Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.30
      1 /*	$NetBSD: nvme.c,v 1.30 2017/06/01 02:45:10 chs Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.30 2017/06/01 02:45:10 chs Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 32;
     44 int nvme_ioq_size = 1024;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 #ifdef NVME_DEBUG
     54 static void	nvme_dumpregs(struct nvme_softc *);
     55 #endif
     56 static int	nvme_identify(struct nvme_softc *, u_int);
     57 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     58 		    void *);
     59 
     60 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     61 static void	nvme_ccbs_free(struct nvme_queue *);
     62 
     63 static struct nvme_ccb *
     64 		nvme_ccb_get(struct nvme_queue *);
     65 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     66 
     67 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     68 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     69 		    struct nvme_ccb *, void *), int);
     70 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     71 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     72 		    struct nvme_cqe *);
     73 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     74 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     75 		    struct nvme_cqe *);
     76 
     77 static struct nvme_queue *
     78 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     79 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     80 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     81 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     82 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     83 		    struct nvme_ccb *, void *));
     84 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     85 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     86 
     87 static struct nvme_dmamem *
     88 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     89 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     90 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     91 		    int);
     92 
     93 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     94 		    void *);
     95 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     96 		    struct nvme_cqe *);
     97 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     98 		    void *);
     99 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    100 		    struct nvme_cqe *);
    101 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    102 		    void *);
    103 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    104 		    struct nvme_cqe *);
    105 
    106 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    107 		    void *);
    108 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    109 		    struct nvme_cqe *);
    110 static int	nvme_command_passthrough(struct nvme_softc *,
    111 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    112 
    113 static int	nvme_get_number_of_queues(struct nvme_softc *, u_int *);
    114 
    115 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    116 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    117 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    118 #define NVME_TIMO_SY		60	/* sync cache timeout */
    119 
    120 #define nvme_read4(_s, _r) \
    121 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    122 #define nvme_write4(_s, _r, _v) \
    123 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    124 /*
    125  * Some controllers, at least Apple NVMe, always require split
    126  * transfers, so don't use bus_space_{read,write}_8() on LP64.
    127  */
    128 static inline uint64_t
    129 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    130 {
    131 	uint64_t v;
    132 	uint32_t *a = (uint32_t *)&v;
    133 
    134 #if _BYTE_ORDER == _LITTLE_ENDIAN
    135 	a[0] = nvme_read4(sc, r);
    136 	a[1] = nvme_read4(sc, r + 4);
    137 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    138 	a[1] = nvme_read4(sc, r);
    139 	a[0] = nvme_read4(sc, r + 4);
    140 #endif
    141 
    142 	return v;
    143 }
    144 
    145 static inline void
    146 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    147 {
    148 	uint32_t *a = (uint32_t *)&v;
    149 
    150 #if _BYTE_ORDER == _LITTLE_ENDIAN
    151 	nvme_write4(sc, r, a[0]);
    152 	nvme_write4(sc, r + 4, a[1]);
    153 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    154 	nvme_write4(sc, r, a[1]);
    155 	nvme_write4(sc, r + 4, a[0]);
    156 #endif
    157 }
    158 #define nvme_barrier(_s, _r, _l, _f) \
    159 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    160 
    161 #ifdef NVME_DEBUG
    162 static __used void
    163 nvme_dumpregs(struct nvme_softc *sc)
    164 {
    165 	uint64_t r8;
    166 	uint32_t r4;
    167 
    168 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    169 	r8 = nvme_read8(sc, NVME_CAP);
    170 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    171 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    172 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    173 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    174 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    175 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    176 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    177 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    178 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    179 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    180 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    181 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    182 
    183 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    184 
    185 	r4 = nvme_read4(sc, NVME_CC);
    186 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    187 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    188 	    (1 << NVME_CC_IOCQES_R(r4)));
    189 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    190 	    (1 << NVME_CC_IOSQES_R(r4)));
    191 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    192 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    193 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    194 	    (1 << NVME_CC_MPS_R(r4)));
    195 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    196 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    197 
    198 	r4 = nvme_read4(sc, NVME_CSTS);
    199 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    200 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    201 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    202 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    203 
    204 	r4 = nvme_read4(sc, NVME_AQA);
    205 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    206 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    207 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    208 
    209 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    210 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    211 #undef	DEVNAME
    212 }
    213 #endif	/* NVME_DEBUG */
    214 
    215 static int
    216 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    217 {
    218 	u_int i = 0;
    219 	uint32_t cc;
    220 
    221 	cc = nvme_read4(sc, NVME_CC);
    222 	if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
    223 		aprint_error_dev(sc->sc_dev,
    224 		    "controller enabled status expected %d, found to be %d\n",
    225 		    (rdy != 0), ((cc & NVME_CC_EN) != 0));
    226 		return ENXIO;
    227 	}
    228 
    229 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    230 		if (i++ > sc->sc_rdy_to)
    231 			return ENXIO;
    232 
    233 		delay(1000);
    234 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 static int
    241 nvme_enable(struct nvme_softc *sc, u_int mps)
    242 {
    243 	uint32_t cc, csts;
    244 
