nvme.c revision 1.38 1 /* $NetBSD: nvme.c,v 1.38 2018/04/18 10:05:59 nonaka Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.38 2018/04/18 10:05:59 nonaka Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
46
47 int nvme_adminq_size = 32;
48 int nvme_ioq_size = 1024;
49
50 static int nvme_print(void *, const char *);
51
52 static int nvme_ready(struct nvme_softc *, uint32_t);
53 static int nvme_enable(struct nvme_softc *, u_int);
54 static int nvme_disable(struct nvme_softc *);
55 static int nvme_shutdown(struct nvme_softc *);
56
57 #ifdef NVME_DEBUG
58 static void nvme_dumpregs(struct nvme_softc *);
59 #endif
60 static int nvme_identify(struct nvme_softc *, u_int);
61 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
62 void *);
63
64 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
65 static void nvme_ccbs_free(struct nvme_queue *);
66
67 static struct nvme_ccb *
68 nvme_ccb_get(struct nvme_queue *, bool);
69 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
70
71 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
72 struct nvme_ccb *, void (*)(struct nvme_queue *,
73 struct nvme_ccb *, void *), int);
74 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
78 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
79 struct nvme_cqe *);
80
81 static struct nvme_queue *
82 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
83 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
84 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
86 struct nvme_ccb *, void (*)(struct nvme_queue *,
87 struct nvme_ccb *, void *));
88 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
89 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
90 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
91 bool (*)(void *), void *);
92
93 static struct nvme_dmamem *
94 nvme_dmamem_alloc(struct nvme_softc *, size_t);
95 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
96 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
97 int);
98
99 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
100 void *);
101 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
102 struct nvme_cqe *);
103 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
108 void *);
109 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
110 struct nvme_cqe *);
111
112 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
113 void *);
114 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
115 struct nvme_cqe *);
116 static int nvme_command_passthrough(struct nvme_softc *,
117 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
118
119 static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
120
121 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
122 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
123 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
124 #define NVME_TIMO_SY 60 /* sync cache timeout */
125
126 #define nvme_read4(_s, _r) \
127 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
128 #define nvme_write4(_s, _r, _v) \
129 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
130 /*
131 * Some controllers, at least Apple NVMe, always require split
132 * transfers, so don't use bus_space_{read,write}_8() on LP64.
133 */
134 static inline uint64_t
135 nvme_read8(struct nvme_softc *sc, bus_size_t r)
136 {
137 uint64_t v;
138 uint32_t *a = (uint32_t *)&v;
139
140 #if _BYTE_ORDER == _LITTLE_ENDIAN
141 a[0] = nvme_read4(sc, r);
142 a[1] = nvme_read4(sc, r + 4);
143 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
144 a[1] = nvme_read4(sc, r);
145 a[0] = nvme_read4(sc, r + 4);
146 #endif
147
148 return v;
149 }
150
151 static inline void
152 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
153 {
154 uint32_t *a = (uint32_t *)&v;
155
156 #if _BYTE_ORDER == _LITTLE_ENDIAN
157 nvme_write4(sc, r, a[0]);
158 nvme_write4(sc, r + 4, a[1]);
159 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
160 nvme_write4(sc, r, a[1]);
161 nvme_write4(sc, r + 4, a[0]);
162 #endif
163 }
164 #define nvme_barrier(_s, _r, _l, _f) \
165 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
166
167 #ifdef NVME_DEBUG
168 static __used void
169 nvme_dumpregs(struct nvme_softc *sc)
170 {
171 uint64_t r8;
172 uint32_t r4;
173
174 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
175 r8 = nvme_read8(sc, NVME_CAP);
176 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
177 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
178 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
179 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
180 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
181 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
182 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
183 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
184 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
185 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
186 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
187 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
188
189 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
190
191 r4 = nvme_read4(sc, NVME_CC);
192 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
193 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
194 (1 << NVME_CC_IOCQES_R(r4)));
195 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
196 (1 << NVME_CC_IOSQES_R(r4)));
197 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
198 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
199 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
200 (1 << NVME_CC_MPS_R(r4)));
201 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
202 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
203
204 r4 = nvme_read4(sc, NVME_CSTS);
205 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
206 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
207 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
208 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
209
210 r4 = nvme_read4(sc, NVME_AQA);
211 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
212 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
213 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
214
215 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
216 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
217 #undef DEVNAME
218 }
219 #endif /* NVME_DEBUG */
220
221 static int
222 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
223 {
224 u_int i = 0;
225
226 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
227 if (i++ > sc->sc_rdy_to)
228 return ENXIO;
229
230 delay(1000);
231 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
232 }
233
234 return 0;
235 }
236
237 static int
238 nvme_enable(struct nvme_softc *sc, u_int mps)
239 {
240 uint32_t cc, csts;
241 int error;
242
243 cc = nvme_read4(sc, NVME_CC);
244 csts = nvme_read4(sc, NVME_CSTS);
245
246 /*
247 * See note in nvme_disable. Short circuit if we're already enabled.
