sc_ios,
    531 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    532 		csts = nvme_read4(sc, NVME_CSTS);
    533 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    534 			return 0;
    535 
    536 		delay(1000);
    537 	}
    538 
    539 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    540 
    541 disable:
    542 	nvme_disable(sc);
    543 	return 0;
    544 }
    545 
    546 void
    547 nvme_childdet(device_t self, device_t child)
    548 {
    549 	struct nvme_softc *sc = device_private(self);
    550 	int i;
    551 
    552 	for (i = 0; i < sc->sc_nn; i++) {
    553 		if (sc->sc_namespaces[i].dev == child) {
    554 			/* Already freed ns->ident. */
    555 			sc->sc_namespaces[i].dev = NULL;
    556 			break;
    557 		}
    558 	}
    559 }
    560 
    561 int
    562 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    563 {
    564 	struct nvme_sqe sqe;
    565 	struct nvm_identify_namespace *identify;
    566 	struct nvme_dmamem *mem;
    567 	struct nvme_ccb *ccb;
    568 	struct nvme_namespace *ns;
    569 	int rv;
    570 
    571 	KASSERT(nsid > 0);
    572 
    573 	ccb = nvme_ccb_get(sc->sc_admin_q);
    574 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    575 
    576 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    577 	if (mem == NULL)
    578 		return ENOMEM;
    579 
    580 	memset(&sqe, 0, sizeof(sqe));
    581 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    582 	htolem32(&sqe.nsid, nsid);
    583 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    584 	htolem32(&sqe.cdw10, 0);
    585 
    586 	ccb->ccb_done = nvme_empty_done;
    587 	ccb->ccb_cookie = &sqe;
    588 
    589 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    590 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    591 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    592 
    593 	nvme_ccb_put(sc->sc_admin_q, ccb);
    594 
    595 	if (rv != 0) {
    596 		rv = EIO;
    597 		goto done;
    598 	}
    599 
    600 	/* commit */
    601 
    602 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    603 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    604 	//memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    605 
    606 	ns = nvme_ns_get(sc, nsid);
    607 	KASSERT(ns);
    608 	ns->ident = identify;
    609 
    610 done:
    611 	nvme_dmamem_free(sc, mem);
    612 
    613 	return rv;
    614 }
    615 
    616 int
    617 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    618     struct buf *bp, void *data, size_t datasize,
    619     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    620 {
    621 	struct nvme_queue *q = nvme_get_q(sc);
    622 	struct nvme_ccb *ccb;
    623 	bus_dmamap_t dmap;
    624 	int i, error;
    625 
    626 	ccb = nvme_ccb_get(q);
    627 	if (ccb == NULL)
    628 		return EAGAIN;
    629 
    630 	ccb->ccb_done = nvme_ns_io_done;
    631 	ccb->ccb_cookie = cookie;
    632 
    633 	/* namespace context */
    634 	ccb->nnc_nsid = nsid;
    635 	ccb->nnc_flags = flags;
    636 	ccb->nnc_buf = bp;
    637 	ccb->nnc_datasize = datasize;
    638 	ccb->nnc_secsize = secsize;
    639 	ccb->nnc_blkno = blkno;
    640 	ccb->nnc_done = nnc_done;
    641 
    642 	dmap = ccb->ccb_dmamap;
    643 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    644 	    datasize, NULL,
    645 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    646 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    647 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    648 	      BUS_DMA_READ : BUS_DMA_WRITE));
    649 	if (error) {
    650 		nvme_ccb_put(q, ccb);
    651 		return error;
    652 	}
    653 
    654 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    655 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    656 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    657 
    658 	if (dmap->dm_nsegs > 2) {
    659 		for (i = 1; i < dmap->dm_nsegs; i++) {
    660 			htolem64(&ccb->ccb_prpl[i - 1],
    661 			    dmap->dm_segs[i].ds_addr);
    662 		}
    663 		bus_dmamap_sync(sc->sc_dmat,
    664 		    NVME_DMA_MAP(q->q_ccb_prpls),
    665 		    ccb->ccb_prpl_off,
    666 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    667 		    BUS_DMASYNC_PREWRITE);
    668 	}
    669 