    245 	cc = nvme_read4(sc, NVME_CC);
    246 	csts = nvme_read4(sc, NVME_CSTS);
    247 
    248 	if (ISSET(cc, NVME_CC_EN)) {
    249 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
    250 
    251 		if (ISSET(csts, NVME_CSTS_RDY))
    252 			return 1;
    253 
    254 		goto waitready;
    255 	}
    256 
    257 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    258 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    259 	delay(5000);
    260 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    261 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    262 	delay(5000);
    263 
    264 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    265 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    266 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    267 	delay(5000);
    268 
    269 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    270 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    271 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    272 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    273 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    274 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    275 	SET(cc, NVME_CC_MPS(mps));
    276 	SET(cc, NVME_CC_EN);
    277 
    278 	nvme_write4(sc, NVME_CC, cc);
    279 	nvme_barrier(sc, 0, sc->sc_ios,
    280 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    281 	delay(5000);
    282 
    283     waitready:
    284 	return nvme_ready(sc, NVME_CSTS_RDY);
    285 }
    286 
    287 static int
    288 nvme_disable(struct nvme_softc *sc)
    289 {
    290 	uint32_t cc, csts;
    291 
    292 	cc = nvme_read4(sc, NVME_CC);
    293 	csts = nvme_read4(sc, NVME_CSTS);
    294 
    295 	if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
    296 		nvme_ready(sc, NVME_CSTS_RDY);
    297 
    298 	CLR(cc, NVME_CC_EN);
    299 
    300 	nvme_write4(sc, NVME_CC, cc);
    301 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    302 
    303 	delay(5000);
    304 
    305 	return nvme_ready(sc, 0);
    306 }
    307 
    308 int
    309 nvme_attach(struct nvme_softc *sc)
    310 {
    311 	uint64_t cap;
    312 	uint32_t reg;
    313 	u_int dstrd;
    314 	u_int mps = PAGE_SHIFT;
    315 	u_int ioq_allocated;
    316 	uint16_t adminq_entries = nvme_adminq_size;
    317 	uint16_t ioq_entries = nvme_ioq_size;
    318 	int i;
    319 
    320 	reg = nvme_read4(sc, NVME_VS);
    321 	if (reg == 0xffffffff) {
    322 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    323 		return 1;
    324 	}
    325 
    326 	if (NVME_VS_TER(reg) == 0)
    327 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    328 		    NVME_VS_MNR(reg));
    329 	else
    330 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    331 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    332 
    333 	cap = nvme_read8(sc, NVME_CAP);
    334 	dstrd = NVME_CAP_DSTRD(cap);
    335 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    336 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    337 		    "is greater than CPU page size %u\n",
    338 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    339 		return 1;
    340 	}
    341 	if (NVME_CAP_MPSMAX(cap) < mps)
    342 		mps = NVME_CAP_MPSMAX(cap);
    343 	if (ioq_entries > NVME_CAP_MQES(cap))
    344 		ioq_entries = NVME_CAP_MQES(cap);
    345 
    346 	/* set initial values to be used for admin queue during probe */
    347 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    348 	sc->sc_mps = 1 << mps;
    349 	sc->sc_mdts = MAXPHYS;
    350 	sc->sc_max_sgl = 2;
    351 
    352 	if (nvme_disable(sc) != 0) {
    353 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    354 		return 1;
    355 	}
    356 
    357 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    358 	if (sc->sc_admin_q == NULL) {
    359 		aprint_error_dev(sc->sc_dev,
    360 		    "unable to allocate admin queue\n");
    361 		return 1;
    362 	}
    363 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    364 		goto free_admin_q;
    365 
    366 	if (nvme_enable(sc, mps) != 0) {
    367 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    368 		goto disestablish_admin_q;
    369 	}
    370 
    371 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    372 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    373 		goto disable;
    374 	}
    375 
    376 	/* we know how big things are now */
    377 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    378 
    379 	/* reallocate ccbs of admin queue with new max sgl. */
    380 	nvme_ccbs_free(sc->sc_admin_q);
    381 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    382 
    383 	if (sc->sc_use_mq) {
    384 		/* Limit the number of queues to the number allocated in HW */
    385 		if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
    386 			aprint_error_dev(sc->sc_dev,
    387 			    "unable to get number of queues\n");
    388 			goto disable;
    389 		}
    390 		if (sc->sc_nq > ioq_allocated)
    391 			sc->sc_nq = ioq_allocated;
    392 	}
    393 
    394 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    395 	for (i = 0; i < sc->sc_nq; i++) {
    396 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    397 		if (sc->sc_q[i] == NULL) {
    398 			aprint_error_dev(sc->sc_dev,
    399 			    "unable to allocate io queue\n");
    400 			goto free_q;
    401 		}
    402 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    403 			aprint_error_dev(sc->sc_dev,
    404 			    "unable to create io queue\n");
    405 			nvme_q_free(sc, sc->sc_q[i]);
    406 			goto free_q;
    407 		}
    408 	}
    409 
    410 	if (!sc->sc_use_mq)
    411 		nvme_write4(sc, NVME_INTMC, 1);
    412 
    413 	/* probe subdevices */
    414 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    415 	    KM_SLEEP);
    416 	nvme_rescan(sc->sc_dev, "nvme", &i);
    417 
    418 	return 0;
    419 
    420 free_q:
    421 	while (--i >= 0) {
    422 		nvme_q_delete(sc, sc->sc_q[i]);
    423 		nvme_q_free(sc, sc->sc_q[i]);
    424 	}
    425 disable:
    426 	nvme_disable(sc);
    427 disestablish_admin_q:
    428 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    429 free_admin_q:
    430 	nvme_q_free(sc, sc->sc_admin_q);
    431 
    432 	return 1;
    433 }
    434 
    435 int
    436 nvme_rescan(device_t self, const char *attr, const int *flags)
    437 {
    438 	struct nvme_softc *sc = device_private(self);
    439 	struct nvme_attach_args naa;
    440 	uint64_t cap;
    441 	int ioq_entries = nvme_ioq_size;
    442 	int i;
    443 
    444 	cap = nvme_read8(sc, NVME_CAP);
    445 	if (ioq_entries > NVME_CAP_MQES(cap))
    446 		ioq_entries = NVME_CAP_MQES(cap);
    447 
    448 	for (i = 0; i < sc->sc_nn; i++) {
    449 		if (sc->sc_namespaces[i].dev)
    450 			continue;
    451 		memset(&naa, 0, sizeof(naa));
    452 		naa.naa_nsid = i + 1;
    453 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    454 		naa.naa_maxphys = sc->sc_mdts;
    455 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    456 		    nvme_print);
    457 	}
    458 	return 0;
    459 }
    460 
    461 static int
    462 nvme_print(void *aux, const char *pnp)
    463 {
    464 	struct nvme_attach_args *naa = aux;
    465 
    466 	if (pnp)
    467 		aprint_normal("at %s", pnp);
    468 
    469 	if (naa->naa_nsid > 0)
    470 		aprint_normal(" nsid %d", naa->naa_nsid);
    471 
    472 	return UNCONF;
    473 }
    474 
    475 int
    476 nvme_detach(struct nvme_softc *sc, int flags)
    477 {
    478 	int i, error;
    479 
    480 	error = config_detach_children(sc->sc_dev, flags);
    481 	if (error)
    482 		return error;
    483 
    484 	error = nvme_shutdown(sc);
    485 	if (error)
    486 		return error;
    487 
    488 	/* from now on we are committed to detach, following will never fail */
    489 	for (i = 0; i < sc->sc_nq; i++)
