nvme.c revision 1.35 1 /* $NetBSD: nvme.c,v 1.35 2018/03/17 00:28:03 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.35 2018/03/17 00:28:03 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 int nvme_adminq_size = 32;
46 int nvme_ioq_size = 1024;
47
48 static int nvme_print(void *, const char *);
49
50 static int nvme_ready(struct nvme_softc *, uint32_t);
51 static int nvme_enable(struct nvme_softc *, u_int);
52 static int nvme_disable(struct nvme_softc *);
53 static int nvme_shutdown(struct nvme_softc *);
54
55 #ifdef NVME_DEBUG
56 static void nvme_dumpregs(struct nvme_softc *);
57 #endif
58 static int nvme_identify(struct nvme_softc *, u_int);
59 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
60 void *);
61
62 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
63 static void nvme_ccbs_free(struct nvme_queue *);
64
65 static struct nvme_ccb *
66 nvme_ccb_get(struct nvme_queue *, bool);
67 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
68
69 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
70 struct nvme_ccb *, void (*)(struct nvme_queue *,
71 struct nvme_ccb *, void *), int);
72 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
73 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
74 struct nvme_cqe *);
75 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
76 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
77 struct nvme_cqe *);
78
79 static struct nvme_queue *
80 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
81 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
82 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
83 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
84 struct nvme_ccb *, void (*)(struct nvme_queue *,
85 struct nvme_ccb *, void *));
86 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
87 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
88 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
89 bool (*)(void *), void *);
90
91 static struct nvme_dmamem *
92 nvme_dmamem_alloc(struct nvme_softc *, size_t);
93 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
94 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
95 int);
96
97 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
98 void *);
99 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
100 struct nvme_cqe *);
101 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
102 void *);
103 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
106 void *);
107 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
108 struct nvme_cqe *);
109
110 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
111 void *);
112 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
113 struct nvme_cqe *);
114 static int nvme_command_passthrough(struct nvme_softc *,
115 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
116
117 static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
118
119 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
120 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
121 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
122 #define NVME_TIMO_SY 60 /* sync cache timeout */
123
124 #define nvme_read4(_s, _r) \
125 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
126 #define nvme_write4(_s, _r, _v) \
127 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
128 /*
129 * Some controllers, at least Apple NVMe, always require split
130 * transfers, so don't use bus_space_{read,write}_8() on LP64.
131 */
132 static inline uint64_t
133 nvme_read8(struct nvme_softc *sc, bus_size_t r)
134 {
135 uint64_t v;
136 uint32_t *a = (uint32_t *)&v;
137
138 #if _BYTE_ORDER == _LITTLE_ENDIAN
139 a[0] = nvme_read4(sc, r);
140 a[1] = nvme_read4(sc, r + 4);
141 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
142 a[1] = nvme_read4(sc, r);
143 a[0] = nvme_read4(sc, r + 4);
144 #endif
145
146 return v;
147 }
148
149 static inline void
150 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
151 {
152 uint32_t *a = (uint32_t *)&v;
153
154 #if _BYTE_ORDER == _LITTLE_ENDIAN
155 nvme_write4(sc, r, a[0]);
156 nvme_write4(sc, r + 4, a[1]);
157 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
158 nvme_write4(sc, r, a[1]);
159 nvme_write4(sc, r + 4, a[0]);
160 #endif
161 }
162 #define nvme_barrier(_s, _r, _l, _f) \
163 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
164
165 #ifdef NVME_DEBUG
166 static __used void
167 nvme_dumpregs(struct nvme_softc *sc)
168 {
169 uint64_t r8;
170 uint32_t r4;
171
172 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
173 r8 = nvme_read8(sc, NVME_CAP);
174 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
175 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
176 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
177 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
178 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
179 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
180 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
181 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
182 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
183 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
184 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
185 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
186
187 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
188
189 r4 = nvme_read4(sc, NVME_CC);
190 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
191 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
192 (1 << NVME_CC_IOCQES_R(r4)));
193 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
194 (1 << NVME_CC_IOSQES_R(r4)));
195 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
196 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
197 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
198 (1 << NVME_CC_MPS_R(r4)));
199 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
200 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
201
202 r4 = nvme_read4(sc, NVME_CSTS);
203 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
204 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
205 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
206 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
207
208 r4 = nvme_read4(sc, NVME_AQA);
209 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
210 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
211 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
212
213 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
214 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
215 #undef DEVNAME
216 }
217 #endif /* NVME_DEBUG */
218
219 static int
220 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
221 {
222 u_int i = 0;
223 uint32_t cc;
224
225 cc = nvme_read4(sc, NVME_CC);
226 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
227 aprint_error_dev(sc->sc_dev,