    670 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    671 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    672 			return EIO;
    673 		return 0;
    674 	}
    675 
    676 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    677 	return 0;
    678 }
    679 
    680 static void
    681 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    682 {
    683 	struct nvme_sqe_io *sqe = slot;
    684 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    685 
    686 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    687 	    NVM_CMD_READ : NVM_CMD_WRITE;
    688 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    689 
    690 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    691 	switch (dmap->dm_nsegs) {
    692 	case 1:
    693 		break;
    694 	case 2:
    695 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    696 		break;
    697 	default:
    698 		/* the prp list is already set up and synced */
    699 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    700 		break;
    701 	}
    702 
    703 	htolem64(&sqe->slba, ccb->nnc_blkno);
    704 
    705 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    706 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    707 
    708 	/* guaranteed by upper layers, but check just in case */
    709 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    710 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    711 }
    712 
    713 static void
    714 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    715     struct nvme_cqe *cqe)
    716 {
    717 	struct nvme_softc *sc = q->q_sc;
    718 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    719 	void *nnc_cookie = ccb->ccb_cookie;
    720 	nvme_nnc_done nnc_done = ccb->nnc_done;
    721 	struct buf *bp = ccb->nnc_buf;
    722 
    723 	if (dmap->dm_nsegs > 2) {
    724 		bus_dmamap_sync(sc->sc_dmat,
    725 		    NVME_DMA_MAP(q->q_ccb_prpls),
    726 		    ccb->ccb_prpl_off,
    727 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    728 		    BUS_DMASYNC_POSTWRITE);
    729 	}
    730 
    731 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    732 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    733 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    734 
    735 	bus_dmamap_unload(sc->sc_dmat, dmap);
    736 	nvme_ccb_put(q, ccb);
    737 
    738 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    739 }
    740 
    741 /*
    742  * If there is no volatile write cache, it makes no sense to issue
    743  * flush commands or query for the status.
    744  */
    745 bool
    746 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    747 {
    748 	/* sc_identify is filled during attachment */
    749 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    750 }
    751 
    752 int
    753 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    754     int flags, nvme_nnc_done nnc_done)
    755 {
    756 	struct nvme_queue *q = nvme_get_q(sc);
    757 	struct nvme_ccb *ccb;
    758 
    759 	ccb = nvme_ccb_get(q);
    760 	if (ccb == NULL)
    761 		return EAGAIN;
    762 
    763 	ccb->ccb_done = nvme_ns_sync_done;
    764 	ccb->ccb_cookie = cookie;
    765 
    766 	/* namespace context */
    767 	ccb->nnc_nsid = nsid;
    768 	ccb->nnc_flags = flags;
    769 	ccb->nnc_done = nnc_done;
    770 
    771 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    772 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    773 			return EIO;
    774 		return 0;
    775 	}
    776 
    777 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    778 	return 0;
    779 }
    780 
    781 static void
    782 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    783 {
    784 	struct nvme_sqe *sqe = slot;
    785 
    786 	sqe->opcode = NVM_CMD_FLUSH;
    787 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    788 }
    789 
    790 static void
    791 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    792     struct nvme_cqe *cqe)
    793 {
    794 	void *cookie = ccb->ccb_cookie;
    795 	nvme_nnc_done nnc_done = ccb->nnc_done;
    796 
    797 	nvme_ccb_put(q, ccb);
    798 
    799 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    800 }
    801 
    802 /*
    803  * Get status of volatile write cache. Always asynchronous.