    490 		nvme_q_free(sc, sc->sc_q[i]);
    491 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    492 	nvme_q_free(sc, sc->sc_admin_q);
    493 
    494 	return 0;
    495 }
    496 
    497 static int
    498 nvme_shutdown(struct nvme_softc *sc)
    499 {
    500 	uint32_t cc, csts;
    501 	bool disabled = false;
    502 	int i;
    503 
    504 	if (!sc->sc_use_mq)
    505 		nvme_write4(sc, NVME_INTMS, 1);
    506 
    507 	for (i = 0; i < sc->sc_nq; i++) {
    508 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    509 			aprint_error_dev(sc->sc_dev,
    510 			    "unable to delete io queue %d, disabling\n", i + 1);
    511 			disabled = true;
    512 		}
    513 	}
    514 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    515 	if (disabled)
    516 		goto disable;
    517 
    518 	cc = nvme_read4(sc, NVME_CC);
    519 	CLR(cc, NVME_CC_SHN_MASK);
    520 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    521 	nvme_write4(sc, NVME_CC, cc);
    522 
    523 	for (i = 0; i < 4000; i++) {
    524 		nvme_barrier(sc, 0, sc->sc_ios,
    525 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    526 		csts = nvme_read4(sc, NVME_CSTS);
    527 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    528 			return 0;
    529 
    530 		delay(1000);
    531 	}
    532 
    533 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    534 
    535 disable:
    536 	nvme_disable(sc);
    537 	return 0;
    538 }
    539 
    540 void
    541 nvme_childdet(device_t self, device_t child)
    542 {
    543 	struct nvme_softc *sc = device_private(self);
    544 	int i;
    545 
    546 	for (i = 0; i < sc->sc_nn; i++) {
    547 		if (sc->sc_namespaces[i].dev == child) {
    548 			/* Already freed ns->ident. */
    549 			sc->sc_namespaces[i].dev = NULL;
    550 			break;
    551 		}
    552 	}
    553 }
    554 
    555 int
    556 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    557 {
    558 	struct nvme_sqe sqe;
    559 	struct nvm_identify_namespace *identify;
    560 	struct nvme_dmamem *mem;
    561 	struct nvme_ccb *ccb;
    562 	struct nvme_namespace *ns;
    563 	int rv;
    564 
    565 	KASSERT(nsid > 0);
    566 
    567 	ccb = nvme_ccb_get(sc->sc_admin_q);
    568 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    569 
    570 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    571 	if (mem == NULL)
    572 		return ENOMEM;
    573 
    574 	memset(&sqe, 0, sizeof(sqe));
    575 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    576 	htolem32(&sqe.nsid, nsid);
    577 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    578 	htolem32(&sqe.cdw10, 0);
    579 
    580 	ccb->ccb_done = nvme_empty_done;
    581 	ccb->ccb_cookie = &sqe;
    582 
    583 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    584 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    585 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    586 
    587 	nvme_ccb_put(sc->sc_admin_q, ccb);
    588 
    589 	if (rv != 0) {
    590 		rv = EIO;
    591 		goto done;
    592 	}
    593 
    594 	/* commit */
    595 
    596 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    597 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    598 	//memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    599 
    600 	ns = nvme_ns_get(sc, nsid);
    601 	KASSERT(ns);
    602 	ns->ident = identify;
    603 
    604 done:
    605 	nvme_dmamem_free(sc, mem);
    606 
    607 	return rv;
    608 }
    609 
    610 int
    611 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    612     struct buf *bp, void *data, size_t datasize,
    613     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    614 {
    615 	struct nvme_queue *q = nvme_get_q(sc);
    616 	struct nvme_ccb *ccb;
    617 	bus_dmamap_t dmap;
    618 	int i, error;
    619 
    620 	ccb = nvme_ccb_get(q);
    621 	if (ccb == NULL)
    622 		return EAGAIN;
    623 
    624 	ccb->ccb_done = nvme_ns_io_done;
    625 	ccb->ccb_cookie = cookie;
    626 
    627 	/* namespace context */
    628 	ccb->nnc_nsid = nsid;
    629 	ccb->nnc_flags = flags;
    630 	ccb->nnc_buf = bp;
    631 	ccb->nnc_datasize = datasize;
    632 	ccb->nnc_secsize = secsize;
    633 	ccb->nnc_blkno = blkno;
    634 	ccb->nnc_done = nnc_done;
    635 
    636 	dmap = ccb->ccb_dmamap;
    637 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    638 	    datasize, NULL,
    639 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    640 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    641 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    642 	      BUS_DMA_READ : BUS_DMA_WRITE));
    643 	if (error) {
    644 		nvme_ccb_put(q, ccb);
    645 		return error;
    646 	}
    647 
    648 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    649 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    650 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    651 
    652 	if (dmap->dm_nsegs > 2) {
    653 		for (i = 1; i < dmap->dm_nsegs; i++) {
    654 			htolem64(&ccb->ccb_prpl[i - 1],
    655 			    dmap->dm_segs[i].ds_addr);
    656 		}
    657 		bus_dmamap_sync(sc->sc_dmat,
    658 		    NVME_DMA_MAP(q->q_ccb_prpls),
    659 		    ccb->ccb_prpl_off,
    660 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    661 		    BUS_DMASYNC_PREWRITE);
    662 	}
    663 
    664 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    665 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    666 			return EIO;
    667 		return 0;
    668 	}
    669 
    670 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    671 	return 0;
    672 }
    673 
    674 static void
    675 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    676 {
    677 	struct nvme_sqe_io *sqe = slot;
    678 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    679 
    680 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    681 	    NVM_CMD_READ : NVM_CMD_WRITE;
    682 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    683 
    684 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    685 	switch (dmap->dm_nsegs) {
    686 	case 1:
    687 		break;
    688 	case 2:
    689 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    690 		break;
    691 	default:
    692 		/* the prp list is already set up and synced */
    693 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    694 		break;
    695 	}
    696 
    697 	htolem64(&sqe->slba, ccb->nnc_blkno);
    698 
    699 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    700 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    701 
    702 	/* guaranteed by upper layers, but check just in case */
    703 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    704 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    705 }
    706 
    707 static void
    708 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    709     struct nvme_cqe *cqe)
    710 {
    711 	struct nvme_softc *sc = q->q_sc;
    712 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    713 	void *nnc_cookie = ccb->ccb_cookie;
    714 	nvme_nnc_done nnc_done = ccb->nnc_done;
    715 	struct buf *bp = ccb->nnc_buf;
    716 
    717 	if (dmap->dm_nsegs > 2) {
    718 		bus_dmamap_sync(sc->sc_dmat,
    719 		    NVME_DMA_MAP(q->q_ccb_prpls),
    720 		    ccb->ccb_prpl_off,
    721 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    722 		    BUS_DMASYNC_POSTWRITE);
    723 	}
    724 
    725 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    726 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    727 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    728 
    729 	bus_dmamap_unload(sc->sc_dmat, dmap);
    730 	nvme_ccb_put(q, ccb);
    731 
    732 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    733 }
    734 
    735 /*
    736  * If there is no volatile write cache, it makes no sense to issue
    737  * flush commands or query for the status.
