nvme.c revision 1.34 1 /* $NetBSD: nvme.c,v 1.34 2018/03/16 23:31:19 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.34 2018/03/16 23:31:19 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 int nvme_adminq_size = 32;
46 int nvme_ioq_size = 1024;
47
48 static int nvme_print(void *, const char *);
49
50 static int nvme_ready(struct nvme_softc *, uint32_t);
51 static int nvme_enable(struct nvme_softc *, u_int);
52 static int nvme_disable(struct nvme_softc *);
53 static int nvme_shutdown(struct nvme_softc *);
54
55 #ifdef NVME_DEBUG
56 static void nvme_dumpregs(struct nvme_softc *);
57 #endif
58 static int nvme_identify(struct nvme_softc *, u_int);
59 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
60 void *);
61
62 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
63 static void nvme_ccbs_free(struct nvme_queue *);
64
65 static struct nvme_ccb *
66 nvme_ccb_get(struct nvme_queue *, bool);
67 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
68
69 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
70 struct nvme_ccb *, void (*)(struct nvme_queue *,
71 struct nvme_ccb *, void *), int);
72 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
73 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
74 struct nvme_cqe *);
75 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
76 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
77 struct nvme_cqe *);
78
79 static struct nvme_queue *
80 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
81 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
82 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
83 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
84 struct nvme_ccb *, void (*)(struct nvme_queue *,
85 struct nvme_ccb *, void *));
86 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
87 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
88 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
89 bool (*)(void *), void *);
90
91 static struct nvme_dmamem *
92 nvme_dmamem_alloc(struct nvme_softc *, size_t);
93 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
94 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
95 int);
96
97 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
98 void *);
99 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
100 struct nvme_cqe *);
101 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
102 void *);
103 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
106 void *);
107 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
108 struct nvme_cqe *);
109
110 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
111 void *);
112 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
113 struct nvme_cqe *);
114 static int nvme_command_passthrough(struct nvme_softc *,
115 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
116
117 static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
118
119 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
120 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
121 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
122 #define NVME_TIMO_SY 60 /* sync cache timeout */
123
124 #define nvme_read4(_s, _r) \
125 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
126 #define nvme_write4(_s, _r, _v) \
127 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
128 /*
129 * Some controllers, at least Apple NVMe, always require split
130 * transfers, so don't use bus_space_{read,write}_8() on LP64.
131 */
132 static inline uint64_t
133 nvme_read8(struct nvme_softc *sc, bus_size_t r)
134 {
135 uint64_t v;
136 uint32_t *a = (uint32_t *)&v;
137
138 #if _BYTE_ORDER == _LITTLE_ENDIAN
139 a[0] = nvme_read4(sc, r);
140 a[1] = nvme_read4(sc, r + 4);
141 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
142 a[1] = nvme_read4(sc, r);
143 a[0] = nvme_read4(sc, r + 4);
144 #endif
145
146 return v;
147 }
148
149 static inline void
150 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
151 {
152 uint32_t *a = (uint32_t *)&v;
153
154 #if _BYTE_ORDER == _LITTLE_ENDIAN
155 nvme_write4(sc, r, a[0]);
156 nvme_write4(sc, r + 4, a[1]);
157 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
158 nvme_write4(sc, r, a[1]);
159 nvme_write4(sc, r + 4, a[0]);
160 #endif
161 }
162 #define nvme_barrier(_s, _r, _l, _f) \
163 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
164
165 #ifdef NVME_DEBUG
166 static __used void
167 nvme_dumpregs(struct nvme_softc *sc)
168 {
169 uint64_t r8;
170 uint32_t r4;
171
172 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
173 r8 = nvme_read8(sc, NVME_CAP);
174 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
175 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
176 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
177 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
178 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
179 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
180 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
181 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
182 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
183 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
184 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
185 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
186
187 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
188
189 r4 = nvme_read4(sc, NVME_CC);
190 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
191 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
192 (1 << NVME_CC_IOCQES_R(r4)));
193 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
194 (1 << NVME_CC_IOSQES_R(r4)));
195 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
196 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
197 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
198 (1 << NVME_CC_MPS_R(r4)));
199 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
200 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
201
202 r4 = nvme_read4(sc, NVME_CSTS);
203 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
204 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
205 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
206 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
207
208 r4 = nvme_read4(sc, NVME_AQA);
209 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
210 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
211 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
212
213 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
214 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
215 #undef DEVNAME
216 }
217 #endif /* NVME_DEBUG */
218
219 static int
220 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
221 {
222 u_int i = 0;
223 uint32_t cc;
224
225 cc = nvme_read4(sc, NVME_CC);
226 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
227 aprint_error_dev(sc->sc_dev,