    804  */
    805 int
    806 nvme_admin_getcache(struct nvme_softc *sc, void *cookie, nvme_nnc_done nnc_done)
    807 {
    808 	struct nvme_ccb *ccb;
    809 	struct nvme_queue *q = sc->sc_admin_q;
    810 
    811 	ccb = nvme_ccb_get(q);
    812 	if (ccb == NULL)
    813 		return EAGAIN;
    814 
    815 	ccb->ccb_done = nvme_getcache_done;
    816 	ccb->ccb_cookie = cookie;
    817 
    818 	/* namespace context */
    819 	ccb->nnc_flags = 0;
    820 	ccb->nnc_done = nnc_done;
    821 
    822 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
    823 	return 0;
    824 }
    825 
    826 static void
    827 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    828 {
    829 	struct nvme_sqe *sqe = slot;
    830 
    831 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
    832 	sqe->cdw10 = NVM_FEATURE_VOLATILE_WRITE_CACHE;
    833 }
    834 
    835 static void
    836 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    837     struct nvme_cqe *cqe)
    838 {
    839 	void *cookie = ccb->ccb_cookie;
    840 	nvme_nnc_done nnc_done = ccb->nnc_done;
    841 
    842 	nvme_ccb_put(q, ccb);
    843 
    844 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    845 }
    846 
    847 void
    848 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    849 {
    850 	struct nvme_namespace *ns;
    851 	struct nvm_identify_namespace *identify;
    852 
    853 	ns = nvme_ns_get(sc, nsid);
    854 	KASSERT(ns);
    855 
    856 	identify = ns->ident;
    857 	ns->ident = NULL;
    858 	if (identify != NULL)
    859 		kmem_free(identify, sizeof(*identify));
    860 }
    861 
    862 static void
    863 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    864 {
    865 	struct nvme_softc *sc = q->q_sc;
    866 	struct nvme_sqe *sqe = slot;
    867 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    868 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    869 	int i;
    870 
    871 	sqe->opcode = pt->cmd.opcode;
    872 	htolem32(&sqe->nsid, pt->cmd.nsid);
    873 
    874 	if (pt->buf != NULL && pt->len > 0) {
    875 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    876 		switch (dmap->dm_nsegs) {
    877 		case 1:
    878 			break;
    879 		case 2:
    880 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    881 			break;
    882 		default:
    883 			for (i = 1; i < dmap->dm_nsegs; i++) {
    884 				htolem64(&ccb->ccb_prpl[i - 1],
    885 				    dmap->dm_segs[i].ds_addr);
    886 			}
    887 			bus_dmamap_sync(sc->sc_dmat,
    888 			    NVME_DMA_MAP(q->q_ccb_prpls),
    889 			    ccb->ccb_prpl_off,
    890 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    891 			    BUS_DMASYNC_PREWRITE);
    892 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    893 			break;
    894 		}
    895 	}
    896 
    897 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    898 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    899 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    900 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    901 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    902 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    903 }
    904 
    905 static void
    906 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    907 {
    908 	struct nvme_softc *sc = q->q_sc;
    909 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    910 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    911 
    912 	if (pt->buf != NULL && pt->len > 0) {
    913 		if (dmap->dm_nsegs > 2) {
    914 			bus_dmamap_sync(sc->sc_dmat,
    915 			    NVME_DMA_MAP(q->q_ccb_prpls),
    916 			    ccb->ccb_prpl_off,
    917 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    918 			    BUS_DMASYNC_POSTWRITE);
    919 		}
    920 
    921 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    922 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    923 		bus_dmamap_unload(sc->sc_dmat, dmap);
    924 	}
    925 
    926 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
    927 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
    928 }
    929 
    930 static int
    931 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    932     uint16_t nsid, struct lwp *l, bool is_adminq)
    933 {
    934 	struct nvme_queue *q;
    935 	struct nvme_ccb *ccb;
    936 	void *buf = NULL;
    937 	int error;
    938 
    939 	/* limit command size to maximum data transfer size */
    940 	if ((pt->buf == NULL && pt->len > 0) ||
    941 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
    942 		return EINVAL;
    943 
    944 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    945 	ccb = nvme_ccb_get(q);
    946 	if (ccb == NULL)
    947 		return EBUSY;
    948 
    949 	if (pt->buf != NULL) {
    950 		KASSERT(pt->len > 0);
    951 		buf = kmem_alloc(pt->len, KM_SLEEP);
    952 		if (buf == NULL) {
    953 			error = ENOMEM;
    954 			goto ccb_put;
    955 		}
    956 		if (!pt->is_read) {
    957 			error = copyin(pt->buf, buf, pt->len);
    958 			if (error)
    959 				goto kmem_free;
    960 		}
    961 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    962 		    pt->len, NULL,
    963 		    BUS_DMA_WAITOK |
    964 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    965 		if (error)
    966 			goto kmem_free;