228 "controller enabled status expected %d, found to be %d\n",
229 (rdy != 0), ((cc & NVME_CC_EN) != 0));
230 return ENXIO;
231 }
232
233 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
234 if (i++ > sc->sc_rdy_to)
235 return ENXIO;
236
237 delay(1000);
238 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
239 }
240
241 return 0;
242 }
243
244 static int
245 nvme_enable(struct nvme_softc *sc, u_int mps)
246 {
247 uint32_t cc, csts;
248
249 cc = nvme_read4(sc, NVME_CC);
250 csts = nvme_read4(sc, NVME_CSTS);
251
252 if (ISSET(cc, NVME_CC_EN)) {
253 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
254
255 if (ISSET(csts, NVME_CSTS_RDY))
256 return 1;
257
258 goto waitready;
259 }
260
261 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
262 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
263 delay(5000);
264 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267
268 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
269 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
270 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
271 delay(5000);
272
273 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
274 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
275 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
276 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
277 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
278 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
279 SET(cc, NVME_CC_MPS(mps));
280 SET(cc, NVME_CC_EN);
281
282 nvme_write4(sc, NVME_CC, cc);
283 nvme_barrier(sc, 0, sc->sc_ios,
284 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
285 delay(5000);
286
287 waitready:
288 return nvme_ready(sc, NVME_CSTS_RDY);
289 }
290
291 static int
292 nvme_disable(struct nvme_softc *sc)
293 {
294 uint32_t cc, csts;
295
296 cc = nvme_read4(sc, NVME_CC);
297 csts = nvme_read4(sc, NVME_CSTS);
298
299 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
300 nvme_ready(sc, NVME_CSTS_RDY);
301
302 CLR(cc, NVME_CC_EN);
303
304 nvme_write4(sc, NVME_CC, cc);
305 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
306
307 delay(5000);
308
309 return nvme_ready(sc, 0);
310 }
311
312 int
313 nvme_attach(struct nvme_softc *sc)
314 {
315 uint64_t cap;
316 uint32_t reg;
317 u_int dstrd;
318 u_int mps = PAGE_SHIFT;
319 u_int ioq_allocated;
320 uint16_t adminq_entries = nvme_adminq_size;
321 uint16_t ioq_entries = nvme_ioq_size;
322 int i;
323
324 reg = nvme_read4(sc, NVME_VS);
325 if (reg == 0xffffffff) {
326 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
327 return 1;
328 }
329
330 if (NVME_VS_TER(reg) == 0)
331 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
332 NVME_VS_MNR(reg));
333 else
334 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
335 NVME_VS_MNR(reg), NVME_VS_TER(reg));
336
337 cap = nvme_read8(sc, NVME_CAP);
338 dstrd = NVME_CAP_DSTRD(cap);
339 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
340 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
341 "is greater than CPU page size %u\n",
342 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
343 return 1;
344 }
345 if (NVME_CAP_MPSMAX(cap) < mps)
346 mps = NVME_CAP_MPSMAX(cap);
347 if (ioq_entries > NVME_CAP_MQES(cap))
348 ioq_entries = NVME_CAP_MQES(cap);
349
350 /* set initial values to be used for admin queue during probe */
351 sc->sc_rdy_to = NVME_CAP_TO(cap);
352 sc->sc_mps = 1 << mps;
353 sc->sc_mdts = MAXPHYS;
354 sc->sc_max_sgl = 2;
355
356 if (nvme_disable(sc) != 0) {
357 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
358 return 1;
359 }
360
361 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
362 if (sc->sc_admin_q == NULL) {
363 aprint_error_dev(sc->sc_dev,
364 "unable to allocate admin queue\n");
365 return 1;
366 }
367 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
368 goto free_admin_q;
369
370 if (nvme_enable(sc, mps) != 0) {
371 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
372 goto disestablish_admin_q;
373 }
374
375 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
376 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
377 goto disable;
378 }
379
380 /* we know how big things are now */
381 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
382
383 /* reallocate ccbs of admin queue with new max sgl. */
384 nvme_ccbs_free(sc->sc_admin_q);
385 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
386
387 if (sc->sc_use_mq) {
388 /* Limit the number of queues to the number allocated in HW */
389 if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
390 aprint_error_dev(sc->sc_dev,
391 "unable to get number of queues\n");
392 goto disable;
393 }
394 if (sc->sc_nq > ioq_allocated)
395 sc->sc_nq = ioq_allocated;
396 }
397
398 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
399 for (i = 0; i < sc->sc_nq; i++) {
400 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
401 if (sc->sc_q[i] == NULL) {
402 aprint_error_dev(sc->sc_dev,
403 "unable to allocate io queue\n");
404 goto free_q;
405 }
406 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to create io queue\n");
409 nvme_q_free(sc, sc->sc_q[i]);
410 goto free_q;
411 }
412 }
413
414 if (!sc->sc_use_mq)
415 nvme_write4(sc, NVME_INTMC, 1);
416
417 /* probe subdevices */
418 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
419 KM_SLEEP);
420 nvme_rescan(sc->sc_dev, "nvme", &i);
421
422 return 0;
423
424 free_q:
425 while (--i >= 0) {
426 nvme_q_delete(sc, sc->sc_q[i]);
427 nvme_q_free(sc, sc->sc_q[i]);
428 }
429 disable:
430 nvme_disable(sc);
431 disestablish_admin_q:
432 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
433 free_admin_q:
434 nvme_q_free(sc, sc->sc_admin_q);
435
436 return 1;
437 }
438
439 int
440 nvme_rescan(device_t self, const char *attr, const int *flags)
441 {
442 struct nvme_softc *sc = device_private(self);
443 struct nvme_attach_args naa;
444 uint64_t cap;
445 int ioq_entries = nvme_ioq_size;
446 int i;
447
448 cap = nvme_read8(sc, NVME_CAP);
449 if (ioq_entries > NVME_CAP_MQES(cap))
450 ioq_entries = NVME_CAP_MQES(cap);
451
452 for (i = 0; i < sc->sc_nn; i++) {
453 if (sc->sc_namespaces[i].dev)
454 continue;
455 memset(&naa, 0, sizeof(naa));
456 naa.naa_nsid = i + 1;
457 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
458 naa.naa_maxphys = sc->sc_mdts;
459 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
460 nvme_print);
461 }
462 return 0;
463 }
464
465 static int
466 nvme_print(void *aux, const char *pnp)
467 {
468 struct nvme_attach_args *naa = aux;
469
470 if (pnp)
471 aprint_normal("at %s", pnp);
472
473 if (naa->naa_nsid > 0)
474 aprint_normal(" nsid %d", naa->naa_nsid);
475
476 return UNCONF;
477 }
478
479 int
480 nvme_detach(struct nvme_softc *sc, int flags)
481 {
482 int i, error;
483
484 error = config_detach_children(sc->sc_dev, flags);
485 if (error)
486 return error;
487
488 error = nvme_shutdown(sc);
489 if (error)
490 return error;