248 */
249 if (ISSET(cc, NVME_CC_EN)) {
250 if (ISSET(csts, NVME_CSTS_RDY))
251 return 0;
252
253 goto waitready;
254 } else {
255 /* EN == 0 already wait for RDY == 0 or fail */
256 error = nvme_ready(sc, 0);
257 if (error)
258 return error;
259 }
260
261 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
262 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
263 delay(5000);
264 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267
268 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
269 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
270 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
271 delay(5000);
272
273 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
274 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
275 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
276 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
277 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
278 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
279 SET(cc, NVME_CC_MPS(mps));
280 SET(cc, NVME_CC_EN);
281
282 nvme_write4(sc, NVME_CC, cc);
283 nvme_barrier(sc, 0, sc->sc_ios,
284 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
285
286 waitready:
287 return nvme_ready(sc, NVME_CSTS_RDY);
288 }
289
290 static int
291 nvme_disable(struct nvme_softc *sc)
292 {
293 uint32_t cc, csts;
294 int error;
295
296 cc = nvme_read4(sc, NVME_CC);
297 csts = nvme_read4(sc, NVME_CSTS);
298
299 /*
300 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
301 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
302 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
303 * isn't the desired value. Short circuit if we're already disabled.
304 */
305 if (ISSET(cc, NVME_CC_EN)) {
306 if (!ISSET(csts, NVME_CSTS_RDY)) {
307 /* EN == 1, wait for RDY == 1 or fail */
308 error = nvme_ready(sc, NVME_CSTS_RDY);
309 if (error)
310 return error;
311 }
312 } else {
313 /* EN == 0 already wait for RDY == 0 */
314 if (!ISSET(csts, NVME_CSTS_RDY))
315 return 0;
316
317 goto waitready;
318 }
319
320 CLR(cc, NVME_CC_EN);
321 nvme_write4(sc, NVME_CC, cc);
322 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
323
324 /*
325 * Some drives have issues with accessing the mmio after we disable,
326 * so delay for a bit after we write the bit to cope with these issues.
327 */
328 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
329 delay(B4_CHK_RDY_DELAY_MS);
330
331 waitready:
332 return nvme_ready(sc, 0);
333 }
334
335 int
336 nvme_attach(struct nvme_softc *sc)
337 {
338 uint64_t cap;
339 uint32_t reg;
340 u_int dstrd;
341 u_int mps = PAGE_SHIFT;
342 u_int ioq_allocated;
343 uint16_t adminq_entries = nvme_adminq_size;
344 uint16_t ioq_entries = nvme_ioq_size;
345 int i;
346
347 reg = nvme_read4(sc, NVME_VS);
348 if (reg == 0xffffffff) {
349 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
350 return 1;
351 }
352
353 if (NVME_VS_TER(reg) == 0)
354 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
355 NVME_VS_MNR(reg));
356 else
357 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
358 NVME_VS_MNR(reg), NVME_VS_TER(reg));
359
360 cap = nvme_read8(sc, NVME_CAP);
361 dstrd = NVME_CAP_DSTRD(cap);
362 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
363 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
364 "is greater than CPU page size %u\n",
365 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
366 return 1;
367 }
368 if (NVME_CAP_MPSMAX(cap) < mps)
369 mps = NVME_CAP_MPSMAX(cap);
370 if (ioq_entries > NVME_CAP_MQES(cap))
371 ioq_entries = NVME_CAP_MQES(cap);
372
373 /* set initial values to be used for admin queue during probe */
374 sc->sc_rdy_to = NVME_CAP_TO(cap);
375 sc->sc_mps = 1 << mps;
376 sc->sc_mdts = MAXPHYS;
377 sc->sc_max_sgl = 2;
378
379 if (nvme_disable(sc) != 0) {
380 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
381 return 1;
382 }
383
384 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
385 if (sc->sc_admin_q == NULL) {
386 aprint_error_dev(sc->sc_dev,
387 "unable to allocate admin queue\n");
388 return 1;
389 }
390 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
391 goto free_admin_q;
392
393 if (nvme_enable(sc, mps) != 0) {
394 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
395 goto disestablish_admin_q;
396 }
397
398 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
399 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
400 goto disable;
401 }
402
403 /* we know how big things are now */
404 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
405
406 /* reallocate ccbs of admin queue with new max sgl. */
407 nvme_ccbs_free(sc->sc_admin_q);
408 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
409
410 if (sc->sc_use_mq) {
411 /* Limit the number of queues to the number allocated in HW */
412 if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
413 aprint_error_dev(sc->sc_dev,
414 "unable to get number of queues\n");
415 goto disable;
416 }
417 if (sc->sc_nq > ioq_allocated)
418 sc->sc_nq = ioq_allocated;
419 }
420
421 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
422 for (i = 0; i < sc->sc_nq; i++) {
423 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
424 if (sc->sc_q[i] == NULL) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to allocate io queue\n");
427 goto free_q;
428 }
429 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
430 aprint_error_dev(sc->sc_dev,
431 "unable to create io queue\n");
432 nvme_q_free(sc, sc->sc_q[i]);
433 goto free_q;
434 }
435 }
436
437 if (!sc->sc_use_mq)
438 nvme_write4(sc, NVME_INTMC, 1);
439
440 /* probe subdevices */
441 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
442 KM_SLEEP);