    967 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    968 		    0, ccb->ccb_dmamap->dm_mapsize,
    969 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    970 	}
    971 
    972 	ccb->ccb_done = nvme_pt_done;
    973 	ccb->ccb_cookie = pt;
    974 
    975 	pt->cmd.nsid = nsid;
    976 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
    977 		error = EIO;
    978 		goto out;
    979 	}
    980 
    981 	error = 0;
    982 out:
    983 	if (buf != NULL) {
    984 		if (error == 0 && pt->is_read)
    985 			error = copyout(buf, pt->buf, pt->len);
    986 kmem_free:
    987 		kmem_free(buf, pt->len);
    988 	}
    989 ccb_put:
    990 	nvme_ccb_put(q, ccb);
    991 	return error;
    992 }
    993 
    994 static void
    995 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    996     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    997 {
    998 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    999 	uint32_t tail;
   1000 
   1001 	mutex_enter(&q->q_sq_mtx);
   1002 	tail = q->q_sq_tail;
   1003 	if (++q->q_sq_tail >= q->q_entries)
   1004 		q->q_sq_tail = 0;
   1005 
   1006 	sqe += tail;
   1007 
   1008 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1009 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
   1010 	memset(sqe, 0, sizeof(*sqe));
   1011 	(*fill)(q, ccb, sqe);
   1012 	sqe->cid = ccb->ccb_id;
   1013 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1014 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1015 
   1016 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
   1017 	mutex_exit(&q->q_sq_mtx);
   1018 }
   1019 
   1020 struct nvme_poll_state {
   1021 	struct nvme_sqe s;
   1022 	struct nvme_cqe c;
   1023 };
   1024 
   1025 static int
   1026 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1027     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1028 {
   1029 	struct nvme_poll_state state;
   1030 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1031 	void *cookie;
   1032 	uint16_t flags;
   1033 	int step = 10;
   1034 	int maxloop = timo_sec * 1000000 / step;
   1035 	int error = 0;
   1036 
   1037 	memset(&state, 0, sizeof(state));
   1038 	(*fill)(q, ccb, &state.s);
   1039 
   1040 	done = ccb->ccb_done;
   1041 	cookie = ccb->ccb_cookie;
   1042 
   1043 	ccb->ccb_done = nvme_poll_done;
   1044 	ccb->ccb_cookie = &state;
   1045 
   1046 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1047 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1048 		if (nvme_q_complete(sc, q) == 0)
   1049 			delay(step);
   1050 
   1051 		if (timo_sec >= 0 && --maxloop <= 0) {
   1052 			error = ETIMEDOUT;
   1053 			break;
   1054 		}
   1055 	}
   1056 
   1057 	ccb->ccb_cookie = cookie;
   1058 	done(q, ccb, &state.c);
   1059 
   1060 	if (error == 0) {
   1061 		flags = lemtoh16(&state.c.flags);
   1062 		return flags & ~NVME_CQE_PHASE;
   1063 	} else {
   1064 		return 1;
   1065 	}
   1066 }
   1067 
   1068 static void
   1069 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1070 {
   1071 	struct nvme_sqe *sqe = slot;
   1072 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1073 
   1074 	*sqe = state->s;
   1075 }
   1076 
   1077 static void
   1078 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1079     struct nvme_cqe *cqe)
   1080 {
   1081 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1082 
   1083 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
   1084 	state->c = *cqe;
   1085 }
   1086 
   1087 static void
   1088 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1089 {
   1090 	struct nvme_sqe *src = ccb->ccb_cookie;
   1091 	struct nvme_sqe *dst = slot;
   1092 
   1093 	*dst = *src;
   1094 }
   1095 
   1096 static void
   1097 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1098     struct nvme_cqe *cqe)
   1099 {
   1100 }
   1101 
   1102 static int
   1103 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1104 {
   1105 	struct nvme_ccb *ccb;
   1106 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1107 	uint16_t flags;
   1108 	int rv = 0;
   1109 
   1110 	mutex_enter(&q->q_cq_mtx);
   1111 
   1112 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1113 	for (;;) {
   1114 		cqe = &ring[q->q_cq_head];
   1115 		flags = lemtoh16(&cqe->flags);
   1116 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1117 			break;
   1118 
   1119 		ccb = &q->q_ccbs[cqe->cid];
   1120 
   1121 		if (++q->q_cq_head >= q->q_entries) {
   1122 			q->q_cq_head = 0;
   1123 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1124 		}
   1125 
   1126 #ifdef DEBUG
   1127 		/*
   1128 		 * If we get spurious completion notification, something
   1129 		 * is seriously hosed up. Very likely DMA to some random
   1130 		 * memory place happened, so just bail out.
   1131 		 */
   1132 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1133 			panic("%s: invalid ccb detected",
   1134 			    device_xname(sc->sc_dev));
   1135 			/* NOTREACHED */
   1136 		}
   1137 #endif
   1138 
   1139 		rv++;
   1140 
   1141 		/*
   1142 		 * Unlock the mutex before calling the ccb_done callback
   1143 		 * and re-lock afterwards. The callback triggers lddone()
   1144 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1145 		 * Unlock/relock avoids possibility of deadlock.