491
492 /* from now on we are committed to detach, following will never fail */
493 for (i = 0; i < sc->sc_nq; i++)
494 nvme_q_free(sc, sc->sc_q[i]);
495 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
496 nvme_q_free(sc, sc->sc_admin_q);
497
498 return 0;
499 }
500
501 static int
502 nvme_shutdown(struct nvme_softc *sc)
503 {
504 uint32_t cc, csts;
505 bool disabled = false;
506 int i;
507
508 if (!sc->sc_use_mq)
509 nvme_write4(sc, NVME_INTMS, 1);
510
511 for (i = 0; i < sc->sc_nq; i++) {
512 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
513 aprint_error_dev(sc->sc_dev,
514 "unable to delete io queue %d, disabling\n", i + 1);
515 disabled = true;
516 }
517 }
518 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
519 if (disabled)
520 goto disable;
521
522 cc = nvme_read4(sc, NVME_CC);
523 CLR(cc, NVME_CC_SHN_MASK);
524 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
525 nvme_write4(sc, NVME_CC, cc);
526
527 for (i = 0; i < 4000; i++) {
528 nvme_barrier(sc, 0, sc->sc_ios,
529 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
530 csts = nvme_read4(sc, NVME_CSTS);
531 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
532 return 0;
533
534 delay(1000);
535 }
536
537 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
538
539 disable:
540 nvme_disable(sc);
541 return 0;
542 }
543
544 void
545 nvme_childdet(device_t self, device_t child)
546 {
547 struct nvme_softc *sc = device_private(self);
548 int i;
549
550 for (i = 0; i < sc->sc_nn; i++) {
551 if (sc->sc_namespaces[i].dev == child) {
552 /* Already freed ns->ident. */
553 sc->sc_namespaces[i].dev = NULL;
554 break;
555 }
556 }
557 }
558
559 int
560 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
561 {
562 struct nvme_sqe sqe;
563 struct nvm_identify_namespace *identify;
564 struct nvme_dmamem *mem;
565 struct nvme_ccb *ccb;
566 struct nvme_namespace *ns;
567 int rv;
568
569 KASSERT(nsid > 0);
570
571 ccb = nvme_ccb_get(sc->sc_admin_q, false);
572 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
573
574 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
575 if (mem == NULL) {
576 nvme_ccb_put(sc->sc_admin_q, ccb);
577 return ENOMEM;
578 }
579
580 memset(&sqe, 0, sizeof(sqe));
581 sqe.opcode = NVM_ADMIN_IDENTIFY;
582 htolem32(&sqe.nsid, nsid);
583 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
584 htolem32(&sqe.cdw10, 0);
585
586 ccb->ccb_done = nvme_empty_done;
587 ccb->ccb_cookie = &sqe;
588
589 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
590 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
591 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
592
593 nvme_ccb_put(sc->sc_admin_q, ccb);
594
595 if (rv != 0) {
596 rv = EIO;
597 goto done;
598 }
599
600 /* commit */
601
602 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
603 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
604 //memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
605
606 ns = nvme_ns_get(sc, nsid);
607 KASSERT(ns);
608 KASSERT(ns->ident == NULL);
609 ns->ident = identify;
610
611 done:
612 nvme_dmamem_free(sc, mem);
613
614 return rv;
615 }
616
617 int
618 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
619 struct buf *bp, void *data, size_t datasize,
620 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
621 {
622 struct nvme_queue *q = nvme_get_q(sc);
623 struct nvme_ccb *ccb;
624 bus_dmamap_t dmap;
625 int i, error;
626
627 ccb = nvme_ccb_get(q, false);
628 if (ccb == NULL)
629 return EAGAIN;
630
631 ccb->ccb_done = nvme_ns_io_done;
632 ccb->ccb_cookie = cookie;
633
634 /* namespace context */
635 ccb->nnc_nsid = nsid;
636 ccb->nnc_flags = flags;
637 ccb->nnc_buf = bp;
638 ccb->nnc_datasize = datasize;
639 ccb->nnc_secsize = secsize;
640 ccb->nnc_blkno = blkno;
641 ccb->nnc_done = nnc_done;
642
643 dmap = ccb->ccb_dmamap;
644 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
645 datasize, NULL,
646 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
647 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
648 (ISSET(flags, NVME_NS_CTX_F_READ) ?
649 BUS_DMA_READ : BUS_DMA_WRITE));
650 if (error) {
651 nvme_ccb_put(q, ccb);
652 return error;
653 }
654
655 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
656 ISSET(flags, NVME_NS_CTX_F_READ) ?
657 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
658
659 if (dmap->dm_nsegs > 2) {
660 for (i = 1; i < dmap->dm_nsegs; i++) {
661 htolem64(&ccb->ccb_prpl[i - 1],
662 dmap->dm_segs[i].ds_addr);
663 }
664 bus_dmamap_sync(sc->sc_dmat,
665 NVME_DMA_MAP(q->q_ccb_prpls),
666 ccb->ccb_prpl_off,
667 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
668 BUS_DMASYNC_PREWRITE);
669 }
670
671 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
672 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
673 return EIO;
674 return 0;
675 }
676
677 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
678 return 0;
679 }
680
681 static void
682 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
683 {
684 struct nvme_sqe_io *sqe = slot;
685 bus_dmamap_t dmap = ccb->ccb_dmamap;
686
687 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
688 NVM_CMD_READ : NVM_CMD_WRITE;
689 htolem32(&sqe->nsid, ccb->nnc_nsid);
690
691 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
692 switch (dmap->dm_nsegs) {
693 case 1:
694 break;
695 case 2:
696 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
697 break;
698 default:
699 /* the prp list is already set up and synced */
700 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
701 break;
702 }
703
704 htolem64(&sqe->slba, ccb->nnc_blkno);
705
706 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
707 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
708
709 /* guaranteed by upper layers, but check just in case */
710 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
711 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
712 }
713
714 static void
715 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
716 struct nvme_cqe *cqe)
717 {
718 struct nvme_softc *sc = q->q_sc;
719 bus_dmamap_t dmap = ccb->ccb_dmamap;
720 void *nnc_cookie = ccb->ccb_cookie;
721 nvme_nnc_done nnc_done = ccb->nnc_done;
722 struct buf *bp = ccb->nnc_buf;
723
724 if (dmap->dm_nsegs > 2) {
725 bus_dmamap_sync(sc->sc_dmat,
726 NVME_DMA_MAP(q->q_ccb_prpls),
727 ccb->ccb_prpl_off,
728 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
729 BUS_DMASYNC_POSTWRITE);
730 }
731
732 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
733 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
734 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
735
736 bus_dmamap_unload(sc->sc_dmat, dmap);
737 nvme_ccb_put(q, ccb);
738
739 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
740 }
741
742 /*
743 * If there is no volatile write cache, it makes no sense to issue
744 * flush commands or query for the status.