    738  */
    739 bool
    740 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    741 {
    742 	/* sc_identify is filled during attachment */
    743 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    744 }
    745 
    746 int
    747 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    748     int flags, nvme_nnc_done nnc_done)
    749 {
    750 	struct nvme_queue *q = nvme_get_q(sc);
    751 	struct nvme_ccb *ccb;
    752 
    753 	ccb = nvme_ccb_get(q);
    754 	if (ccb == NULL)
    755 		return EAGAIN;
    756 
    757 	ccb->ccb_done = nvme_ns_sync_done;
    758 	ccb->ccb_cookie = cookie;
    759 
    760 	/* namespace context */
    761 	ccb->nnc_nsid = nsid;
    762 	ccb->nnc_flags = flags;
    763 	ccb->nnc_done = nnc_done;
    764 
    765 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    766 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    767 			return EIO;
    768 		return 0;
    769 	}
    770 
    771 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    772 	return 0;
    773 }
    774 
    775 static void
    776 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    777 {
    778 	struct nvme_sqe *sqe = slot;
    779 
    780 	sqe->opcode = NVM_CMD_FLUSH;
    781 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    782 }
    783 
    784 static void
    785 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    786     struct nvme_cqe *cqe)
    787 {
    788 	void *cookie = ccb->ccb_cookie;
    789 	nvme_nnc_done nnc_done = ccb->nnc_done;
    790 
    791 	nvme_ccb_put(q, ccb);
    792 
    793 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    794 }
    795 
    796 /*
    797  * Get status of volatile write cache. Always asynchronous.
    798  */
    799 int
    800 nvme_admin_getcache(struct nvme_softc *sc, void *cookie, nvme_nnc_done nnc_done)
    801 {
    802 	struct nvme_ccb *ccb;
    803 	struct nvme_queue *q = sc->sc_admin_q;
    804 
    805 	ccb = nvme_ccb_get(q);
    806 	if (ccb == NULL)
    807 		return EAGAIN;
    808 
    809 	ccb->ccb_done = nvme_getcache_done;
    810 	ccb->ccb_cookie = cookie;
    811 
    812 	/* namespace context */
    813 	ccb->nnc_flags = 0;
    814 	ccb->nnc_done = nnc_done;
    815 
    816 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
    817 	return 0;
    818 }
    819 
    820 static void
    821 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    822 {
    823 	struct nvme_sqe *sqe = slot;
    824 
    825 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
    826 	sqe->cdw10 = NVM_FEATURE_VOLATILE_WRITE_CACHE;
    827 }
    828 
    829 static void
    830 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    831     struct nvme_cqe *cqe)
    832 {
    833 	void *cookie = ccb->ccb_cookie;
    834 	nvme_nnc_done nnc_done = ccb->nnc_done;
    835 
    836 	nvme_ccb_put(q, ccb);
    837 
    838 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    839 }
    840 
    841 void
    842 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    843 {
    844 	struct nvme_namespace *ns;
    845 	struct nvm_identify_namespace *identify;
    846 
    847 	ns = nvme_ns_get(sc, nsid);
    848 	KASSERT(ns);
    849 
    850 	identify = ns->ident;
    851 	ns->ident = NULL;
    852 	if (identify != NULL)
    853 		kmem_free(identify, sizeof(*identify));
    854 }
    855 
    856 static void
    857 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    858 {
    859 	struct nvme_softc *sc = q->q_sc;
    860 	struct nvme_sqe *sqe = slot;
    861 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    862 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    863 	int i;
    864 
    865 	sqe->opcode = pt->cmd.opcode;
    866 	htolem32(&sqe->nsid, pt->cmd.nsid);
    867 
    868 	if (pt->buf != NULL && pt->len > 0) {
    869 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    870 		switch (dmap->dm_nsegs) {
    871 		case 1:
    872 			break;
    873 		case 2:
    874 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    875 			break;
    876 		default:
    877 			for (i = 1; i < dmap->dm_nsegs; i++) {
    878 				htolem64(&ccb->ccb_prpl[i - 1],
    879 				    dmap->dm_segs[i].ds_addr);
    880 			}
    881 			bus_dmamap_sync(sc->sc_dmat,
    882 			    NVME_DMA_MAP(q->q_ccb_prpls),
    883 			    ccb->ccb_prpl_off,
    884 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    885 			    BUS_DMASYNC_PREWRITE);
    886 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    887 			break;
    888 		}
    889 	}
    890 
    891 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    892 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    893 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    894 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    895 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    896 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    897 }
    898 
    899 static void
    900 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    901 {
    902 	struct nvme_softc *sc = q->q_sc;
    903 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    904 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    905 
    906 	if (pt->buf != NULL && pt->len > 0) {
    907 		if (dmap->dm_nsegs > 2) {
    908 			bus_dmamap_sync(sc->sc_dmat,
    909 			    NVME_DMA_MAP(q->q_ccb_prpls),
    910 			    ccb->ccb_prpl_off,
    911 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    912 			    BUS_DMASYNC_POSTWRITE);
    913 		}
    914 
    915 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    916 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    917 		bus_dmamap_unload(sc->sc_dmat, dmap);
    918 	}
    919 
    920 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
    921 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
    922 }
    923 
    924 static int