443 nvme_rescan(sc->sc_dev, "nvme", &i);
444
445 return 0;
446
447 free_q:
448 while (--i >= 0) {
449 nvme_q_delete(sc, sc->sc_q[i]);
450 nvme_q_free(sc, sc->sc_q[i]);
451 }
452 disable:
453 nvme_disable(sc);
454 disestablish_admin_q:
455 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
456 free_admin_q:
457 nvme_q_free(sc, sc->sc_admin_q);
458
459 return 1;
460 }
461
462 int
463 nvme_rescan(device_t self, const char *attr, const int *flags)
464 {
465 struct nvme_softc *sc = device_private(self);
466 struct nvme_attach_args naa;
467 uint64_t cap;
468 int ioq_entries = nvme_ioq_size;
469 int i;
470
471 cap = nvme_read8(sc, NVME_CAP);
472 if (ioq_entries > NVME_CAP_MQES(cap))
473 ioq_entries = NVME_CAP_MQES(cap);
474
475 for (i = 0; i < sc->sc_nn; i++) {
476 if (sc->sc_namespaces[i].dev)
477 continue;
478 memset(&naa, 0, sizeof(naa));
479 naa.naa_nsid = i + 1;
480 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
481 naa.naa_maxphys = sc->sc_mdts;
482 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
483 nvme_print);
484 }
485 return 0;
486 }
487
488 static int
489 nvme_print(void *aux, const char *pnp)
490 {
491 struct nvme_attach_args *naa = aux;
492
493 if (pnp)
494 aprint_normal("at %s", pnp);
495
496 if (naa->naa_nsid > 0)
497 aprint_normal(" nsid %d", naa->naa_nsid);
498
499 return UNCONF;
500 }
501
502 int
503 nvme_detach(struct nvme_softc *sc, int flags)
504 {
505 int i, error;
506
507 error = config_detach_children(sc->sc_dev, flags);
508 if (error)
509 return error;
510
511 error = nvme_shutdown(sc);
512 if (error)
513 return error;
514
515 /* from now on we are committed to detach, following will never fail */
516 for (i = 0; i < sc->sc_nq; i++)
517 nvme_q_free(sc, sc->sc_q[i]);
518 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
519 nvme_q_free(sc, sc->sc_admin_q);
520
521 return 0;
522 }
523
524 static int
525 nvme_shutdown(struct nvme_softc *sc)
526 {
527 uint32_t cc, csts;
528 bool disabled = false;
529 int i;
530
531 if (!sc->sc_use_mq)
532 nvme_write4(sc, NVME_INTMS, 1);
533
534 for (i = 0; i < sc->sc_nq; i++) {
535 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
536 aprint_error_dev(sc->sc_dev,
537 "unable to delete io queue %d, disabling\n", i + 1);
538 disabled = true;
539 }
540 }
541 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
542 if (disabled)
543 goto disable;
544
545 cc = nvme_read4(sc, NVME_CC);
546 CLR(cc, NVME_CC_SHN_MASK);
547 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
548 nvme_write4(sc, NVME_CC, cc);
549
550 for (i = 0; i < 4000; i++) {
551 nvme_barrier(sc, 0, sc->sc_ios,
552 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
553 csts = nvme_read4(sc, NVME_CSTS);
554 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
555 return 0;
556
557 delay(1000);
558 }
559
560 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
561
562 disable:
563 nvme_disable(sc);
564 return 0;
565 }
566
567 void
568 nvme_childdet(device_t self, device_t child)
569 {
570 struct nvme_softc *sc = device_private(self);
571 int i;
572
573 for (i = 0; i < sc->sc_nn; i++) {
574 if (sc->sc_namespaces[i].dev == child) {
575 /* Already freed ns->ident. */
576 sc->sc_namespaces[i].dev = NULL;
577 break;
578 }
579 }
580 }
581
582 int
583 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
584 {
585 struct nvme_sqe sqe;
586 struct nvm_identify_namespace *identify;
587 struct nvme_dmamem *mem;
588 struct nvme_ccb *ccb;
589 struct nvme_namespace *ns;
590 int rv;
591
592 KASSERT(nsid > 0);
593
594 ccb = nvme_ccb_get(sc->sc_admin_q, false);
595 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
596
597 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
598 if (mem == NULL) {
599 nvme_ccb_put(sc->sc_admin_q, ccb);
600 return ENOMEM;
601 }
602
603 memset(&sqe, 0, sizeof(sqe));
604 sqe.opcode = NVM_ADMIN_IDENTIFY;
605 htolem32(&sqe.nsid, nsid);
606 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
607 htolem32(&sqe.cdw10, 0);
608
609 ccb->ccb_done = nvme_empty_done;
610 ccb->ccb_cookie = &sqe;
611
612 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
613 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
614 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
615
616 nvme_ccb_put(sc->sc_admin_q, ccb);
617
618 if (rv != 0) {
619 rv = EIO;
620 goto done;
621 }
622
623 /* commit */
624
625 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
626 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
627 //memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
628
629 ns = nvme_ns_get(sc, nsid);
630 KASSERT(ns);
631 KASSERT(ns->ident == NULL);
632 ns->ident = identify;
633
634 done:
635 nvme_dmamem_free(sc, mem);
636
637 return rv;
638 }
639
640 int
641 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
642 struct buf *bp, void *data, size_t datasize,
643 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
644 {
645 struct nvme_queue *q = nvme_get_q(sc);
646 struct nvme_ccb *ccb;
647 bus_dmamap_t dmap;
648 int i, error;
649
650 ccb = nvme_ccb_get(q, false);
651 if (ccb == NULL)
652 return EAGAIN;
653
654 ccb->ccb_done = nvme_ns_io_done;
655 ccb->ccb_cookie = cookie;
656
657 /* namespace context */
658 ccb->nnc_nsid = nsid;
659 ccb->nnc_flags = flags;
660 ccb->nnc_buf = bp;
661 ccb->nnc_datasize = datasize;
662 ccb->nnc_secsize = secsize;
663 ccb->nnc_blkno = blkno;
664 ccb->nnc_done = nnc_done;
665
666 dmap = ccb->ccb_dmamap;
667 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
668 datasize, NULL,
669 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
670 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
671 (ISSET(flags, NVME_NS_CTX_F_READ) ?