745 */
746 static bool
747 nvme_has_volatile_write_cache(struct nvme_softc *sc)
748 {
749 /* sc_identify is filled during attachment */
750 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
751 }
752
753 static bool
754 nvme_ns_sync_finished(void *cookie)
755 {
756 int *result = cookie;
757
758 return (*result != 0);
759 }
760
761 int
762 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
763 {
764 struct nvme_queue *q = nvme_get_q(sc);
765 struct nvme_ccb *ccb;
766 int result = 0;
767
768 if (!nvme_has_volatile_write_cache(sc)) {
769 /* cache not present, no value in trying to flush it */
770 return 0;
771 }
772
773 ccb = nvme_ccb_get(q, true);
774 if (ccb == NULL)
775 return EAGAIN;
776
777 ccb->ccb_done = nvme_ns_sync_done;
778 ccb->ccb_cookie = &result;
779
780 /* namespace context */
781 ccb->nnc_nsid = nsid;
782 ccb->nnc_flags = flags;
783 ccb->nnc_done = NULL;
784
785 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
786 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
787 return EIO;
788 return 0;
789 }
790
791 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
792
793 /* wait for completion */
794 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
795 KASSERT(result != 0);
796
797 return (result > 0) ? 0 : EIO;
798 }
799
800 static void
801 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
802 {
803 struct nvme_sqe *sqe = slot;
804
805 sqe->opcode = NVM_CMD_FLUSH;
806 htolem32(&sqe->nsid, ccb->nnc_nsid);
807 }
808
809 static void
810 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
811 struct nvme_cqe *cqe)
812 {
813 int *result = ccb->ccb_cookie;
814 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
815
816 if (status == NVME_CQE_SC_SUCCESS)
817 *result = 1;
818 else
819 *result = -1;
820
821 nvme_ccb_put(q, ccb);
822 }
823
824 static bool
825 nvme_getcache_finished(void *xc)
826 {
827 int *addr = xc;
828
829 return (*addr != 0);
830 }
831
832 /*
833 * Get status of volatile write cache. Always asynchronous.
834 */
835 int
836 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
837 {
838 struct nvme_ccb *ccb;
839 struct nvme_queue *q = sc->sc_admin_q;
840 int result = 0, error;
841
842 if (!nvme_has_volatile_write_cache(sc)) {
843 /* cache simply not present */
844 *addr = 0;
845 return 0;
846 }
847
848 ccb = nvme_ccb_get(q, true);
849 KASSERT(ccb != NULL);
850
851 ccb->ccb_done = nvme_getcache_done;
852 ccb->ccb_cookie = &result;
853
854 /* namespace context */
855 ccb->nnc_flags = 0;
856 ccb->nnc_done = NULL;
857
858 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
859
860 /* wait for completion */
861 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
862 KASSERT(result != 0);
863
864 if (result > 0) {
865 *addr = result;
866 error = 0;
867 } else
868 error = EINVAL;
869
870 return error;
871 }
872
873 static void
874 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
875 {
876 struct nvme_sqe *sqe = slot;
877
878 sqe->opcode = NVM_ADMIN_GET_FEATURES;
879 sqe->cdw10 = NVM_FEATURE_VOLATILE_WRITE_CACHE;
880 }
881
882 static void
883 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
884 struct nvme_cqe *cqe)
885 {
886 int *addr = ccb->ccb_cookie;
887 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
888 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
889 int result;
890
891 if (status == NVME_CQE_SC_SUCCESS) {
892 result = 0;
893
894 /*
895 * DPO not supported, Dataset Management (DSM) field doesn't
896 * specify the same semantics. FUA is always supported.
897 */
898 result = DKCACHE_FUA;
899
900 if (cdw0 & NVME_CQE_CDW0_VWC_WCE)
901 result |= DKCACHE_WRITE;
902
903 /*
904 * If volatile write cache is present, the flag shall also be
905 * settable.
906 */
907 result |= DKCACHE_WCHANGE;
908 } else {
909 result = -1;
910 }
911
912 *addr = result;
913
914 nvme_ccb_put(q, ccb);
915 }
916
917 void
918 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
919 {
920 struct nvme_namespace *ns;
921 struct nvm_identify_namespace *identify;
922
923 ns = nvme_ns_get(sc, nsid);
924 KASSERT(ns);
925
926 identify = ns->ident;
927 ns->ident = NULL;
928 if (identify != NULL)
929 kmem_free(identify, sizeof(*identify));
930 }
931
932 struct nvme_pt_state {
933 struct nvme_pt_command *pt;
934 bool finished;
935 };
936
937 static void
938 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
939 {
940 struct nvme_softc *sc = q->q_sc;
941 struct nvme_sqe *sqe = slot;
942 struct nvme_pt_state *state = ccb->ccb_cookie;
943 struct nvme_pt_command *pt = state->pt;
944 bus_dmamap_t dmap = ccb->ccb_dmamap;
945 int i;
946
947 sqe->opcode = pt->cmd.opcode;
948 htolem32(&sqe->nsid, pt->cmd.nsid);
949
950 if (pt->buf != NULL && pt->len > 0) {
951 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
952 switch (dmap->dm_nsegs) {
953 case 1:
954 break;
955 case 2:
956 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
957 break;
958 default:
959 for (i = 1; i < dmap->dm_nsegs; i++) {
960 htolem64(&ccb->ccb_prpl[i - 1],
961 dmap->dm_segs[i].ds_addr);
962 }
963 bus_dmamap_sync(sc->sc_dmat,
964 NVME_DMA_MAP(q->q_ccb_prpls),
965 ccb->ccb_prpl_off,
966 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
967 BUS_DMASYNC_PREWRITE);
968 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
969 break;
970 }
971 }
972
973 htolem32(&sqe->cdw10, pt->cmd.cdw10);
974 htolem32(&sqe->cdw11, pt->cmd.cdw11);
975 htolem32(&sqe->cdw12, pt->cmd.cdw12);
976 htolem32(&sqe->cdw13, pt->cmd.cdw13);
977 htolem32(&sqe->cdw14, pt->cmd.cdw14);
978 htolem32(&sqe->cdw15, pt->cmd.cdw15);
979 }
980
981 static void
982 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
983 {
984 struct nvme_softc *sc = q->q_sc;
985 struct nvme_pt_state *state = ccb->ccb_cookie;
986 struct nvme_pt_command *pt = state->pt;
987 bus_dmamap_t dmap = ccb->ccb_dmamap;
988
989 if (pt->buf != NULL && pt->len > 0) {
990 if (dmap->dm_nsegs > 2) {
991 bus_dmamap_sync(sc->sc_dmat,
992 NVME_DMA_MAP(q->q_ccb_prpls),
993 ccb->ccb_prpl_off,
994 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
995 BUS_DMASYNC_POSTWRITE);
996 }
997
998 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
999 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1000 bus_dmamap_unload(sc->sc_dmat, dmap);