   1146 		 */
   1147 		mutex_exit(&q->q_cq_mtx);
   1148 		ccb->ccb_done(q, ccb, cqe);
   1149 		mutex_enter(&q->q_cq_mtx);
   1150 	}
   1151 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1152 
   1153 	if (rv)
   1154 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1155 
   1156 	mutex_exit(&q->q_cq_mtx);
   1157 
   1158 	if (rv) {
   1159 		mutex_enter(&q->q_ccb_mtx);
   1160 		q->q_nccbs_avail += rv;
   1161 		mutex_exit(&q->q_ccb_mtx);
   1162 	}
   1163 
   1164 	return rv;
   1165 }
   1166 
   1167 static int
   1168 nvme_identify(struct nvme_softc *sc, u_int mps)
   1169 {
   1170 	char sn[41], mn[81], fr[17];
   1171 	struct nvm_identify_controller *identify;
   1172 	struct nvme_dmamem *mem;
   1173 	struct nvme_ccb *ccb;
   1174 	u_int mdts;
   1175 	int rv = 1;
   1176 
   1177 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1178 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1179 
   1180 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1181 	if (mem == NULL)
   1182 		return 1;
   1183 
   1184 	ccb->ccb_done = nvme_empty_done;
   1185 	ccb->ccb_cookie = mem;
   1186 
   1187 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1188 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1189 	    NVME_TIMO_IDENT);
   1190 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1191 
   1192 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1193 
   1194 	if (rv != 0)
   1195 		goto done;
   1196 
   1197 	identify = NVME_DMA_KVA(mem);
   1198 
   1199 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1200 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1201 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1202 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1203 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1204 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1205 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1206 	    sn);
   1207 
   1208 	if (identify->mdts > 0) {
   1209 		mdts = (1 << identify->mdts) * (1 << mps);
   1210 		if (mdts < sc->sc_mdts)
   1211 			sc->sc_mdts = mdts;
   1212 	}
   1213 
   1214 	sc->sc_nn = lemtoh32(&identify->nn);
   1215 
   1216 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1217 
   1218 done:
   1219 	nvme_dmamem_free(sc, mem);
   1220 
   1221 	return rv;
   1222 }
   1223 
   1224 static int
   1225 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1226 {
   1227 	struct nvme_sqe_q sqe;
   1228 	struct nvme_ccb *ccb;
   1229 	int rv;
   1230 
   1231 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1232 		return 1;
   1233 
   1234 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1235 	KASSERT(ccb != NULL);
   1236 
   1237 	ccb->ccb_done = nvme_empty_done;
   1238 	ccb->ccb_cookie = &sqe;
   1239 
   1240 	memset(&sqe, 0, sizeof(sqe));
   1241 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1242 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1243 	htolem16(&sqe.qsize, q->q_entries - 1);
   1244 	htolem16(&sqe.qid, q->q_id);
   1245 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1246 	if (sc->sc_use_mq)
   1247 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1248 
   1249 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1250 	if (rv != 0)
   1251 		goto fail;
   1252 
   1253 	ccb->ccb_done = nvme_empty_done;
   1254 	ccb->ccb_cookie = &sqe;
   1255 
   1256 	memset(&sqe, 0, sizeof(sqe));
   1257 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1258 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1259 	htolem16(&sqe.qsize, q->q_entries - 1);
   1260 	htolem16(&sqe.qid, q->q_id);
   1261 	htolem16(&sqe.cqid, q->q_id);
   1262 	sqe.qflags = NVM_SQE_Q_PC;
   1263 
   1264 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1265 	if (rv != 0)
   1266 		goto fail;
   1267 
   1268 fail:
   1269 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1270 	return rv;
   1271 }
   1272 
   1273 static int
   1274 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1275 {
   1276 	struct nvme_sqe_q sqe;
   1277 	struct nvme_ccb *ccb;
   1278 	int rv;
   1279 
   1280 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1281 	KASSERT(ccb != NULL);
   1282 
   1283 	ccb->ccb_done = nvme_empty_done;
   1284 	ccb->ccb_cookie = &sqe;
   1285 
   1286 	memset(&sqe, 0, sizeof(sqe));
   1287 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1288 	htolem16(&sqe.qid, q->q_id);
   1289 
   1290 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1291 	if (rv != 0)
   1292 		goto fail;
   1293 
   1294 	ccb->ccb_done = nvme_empty_done;
   1295 	ccb->ccb_cookie = &sqe;
   1296 
   1297 	memset(&sqe, 0, sizeof(sqe));
   1298 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1299 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1300 	htolem16(&sqe.qid, q->q_id);
   1301 
   1302 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1303 	if (rv != 0)
   1304 		goto fail;
   1305 
   1306 fail:
   1307 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1308 
   1309 	if (rv == 0 && sc->sc_use_mq) {
   1310 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1311 			rv = 1;
   1312 	}
   1313 
   1314 	return rv;
   1315 }
   1316 
   1317 static void
   1318 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1319 {
   1320 	struct nvme_sqe *sqe = slot;
   1321 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1322 
   1323 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1324 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1325 	htolem32(&sqe->cdw10, 1);