672 BUS_DMA_READ : BUS_DMA_WRITE));
673 if (error) {
674 nvme_ccb_put(q, ccb);
675 return error;
676 }
677
678 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
679 ISSET(flags, NVME_NS_CTX_F_READ) ?
680 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
681
682 if (dmap->dm_nsegs > 2) {
683 for (i = 1; i < dmap->dm_nsegs; i++) {
684 htolem64(&ccb->ccb_prpl[i - 1],
685 dmap->dm_segs[i].ds_addr);
686 }
687 bus_dmamap_sync(sc->sc_dmat,
688 NVME_DMA_MAP(q->q_ccb_prpls),
689 ccb->ccb_prpl_off,
690 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
691 BUS_DMASYNC_PREWRITE);
692 }
693
694 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
695 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
696 return EIO;
697 return 0;
698 }
699
700 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
701 return 0;
702 }
703
704 static void
705 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
706 {
707 struct nvme_sqe_io *sqe = slot;
708 bus_dmamap_t dmap = ccb->ccb_dmamap;
709
710 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
711 NVM_CMD_READ : NVM_CMD_WRITE;
712 htolem32(&sqe->nsid, ccb->nnc_nsid);
713
714 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
715 switch (dmap->dm_nsegs) {
716 case 1:
717 break;
718 case 2:
719 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
720 break;
721 default:
722 /* the prp list is already set up and synced */
723 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
724 break;
725 }
726
727 htolem64(&sqe->slba, ccb->nnc_blkno);
728
729 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
730 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
731
732 /* guaranteed by upper layers, but check just in case */
733 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
734 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
735 }
736
737 static void
738 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
739 struct nvme_cqe *cqe)
740 {
741 struct nvme_softc *sc = q->q_sc;
742 bus_dmamap_t dmap = ccb->ccb_dmamap;
743 void *nnc_cookie = ccb->ccb_cookie;
744 nvme_nnc_done nnc_done = ccb->nnc_done;
745 struct buf *bp = ccb->nnc_buf;
746
747 if (dmap->dm_nsegs > 2) {
748 bus_dmamap_sync(sc->sc_dmat,
749 NVME_DMA_MAP(q->q_ccb_prpls),
750 ccb->ccb_prpl_off,
751 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
752 BUS_DMASYNC_POSTWRITE);
753 }
754
755 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
756 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
757 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
758
759 bus_dmamap_unload(sc->sc_dmat, dmap);
760 nvme_ccb_put(q, ccb);
761
762 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
763 }
764
765 /*
766 * If there is no volatile write cache, it makes no sense to issue
767 * flush commands or query for the status.
768 */
769 static bool
770 nvme_has_volatile_write_cache(struct nvme_softc *sc)
771 {
772 /* sc_identify is filled during attachment */
773 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
774 }
775
776 static bool
777 nvme_ns_sync_finished(void *cookie)
778 {
779 int *result = cookie;
780
781 return (*result != 0);
782 }
783
784 int
785 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
786 {
787 struct nvme_queue *q = nvme_get_q(sc);
788 struct nvme_ccb *ccb;
789 int result = 0;
790
791 if (!nvme_has_volatile_write_cache(sc)) {
792 /* cache not present, no value in trying to flush it */
793 return 0;
794 }
795
796 ccb = nvme_ccb_get(q, true);
797 if (ccb == NULL)
798 return EAGAIN;
799
800 ccb->ccb_done = nvme_ns_sync_done;
801 ccb->ccb_cookie = &result;
802
803 /* namespace context */
804 ccb->nnc_nsid = nsid;
805 ccb->nnc_flags = flags;
806 ccb->nnc_done = NULL;
807
808 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
809 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
810 return EIO;
811 return 0;
812 }
813
814 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
815
816 /* wait for completion */
817 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
818 KASSERT(result != 0);
819
820 return (result > 0) ? 0 : EIO;
821 }
822
823 static void
824 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
825 {
826 struct nvme_sqe *sqe = slot;
827
828 sqe->opcode = NVM_CMD_FLUSH;
829 htolem32(&sqe->nsid, ccb->nnc_nsid);
830 }
831
832 static void
833 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
834 struct nvme_cqe *cqe)
835 {
836 int *result = ccb->ccb_cookie;
837 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
838
839 if (status == NVME_CQE_SC_SUCCESS)
840 *result = 1;
841 else
842 *result = -1;
843
844 nvme_ccb_put(q, ccb);
845 }
846
847 static bool
848 nvme_getcache_finished(void *xc)
849 {
850 int *addr = xc;
851
852 return (*addr != 0);
853 }
854
855 /*
856 * Get status of volatile write cache. Always asynchronous.