1001 }
1002
1003 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1004 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1005
1006 state->finished = true;
1007
1008 nvme_ccb_put(q, ccb);
1009 }
1010
1011 static bool
1012 nvme_pt_finished(void *cookie)
1013 {
1014 struct nvme_pt_state *state = cookie;
1015
1016 return state->finished;
1017 }
1018
1019 static int
1020 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1021 uint16_t nsid, struct lwp *l, bool is_adminq)
1022 {
1023 struct nvme_queue *q;
1024 struct nvme_ccb *ccb;
1025 void *buf = NULL;
1026 struct nvme_pt_state state;
1027 int error;
1028
1029 /* limit command size to maximum data transfer size */
1030 if ((pt->buf == NULL && pt->len > 0) ||
1031 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1032 return EINVAL;
1033
1034 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1035 ccb = nvme_ccb_get(q, true);
1036 KASSERT(ccb != NULL);
1037
1038 if (pt->buf != NULL) {
1039 KASSERT(pt->len > 0);
1040 buf = kmem_alloc(pt->len, KM_SLEEP);
1041 if (!pt->is_read) {
1042 error = copyin(pt->buf, buf, pt->len);
1043 if (error)
1044 goto kmem_free;
1045 }
1046 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1047 pt->len, NULL,
1048 BUS_DMA_WAITOK |
1049 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1050 if (error)
1051 goto kmem_free;
1052 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1053 0, ccb->ccb_dmamap->dm_mapsize,
1054 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1055 }
1056
1057 memset(&state, 0, sizeof(state));
1058 state.pt = pt;
1059 state.finished = false;
1060
1061 ccb->ccb_done = nvme_pt_done;
1062 ccb->ccb_cookie = &state;
1063
1064 pt->cmd.nsid = nsid;
1065
1066 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1067
1068 /* wait for completion */
1069 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1070 KASSERT(state.finished);
1071
1072 error = 0;
1073
1074 if (buf != NULL) {
1075 if (error == 0 && pt->is_read)
1076 error = copyout(buf, pt->buf, pt->len);
1077 kmem_free:
1078 kmem_free(buf, pt->len);
1079 }
1080
1081 return error;
1082 }
1083
1084 static void
1085 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1086 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1087 {
1088 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1089 uint32_t tail;
1090
1091 mutex_enter(&q->q_sq_mtx);
1092 tail = q->q_sq_tail;
1093 if (++q->q_sq_tail >= q->q_entries)
1094 q->q_sq_tail = 0;
1095
1096 sqe += tail;
1097
1098 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1099 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1100 memset(sqe, 0, sizeof(*sqe));
1101 (*fill)(q, ccb, sqe);
1102 sqe->cid = ccb->ccb_id;
1103 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1104 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1105
1106 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1107 mutex_exit(&q->q_sq_mtx);
1108 }
1109
1110 struct nvme_poll_state {
1111 struct nvme_sqe s;
1112 struct nvme_cqe c;
1113 void *cookie;
1114 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1115 };
1116
1117 static int
1118 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1119 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1120 {
1121 struct nvme_poll_state state;
1122 uint16_t flags;
1123 int step = 10;
1124 int maxloop = timo_sec * 1000000 / step;
1125 int error = 0;
1126
1127 memset(&state, 0, sizeof(state));
1128 (*fill)(q, ccb, &state.s);
1129
1130 state.done = ccb->ccb_done;
1131 state.cookie = ccb->ccb_cookie;
1132
1133 ccb->ccb_done = nvme_poll_done;
1134 ccb->ccb_cookie = &state;
1135
1136 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1137 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1138 if (nvme_q_complete(sc, q) == 0)
1139 delay(step);
1140
1141 if (timo_sec >= 0 && --maxloop <= 0) {
1142 error = ETIMEDOUT;
1143 break;
1144 }
1145 }
1146
1147 if (error == 0) {
1148 flags = lemtoh16(&state.c.flags);
1149 return flags & ~NVME_CQE_PHASE;
1150 } else {
1151 /*
1152 * If it succeds later, it would hit ccb which will have been
1153 * already reused for something else. Not good. Cross
1154 * fingers and hope for best. XXX do controller reset?
1155 */
1156 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1157
1158 /* Invoke the callback to clean state anyway */
1159 struct nvme_cqe cqe;
1160 memset(&cqe, 0, sizeof(cqe));
1161 ccb->ccb_done(q, ccb, &cqe);
1162
1163 return 1;
1164 }
1165 }
1166
1167 static void
1168 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1169 {
1170 struct nvme_sqe *sqe = slot;
1171 struct nvme_poll_state *state = ccb->ccb_cookie;
1172
1173 *sqe = state->s;
1174 }
1175
1176 static void
1177 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1178 struct nvme_cqe *cqe)
1179 {
1180 struct nvme_poll_state *state = ccb->ccb_cookie;
1181
1182 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1183 state->c = *cqe;
1184
1185 ccb->ccb_cookie = state->cookie;
1186 state->done(q, ccb, &state->c);
1187 }
1188
1189 static void
1190 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1191 {
1192 struct nvme_sqe *src = ccb->ccb_cookie;
1193 struct nvme_sqe *dst = slot;
1194
1195 *dst = *src;
1196 }
1197
1198 static void
1199 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1200 struct nvme_cqe *cqe)
1201 {
1202 }
1203
1204 static int
1205 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1206 {
1207 struct nvme_ccb *ccb;
1208 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1209 uint16_t flags;
1210 int rv = 0;
1211
1212 mutex_enter(&q->q_cq_mtx);
1213
1214 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1215 for (;;) {
1216 cqe = &ring[q->q_cq_head];
1217 flags = lemtoh16(&cqe->flags);
1218 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1219 break;
1220
1221 ccb = &q->q_ccbs[cqe->cid];
1222
1223 if (++q->q_cq_head >= q->q_entries) {
1224 q->q_cq_head = 0;
1225 q->q_cq_phase ^= NVME_CQE_PHASE;
1226 }
1227
1228 #ifdef DEBUG
1229 /*
1230 * If we get spurious completion notification, something
1231 * is seriously hosed up. Very likely DMA to some random
1232 * memory place happened, so just bail out.