228 "controller enabled status expected %d, found to be %d\n",
229 (rdy != 0), ((cc & NVME_CC_EN) != 0));
230 return ENXIO;
231 }
232
233 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
234 if (i++ > sc->sc_rdy_to)
235 return ENXIO;
236
237 delay(1000);
238 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
239 }
240
241 return 0;
242 }
243
244 static int
245 nvme_enable(struct nvme_softc *sc, u_int mps)
246 {
247 uint32_t cc, csts;
248
249 cc = nvme_read4(sc, NVME_CC);
250 csts = nvme_read4(sc, NVME_CSTS);
251
252 if (ISSET(cc, NVME_CC_EN)) {
253 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
254
255 if (ISSET(csts, NVME_CSTS_RDY))
256 return 1;
257
258 goto waitready;
259 }
260
261 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
262 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
263 delay(5000);
264 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267
268 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
269 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
270 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
271 delay(5000);
272
273 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
274 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
275 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
276 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
277 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
278 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
279 SET(cc, NVME_CC_MPS(mps));
280 SET(cc, NVME_CC_EN);
281
282 nvme_write4(sc, NVME_CC, cc);
283 nvme_barrier(sc, 0, sc->sc_ios,
284 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
285 delay(5000);
286
287 waitready:
288 return nvme_ready(sc, NVME_CSTS_RDY);
289 }
290
291 static int
292 nvme_disable(struct nvme_softc *sc)
293 {
294 uint32_t cc, csts;
295
296 cc = nvme_read4(sc, NVME_CC);
297 csts = nvme_read4(sc, NVME_CSTS);
298
299 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
300 nvme_ready(sc, NVME_CSTS_RDY);
301
302 CLR(cc, NVME_CC_EN);
303
304 nvme_write4(sc, NVME_CC, cc);
305 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
306
307 delay(5000);
308
309 return nvme_ready(sc, 0);
310 }
311
312 int
313 nvme_attach(struct nvme_softc *sc)
314 {
315 uint64_t cap;
316 uint32_t reg;
317 u_int dstrd;
318 u_int mps = PAGE_SHIFT;
319 u_int ioq_allocated;
320 uint16_t adminq_entries = nvme_adminq_size;
321 uint16_t ioq_entries = nvme_ioq_size;
322 int i;
323
324 reg = nvme_read4(sc, NVME_VS);
325 if (reg == 0xffffffff) {
326 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
327 return 1;
328 }
329
330 if (NVME_VS_TER(reg) == 0)
331 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
332 NVME_VS_MNR(reg));
333 else
334 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
335 NVME_VS_MNR(reg), NVME_VS_TER(reg));
336
337 cap = nvme_read8(sc, NVME_CAP);
338 dstrd = NVME_CAP_DSTRD(cap);
339 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
340 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
341 "is greater than CPU page size %u\n",
342 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
343 return 1;
344 }
345 if (NVME_CAP_MPSMAX(cap) < mps)
346 mps = NVME_CAP_MPSMAX(cap);
347 if (ioq_entries > NVME_CAP_MQES(cap))
348 ioq_entries = NVME_CAP_MQES(cap);
349
350 /* set initial values to be used for admin queue during probe */
351 sc->sc_rdy_to = NVME_CAP_TO(cap);
352 sc->sc_mps = 1 << mps;
353 sc->sc_mdts = MAXPHYS;
354 sc->sc_max_sgl = 2;
355
356 if (nvme_disable(sc) != 0) {
357 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
358 return 1;
359 }
360
361 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
362 if (sc->sc_admin_q == NULL) {
363 aprint_error_dev(sc->sc_dev,
364 "unable to allocate admin queue\n");
365 return 1;
366 }
367 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
368 goto free_admin_q;
369
370 if (nvme_enable(sc, mps) != 0) {
371 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
372 goto disestablish_admin_q;
373 }
374
375 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
376 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
377 goto disable;
378 }
379
380 /* we know how big things are now */
381 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
382
383 /* reallocate ccbs of admin queue with new max sgl. */
384 nvme_ccbs_free(sc->sc_admin_q);
385 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
386
387 if (sc->sc_use_mq) {
388 /* Limit the number of queues to the number allocated in HW */
389 if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
390 aprint_error_dev(sc->sc_dev,
391 "unable to get number of queues\n");
392 goto disable;
393 }
394 if (sc->sc_nq > ioq_allocated)
395 sc->sc_nq = ioq_allocated;
396 }
397
398 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
399 for (i = 0; i < sc->sc_nq; i++) {
400 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
401 if (sc->sc_q[i] == NULL) {
402 aprint_error_dev(sc->sc_dev,
403 "unable to allocate io queue\n");
404 goto free_q;
405 }
406 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to create io queue\n");
409 nvme_q_free(sc, sc->sc_q[i]);
410 goto free_q;
411 }
412 }
413
414 if (!sc->sc_use_mq)
415 nvme_write4(sc, NVME_INTMC, 1);
416
417 /* probe subdevices */
418 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
419 KM_SLEEP);
420 nvme_rescan(sc->sc_dev, "nvme", &i);
421
422 return 0;
423
424 free_q:
425 while (--i >= 0) {
426 nvme_q_delete(sc, sc->sc_q[i]);
427 nvme_q_free(sc, sc->sc_q[i]);
428 }
429 disable:
430 nvme_disable(sc);
431 disestablish_admin_q:
432 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
433 free_admin_q:
434 nvme_q_free(sc, sc->sc_admin_q);
435
436 return 1;
437 }
438
439 int
440 nvme_rescan(device_t self, const char *attr, const int *flags)
441 {
442 struct nvme_softc *sc = device_private(self);
443 struct nvme_attach_args naa;
444 uint64_t cap;
445 int ioq_entries = nvme_ioq_size;
446 int i;
447
448 cap = nvme_read8(sc, NVME_CAP);
449 if (ioq_entries > NVME_CAP_MQES(cap))
450 ioq_entries = NVME_CAP_MQES(cap);
451
452 for (i = 0; i < sc->sc_nn; i++) {
453 if (sc->sc_namespaces[i].dev)
454 continue;
455 memset(&naa, 0, sizeof(naa));
456 naa.naa_nsid = i + 1;
457 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
458 naa.naa_maxphys = sc->sc_mdts;
459 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
460 nvme_print);
461 }
462 return 0;
463 }
464
465 static int
466 nvme_print(void *aux, const char *pnp)
467 {
468 struct nvme_attach_args *naa = aux;
469
470 if (pnp)
471 aprint_normal("at %s", pnp);
472
473 if (naa->naa_nsid > 0)
474 aprint_normal(" nsid %d", naa->naa_nsid);
475
476 return UNCONF;
477 }
478
479 int
480 nvme_detach(struct nvme_softc *sc, int flags)
481 {
482 int i, error;
483
484 error = config_detach_children(sc->sc_dev, flags);
485 if (error)
486 return error;
487
488 error = nvme_shutdown(sc);
489 if (error)
490 return error;