857 */
858 int
859 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
860 {
861 struct nvme_ccb *ccb;
862 struct nvme_queue *q = sc->sc_admin_q;
863 int result = 0, error;
864
865 if (!nvme_has_volatile_write_cache(sc)) {
866 /* cache simply not present */
867 *addr = 0;
868 return 0;
869 }
870
871 ccb = nvme_ccb_get(q, true);
872 KASSERT(ccb != NULL);
873
874 ccb->ccb_done = nvme_getcache_done;
875 ccb->ccb_cookie = &result;
876
877 /* namespace context */
878 ccb->nnc_flags = 0;
879 ccb->nnc_done = NULL;
880
881 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
882
883 /* wait for completion */
884 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
885 KASSERT(result != 0);
886
887 if (result > 0) {
888 *addr = result;
889 error = 0;
890 } else
891 error = EINVAL;
892
893 return error;
894 }
895
896 static void
897 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
898 {
899 struct nvme_sqe *sqe = slot;
900
901 sqe->opcode = NVM_ADMIN_GET_FEATURES;
902 sqe->cdw10 = NVM_FEATURE_VOLATILE_WRITE_CACHE;
903 }
904
905 static void
906 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
907 struct nvme_cqe *cqe)
908 {
909 int *addr = ccb->ccb_cookie;
910 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
911 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
912 int result;
913
914 if (status == NVME_CQE_SC_SUCCESS) {
915 result = 0;
916
917 /*
918 * DPO not supported, Dataset Management (DSM) field doesn't
919 * specify the same semantics. FUA is always supported.
920 */
921 result = DKCACHE_FUA;
922
923 if (cdw0 & NVME_CQE_CDW0_VWC_WCE)
924 result |= DKCACHE_WRITE;
925
926 /*
927 * If volatile write cache is present, the flag shall also be
928 * settable.
929 */
930 result |= DKCACHE_WCHANGE;
931 } else {
932 result = -1;
933 }
934
935 *addr = result;
936
937 nvme_ccb_put(q, ccb);
938 }
939
940 void
941 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
942 {
943 struct nvme_namespace *ns;
944 struct nvm_identify_namespace *identify;
945
946 ns = nvme_ns_get(sc, nsid);
947 KASSERT(ns);
948
949 identify = ns->ident;
950 ns->ident = NULL;
951 if (identify != NULL)
952 kmem_free(identify, sizeof(*identify));
953 }
954
955 struct nvme_pt_state {
956 struct nvme_pt_command *pt;
957 bool finished;
958 };
959
960 static void
961 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
962 {
963 struct nvme_softc *sc = q->q_sc;
964 struct nvme_sqe *sqe = slot;
965 struct nvme_pt_state *state = ccb->ccb_cookie;
966 struct nvme_pt_command *pt = state->pt;
967 bus_dmamap_t dmap = ccb->ccb_dmamap;
968 int i;
969
970 sqe->opcode = pt->cmd.opcode;
971 htolem32(&sqe->nsid, pt->cmd.nsid);
972
973 if (pt->buf != NULL && pt->len > 0) {
974 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
975 switch (dmap->dm_nsegs) {
976 case 1:
977 break;
978 case 2:
979 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
980 break;
981 default:
982 for (i = 1; i < dmap->dm_nsegs; i++) {
983 htolem64(&ccb->ccb_prpl[i - 1],
984 dmap->dm_segs[i].ds_addr);
985 }
986 bus_dmamap_sync(sc->sc_dmat,
987 NVME_DMA_MAP(q->q_ccb_prpls),
988 ccb->ccb_prpl_off,
989 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
990 BUS_DMASYNC_PREWRITE);
991 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
992 break;
993 }
994 }
995
996 htolem32(&sqe->cdw10, pt->cmd.cdw10);
997 htolem32(&sqe->cdw11, pt->cmd.cdw11);
998 htolem32(&sqe->cdw12, pt->cmd.cdw12);
999 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1000 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1001 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1002 }
1003
1004 static void
1005 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1006 {
1007 struct nvme_softc *sc = q->q_sc;
1008 struct nvme_pt_state *state = ccb->ccb_cookie;
1009 struct nvme_pt_command *pt = state->pt;
1010 bus_dmamap_t dmap = ccb->ccb_dmamap;
1011
1012 if (pt->buf != NULL && pt->len > 0) {
1013 if (dmap->dm_nsegs > 2) {
1014 bus_dmamap_sync(sc->sc_dmat,
1015 NVME_DMA_MAP(q->q_ccb_prpls),
1016 ccb->ccb_prpl_off,
1017 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1018 BUS_DMASYNC_POSTWRITE);
1019 }
1020
1021 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1022 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1023 bus_dmamap_unload(sc->sc_dmat, dmap);