    925 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    926     uint16_t nsid, struct lwp *l, bool is_adminq)
    927 {
    928 	struct nvme_queue *q;
    929 	struct nvme_ccb *ccb;
    930 	void *buf = NULL;
    931 	int error;
    932 
    933 	/* limit command size to maximum data transfer size */
    934 	if ((pt->buf == NULL && pt->len > 0) ||
    935 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
    936 		return EINVAL;
    937 
    938 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    939 	ccb = nvme_ccb_get(q);
    940 	if (ccb == NULL)
    941 		return EBUSY;
    942 
    943 	if (pt->buf != NULL) {
    944 		KASSERT(pt->len > 0);
    945 		buf = kmem_alloc(pt->len, KM_SLEEP);
    946 		if (!pt->is_read) {
    947 			error = copyin(pt->buf, buf, pt->len);
    948 			if (error)
    949 				goto kmem_free;
    950 		}
    951 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    952 		    pt->len, NULL,
    953 		    BUS_DMA_WAITOK |
    954 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    955 		if (error)
    956 			goto kmem_free;
    957 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    958 		    0, ccb->ccb_dmamap->dm_mapsize,
    959 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    960 	}
    961 
    962 	ccb->ccb_done = nvme_pt_done;
    963 	ccb->ccb_cookie = pt;
    964 
    965 	pt->cmd.nsid = nsid;
    966 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
    967 		error = EIO;
    968 		goto out;
    969 	}
    970 
    971 	error = 0;
    972 out:
    973 	if (buf != NULL) {
    974 		if (error == 0 && pt->is_read)
    975 			error = copyout(buf, pt->buf, pt->len);
    976 kmem_free:
    977 		kmem_free(buf, pt->len);
    978 	}
    979 	nvme_ccb_put(q, ccb);
    980 	return error;
    981 }
    982 
    983 static void
    984 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    985     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    986 {
    987 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    988 	uint32_t tail;
    989 
    990 	mutex_enter(&q->q_sq_mtx);
    991 	tail = q->q_sq_tail;
    992 	if (++q->q_sq_tail >= q->q_entries)
    993 		q->q_sq_tail = 0;
    994 
    995 	sqe += tail;
    996 
    997 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    998 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
    999 	memset(sqe, 0, sizeof(*sqe));
   1000 	(*fill)(q, ccb, sqe);
   1001 	sqe->cid = ccb->ccb_id;
   1002 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1003 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1004 
   1005 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
   1006 	mutex_exit(&q->q_sq_mtx);
   1007 }
   1008 
   1009 struct nvme_poll_state {
   1010 	struct nvme_sqe s;
   1011 	struct nvme_cqe c;
   1012 };
   1013 
   1014 static int
   1015 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1016     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1017 {
   1018 	struct nvme_poll_state state;
   1019 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1020 	void *cookie;
   1021 	uint16_t flags;
   1022 	int step = 10;
   1023 	int maxloop = timo_sec * 1000000 / step;
   1024 	int error = 0;
   1025 
   1026 	memset(&state, 0, sizeof(state));
   1027 	(*fill)(q, ccb, &state.s);
   1028 
   1029 	done = ccb->ccb_done;
   1030 	cookie = ccb->ccb_cookie;
   1031 
   1032 	ccb->ccb_done = nvme_poll_done;
   1033 	ccb->ccb_cookie = &state;
   1034 
   1035 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1036 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1037 		if (nvme_q_complete(sc, q) == 0)
   1038 			delay(step);
   1039 
   1040 		if (timo_sec >= 0 && --maxloop <= 0) {
   1041 			error = ETIMEDOUT;
   1042 			break;
   1043 		}
   1044 	}
   1045 
   1046 	ccb->ccb_cookie = cookie;
   1047 	done(q, ccb, &state.c);
   1048 
   1049 	if (error == 0) {
   1050 		flags = lemtoh16(&state.c.flags);
   1051 		return flags & ~NVME_CQE_PHASE;
   1052 	} else {
   1053 		return 1;
   1054 	}
   1055 }
   1056 
   1057 static void
   1058 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1059 {
   1060 	struct nvme_sqe *sqe = slot;
   1061 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1062 
   1063 	*sqe = state->s;
   1064 }
   1065 
   1066 static void
   1067 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1068     struct nvme_cqe *cqe)
   1069 {
   1070 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1071 
   1072 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
   1073 	state->c = *cqe;
   1074 }
   1075 
   1076 static void
   1077 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1078 {
   1079 	struct nvme_sqe *src = ccb->ccb_cookie;
   1080 	struct nvme_sqe *dst = slot;
   1081 
   1082 	*dst = *src;
   1083 }
   1084 
   1085 static void
   1086 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1087     struct nvme_cqe *cqe)
   1088 {
   1089 }
   1090 
   1091 static int
   1092 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1093 {
   1094 	struct nvme_ccb *ccb;
   1095 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1096 	uint16_t flags;
   1097 	int rv = 0;
   1098 
   1099 	mutex_enter(&q->q_cq_mtx);
   1100 
   1101 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1102 	for (;;) {
   1103 		cqe = &ring[q->q_cq_head];
   1104 		flags = lemtoh16(&cqe->flags);
   1105 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1106 			break;
   1107 
   1108 		ccb = &q->q_ccbs[cqe->cid];
   1109 
   1110 		if (++q->q_cq_head >= q->q_entries) {
   1111 			q->q_cq_head = 0;
   1112 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1113 		}
   1114 
   1115 #ifdef DEBUG
   1116 		/*
   1117 		 * If we get spurious completion notification, something
   1118 		 * is seriously hosed up. Very likely DMA to some random
   1119 		 * memory place happened, so just bail out.