   1326 }
   1327 
   1328 static int
   1329 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
   1330 {
   1331 	struct nvme_pt_command pt;
   1332 	struct nvme_ccb *ccb;
   1333 	uint16_t ncqa, nsqa;
   1334 	int rv;
   1335 
   1336 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1337 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1338 
   1339 	memset(&pt, 0, sizeof(pt));
   1340 	pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
   1341 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
   1342 
   1343 	ccb->ccb_done = nvme_pt_done;
   1344 	ccb->ccb_cookie = &pt;
   1345 
   1346 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1347 
   1348 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1349 
   1350 	if (rv != 0) {
   1351 		*nqap = 0;
   1352 		return EIO;
   1353 	}
   1354 
   1355 	ncqa = pt.cpl.cdw0 >> 16;
   1356 	nsqa = pt.cpl.cdw0 & 0xffff;
   1357 	*nqap = MIN(ncqa, nsqa) + 1;
   1358 
   1359 	return 0;
   1360 }
   1361 
   1362 static int
   1363 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1364 {
   1365 	struct nvme_softc *sc = q->q_sc;
   1366 	struct nvme_ccb *ccb;
   1367 	bus_addr_t off;
   1368 	uint64_t *prpl;
   1369 	u_int i;
   1370 
   1371 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1372 	SIMPLEQ_INIT(&q->q_ccb_list);
   1373 
   1374 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1375 	if (q->q_ccbs == NULL)
   1376 		return 1;
   1377 
   1378 	q->q_nccbs = nccbs;
   1379 	q->q_nccbs_avail = nccbs;
   1380 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1381 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1382 
   1383 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1384 	off = 0;
   1385 
   1386 	for (i = 0; i < nccbs; i++) {
   1387 		ccb = &q->q_ccbs[i];
   1388 
   1389 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1390 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1391 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1392 		    &ccb->ccb_dmamap) != 0)
   1393 			goto free_maps;
   1394 
   1395 		ccb->ccb_id = i;
   1396 		ccb->ccb_prpl = prpl;
   1397 		ccb->ccb_prpl_off = off;
   1398 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1399 
   1400 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1401 
   1402 		prpl += sc->sc_max_sgl;
   1403 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1404 	}
   1405 
   1406 	return 0;
   1407 
   1408 free_maps:
   1409 	nvme_ccbs_free(q);
   1410 	return 1;
   1411 }
   1412 
   1413 static struct nvme_ccb *
   1414 nvme_ccb_get(struct nvme_queue *q)
   1415 {
   1416 	struct nvme_ccb *ccb = NULL;
   1417 
   1418 	mutex_enter(&q->q_ccb_mtx);
   1419 	if (q->q_nccbs_avail > 0) {
   1420 		ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1421 		KASSERT(ccb != NULL);
   1422 		q->q_nccbs_avail--;
   1423 
   1424 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1425 #ifdef DEBUG
   1426 		ccb->ccb_cookie = NULL;
   1427 #endif
   1428 	}
   1429 	mutex_exit(&q->q_ccb_mtx);
   1430 
   1431 	return ccb;
   1432 }
   1433 
   1434 static void
   1435 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1436 {
   1437 
   1438 	mutex_enter(&q->q_ccb_mtx);
   1439 #ifdef DEBUG
   1440 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1441 #endif
   1442 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1443 	mutex_exit(&q->q_ccb_mtx);
   1444 }
   1445 
   1446 static void
   1447 nvme_ccbs_free(struct nvme_queue *q)
   1448 {
   1449 	struct nvme_softc *sc = q->q_sc;
   1450 	struct nvme_ccb *ccb;
   1451 
   1452 	mutex_enter(&q->q_ccb_mtx);
   1453 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1454 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1455 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1456 	}
   1457 	mutex_exit(&q->q_ccb_mtx);
   1458 
   1459 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1460 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1461 	q->q_ccbs = NULL;
   1462 	mutex_destroy(&q->q_ccb_mtx);
   1463 }
   1464 
   1465 static struct nvme_queue *
   1466 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1467 {
   1468 	struct nvme_queue *q;
   1469 
   1470 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1471 	if (q == NULL)
   1472 		return NULL;
   1473 
   1474 	q->q_sc = sc;
   1475 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1476 	    sizeof(struct nvme_sqe) * entries);
   1477 	if (q->q_sq_dmamem == NULL)
   1478 		goto free;
   1479 
   1480 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1481 	    sizeof(struct nvme_cqe) * entries);
   1482 	if (q->q_cq_dmamem == NULL)
   1483 		goto free_sq;
   1484 
   1485 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1486 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1487 
   1488 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1489 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1490 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1491 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1492 	q->q_id = id;
   1493 	q->q_entries = entries;
   1494 	q->q_sq_tail = 0;
   1495 	q->q_cq_head = 0;
   1496 	q->q_cq_phase = NVME_CQE_PHASE;
   1497 
   1498 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1499 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1500 
   1501 	/*
   1502 	 * Due to definition of full and empty queue (queue is empty
   1503 	 * when head == tail, full when tail is one less then head),
   1504 	 * we can actually only have (entries - 1) in-flight commands.