1024 }
1025
1026 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1027 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1028
1029 state->finished = true;
1030
1031 nvme_ccb_put(q, ccb);
1032 }
1033
1034 static bool
1035 nvme_pt_finished(void *cookie)
1036 {
1037 struct nvme_pt_state *state = cookie;
1038
1039 return state->finished;
1040 }
1041
1042 static int
1043 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1044 uint16_t nsid, struct lwp *l, bool is_adminq)
1045 {
1046 struct nvme_queue *q;
1047 struct nvme_ccb *ccb;
1048 void *buf = NULL;
1049 struct nvme_pt_state state;
1050 int error;
1051
1052 /* limit command size to maximum data transfer size */
1053 if ((pt->buf == NULL && pt->len > 0) ||
1054 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1055 return EINVAL;
1056
1057 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1058 ccb = nvme_ccb_get(q, true);
1059 KASSERT(ccb != NULL);
1060
1061 if (pt->buf != NULL) {
1062 KASSERT(pt->len > 0);
1063 buf = kmem_alloc(pt->len, KM_SLEEP);
1064 if (!pt->is_read) {
1065 error = copyin(pt->buf, buf, pt->len);
1066 if (error)
1067 goto kmem_free;
1068 }
1069 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1070 pt->len, NULL,
1071 BUS_DMA_WAITOK |
1072 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1073 if (error)
1074 goto kmem_free;
1075 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1076 0, ccb->ccb_dmamap->dm_mapsize,
1077 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1078 }
1079
1080 memset(&state, 0, sizeof(state));
1081 state.pt = pt;
1082 state.finished = false;
1083
1084 ccb->ccb_done = nvme_pt_done;
1085 ccb->ccb_cookie = &state;
1086
1087 pt->cmd.nsid = nsid;
1088
1089 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1090
1091 /* wait for completion */
1092 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1093 KASSERT(state.finished);
1094
1095 error = 0;
1096
1097 if (buf != NULL) {
1098 if (error == 0 && pt->is_read)
1099 error = copyout(buf, pt->buf, pt->len);
1100 kmem_free:
1101 kmem_free(buf, pt->len);
1102 }
1103
1104 return error;
1105 }
1106
1107 static void
1108 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1109 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1110 {
1111 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1112 uint32_t tail;
1113
1114 mutex_enter(&q->q_sq_mtx);
1115 tail = q->q_sq_tail;
1116 if (++q->q_sq_tail >= q->q_entries)
1117 q->q_sq_tail = 0;
1118
1119 sqe += tail;
1120
1121 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1122 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1123 memset(sqe, 0, sizeof(*sqe));
1124 (*fill)(q, ccb, sqe);
1125 sqe->cid = ccb->ccb_id;
1126 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1127 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1128
1129 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1130 mutex_exit(&q->q_sq_mtx);
1131 }
1132
1133 struct nvme_poll_state {
1134 struct nvme_sqe s;
1135 struct nvme_cqe c;
1136 void *cookie;
1137 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1138 };
1139
1140 static int
1141 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1142 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1143 {
1144 struct nvme_poll_state state;
1145 uint16_t flags;
1146 int step = 10;
1147 int maxloop = timo_sec * 1000000 / step;
1148 int error = 0;
1149
1150 memset(&state, 0, sizeof(state));
1151 (*fill)(q, ccb, &state.s);
1152
1153 state.done = ccb->ccb_done;
1154 state.cookie = ccb->ccb_cookie;
1155
1156 ccb->ccb_done = nvme_poll_done;
1157 ccb->ccb_cookie = &state;
1158
1159 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1160 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1161 if (nvme_q_complete(sc, q) == 0)
1162 delay(step);
1163
1164 if (timo_sec >= 0 && --maxloop <= 0) {
1165 error = ETIMEDOUT;
1166 break;
1167 }
1168 }
1169
1170 if (error == 0) {
1171 flags = lemtoh16(&state.c.flags);
1172 return flags & ~NVME_CQE_PHASE;
1173 } else {
1174 /*
1175 * If it succeds later, it would hit ccb which will have been
1176 * already reused for something else. Not good. Cross
1177 * fingers and hope for best. XXX do controller reset?