   1120 		 */
   1121 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1122 			panic("%s: invalid ccb detected",
   1123 			    device_xname(sc->sc_dev));
   1124 			/* NOTREACHED */
   1125 		}
   1126 #endif
   1127 
   1128 		rv++;
   1129 
   1130 		/*
   1131 		 * Unlock the mutex before calling the ccb_done callback
   1132 		 * and re-lock afterwards. The callback triggers lddone()
   1133 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1134 		 * Unlock/relock avoids possibility of deadlock.
   1135 		 */
   1136 		mutex_exit(&q->q_cq_mtx);
   1137 		ccb->ccb_done(q, ccb, cqe);
   1138 		mutex_enter(&q->q_cq_mtx);
   1139 	}
   1140 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1141 
   1142 	if (rv)
   1143 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1144 
   1145 	mutex_exit(&q->q_cq_mtx);
   1146 
   1147 	if (rv) {
   1148 		mutex_enter(&q->q_ccb_mtx);
   1149 		q->q_nccbs_avail += rv;
   1150 		mutex_exit(&q->q_ccb_mtx);
   1151 	}
   1152 
   1153 	return rv;
   1154 }
   1155 
   1156 static int
   1157 nvme_identify(struct nvme_softc *sc, u_int mps)
   1158 {
   1159 	char sn[41], mn[81], fr[17];
   1160 	struct nvm_identify_controller *identify;
   1161 	struct nvme_dmamem *mem;
   1162 	struct nvme_ccb *ccb;
   1163 	u_int mdts;
   1164 	int rv = 1;
   1165 
   1166 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1167 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1168 
   1169 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1170 	if (mem == NULL)
   1171 		return 1;
   1172 
   1173 	ccb->ccb_done = nvme_empty_done;
   1174 	ccb->ccb_cookie = mem;
   1175 
   1176 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1177 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1178 	    NVME_TIMO_IDENT);
   1179 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1180 
   1181 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1182 
   1183 	if (rv != 0)
   1184 		goto done;
   1185 
   1186 	identify = NVME_DMA_KVA(mem);
   1187 
   1188 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1189 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1190 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1191 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1192 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1193 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1194 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1195 	    sn);
   1196 
   1197 	if (identify->mdts > 0) {
   1198 		mdts = (1 << identify->mdts) * (1 << mps);
   1199 		if (mdts < sc->sc_mdts)
   1200 			sc->sc_mdts = mdts;
   1201 	}
   1202 
   1203 	sc->sc_nn = lemtoh32(&identify->nn);
   1204 
   1205 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1206 
   1207 done:
   1208 	nvme_dmamem_free(sc, mem);
   1209 
   1210 	return rv;
   1211 }
   1212 
   1213 static int
   1214 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1215 {
   1216 	struct nvme_sqe_q sqe;
   1217 	struct nvme_ccb *ccb;
   1218 	int rv;
   1219 
   1220 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1221 		return 1;
   1222 
   1223 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1224 	KASSERT(ccb != NULL);
   1225 
   1226 	ccb->ccb_done = nvme_empty_done;
   1227 	ccb->ccb_cookie = &sqe;
   1228 
   1229 	memset(&sqe, 0, sizeof(sqe));
   1230 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1231 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1232 	htolem16(&sqe.qsize, q->q_entries - 1);
   1233 	htolem16(&sqe.qid, q->q_id);
   1234 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1235 	if (sc->sc_use_mq)
   1236 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1237 
   1238 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1239 	if (rv != 0)
   1240 		goto fail;
   1241 
   1242 	ccb->ccb_done = nvme_empty_done;
   1243 	ccb->ccb_cookie = &sqe;
   1244 
   1245 	memset(&sqe, 0, sizeof(sqe));
   1246 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1247 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1248 	htolem16(&sqe.qsize, q->q_entries - 1);
   1249 	htolem16(&sqe.qid, q->q_id);
   1250 	htolem16(&sqe.cqid, q->q_id);
   1251 	sqe.qflags = NVM_SQE_Q_PC;
   1252 
   1253 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1254 	if (rv != 0)
   1255 		goto fail;
   1256 
   1257 fail:
   1258 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1259 	return rv;
   1260 }
   1261 
   1262 static int
   1263 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1264 {
   1265 	struct nvme_sqe_q sqe;
   1266 	struct nvme_ccb *ccb;
   1267 	int rv;
   1268 
   1269 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1270 	KASSERT(ccb != NULL);
   1271 
   1272 	ccb->ccb_done = nvme_empty_done;
   1273 	ccb->ccb_cookie = &sqe;
   1274 
   1275 	memset(&sqe, 0, sizeof(sqe));
   1276 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1277 	htolem16(&sqe.qid, q->q_id);
   1278 
   1279 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1280 	if (rv != 0)
   1281 		goto fail;
   1282 
   1283 	ccb->ccb_done = nvme_empty_done;
   1284 	ccb->ccb_cookie = &sqe;
   1285 
   1286 	memset(&sqe, 0, sizeof(sqe));
   1287 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1288 	htolem16(&sqe.qid, q->q_id);
   1289 
   1290 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1291 	if (rv != 0)
   1292 		goto fail;
   1293 
   1294 fail:
   1295 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1296 
   1297 	if (rv == 0 && sc->sc_use_mq) {
   1298 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1299 			rv = 1;
   1300 	}
   1301 
   1302 	return rv;
   1303 }
   1304 
   1305 static void
   1306 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1307 {
   1308 	struct nvme_sqe *sqe = slot;
   1309 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1310 
   1311 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1312 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1313 	htolem32(&sqe->cdw10, 1);
   1314 }
   1315 
   1316 static int
   1317 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
   1318 {
   1319 	struct nvme_pt_command pt;
   1320 	struct nvme_ccb *ccb;
   1321 	uint16_t ncqa, nsqa;
   1322 	int rv;
   1323 
   1324 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1325 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1326 