491
492 /* from now on we are committed to detach, following will never fail */
493 for (i = 0; i < sc->sc_nq; i++)
494 nvme_q_free(sc, sc->sc_q[i]);
495 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
496 nvme_q_free(sc, sc->sc_admin_q);
497
498 return 0;
499 }
500
501 static int
502 nvme_shutdown(struct nvme_softc *sc)
503 {
504 uint32_t cc, csts;
505 bool disabled = false;
506 int i;
507
508 if (!sc->sc_use_mq)
509 nvme_write4(sc, NVME_INTMS, 1);
510
511 for (i = 0; i < sc->sc_nq; i++) {
512 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
513 aprint_error_dev(sc->sc_dev,
514 "unable to delete io queue %d, disabling\n", i + 1);
515 disabled = true;
516 }
517 }
518 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
519 if (disabled)
520 goto disable;
521
522 cc = nvme_read4(sc, NVME_CC);
523 CLR(cc, NVME_CC_SHN_MASK);
524 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
525 nvme_write4(sc, NVME_CC, cc);
526
527 for (i = 0; i < 4000; i++) {
528 nvme_barrier(sc, 0, sc->sc_ios,
529 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
530 csts = nvme_read4(sc, NVME_CSTS);
531 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
532 return 0;
533
534 delay(1000);
535 }
536
537 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
538
539 disable:
540 nvme_disable(sc);
541 return 0;
542 }
543
544 void
545 nvme_childdet(device_t self, device_t child)
546 {
547 struct nvme_softc *sc = device_private(self);
548 int i;
549
550 for (i = 0; i < sc->sc_nn; i++) {
551 if (sc->sc_namespaces[i].dev == child) {
552 /* Already freed ns->ident. */
553 sc->sc_namespaces[i].dev = NULL;
554 break;
555 }
556 }
557 }
558
559 int
560 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
561 {
562 struct nvme_sqe sqe;
563 struct nvm_identify_namespace *identify;
564 struct nvme_dmamem *mem;
565 struct nvme_ccb *ccb;
566 struct nvme_namespace *ns;
567 int rv;
568
569 KASSERT(nsid > 0);
570
571 ccb = nvme_ccb_get(sc->sc_admin_q, false);
572 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
573
574 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
575 if (mem == NULL) {
576 nvme_ccb_put(sc->sc_admin_q, ccb);
577 return ENOMEM;
578 }
579
580 memset(&sqe, 0, sizeof(sqe));
581 sqe.opcode = NVM_ADMIN_IDENTIFY;
582 htolem32(&sqe.nsid, nsid);
583 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
584 htolem32(&sqe.cdw10, 0);
585
586 ccb->ccb_done = nvme_empty_done;
587 ccb->ccb_cookie = &sqe;
588
589 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
590 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
591 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
592
593 nvme_ccb_put(sc->sc_admin_q, ccb);
594
595 if (rv != 0) {
596 rv = EIO;
597 goto done;
598 }
599
600 /* commit */
601
602 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
603 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
604 //memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
605
606 ns = nvme_ns_get(sc, nsid);
607 KASSERT(ns);
608 KASSERT(ns->ident == NULL);
609 ns->ident = identify;
610
611 done:
612 nvme_dmamem_free(sc, mem);
613
614 return rv;
615 }
616
617 int
618 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
619 struct buf *bp, void *data, size_t datasize,
620 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
621 {
622 struct nvme_queue *q = nvme_get_q(sc);
623 struct nvme_ccb *ccb;
624 bus_dmamap_t dmap;
625 int i, error;
626
627 ccb = nvme_ccb_get(q, false);
628 if (ccb == NULL)
629 return EAGAIN;
630
631 ccb->ccb_done = nvme_ns_io_done;
632 ccb->ccb_cookie = cookie;
633
634 /* namespace context */
635 ccb->nnc_nsid = nsid;
636 ccb->nnc_flags = flags;
637 ccb->nnc_buf = bp;
638 ccb->nnc_datasize = datasize;
639 ccb->nnc_secsize = secsize;
640 ccb->nnc_blkno = blkno;
641 ccb->nnc_done = nnc_done;
642
643 dmap = ccb->ccb_dmamap;
644 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
645 datasize, NULL,
646 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
647 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
648 (ISSET(flags, NVME_NS_CTX_F_READ) ?
649 BUS_DMA_READ : BUS_DMA_WRITE));
650 if (error) {
651 nvme_ccb_put(q, ccb);
652 return error;
653 }
654
655 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
656 ISSET(flags, NVME_NS_CTX_F_READ) ?
657 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
658
659 if (dmap->dm_nsegs > 2) {
660 for (i = 1; i < dmap->dm_nsegs; i++) {
661 htolem64(&ccb->ccb_prpl[i - 1],
662 dmap->dm_segs[i].ds_addr);
663 }
664 bus_dmamap_sync(sc->sc_dmat,
665 NVME_DMA_MAP(q->q_ccb_prpls),
666 ccb->ccb_prpl_off,
667 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
668 BUS_DMASYNC_PREWRITE);
669 }
670
671 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
672 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
673 return EIO;
674 return 0;
675 }
676
677 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
678 return 0;
679 }
680
681 static void
682 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
683 {
684 struct nvme_sqe_io *sqe = slot;
685 bus_dmamap_t dmap = ccb->ccb_dmamap;
686
687 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
688 NVM_CMD_READ : NVM_CMD_WRITE;
689 htolem32(&sqe->nsid, ccb->nnc_nsid);
690
691 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
692 switch (dmap->dm_nsegs) {
693 case 1:
694 break;
695 case 2:
696 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
697 break;
698 default:
699 /* the prp list is already set up and synced */
700 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
701 break;
702 }
703
704 htolem64(&sqe->slba, ccb->nnc_blkno);
705
706 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
707 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
708
709 /* guaranteed by upper layers, but check just in case */
710 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
711 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
712 }
713
714 static void
715 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
716 struct nvme_cqe *cqe)
717 {
718 struct nvme_softc *sc = q->q_sc;
719 bus_dmamap_t dmap = ccb->ccb_dmamap;
720 void *nnc_cookie = ccb->ccb_cookie;
721 nvme_nnc_done nnc_done = ccb->nnc_done;
722 struct buf *bp = ccb->nnc_buf;
723
724 if (dmap->dm_nsegs > 2) {
725 bus_dmamap_sync(sc->sc_dmat,
726 NVME_DMA_MAP(q->q_ccb_prpls),
727 ccb->ccb_prpl_off,
728 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
729 BUS_DMASYNC_POSTWRITE);
730 }
731
732 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
733 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
734 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
735
736 bus_dmamap_unload(sc->sc_dmat, dmap);
737 nvme_ccb_put(q, ccb);
738
739 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
740 }
741
742 /*
743 * If there is no volatile write cache, it makes no sense to issue
744 * flush commands or query for the status.