1233 */
1234 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1235 panic("%s: invalid ccb detected",
1236 device_xname(sc->sc_dev));
1237 /* NOTREACHED */
1238 }
1239 #endif
1240
1241 rv++;
1242
1243 /*
1244 * Unlock the mutex before calling the ccb_done callback
1245 * and re-lock afterwards. The callback triggers lddone()
1246 * which schedules another i/o, and also calls nvme_ccb_put().
1247 * Unlock/relock avoids possibility of deadlock.
1248 */
1249 mutex_exit(&q->q_cq_mtx);
1250 ccb->ccb_done(q, ccb, cqe);
1251 mutex_enter(&q->q_cq_mtx);
1252 }
1253 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1254
1255 if (rv)
1256 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1257
1258 mutex_exit(&q->q_cq_mtx);
1259
1260 return rv;
1261 }
1262
1263 static void
1264 nvme_q_wait_complete(struct nvme_softc *sc,
1265 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1266 {
1267 mutex_enter(&q->q_ccb_mtx);
1268 if (finished(cookie))
1269 goto out;
1270
1271 for(;;) {
1272 q->q_ccb_waiting = true;
1273 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1274
1275 if (finished(cookie))
1276 break;
1277 }
1278
1279 out:
1280 mutex_exit(&q->q_ccb_mtx);
1281 }
1282
1283 static int
1284 nvme_identify(struct nvme_softc *sc, u_int mps)
1285 {
1286 char sn[41], mn[81], fr[17];
1287 struct nvm_identify_controller *identify;
1288 struct nvme_dmamem *mem;
1289 struct nvme_ccb *ccb;
1290 u_int mdts;
1291 int rv = 1;
1292
1293 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1294 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1295
1296 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1297 if (mem == NULL)
1298 return 1;
1299
1300 ccb->ccb_done = nvme_empty_done;
1301 ccb->ccb_cookie = mem;
1302
1303 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1304 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1305 NVME_TIMO_IDENT);
1306 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1307
1308 nvme_ccb_put(sc->sc_admin_q, ccb);
1309
1310 if (rv != 0)
1311 goto done;
1312
1313 identify = NVME_DMA_KVA(mem);
1314
1315 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1316 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1317 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1318 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1319 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1320 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1321 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1322 sn);
1323
1324 if (identify->mdts > 0) {
1325 mdts = (1 << identify->mdts) * (1 << mps);
1326 if (mdts < sc->sc_mdts)
1327 sc->sc_mdts = mdts;
1328 }
1329
1330 sc->sc_nn = lemtoh32(&identify->nn);
1331
1332 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1333
1334 done:
1335 nvme_dmamem_free(sc, mem);
1336
1337 return rv;
1338 }
1339
1340 static int
1341 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1342 {
1343 struct nvme_sqe_q sqe;
1344 struct nvme_ccb *ccb;
1345 int rv;
1346
1347 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1348 return 1;
1349
1350 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1351 KASSERT(ccb != NULL);
1352
1353 ccb->ccb_done = nvme_empty_done;
1354 ccb->ccb_cookie = &sqe;
1355
1356 memset(&sqe, 0, sizeof(sqe));
1357 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1358 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1359 htolem16(&sqe.qsize, q->q_entries - 1);
1360 htolem16(&sqe.qid, q->q_id);
1361 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1362 if (sc->sc_use_mq)
1363 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1364
1365 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1366 if (rv != 0)
1367 goto fail;
1368
1369 ccb->ccb_done = nvme_empty_done;
1370 ccb->ccb_cookie = &sqe;
1371
1372 memset(&sqe, 0, sizeof(sqe));
1373 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1374 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1375 htolem16(&sqe.qsize, q->q_entries - 1);
1376 htolem16(&sqe.qid, q->q_id);
1377 htolem16(&sqe.cqid, q->q_id);
1378 sqe.qflags = NVM_SQE_Q_PC;
1379
1380 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1381 if (rv != 0)
1382 goto fail;
1383
1384 fail:
1385 nvme_ccb_put(sc->sc_admin_q, ccb);
1386 return rv;
1387 }
1388
1389 static int
1390 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1391 {
1392 struct nvme_sqe_q sqe;
1393 struct nvme_ccb *ccb;
1394 int rv;
1395
1396 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1397 KASSERT(ccb != NULL);
1398
1399 ccb->ccb_done = nvme_empty_done;
1400 ccb->ccb_cookie = &sqe;
1401
1402 memset(&sqe, 0, sizeof(sqe));
1403 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1404 htolem16(&sqe.qid, q->q_id);
1405
1406 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1407 if (rv != 0)
1408 goto fail;
1409
1410 ccb->ccb_done = nvme_empty_done;
1411 ccb->ccb_cookie = &sqe;
1412
1413 memset(&sqe, 0, sizeof(sqe));
1414 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1415 htolem16(&sqe.qid, q->q_id);
1416
1417 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1418 if (rv != 0)
1419 goto fail;
1420
1421 fail:
1422 nvme_ccb_put(sc->sc_admin_q, ccb);
1423
1424 if (rv == 0 && sc->sc_use_mq) {
1425 if (sc->sc_intr_disestablish(sc, q->q_id))
1426 rv = 1;
1427 }
1428
1429 return rv;
1430 }
1431
1432 static void
1433 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1434 {
1435 struct nvme_sqe *sqe = slot;
1436 struct nvme_dmamem *mem = ccb->ccb_cookie;
1437
1438 sqe->opcode = NVM_ADMIN_IDENTIFY;
1439 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1440 htolem32(&sqe->cdw10, 1);
1441 }
1442
1443 static int
1444 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
1445 {
1446 struct nvme_pt_command pt;
1447 struct nvme_ccb *ccb;
1448 uint16_t ncqa, nsqa;
1449 int rv;
1450
1451 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1452 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1453
1454 memset(&pt, 0, sizeof(pt));