   1327 	memset(&pt, 0, sizeof(pt));
   1328 	pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
   1329 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
   1330 
   1331 	ccb->ccb_done = nvme_pt_done;
   1332 	ccb->ccb_cookie = &pt;
   1333 
   1334 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1335 
   1336 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1337 
   1338 	if (rv != 0) {
   1339 		*nqap = 0;
   1340 		return EIO;
   1341 	}
   1342 
   1343 	ncqa = pt.cpl.cdw0 >> 16;
   1344 	nsqa = pt.cpl.cdw0 & 0xffff;
   1345 	*nqap = MIN(ncqa, nsqa) + 1;
   1346 
   1347 	return 0;
   1348 }
   1349 
   1350 static int
   1351 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1352 {
   1353 	struct nvme_softc *sc = q->q_sc;
   1354 	struct nvme_ccb *ccb;
   1355 	bus_addr_t off;
   1356 	uint64_t *prpl;
   1357 	u_int i;
   1358 
   1359 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1360 	SIMPLEQ_INIT(&q->q_ccb_list);
   1361 
   1362 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1363 
   1364 	q->q_nccbs = nccbs;
   1365 	q->q_nccbs_avail = nccbs;
   1366 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1367 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1368 
   1369 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1370 	off = 0;
   1371 
   1372 	for (i = 0; i < nccbs; i++) {
   1373 		ccb = &q->q_ccbs[i];
   1374 
   1375 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1376 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1377 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1378 		    &ccb->ccb_dmamap) != 0)
   1379 			goto free_maps;
   1380 
   1381 		ccb->ccb_id = i;
   1382 		ccb->ccb_prpl = prpl;
   1383 		ccb->ccb_prpl_off = off;
   1384 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1385 
   1386 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1387 
   1388 		prpl += sc->sc_max_sgl;
   1389 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1390 	}
   1391 
   1392 	return 0;
   1393 
   1394 free_maps:
   1395 	nvme_ccbs_free(q);
   1396 	return 1;
   1397 }
   1398 
   1399 static struct nvme_ccb *
   1400 nvme_ccb_get(struct nvme_queue *q)
   1401 {
   1402 	struct nvme_ccb *ccb = NULL;
   1403 
   1404 	mutex_enter(&q->q_ccb_mtx);
   1405 	if (q->q_nccbs_avail > 0) {
   1406 		ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1407 		KASSERT(ccb != NULL);
   1408 		q->q_nccbs_avail--;
   1409 
   1410 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1411 #ifdef DEBUG
   1412 		ccb->ccb_cookie = NULL;
   1413 #endif
   1414 	}
   1415 	mutex_exit(&q->q_ccb_mtx);
   1416 
   1417 	return ccb;
   1418 }
   1419 
   1420 static void
   1421 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1422 {
   1423 
   1424 	mutex_enter(&q->q_ccb_mtx);
   1425 #ifdef DEBUG
   1426 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1427 #endif
   1428 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1429 	mutex_exit(&q->q_ccb_mtx);
   1430 }
   1431 
   1432 static void
   1433 nvme_ccbs_free(struct nvme_queue *q)
   1434 {
   1435 	struct nvme_softc *sc = q->q_sc;
   1436 	struct nvme_ccb *ccb;
   1437 
   1438 	mutex_enter(&q->q_ccb_mtx);
   1439 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1440 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1441 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1442 	}
   1443 	mutex_exit(&q->q_ccb_mtx);
   1444 
   1445 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1446 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1447 	q->q_ccbs = NULL;
   1448 	mutex_destroy(&q->q_ccb_mtx);
   1449 }
   1450 
   1451 static struct nvme_queue *
   1452 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1453 {
   1454 	struct nvme_queue *q;
   1455 
   1456 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1457 	q->q_sc = sc;
   1458 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1459 	    sizeof(struct nvme_sqe) * entries);
   1460 	if (q->q_sq_dmamem == NULL)
   1461 		goto free;
   1462 
   1463 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1464 	    sizeof(struct nvme_cqe) * entries);
   1465 	if (q->q_cq_dmamem == NULL)
   1466 		goto free_sq;
   1467 
   1468 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1469 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1470 
   1471 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1472 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1473 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1474 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1475 	q->q_id = id;
   1476 	q->q_entries = entries;
   1477 	q->q_sq_tail = 0;
   1478 	q->q_cq_head = 0;
   1479 	q->q_cq_phase = NVME_CQE_PHASE;
   1480 
   1481 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1482 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1483 
   1484 	/*
   1485 	 * Due to definition of full and empty queue (queue is empty
   1486 	 * when head == tail, full when tail is one less then head),
   1487 	 * we can actually only have (entries - 1) in-flight commands.
   1488 	 */
   1489 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1490 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1491 		goto free_cq;
   1492 	}
   1493 
   1494 	return q;
   1495 
   1496 free_cq:
   1497 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1498 free_sq:
   1499 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1500 free:
   1501 	kmem_free(q, sizeof(*q));
   1502 
   1503 	return NULL;
   1504 }
   1505 
   1506 static void
   1507 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1508 {
   1509 	nvme_ccbs_free(q);
   1510 	mutex_destroy(&q->q_sq_mtx);
   1511 	mutex_destroy(&q->q_cq_mtx);
   1512 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1513 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1514 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1515 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1516 	kmem_free(q, sizeof(*q));
   1517 }
   1518 
   1519 int
   1520 nvme_intr(void *xsc)
   1521 {
   1522 	struct nvme_softc *sc = xsc;
   1523 
   1524 	/*
   1525 	 * INTx is level triggered, controller deasserts the interrupt only
   1526 	 * when we advance command queue head via write to the doorbell.
   1527 	 * Tell the controller to block the interrupts while we process
   1528 	 * the queue(s).