745 */
746 static bool
747 nvme_has_volatile_write_cache(struct nvme_softc *sc)
748 {
749 /* sc_identify is filled during attachment */
750 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
751 }
752
753 static bool
754 nvme_ns_sync_finished(void *cookie)
755 {
756 int *result = cookie;
757
758 return (*result != 0);
759 }
760
761 int
762 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
763 {
764 struct nvme_queue *q = nvme_get_q(sc);
765 struct nvme_ccb *ccb;
766 int result = 0;
767
768 if (!nvme_has_volatile_write_cache(sc)) {
769 /* cache not present, no value in trying to flush it */
770 return 0;
771 }
772
773 ccb = nvme_ccb_get(q, true);
774 if (ccb == NULL)
775 return EAGAIN;
776
777 ccb->ccb_done = nvme_ns_sync_done;
778 ccb->ccb_cookie = &result;
779
780 /* namespace context */
781 ccb->nnc_nsid = nsid;
782 ccb->nnc_flags = flags;
783 ccb->nnc_done = NULL;
784
785 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
786 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
787 return EIO;
788 return 0;
789 }
790
791 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
792
793 /* wait for completion */
794 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
795 KASSERT(result != 0);
796
797 return (result > 0) ? 0 : EIO;
798 }
799
800 static void
801 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
802 {
803 struct nvme_sqe *sqe = slot;
804
805 sqe->opcode = NVM_CMD_FLUSH;
806 htolem32(&sqe->nsid, ccb->nnc_nsid);
807 }
808
809 static void
810 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
811 struct nvme_cqe *cqe)
812 {
813 int *result = ccb->ccb_cookie;
814 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
815
816 if (status == NVME_CQE_SC_SUCCESS)
817 *result = 1;
818 else
819 *result = -1;
820
821 nvme_ccb_put(q, ccb);
822 }
823
824 static bool
825 nvme_getcache_finished(void *xc)
826 {
827 int *addr = xc;
828
829 return (*addr != 0);
830 }
831
832 /*
833 * Get status of volatile write cache. Always asynchronous.
834 */
835 int
836 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
837 {
838 struct nvme_ccb *ccb;
839 struct nvme_queue *q = sc->sc_admin_q;
840 int result = 0, error;
841
842 if (!nvme_has_volatile_write_cache(sc)) {
843 /* cache simply not present */
844 *addr = 0;
845 return 0;
846 }
847
848 ccb = nvme_ccb_get(q, true);
849 KASSERT(ccb != NULL);
850
851 ccb->ccb_done = nvme_getcache_done;
852 ccb->ccb_cookie = &result;
853
854 /* namespace context */
855 ccb->nnc_flags = 0;
856 ccb->nnc_done = NULL;
857
858 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
859
860 /* wait for completion */
861 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
862 KASSERT(result != 0);
863
864 if (result > 0) {
865 *addr = result;
866 error = 0;
867 } else
868 error = EINVAL;
869
870 return error;
871 }
872
873 static void
874 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
875 {
876 struct nvme_sqe *sqe = slot;
877
878 sqe->opcode = NVM_ADMIN_GET_FEATURES;
879 sqe->cdw10 = NVM_FEATURE_VOLATILE_WRITE_CACHE;
880 }
881
882 static void
883 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
884 struct nvme_cqe *cqe)
885 {
886 int *addr = ccb->ccb_cookie;
887 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
888 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
889 int result;
890
891 if (status == NVME_CQE_SC_SUCCESS) {
892 result = 0;
893
894 /*
895 * DPO not supported, Dataset Management (DSM) field doesn't
896 * specify the same semantics. FUA is always supported.
897 */
898 result = DKCACHE_FUA;
899
900 if (cdw0 & NVME_CQE_CDW0_VWC_WCE)
901 result |= DKCACHE_WRITE;
902
903 /*
904 * If volatile write cache is present, the flag shall also be
905 * settable.
906 */
907 result |= DKCACHE_WCHANGE;
908 } else {
909 result = -1;
910 }
911
912 *addr = result;
913
914 nvme_ccb_put(q, ccb);
915 }
916
917 void
918 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
919 {
920 struct nvme_namespace *ns;
921 struct nvm_identify_namespace *identify;
922
923 ns = nvme_ns_get(sc, nsid);
924 KASSERT(ns);
925
926 identify = ns->ident;
927 ns->ident = NULL;
928 if (identify != NULL)
929 kmem_free(identify, sizeof(*identify));
930 }
931
932 static void
933 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
934 {
935 struct nvme_softc *sc = q->q_sc;
936 struct nvme_sqe *sqe = slot;
937 struct nvme_pt_command *pt = ccb->ccb_cookie;
938 bus_dmamap_t dmap = ccb->ccb_dmamap;
939 int i;
940
941 sqe->opcode = pt->cmd.opcode;
942 htolem32(&sqe->nsid, pt->cmd.nsid);
943
944 if (pt->buf != NULL && pt->len > 0) {
945 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
946 switch (dmap->dm_nsegs) {
947 case 1:
948 break;
949 case 2:
950 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
951 break;
952 default:
953 for (i = 1; i < dmap->dm_nsegs; i++) {
954 htolem64(&ccb->ccb_prpl[i - 1],
955 dmap->dm_segs[i].ds_addr);
956 }
957 bus_dmamap_sync(sc->sc_dmat,
958 NVME_DMA_MAP(q->q_ccb_prpls),
959 ccb->ccb_prpl_off,
960 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
961 BUS_DMASYNC_PREWRITE);
962 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
963 break;
964 }
965 }
966
967 htolem32(&sqe->cdw10, pt->cmd.cdw10);
968 htolem32(&sqe->cdw11, pt->cmd.cdw11);
969 htolem32(&sqe->cdw12, pt->cmd.cdw12);
970 htolem32(&sqe->cdw13, pt->cmd.cdw13);
971 htolem32(&sqe->cdw14, pt->cmd.cdw14);
972 htolem32(&sqe->cdw15, pt->cmd.cdw15);
973 }
974
975 static void
976 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
977 {
978 struct nvme_softc *sc = q->q_sc;
979 struct nvme_pt_command *pt = ccb->ccb_cookie;
980 bus_dmamap_t dmap = ccb->ccb_dmamap;
981
982 if (pt->buf != NULL && pt->len > 0) {
983 if (dmap->dm_nsegs > 2) {
984 bus_dmamap_sync(sc->sc_dmat,
985 NVME_DMA_MAP(q->q_ccb_prpls),
986 ccb->ccb_prpl_off,
987 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
988 BUS_DMASYNC_POSTWRITE);
989 }