1455 pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
1456 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1457
1458 ccb->ccb_done = nvme_pt_done;
1459 ccb->ccb_cookie = &pt;
1460
1461 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1462
1463 nvme_ccb_put(sc->sc_admin_q, ccb);
1464
1465 if (rv != 0) {
1466 *nqap = 0;
1467 return EIO;
1468 }
1469
1470 ncqa = pt.cpl.cdw0 >> 16;
1471 nsqa = pt.cpl.cdw0 & 0xffff;
1472 *nqap = MIN(ncqa, nsqa) + 1;
1473
1474 return 0;
1475 }
1476
1477 static int
1478 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1479 {
1480 struct nvme_softc *sc = q->q_sc;
1481 struct nvme_ccb *ccb;
1482 bus_addr_t off;
1483 uint64_t *prpl;
1484 u_int i;
1485
1486 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1487 cv_init(&q->q_ccb_wait, "nvmeqw");
1488 q->q_ccb_waiting = false;
1489 SIMPLEQ_INIT(&q->q_ccb_list);
1490
1491 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1492
1493 q->q_nccbs = nccbs;
1494 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1495 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1496
1497 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1498 off = 0;
1499
1500 for (i = 0; i < nccbs; i++) {
1501 ccb = &q->q_ccbs[i];
1502
1503 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1504 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1505 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1506 &ccb->ccb_dmamap) != 0)
1507 goto free_maps;
1508
1509 ccb->ccb_id = i;
1510 ccb->ccb_prpl = prpl;
1511 ccb->ccb_prpl_off = off;
1512 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1513
1514 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1515
1516 prpl += sc->sc_max_sgl;
1517 off += sizeof(*prpl) * sc->sc_max_sgl;
1518 }
1519
1520 return 0;
1521
1522 free_maps:
1523 nvme_ccbs_free(q);
1524 return 1;
1525 }
1526
1527 static struct nvme_ccb *
1528 nvme_ccb_get(struct nvme_queue *q, bool wait)
1529 {
1530 struct nvme_ccb *ccb = NULL;
1531
1532 mutex_enter(&q->q_ccb_mtx);
1533 again:
1534 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1535 if (ccb != NULL) {
1536 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1537 #ifdef DEBUG
1538 ccb->ccb_cookie = NULL;
1539 #endif
1540 } else {
1541 if (__predict_false(wait)) {
1542 q->q_ccb_waiting = true;
1543 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1544 goto again;
1545 }
1546 }
1547 mutex_exit(&q->q_ccb_mtx);
1548
1549 return ccb;
1550 }
1551
1552 static void
1553 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1554 {
1555
1556 mutex_enter(&q->q_ccb_mtx);
1557 #ifdef DEBUG
1558 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1559 #endif
1560 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1561
1562 /* It's unlikely there are any waiters, it's not used for regular I/O */
1563 if (__predict_false(q->q_ccb_waiting)) {
1564 q->q_ccb_waiting = false;
1565 cv_broadcast(&q->q_ccb_wait);
1566 }
1567
1568 mutex_exit(&q->q_ccb_mtx);
1569 }
1570
1571 static void
1572 nvme_ccbs_free(struct nvme_queue *q)
1573 {
1574 struct nvme_softc *sc = q->q_sc;
1575 struct nvme_ccb *ccb;
1576
1577 mutex_enter(&q->q_ccb_mtx);
1578 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1579 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1580 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1581 }
1582 mutex_exit(&q->q_ccb_mtx);
1583
1584 nvme_dmamem_free(sc, q->q_ccb_prpls);
1585 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1586 q->q_ccbs = NULL;
1587 cv_destroy(&q->q_ccb_wait);
1588 mutex_destroy(&q->q_ccb_mtx);
1589 }
1590
1591 static struct nvme_queue *
1592 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1593 {
1594 struct nvme_queue *q;
1595
1596 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1597 q->q_sc = sc;
1598 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1599 sizeof(struct nvme_sqe) * entries);
1600 if (q->q_sq_dmamem == NULL)
1601 goto free;
1602
1603 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1604 sizeof(struct nvme_cqe) * entries);
1605 if (q->q_cq_dmamem == NULL)
1606 goto free_sq;
1607
1608 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1609 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1610
1611 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1612 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1613 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1614 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1615 q->q_id = id;
1616 q->q_entries = entries;
1617 q->q_sq_tail = 0;
1618 q->q_cq_head = 0;
1619 q->q_cq_phase = NVME_CQE_PHASE;
1620
1621 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1622 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1623
1624 /*
1625 * Due to definition of full and empty queue (queue is empty
1626 * when head == tail, full when tail is one less then head),
1627 * we can actually only have (entries - 1) in-flight commands.
1628 */
1629 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1630 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1631 goto free_cq;
1632 }
1633
1634 return q;
1635
1636 free_cq:
1637 nvme_dmamem_free(sc, q->q_cq_dmamem);
1638 free_sq:
1639 nvme_dmamem_free(sc, q->q_sq_dmamem);
1640 free:
1641 kmem_free(q, sizeof(*q));
1642
1643 return NULL;
1644 }
1645
1646 static void
1647 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1648 {
1649 nvme_ccbs_free(q);
1650 mutex_destroy(&q->q_sq_mtx);
1651 mutex_destroy(&q->q_cq_mtx);
1652 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1653 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1654 nvme_dmamem_free(sc, q->q_cq_dmamem);
1655 nvme_dmamem_free(sc, q->q_sq_dmamem);
1656 kmem_free(q, sizeof(*q));
1657 }
1658
1659 int
1660 nvme_intr(void *xsc)
1661 {
1662 struct nvme_softc *sc = xsc;
1663
1664 /*
1665 * INTx is level triggered, controller deasserts the interrupt only
1666 * when we advance command queue head via write to the doorbell.