   1505 	 */
   1506 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1507 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1508 		goto free_cq;
   1509 	}
   1510 
   1511 	return q;
   1512 
   1513 free_cq:
   1514 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1515 free_sq:
   1516 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1517 free:
   1518 	kmem_free(q, sizeof(*q));
   1519 
   1520 	return NULL;
   1521 }
   1522 
   1523 static void
   1524 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1525 {
   1526 	nvme_ccbs_free(q);
   1527 	mutex_destroy(&q->q_sq_mtx);
   1528 	mutex_destroy(&q->q_cq_mtx);
   1529 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1530 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1531 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1532 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1533 	kmem_free(q, sizeof(*q));
   1534 }
   1535 
   1536 int
   1537 nvme_intr(void *xsc)
   1538 {
   1539 	struct nvme_softc *sc = xsc;
   1540 
   1541 	/*
   1542 	 * INTx is level triggered, controller deasserts the interrupt only
   1543 	 * when we advance command queue head via write to the doorbell.
   1544 	 * Tell the controller to block the interrupts while we process
   1545 	 * the queue(s).
   1546 	 */
   1547 	nvme_write4(sc, NVME_INTMS, 1);
   1548 
   1549 	softint_schedule(sc->sc_softih[0]);
   1550 
   1551 	/* don't know, might not have been for us */
   1552 	return 1;
   1553 }
   1554 
   1555 void
   1556 nvme_softintr_intx(void *xq)
   1557 {
   1558 	struct nvme_queue *q = xq;
   1559 	struct nvme_softc *sc = q->q_sc;
   1560 
   1561 	nvme_q_complete(sc, sc->sc_admin_q);
   1562 	if (sc->sc_q != NULL)
   1563 	        nvme_q_complete(sc, sc->sc_q[0]);
   1564 
   1565 	/*
   1566 	 * Processing done, tell controller to issue interrupts again. There
   1567 	 * is no race, as NVMe spec requires the controller to maintain state,
   1568 	 * and assert the interrupt whenever there are unacknowledged
   1569 	 * completion queue entries.
   1570 	 */
   1571 	nvme_write4(sc, NVME_INTMC, 1);
   1572 }
   1573 
   1574 int
   1575 nvme_intr_msi(void *xq)
   1576 {
   1577 	struct nvme_queue *q = xq;
   1578 
   1579 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1580 	    && q->q_sc->sc_softih[q->q_id]);
   1581 
   1582 	/*
   1583 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1584 	 * without masking the interrupt.