990
991 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
992 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
993 bus_dmamap_unload(sc->sc_dmat, dmap);
994 }
995
996 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
997 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
998 }
999
1000 static int
1001 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1002 uint16_t nsid, struct lwp *l, bool is_adminq)
1003 {
1004 struct nvme_queue *q;
1005 struct nvme_ccb *ccb;
1006 void *buf = NULL;
1007 int error;
1008
1009 /* limit command size to maximum data transfer size */
1010 if ((pt->buf == NULL && pt->len > 0) ||
1011 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1012 return EINVAL;
1013
1014 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1015 ccb = nvme_ccb_get(q, true);
1016 KASSERT(ccb != NULL);
1017
1018 if (pt->buf != NULL) {
1019 KASSERT(pt->len > 0);
1020 buf = kmem_alloc(pt->len, KM_SLEEP);
1021 if (!pt->is_read) {
1022 error = copyin(pt->buf, buf, pt->len);
1023 if (error)
1024 goto kmem_free;
1025 }
1026 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1027 pt->len, NULL,
1028 BUS_DMA_WAITOK |
1029 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1030 if (error)
1031 goto kmem_free;
1032 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1033 0, ccb->ccb_dmamap->dm_mapsize,
1034 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1035 }
1036
1037 ccb->ccb_done = nvme_pt_done;
1038 ccb->ccb_cookie = pt;
1039
1040 pt->cmd.nsid = nsid;
1041 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
1042 error = EIO;
1043 goto out;
1044 }
1045
1046 error = 0;
1047 out:
1048 if (buf != NULL) {
1049 if (error == 0 && pt->is_read)
1050 error = copyout(buf, pt->buf, pt->len);
1051 kmem_free:
1052 kmem_free(buf, pt->len);
1053 }
1054 nvme_ccb_put(q, ccb);
1055 return error;
1056 }
1057
1058 static void
1059 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1060 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1061 {
1062 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1063 uint32_t tail;
1064
1065 mutex_enter(&q->q_sq_mtx);
1066 tail = q->q_sq_tail;
1067 if (++q->q_sq_tail >= q->q_entries)
1068 q->q_sq_tail = 0;
1069
1070 sqe += tail;
1071
1072 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1073 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1074 memset(sqe, 0, sizeof(*sqe));
1075 (*fill)(q, ccb, sqe);
1076 sqe->cid = ccb->ccb_id;
1077 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1078 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1079
1080 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1081 mutex_exit(&q->q_sq_mtx);
1082 }
1083
1084 struct nvme_poll_state {
1085 struct nvme_sqe s;
1086 struct nvme_cqe c;
1087 void *cookie;
1088 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1089 };
1090
1091 static int
1092 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1093 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1094 {
1095 struct nvme_poll_state state;
1096 uint16_t flags;
1097 int step = 10;
1098 int maxloop = timo_sec * 1000000 / step;
1099 int error = 0;
1100
1101 memset(&state, 0, sizeof(state));
1102 (*fill)(q, ccb, &state.s);
1103
1104 state.done = ccb->ccb_done;
1105 state.cookie = ccb->ccb_cookie;
1106
1107 ccb->ccb_done = nvme_poll_done;
1108 ccb->ccb_cookie = &state;
1109
1110 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1111 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1112 if (nvme_q_complete(sc, q) == 0)
1113 delay(step);
1114
1115 if (timo_sec >= 0 && --maxloop <= 0) {
1116 error = ETIMEDOUT;
1117 break;
1118 }
1119 }
1120
1121 if (error == 0) {
1122 flags = lemtoh16(&state.c.flags);
1123 return flags & ~NVME_CQE_PHASE;
1124 } else {
1125 /*
1126 * If it succeds later, it would hit ccb which will have been
1127 * already reused for something else. Not good. Cross
1128 * fingers and hope for best. XXX do controller reset?
1129 */
1130 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1131
1132 /* Invoke the callback to clean state anyway */
1133 struct nvme_cqe cqe;
1134 memset(&cqe, 0, sizeof(cqe));
1135 ccb->ccb_done(q, ccb, &cqe);
1136
1137 return 1;
1138 }
1139 }
1140
1141 static void
1142 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1143 {
1144 struct nvme_sqe *sqe = slot;
1145 struct nvme_poll_state *state = ccb->ccb_cookie;
1146
1147 *sqe = state->s;
1148 }
1149
1150 static void
1151 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1152 struct nvme_cqe *cqe)
1153 {
1154 struct nvme_poll_state *state = ccb->ccb_cookie;
1155
1156 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1157 state->c = *cqe;
1158
1159 ccb->ccb_cookie = state->cookie;
1160 state->done(q, ccb, &state->c);
1161 }
1162
1163 static void
1164 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1165 {
1166 struct nvme_sqe *src = ccb->ccb_cookie;
1167 struct nvme_sqe *dst = slot;
1168
1169 *dst = *src;
1170 }
1171
1172 static void
1173 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1174 struct nvme_cqe *cqe)
1175 {
1176 }
1177
1178 static int
1179 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1180 {
1181 struct nvme_ccb *ccb;
1182 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1183 uint16_t flags;
1184 int rv = 0;
1185
1186 mutex_enter(&q->q_cq_mtx);
1187
1188 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1189 for (;;) {
1190 cqe = &ring[q->q_cq_head];
1191 flags = lemtoh16(&cqe->flags);
1192 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1193 break;
1194
1195 ccb = &q->q_ccbs[cqe->cid];
1196
1197 if (++q->q_cq_head >= q->q_entries) {
1198 q->q_cq_head = 0;
1199 q->q_cq_phase ^= NVME_CQE_PHASE;
1200 }
1201
1202 #ifdef DEBUG
1203 /*
1204 * If we get spurious completion notification, something
1205 * is seriously hosed up. Very likely DMA to some random
1206 * memory place happened, so just bail out.