1178 */
1179 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1180
1181 /* Invoke the callback to clean state anyway */
1182 struct nvme_cqe cqe;
1183 memset(&cqe, 0, sizeof(cqe));
1184 ccb->ccb_done(q, ccb, &cqe);
1185
1186 return 1;
1187 }
1188 }
1189
1190 static void
1191 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1192 {
1193 struct nvme_sqe *sqe = slot;
1194 struct nvme_poll_state *state = ccb->ccb_cookie;
1195
1196 *sqe = state->s;
1197 }
1198
1199 static void
1200 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1201 struct nvme_cqe *cqe)
1202 {
1203 struct nvme_poll_state *state = ccb->ccb_cookie;
1204
1205 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1206 state->c = *cqe;
1207
1208 ccb->ccb_cookie = state->cookie;
1209 state->done(q, ccb, &state->c);
1210 }
1211
1212 static void
1213 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1214 {
1215 struct nvme_sqe *src = ccb->ccb_cookie;
1216 struct nvme_sqe *dst = slot;
1217
1218 *dst = *src;
1219 }
1220
1221 static void
1222 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1223 struct nvme_cqe *cqe)
1224 {
1225 }
1226
1227 static int
1228 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1229 {
1230 struct nvme_ccb *ccb;
1231 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1232 uint16_t flags;
1233 int rv = 0;
1234
1235 mutex_enter(&q->q_cq_mtx);
1236
1237 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1238 for (;;) {
1239 cqe = &ring[q->q_cq_head];
1240 flags = lemtoh16(&cqe->flags);
1241 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1242 break;
1243
1244 ccb = &q->q_ccbs[cqe->cid];
1245
1246 if (++q->q_cq_head >= q->q_entries) {
1247 q->q_cq_head = 0;
1248 q->q_cq_phase ^= NVME_CQE_PHASE;
1249 }
1250
1251 #ifdef DEBUG
1252 /*
1253 * If we get spurious completion notification, something
1254 * is seriously hosed up. Very likely DMA to some random
1255 * memory place happened, so just bail out.
1256 */
1257 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1258 panic("%s: invalid ccb detected",
1259 device_xname(sc->sc_dev));
1260 /* NOTREACHED */
1261 }
1262 #endif
1263
1264 rv++;
1265
1266 /*
1267 * Unlock the mutex before calling the ccb_done callback
1268 * and re-lock afterwards. The callback triggers lddone()
1269 * which schedules another i/o, and also calls nvme_ccb_put().
1270 * Unlock/relock avoids possibility of deadlock.
1271 */
1272 mutex_exit(&q->q_cq_mtx);
1273 ccb->ccb_done(q, ccb, cqe);
1274 mutex_enter(&q->q_cq_mtx);
1275 }
1276 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1277
1278 if (rv)
1279 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1280
1281 mutex_exit(&q->q_cq_mtx);
1282
1283 return rv;
1284 }
1285
1286 static void
1287 nvme_q_wait_complete(struct nvme_softc *sc,
1288 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1289 {
1290 mutex_enter(&q->q_ccb_mtx);
1291 if (finished(cookie))
1292 goto out;
1293
1294 for(;;) {
1295 q->q_ccb_waiting = true;
1296 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1297
1298 if (finished(cookie))
1299 break;
1300 }
1301
1302 out:
1303 mutex_exit(&q->q_ccb_mtx);
1304 }
1305
1306 static int
1307 nvme_identify(struct nvme_softc *sc, u_int mps)
1308 {
1309 char sn[41], mn[81], fr[17];
1310 struct nvm_identify_controller *identify;
1311 struct nvme_dmamem *mem;
1312 struct nvme_ccb *ccb;
1313 u_int mdts;
1314 int rv = 1;
1315
1316 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1317 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1318
1319 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1320 if (mem == NULL)
1321 return 1;
1322
1323 ccb->ccb_done = nvme_empty_done;
1324 ccb->ccb_cookie = mem;
1325
1326 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1327 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1328 NVME_TIMO_IDENT);
1329 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1330
1331 nvme_ccb_put(sc->sc_admin_q, ccb);
1332
1333 if (rv != 0)
1334 goto done;
1335
1336 identify = NVME_DMA_KVA(mem);
1337
1338 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1339 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1340 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1341 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1342 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1343 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1344 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1345 sn);
1346
1347 if (identify->mdts > 0) {
1348 mdts = (1 << identify->mdts) * (1 << mps);
1349 if (mdts < sc->sc_mdts)
1350 sc->sc_mdts = mdts;
1351 }
1352
1353 sc->sc_nn = lemtoh32(&identify->nn);
1354
1355 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1356
1357 done:
1358 nvme_dmamem_free(sc, mem);
1359
1360 return rv;
1361 }
1362
1363 static int
1364 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1365 {
1366 struct nvme_sqe_q sqe;
1367 struct nvme_ccb *ccb;
1368 int rv;
1369
1370 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1371 return 1;
1372
1373 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1374 KASSERT(ccb != NULL);
1375
1376 ccb->ccb_done = nvme_empty_done;
1377 ccb->ccb_cookie = &sqe;
1378
1379 memset(&sqe, 0, sizeof(sqe));
1380 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1381 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1382 htolem16(&sqe.qsize, q->q_entries - 1);
1383 htolem16(&sqe.qid, q->q_id);
1384 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1385 if (sc->sc_use_mq)
1386 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1387
1388 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1389 if (rv != 0)
1390 goto fail;
1391