1667 * Tell the controller to block the interrupts while we process
1668 * the queue(s).
1669 */
1670 nvme_write4(sc, NVME_INTMS, 1);
1671
1672 softint_schedule(sc->sc_softih[0]);
1673
1674 /* don't know, might not have been for us */
1675 return 1;
1676 }
1677
1678 void
1679 nvme_softintr_intx(void *xq)
1680 {
1681 struct nvme_queue *q = xq;
1682 struct nvme_softc *sc = q->q_sc;
1683
1684 nvme_q_complete(sc, sc->sc_admin_q);
1685 if (sc->sc_q != NULL)
1686 nvme_q_complete(sc, sc->sc_q[0]);
1687
1688 /*
1689 * Processing done, tell controller to issue interrupts again. There
1690 * is no race, as NVMe spec requires the controller to maintain state,
1691 * and assert the interrupt whenever there are unacknowledged
1692 * completion queue entries.
1693 */
1694 nvme_write4(sc, NVME_INTMC, 1);
1695 }
1696
1697 int
1698 nvme_intr_msi(void *xq)
1699 {
1700 struct nvme_queue *q = xq;
1701
1702 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1703 && q->q_sc->sc_softih[q->q_id]);
1704
1705 /*
1706 * MSI/MSI-X are edge triggered, so can handover processing to softint
1707 * without masking the interrupt.
1708 */
1709 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1710
1711 return 1;
1712 }
1713
1714 void
1715 nvme_softintr_msi(void *xq)
1716 {
1717 struct nvme_queue *q = xq;
1718 struct nvme_softc *sc = q->q_sc;
1719
1720 nvme_q_complete(sc, q);
1721 }
1722
1723 static struct nvme_dmamem *
1724 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1725 {
1726 struct nvme_dmamem *ndm;
1727 int nsegs;
1728
1729 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1730 if (ndm == NULL)
1731 return NULL;
1732
1733 ndm->ndm_size = size;
1734
1735 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1736 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1737 goto ndmfree;
1738
1739 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1740 1, &nsegs, BUS_DMA_WAITOK) != 0)
1741 goto destroy;
1742
1743 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1744 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1745 goto free;
1746 memset(ndm->ndm_kva, 0, size);
1747
1748 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1749 NULL, BUS_DMA_WAITOK) != 0)
1750 goto unmap;
1751
1752 return ndm;
1753
1754 unmap:
1755 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1756 free:
1757 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1758 destroy:
1759 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1760 ndmfree:
1761 kmem_free(ndm, sizeof(*ndm));
1762 return NULL;
1763 }
1764
1765 static void
1766 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1767 {
1768 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1769 0, NVME_DMA_LEN(mem), ops);
1770 }
1771
1772 void
1773 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1774 {
1775 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1776 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1777 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1778 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1779 kmem_free(ndm, sizeof(*ndm));
1780 }
1781
1782 /*
1783 * ioctl
1784 */
1785
1786 dev_type_open(nvmeopen);
1787 dev_type_close(nvmeclose);
1788 dev_type_ioctl(nvmeioctl);
1789
1790 const struct cdevsw nvme_cdevsw = {
1791 .d_open = nvmeopen,
1792 .d_close = nvmeclose,
1793 .d_read = noread,
1794 .d_write = nowrite,
1795 .d_ioctl = nvmeioctl,
1796 .d_stop = nostop,
1797 .d_tty = notty,
1798 .d_poll = nopoll,
1799 .d_mmap = nommap,
1800 .d_kqfilter = nokqfilter,
1801 .d_discard = nodiscard,
1802 .d_flag = D_OTHER,
1803 };
1804
1805 /*
1806 * Accept an open operation on the control device.
1807 */
1808 int
1809 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1810 {
1811 struct nvme_softc *sc;
1812 int unit = minor(dev) / 0x10000;
1813 int nsid = minor(dev) & 0xffff;
1814 int nsidx;
1815
1816 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1817 return ENXIO;
1818 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1819 return ENXIO;
1820
1821 if (nsid == 0) {
1822 /* controller */
1823 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1824 return EBUSY;
1825 SET(sc->sc_flags, NVME_F_OPEN);
1826 } else {
1827 /* namespace */
1828 nsidx = nsid - 1;
1829 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1830 return ENXIO;
1831 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1832 return EBUSY;
1833 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1834 }
1835 return 0;
1836 }
1837
1838 /*
1839 * Accept the last close on the control device.
1840 */
1841 int
1842 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1843 {
1844 struct nvme_softc *sc;
1845 int unit = minor(dev) / 0x10000;
1846 int nsid = minor(dev) & 0xffff;
1847 int nsidx;
1848
1849 sc = device_lookup_private(&nvme_cd, unit);
1850 if (sc == NULL)
1851 return ENXIO;
1852
1853 if (nsid == 0) {
1854 /* controller */
1855 CLR(sc->sc_flags, NVME_F_OPEN);
1856 } else {
1857 /* namespace */
1858 nsidx = nsid - 1;
1859 if (nsidx >= sc->sc_nn)
1860 return ENXIO;
1861 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1862 }
1863
1864 return 0;
1865 }
1866
1867 /*
1868 * Handle control operations.
1869 */
1870 int
1871 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1872 {
1873 struct nvme_softc *sc;
1874 int unit = minor(dev) / 0x10000;
1875 int nsid = minor(dev) & 0xffff;
1876 struct nvme_pt_command *pt;
1877
1878 sc = device_lookup_private(&nvme_cd, unit);
1879 if (sc == NULL)
1880 return ENXIO;
1881
1882 switch (cmd) {
1883 case NVME_PASSTHROUGH_CMD:
1884 pt = data;
1885 return nvme_command_passthrough(sc, data,
1886 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1887 }
1888
1889 return ENOTTY;
1890 }
1891