1207 */
1208 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1209 panic("%s: invalid ccb detected",
1210 device_xname(sc->sc_dev));
1211 /* NOTREACHED */
1212 }
1213 #endif
1214
1215 rv++;
1216
1217 /*
1218 * Unlock the mutex before calling the ccb_done callback
1219 * and re-lock afterwards. The callback triggers lddone()
1220 * which schedules another i/o, and also calls nvme_ccb_put().
1221 * Unlock/relock avoids possibility of deadlock.
1222 */
1223 mutex_exit(&q->q_cq_mtx);
1224 ccb->ccb_done(q, ccb, cqe);
1225 mutex_enter(&q->q_cq_mtx);
1226 }
1227 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1228
1229 if (rv)
1230 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1231
1232 mutex_exit(&q->q_cq_mtx);
1233
1234 return rv;
1235 }
1236
1237 static void
1238 nvme_q_wait_complete(struct nvme_softc *sc,
1239 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1240 {
1241 mutex_enter(&q->q_ccb_mtx);
1242 if (finished(cookie))
1243 goto out;
1244
1245 for(;;) {
1246 q->q_ccb_waiting = true;
1247 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1248
1249 if (finished(cookie))
1250 break;
1251 }
1252
1253 out:
1254 mutex_exit(&q->q_ccb_mtx);
1255 }
1256
1257 static int
1258 nvme_identify(struct nvme_softc *sc, u_int mps)
1259 {
1260 char sn[41], mn[81], fr[17];
1261 struct nvm_identify_controller *identify;
1262 struct nvme_dmamem *mem;
1263 struct nvme_ccb *ccb;
1264 u_int mdts;
1265 int rv = 1;
1266
1267 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1268 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1269
1270 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1271 if (mem == NULL)
1272 return 1;
1273
1274 ccb->ccb_done = nvme_empty_done;
1275 ccb->ccb_cookie = mem;
1276
1277 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1278 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1279 NVME_TIMO_IDENT);
1280 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1281
1282 nvme_ccb_put(sc->sc_admin_q, ccb);
1283
1284 if (rv != 0)
1285 goto done;
1286
1287 identify = NVME_DMA_KVA(mem);
1288
1289 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1290 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1291 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1292 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1293 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1294 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1295 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1296 sn);
1297
1298 if (identify->mdts > 0) {
1299 mdts = (1 << identify->mdts) * (1 << mps);
1300 if (mdts < sc->sc_mdts)
1301 sc->sc_mdts = mdts;
1302 }
1303
1304 sc->sc_nn = lemtoh32(&identify->nn);
1305
1306 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1307
1308 done:
1309 nvme_dmamem_free(sc, mem);
1310
1311 return rv;
1312 }
1313
1314 static int
1315 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1316 {
1317 struct nvme_sqe_q sqe;
1318 struct nvme_ccb *ccb;
1319 int rv;
1320
1321 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1322 return 1;
1323
1324 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1325 KASSERT(ccb != NULL);
1326
1327 ccb->ccb_done = nvme_empty_done;
1328 ccb->ccb_cookie = &sqe;
1329
1330 memset(&sqe, 0, sizeof(sqe));
1331 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1332 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1333 htolem16(&sqe.qsize, q->q_entries - 1);
1334 htolem16(&sqe.qid, q->q_id);
1335 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1336 if (sc->sc_use_mq)
1337 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1338
1339 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1340 if (rv != 0)
1341 goto fail;
1342
1343 ccb->ccb_done = nvme_empty_done;
1344 ccb->ccb_cookie = &sqe;
1345
1346 memset(&sqe, 0, sizeof(sqe));
1347 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1348 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1349 htolem16(&sqe.qsize, q->q_entries - 1);
1350 htolem16(&sqe.qid, q->q_id);
1351 htolem16(&sqe.cqid, q->q_id);
1352 sqe.qflags = NVM_SQE_Q_PC;
1353
1354 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1355 if (rv != 0)
1356 goto fail;
1357
1358 fail:
1359 nvme_ccb_put(sc->sc_admin_q, ccb);
1360 return rv;
1361 }
1362
1363 static int
1364 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1365 {
1366 struct nvme_sqe_q sqe;
1367 struct nvme_ccb *ccb;
1368 int rv;
1369
1370 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1371 KASSERT(ccb != NULL);
1372
1373 ccb->ccb_done = nvme_empty_done;
1374 ccb->ccb_cookie = &sqe;
1375
1376 memset(&sqe, 0, sizeof(sqe));
1377 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1378 htolem16(&sqe.qid, q->q_id);
1379
1380 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1381 if (rv != 0)
1382 goto fail;
1383
1384 ccb->ccb_done = nvme_empty_done;
1385 ccb->ccb_cookie = &sqe;
1386
1387 memset(&sqe, 0, sizeof(sqe));
1388 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1389 htolem16(&sqe.qid, q->q_id);
1390
1391 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1392 if (rv != 0)
1393 goto fail;
1394
1395 fail:
1396 nvme_ccb_put(sc->sc_admin_q, ccb);
1397
1398 if (rv == 0 && sc->sc_use_mq) {
1399 if (sc->sc_intr_disestablish(sc, q->q_id))
1400 rv = 1;
1401 }
1402
1403 return rv;
1404 }
1405
1406 static void
1407 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1408 {
1409 struct nvme_sqe *sqe = slot;
1410 struct nvme_dmamem *mem = ccb->ccb_cookie;
1411
1412 sqe->opcode = NVM_ADMIN_IDENTIFY;
1413 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1414 htolem32(&sqe->cdw10, 1);
1415 }
1416
1417 static int
1418 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
1419 {
1420 struct nvme_pt_command pt;
1421 struct nvme_ccb *ccb;
1422 uint16_t ncqa, nsqa;
1423 int rv;
1424
1425 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1426 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1427
1428 memset(&pt, 0, sizeof(pt));