   1529 	 */
   1530 	nvme_write4(sc, NVME_INTMS, 1);
   1531 
   1532 	softint_schedule(sc->sc_softih[0]);
   1533 
   1534 	/* don't know, might not have been for us */
   1535 	return 1;
   1536 }
   1537 
   1538 void
   1539 nvme_softintr_intx(void *xq)
   1540 {
   1541 	struct nvme_queue *q = xq;
   1542 	struct nvme_softc *sc = q->q_sc;
   1543 
   1544 	nvme_q_complete(sc, sc->sc_admin_q);
   1545 	if (sc->sc_q != NULL)
   1546 	        nvme_q_complete(sc, sc->sc_q[0]);
   1547 
   1548 	/*
   1549 	 * Processing done, tell controller to issue interrupts again. There
   1550 	 * is no race, as NVMe spec requires the controller to maintain state,
   1551 	 * and assert the interrupt whenever there are unacknowledged
   1552 	 * completion queue entries.
   1553 	 */
   1554 	nvme_write4(sc, NVME_INTMC, 1);
   1555 }
   1556 
   1557 int
   1558 nvme_intr_msi(void *xq)
   1559 {
   1560 	struct nvme_queue *q = xq;
   1561 
   1562 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1563 	    && q->q_sc->sc_softih[q->q_id]);
   1564 
   1565 	/*
   1566 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1567 	 * without masking the interrupt.
   1568 	 */
   1569 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1570 
   1571 	return 1;
   1572 }
   1573 
   1574 void
   1575 nvme_softintr_msi(void *xq)
   1576 {
   1577 	struct nvme_queue *q = xq;
   1578 	struct nvme_softc *sc = q->q_sc;
   1579 
   1580 	nvme_q_complete(sc, q);
   1581 }
   1582 
   1583 static struct nvme_dmamem *
   1584 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1585 {
   1586 	struct nvme_dmamem *ndm;
   1587 	int nsegs;
   1588 
   1589 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1590 	if (ndm == NULL)
   1591 		return NULL;
   1592 
   1593 	ndm->ndm_size = size;
   1594 
   1595 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1596 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1597 		goto ndmfree;
   1598 
   1599 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1600 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1601 		goto destroy;
   1602 
   1603 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1604 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1605 		goto free;
   1606 	memset(ndm->ndm_kva, 0, size);
   1607 
   1608 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1609 	    NULL, BUS_DMA_WAITOK) != 0)
   1610 		goto unmap;
   1611 
   1612 	return ndm;
   1613 
   1614 unmap:
   1615 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1616 free:
   1617 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1618 destroy:
   1619 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1620 ndmfree:
   1621 	kmem_free(ndm, sizeof(*ndm));
   1622 	return NULL;
   1623 }
   1624 
   1625 static void
   1626 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1627 {
   1628 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1629 	    0, NVME_DMA_LEN(mem), ops);
   1630 }
   1631 
   1632 void
   1633 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1634 {
   1635 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1636 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1637 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1638 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1639 	kmem_free(ndm, sizeof(*ndm));
   1640 }
   1641 
   1642 /*
   1643  * ioctl
   1644  */
   1645 
   1646 dev_type_open(nvmeopen);
   1647 dev_type_close(nvmeclose);
   1648 dev_type_ioctl(nvmeioctl);
   1649 
   1650 const struct cdevsw nvme_cdevsw = {
   1651 	.d_open = nvmeopen,
   1652 	.d_close = nvmeclose,
   1653 	.d_read = noread,
   1654 	.d_write = nowrite,
   1655 	.d_ioctl = nvmeioctl,
   1656 	.d_stop = nostop,
   1657 	.d_tty = notty,
   1658 	.d_poll = nopoll,
   1659 	.d_mmap = nommap,
   1660 	.d_kqfilter = nokqfilter,
   1661 	.d_discard = nodiscard,
   1662 	.d_flag = D_OTHER,
   1663 };
   1664 
   1665 extern struct cfdriver nvme_cd;
   1666 
   1667 /*
   1668  * Accept an open operation on the control device.
   1669  */
   1670 int
   1671 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1672 {
   1673 	struct nvme_softc *sc;
   1674 	int unit = minor(dev) / 0x10000;
   1675 	int nsid = minor(dev) & 0xffff;
   1676 	int nsidx;
   1677 
   1678 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1679 		return ENXIO;
   1680 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1681 		return ENXIO;
   1682 
   1683 	if (nsid == 0) {
   1684 		/* controller */
   1685 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1686 			return EBUSY;
   1687 		SET(sc->sc_flags, NVME_F_OPEN);
   1688 	} else {
   1689 		/* namespace */
   1690 		nsidx = nsid - 1;
   1691 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1692 			return ENXIO;
   1693 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1694 			return EBUSY;
   1695 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1696 	}
   1697 	return 0;
   1698 }
   1699 
   1700 /*
   1701  * Accept the last close on the control device.
   1702  */
   1703 int
   1704 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1705 {
   1706 	struct nvme_softc *sc;
   1707 	int unit = minor(dev) / 0x10000;
   1708 	int nsid = minor(dev) & 0xffff;
   1709 	int nsidx;
   1710 
   1711 	sc = device_lookup_private(&nvme_cd, unit);
   1712 	if (sc == NULL)
   1713 		return ENXIO;
   1714 
   1715 	if (nsid == 0) {
   1716 		/* controller */
   1717 		CLR(sc->sc_flags, NVME_F_OPEN);
   1718 	} else {
   1719 		/* namespace */
   1720 		nsidx = nsid - 1;
   1721 		if (nsidx >= sc->sc_nn)
   1722 			return ENXIO;
   1723 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1724 	}
   1725 
   1726 	return 0;
   1727 }
   1728 
   1729 /*
   1730  * Handle control operations.
   1731  */
   1732 int
   1733 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1734 {
   1735 	struct nvme_softc *sc;
   1736 	int unit = minor(dev) / 0x10000;
   1737 	int nsid = minor(dev) & 0xffff;
   1738 	struct nvme_pt_command *pt;
   1739 
   1740 	sc = device_lookup_private(&nvme_cd, unit);
   1741 	if (sc == NULL)
   1742 		return ENXIO;
   1743 
   1744 	switch (cmd) {
   1745 	case NVME_PASSTHROUGH_CMD:
   1746 		pt = data;
   1747 		return nvme_command_passthrough(sc, data,
   1748 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1749 	}
   1750 
   1751 	return ENOTTY;
   1752 }
   1753