   1585 	 */
   1586 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1587 
   1588 	return 1;
   1589 }
   1590 
   1591 void
   1592 nvme_softintr_msi(void *xq)
   1593 {
   1594 	struct nvme_queue *q = xq;
   1595 	struct nvme_softc *sc = q->q_sc;
   1596 
   1597 	nvme_q_complete(sc, q);
   1598 }
   1599 
   1600 static struct nvme_dmamem *
   1601 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1602 {
   1603 	struct nvme_dmamem *ndm;
   1604 	int nsegs;
   1605 
   1606 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1607 	if (ndm == NULL)
   1608 		return NULL;
   1609 
   1610 	ndm->ndm_size = size;
   1611 
   1612 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1613 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1614 		goto ndmfree;
   1615 
   1616 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1617 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1618 		goto destroy;
   1619 
   1620 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1621 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1622 		goto free;
   1623 	memset(ndm->ndm_kva, 0, size);
   1624 
   1625 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1626 	    NULL, BUS_DMA_WAITOK) != 0)
   1627 		goto unmap;
   1628 
   1629 	return ndm;
   1630 
   1631 unmap:
   1632 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1633 free:
   1634 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1635 destroy:
   1636 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1637 ndmfree:
   1638 	kmem_free(ndm, sizeof(*ndm));
   1639 	return NULL;
   1640 }
   1641 
   1642 static void
   1643 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1644 {
   1645 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1646 	    0, NVME_DMA_LEN(mem), ops);
   1647 }
   1648 
   1649 void
   1650 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1651 {
   1652 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1653 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1654 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1655 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1656 	kmem_free(ndm, sizeof(*ndm));
   1657 }
   1658 
   1659 /*
   1660  * ioctl
   1661  */
   1662 
   1663 dev_type_open(nvmeopen);
   1664 dev_type_close(nvmeclose);
   1665 dev_type_ioctl(nvmeioctl);
   1666 
   1667 const struct cdevsw nvme_cdevsw = {
   1668 	.d_open = nvmeopen,
   1669 	.d_close = nvmeclose,
   1670 	.d_read = noread,
   1671 	.d_write = nowrite,
   1672 	.d_ioctl = nvmeioctl,
   1673 	.d_stop = nostop,
   1674 	.d_tty = notty,
   1675 	.d_poll = nopoll,
   1676 	.d_mmap = nommap,
   1677 	.d_kqfilter = nokqfilter,
   1678 	.d_discard = nodiscard,
   1679 	.d_flag = D_OTHER,
   1680 };
   1681 
   1682 extern struct cfdriver nvme_cd;
   1683 
   1684 /*
   1685  * Accept an open operation on the control device.
   1686  */
   1687 int
   1688 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1689 {
   1690 	struct nvme_softc *sc;
   1691 	int unit = minor(dev) / 0x10000;
   1692 	int nsid = minor(dev) & 0xffff;
   1693 	int nsidx;
   1694 
   1695 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1696 		return ENXIO;
   1697 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1698 		return ENXIO;
   1699 
   1700 	if (nsid == 0) {
   1701 		/* controller */
   1702 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1703 			return EBUSY;
   1704 		SET(sc->sc_flags, NVME_F_OPEN);
   1705 	} else {
   1706 		/* namespace */
   1707 		nsidx = nsid - 1;
   1708 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1709 			return ENXIO;
   1710 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1711 			return EBUSY;
   1712 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1713 	}
   1714 	return 0;
   1715 }
   1716 
   1717 /*
   1718  * Accept the last close on the control device.
   1719  */
   1720 int
   1721 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1722 {
   1723 	struct nvme_softc *sc;
   1724 	int unit = minor(dev) / 0x10000;
   1725 	int nsid = minor(dev) & 0xffff;
   1726 	int nsidx;
   1727 
   1728 	sc = device_lookup_private(&nvme_cd, unit);
   1729 	if (sc == NULL)
   1730 		return ENXIO;
   1731 
   1732 	if (nsid == 0) {
   1733 		/* controller */
   1734 		CLR(sc->sc_flags, NVME_F_OPEN);
   1735 	} else {
   1736 		/* namespace */
   1737 		nsidx = nsid - 1;
   1738 		if (nsidx >= sc->sc_nn)
   1739 			return ENXIO;
   1740 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1741 	}
   1742 
   1743 	return 0;
   1744 }
   1745 
   1746 /*
   1747  * Handle control operations.
   1748  */
   1749 int
   1750 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1751 {
   1752 	struct nvme_softc *sc;
   1753 	int unit = minor(dev) / 0x10000;
   1754 	int nsid = minor(dev) & 0xffff;
   1755 	struct nvme_pt_command *pt;
   1756 
   1757 	sc = device_lookup_private(&nvme_cd, unit);
   1758 	if (sc == NULL)
   1759 		return ENXIO;
   1760 
   1761 	switch (cmd) {
   1762 	case NVME_PASSTHROUGH_CMD:
   1763 		pt = data;
   1764 		return nvme_command_passthrough(sc, data,
   1765 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1766 	}
   1767 
   1768 	return ENOTTY;
   1769 }
   1770