1429 pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
1430 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1431
1432 ccb->ccb_done = nvme_pt_done;
1433 ccb->ccb_cookie = &pt;
1434
1435 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1436
1437 nvme_ccb_put(sc->sc_admin_q, ccb);
1438
1439 if (rv != 0) {
1440 *nqap = 0;
1441 return EIO;
1442 }
1443
1444 ncqa = pt.cpl.cdw0 >> 16;
1445 nsqa = pt.cpl.cdw0 & 0xffff;
1446 *nqap = MIN(ncqa, nsqa) + 1;
1447
1448 return 0;
1449 }
1450
1451 static int
1452 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1453 {
1454 struct nvme_softc *sc = q->q_sc;
1455 struct nvme_ccb *ccb;
1456 bus_addr_t off;
1457 uint64_t *prpl;
1458 u_int i;
1459
1460 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1461 cv_init(&q->q_ccb_wait, "nvmeqw");
1462 q->q_ccb_waiting = false;
1463 SIMPLEQ_INIT(&q->q_ccb_list);
1464
1465 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1466
1467 q->q_nccbs = nccbs;
1468 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1469 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1470
1471 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1472 off = 0;
1473
1474 for (i = 0; i < nccbs; i++) {
1475 ccb = &q->q_ccbs[i];
1476
1477 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1478 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1479 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1480 &ccb->ccb_dmamap) != 0)
1481 goto free_maps;
1482
1483 ccb->ccb_id = i;
1484 ccb->ccb_prpl = prpl;
1485 ccb->ccb_prpl_off = off;
1486 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1487
1488 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1489
1490 prpl += sc->sc_max_sgl;
1491 off += sizeof(*prpl) * sc->sc_max_sgl;
1492 }
1493
1494 return 0;
1495
1496 free_maps:
1497 nvme_ccbs_free(q);
1498 return 1;
1499 }
1500
1501 static struct nvme_ccb *
1502 nvme_ccb_get(struct nvme_queue *q, bool wait)
1503 {
1504 struct nvme_ccb *ccb = NULL;
1505
1506 mutex_enter(&q->q_ccb_mtx);
1507 again:
1508 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1509 if (ccb != NULL) {
1510 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1511 #ifdef DEBUG
1512 ccb->ccb_cookie = NULL;
1513 #endif
1514 } else {
1515 if (__predict_false(wait)) {
1516 q->q_ccb_waiting = true;
1517 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1518 goto again;
1519 }
1520 }
1521 mutex_exit(&q->q_ccb_mtx);
1522
1523 return ccb;
1524 }
1525
1526 static void
1527 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1528 {
1529
1530 mutex_enter(&q->q_ccb_mtx);
1531 #ifdef DEBUG
1532 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1533 #endif
1534 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1535
1536 /* It's unlikely there are any waiters, it's not used for regular I/O */
1537 if (__predict_false(q->q_ccb_waiting)) {
1538 q->q_ccb_waiting = false;
1539 cv_broadcast(&q->q_ccb_wait);
1540 }
1541
1542 mutex_exit(&q->q_ccb_mtx);
1543 }
1544
1545 static void
1546 nvme_ccbs_free(struct nvme_queue *q)
1547 {
1548 struct nvme_softc *sc = q->q_sc;
1549 struct nvme_ccb *ccb;
1550
1551 mutex_enter(&q->q_ccb_mtx);
1552 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1553 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1554 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1555 }
1556 mutex_exit(&q->q_ccb_mtx);
1557
1558 nvme_dmamem_free(sc, q->q_ccb_prpls);
1559 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1560 q->q_ccbs = NULL;
1561 cv_destroy(&q->q_ccb_wait);
1562 mutex_destroy(&q->q_ccb_mtx);
1563 }
1564
1565 static struct nvme_queue *
1566 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1567 {
1568 struct nvme_queue *q;
1569
1570 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1571 q->q_sc = sc;
1572 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1573 sizeof(struct nvme_sqe) * entries);
1574 if (q->q_sq_dmamem == NULL)
1575 goto free;
1576
1577 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1578 sizeof(struct nvme_cqe) * entries);
1579 if (q->q_cq_dmamem == NULL)
1580 goto free_sq;
1581
1582 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1583 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1584
1585 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1586 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1587 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1588 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1589 q->q_id = id;
1590 q->q_entries = entries;
1591 q->q_sq_tail = 0;
1592 q->q_cq_head = 0;
1593 q->q_cq_phase = NVME_CQE_PHASE;
1594
1595 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1596 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1597
1598 /*
1599 * Due to definition of full and empty queue (queue is empty
1600 * when head == tail, full when tail is one less then head),
1601 * we can actually only have (entries - 1) in-flight commands.
1602 */
1603 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1604 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1605 goto free_cq;
1606 }
1607
1608 return q;
1609
1610 free_cq:
1611 nvme_dmamem_free(sc, q->q_cq_dmamem);
1612 free_sq:
1613 nvme_dmamem_free(sc, q->q_sq_dmamem);
1614 free:
1615 kmem_free(q, sizeof(*q));
1616
1617 return NULL;
1618 }
1619
1620 static void
1621 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1622 {
1623 nvme_ccbs_free(q);
1624 mutex_destroy(&q->q_sq_mtx);
1625 mutex_destroy(&q->q_cq_mtx);
1626 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1627 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1628 nvme_dmamem_free(sc, q->q_cq_dmamem);
1629 nvme_dmamem_free(sc, q->q_sq_dmamem);
1630 kmem_free(q, sizeof(*q));
1631 }
1632
1633 int
1634 nvme_intr(void *xsc)
1635 {
1636 struct nvme_softc *sc = xsc;
1637
1638 /*
1639 * INTx is level triggered, controller deasserts the interrupt only
1640 * when we advance command queue head via write to the doorbell.
1641 * Tell the controller to block the interrupts while we process
1642 * the queue(s).
1643 */
1644 nvme_write4(sc, NVME_INTMS, 1);
1645
1646 softint_schedule(sc->sc_softih[0]);
1647
1648 /* don't know, might not have been for us */
1649 return 1;
1650 }
1651
1652 void
1653 nvme_softintr_intx(void *xq)
1654 {
1655 struct nvme_queue *q = xq;
1656 struct nvme_softc *sc = q->q_sc;
1657
1658 nvme_q_complete(sc, sc->sc_admin_q);
1659 if (sc->sc_q != NULL)
1660 nvme_q_complete(sc, sc->sc_q[0]);
1661
1662 /*
1663 * Processing done, tell controller to issue interrupts again. There
1664 * is no race, as NVMe spec requires the controller to maintain state,
1665 * and assert the interrupt whenever there are unacknowledged
1666 * completion queue entries.
1667 */
1668 nvme_write4(sc, NVME_INTMC, 1);
1669 }
1670
1671 int
1672 nvme_intr_msi(void *xq)
1673 {
1674 struct nvme_queue *q = xq;
1675
1676 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1677 && q->q_sc->sc_softih[q->q_id]);
1678
1679 /*
1680 * MSI/MSI-X are edge triggered, so can handover processing to softint
1681 * without masking the interrupt.
1682 */
1683 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1684
1685 return 1;
1686 }
1687
1688 void
1689 nvme_softintr_msi(void *xq)
1690 {
1691 struct nvme_queue *q = xq;
1692 struct nvme_softc *sc = q->q_sc;
1693
1694 nvme_q_complete(sc, q);
1695 }
1696
1697 static struct nvme_dmamem *
1698 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1699 {
1700 struct nvme_dmamem *ndm;
1701 int nsegs;
1702
1703 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1704 if (ndm == NULL)
1705 return NULL;
1706
1707 ndm->ndm_size = size;
1708
1709 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1710 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1711 goto ndmfree;
1712
1713 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1714 1, &nsegs, BUS_DMA_WAITOK) != 0)
1715 goto destroy;
1716
1717 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1718 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1719 goto free;
1720 memset(ndm->ndm_kva, 0, size);
1721
1722 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1723 NULL, BUS_DMA_WAITOK) != 0)
1724 goto unmap;
1725
1726 return ndm;
1727
1728 unmap:
1729 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1730 free:
1731 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1732 destroy:
1733 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1734 ndmfree:
1735 kmem_free(ndm, sizeof(*ndm));
1736 return NULL;
1737 }
1738
1739 static void
1740 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1741 {
1742 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1743 0, NVME_DMA_LEN(mem), ops);
1744 }
1745
1746 void
1747 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1748 {
1749 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1750 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1751 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1752 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1753 kmem_free(ndm, sizeof(*ndm));
1754 }
1755
1756 /*
1757 * ioctl
1758 */
1759
1760 dev_type_open(nvmeopen);
1761 dev_type_close(nvmeclose);
1762 dev_type_ioctl(nvmeioctl);
1763
1764 const struct cdevsw nvme_cdevsw = {
1765 .d_open = nvmeopen,
1766 .d_close = nvmeclose,
1767 .d_read = noread,
1768 .d_write = nowrite,
1769 .d_ioctl = nvmeioctl,
1770 .d_stop = nostop,
1771 .d_tty = notty,
1772 .d_poll = nopoll,
1773 .d_mmap = nommap,
1774 .d_kqfilter = nokqfilter,
1775 .d_discard = nodiscard,
1776 .d_flag = D_OTHER,
1777 };
1778
1779 /*
1780 * Accept an open operation on the control device.
1781 */
1782 int
1783 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1784 {
1785 struct nvme_softc *sc;
1786 int unit = minor(dev) / 0x10000;
1787 int nsid = minor(dev) & 0xffff;
1788 int nsidx;
1789
1790 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1791 return ENXIO;
1792 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1793 return ENXIO;
1794
1795 if (nsid == 0) {
1796 /* controller */
1797 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1798 return EBUSY;
1799 SET(sc->sc_flags, NVME_F_OPEN);
1800 } else {
1801 /* namespace */
1802 nsidx = nsid - 1;
1803 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1804 return ENXIO;
1805 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1806 return EBUSY;
1807 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1808 }
1809 return 0;
1810 }
1811
1812 /*
1813 * Accept the last close on the control device.
1814 */
1815 int
1816 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1817 {
1818 struct nvme_softc *sc;
1819 int unit = minor(dev) / 0x10000;
1820 int nsid = minor(dev) & 0xffff;
1821 int nsidx;
1822
1823 sc = device_lookup_private(&nvme_cd, unit);
1824 if (sc == NULL)
1825 return ENXIO;
1826
1827 if (nsid == 0) {
1828 /* controller */
1829 CLR(sc->sc_flags, NVME_F_OPEN);
1830 } else {
1831 /* namespace */
1832 nsidx = nsid - 1;
1833 if (nsidx >= sc->sc_nn)
1834 return ENXIO;
1835 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1836 }
1837
1838 return 0;
1839 }
1840
1841 /*
1842 * Handle control operations.
1843 */
1844 int
1845 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1846 {
1847 struct nvme_softc *sc;
1848 int unit = minor(dev) / 0x10000;
1849 int nsid = minor(dev) & 0xffff;
1850 struct nvme_pt_command *pt;
1851
1852 sc = device_lookup_private(&nvme_cd, unit);
1853 if (sc == NULL)
1854 return ENXIO;
1855
1856 switch (cmd) {
1857 case NVME_PASSTHROUGH_CMD:
1858 pt = data;
1859 return nvme_command_passthrough(sc, data,
1860 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1861 }
1862
1863 return ENOTTY;
1864 }
1865