1392 ccb->ccb_done = nvme_empty_done;
1393 ccb->ccb_cookie = &sqe;
1394
1395 memset(&sqe, 0, sizeof(sqe));
1396 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1397 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1398 htolem16(&sqe.qsize, q->q_entries - 1);
1399 htolem16(&sqe.qid, q->q_id);
1400 htolem16(&sqe.cqid, q->q_id);
1401 sqe.qflags = NVM_SQE_Q_PC;
1402
1403 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1404 if (rv != 0)
1405 goto fail;
1406
1407 fail:
1408 nvme_ccb_put(sc->sc_admin_q, ccb);
1409 return rv;
1410 }
1411
1412 static int
1413 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1414 {
1415 struct nvme_sqe_q sqe;
1416 struct nvme_ccb *ccb;
1417 int rv;
1418
1419 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1420 KASSERT(ccb != NULL);
1421
1422 ccb->ccb_done = nvme_empty_done;
1423 ccb->ccb_cookie = &sqe;
1424
1425 memset(&sqe, 0, sizeof(sqe));
1426 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1427 htolem16(&sqe.qid, q->q_id);
1428
1429 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1430 if (rv != 0)
1431 goto fail;
1432
1433 ccb->ccb_done = nvme_empty_done;
1434 ccb->ccb_cookie = &sqe;
1435
1436 memset(&sqe, 0, sizeof(sqe));
1437 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1438 htolem16(&sqe.qid, q->q_id);
1439
1440 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1441 if (rv != 0)
1442 goto fail;
1443
1444 fail:
1445 nvme_ccb_put(sc->sc_admin_q, ccb);
1446
1447 if (rv == 0 && sc->sc_use_mq) {
1448 if (sc->sc_intr_disestablish(sc, q->q_id))
1449 rv = 1;
1450 }
1451
1452 return rv;
1453 }
1454
1455 static void
1456 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1457 {
1458 struct nvme_sqe *sqe = slot;
1459 struct nvme_dmamem *mem = ccb->ccb_cookie;
1460
1461 sqe->opcode = NVM_ADMIN_IDENTIFY;
1462 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1463 htolem32(&sqe->cdw10, 1);
1464 }
1465
1466 static int
1467 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
1468 {
1469 struct nvme_pt_state state;
1470 struct nvme_pt_command pt;
1471 struct nvme_ccb *ccb;
1472 uint16_t ncqa, nsqa;
1473 int rv;
1474
1475 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1476 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1477
1478 memset(&pt, 0, sizeof(pt));
1479 pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
1480 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1481
1482 memset(&state, 0, sizeof(state));
1483 state.pt = &pt;
1484 state.finished = false;
1485
1486 ccb->ccb_done = nvme_pt_done;
1487 ccb->ccb_cookie = &state;
1488
1489 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1490
1491 if (rv != 0) {
1492 *nqap = 0;
1493 return EIO;
1494 }
1495
1496 ncqa = pt.cpl.cdw0 >> 16;
1497 nsqa = pt.cpl.cdw0 & 0xffff;
1498 *nqap = MIN(ncqa, nsqa) + 1;
1499
1500 return 0;
1501 }
1502
1503 static int
1504 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1505 {
1506 struct nvme_softc *sc = q->q_sc;
1507 struct nvme_ccb *ccb;
1508 bus_addr_t off;
1509 uint64_t *prpl;
1510 u_int i;
1511
1512 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1513 cv_init(&q->q_ccb_wait, "nvmeqw");
1514 q->q_ccb_waiting = false;
1515 SIMPLEQ_INIT(&q->q_ccb_list);
1516
1517 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1518
1519 q->q_nccbs = nccbs;
1520 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1521 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1522
1523 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1524 off = 0;
1525
1526 for (i = 0; i < nccbs; i++) {
1527 ccb = &q->q_ccbs[i];
1528
1529 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1530 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1531 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1532 &ccb->ccb_dmamap) != 0)
1533 goto free_maps;
1534
1535 ccb->ccb_id = i;
1536 ccb->ccb_prpl = prpl;
1537 ccb->ccb_prpl_off = off;
1538 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1539
1540 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1541
1542 prpl += sc->sc_max_sgl;
1543 off += sizeof(*prpl) * sc->sc_max_sgl;
1544 }
1545
1546 return 0;
1547
1548 free_maps:
1549 nvme_ccbs_free(q);
1550 return 1;
1551 }
1552
1553 static struct nvme_ccb *
1554 nvme_ccb_get(struct nvme_queue *q, bool wait)
1555 {
1556 struct nvme_ccb *ccb = NULL;
1557
1558 mutex_enter(&q->q_ccb_mtx);
1559 again:
1560 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1561 if (ccb != NULL) {
1562 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1563 #ifdef DEBUG
1564 ccb->ccb_cookie = NULL;
1565 #endif
1566 } else {
1567 if (__predict_false(wait)) {
1568 q->q_ccb_waiting = true;
1569 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1570 goto again;
1571 }
1572 }
1573 mutex_exit(&q->q_ccb_mtx);
1574
1575 return ccb;
1576 }
1577
1578 static void
1579 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1580 {
1581
1582 mutex_enter(&q->q_ccb_mtx);
1583 #ifdef DEBUG
1584 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1585 #endif
1586 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1587
1588 /* It's unlikely there are any waiters, it's not used for regular I/O */
1589 if (__predict_false(q->q_ccb_waiting)) {
1590 q->q_ccb_waiting = false;
1591 cv_broadcast(&q->q_ccb_wait);
1592 }
1593
1594 mutex_exit(&q->q_ccb_mtx);
1595 }
1596
1597 static void
1598 nvme_ccbs_free(struct nvme_queue *q)
1599 {
1600 struct nvme_softc *sc = q->q_sc;
1601 struct nvme_ccb *ccb;
1602
1603 mutex_enter(&q->q_ccb_mtx);
1604 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1605 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1606 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1607 }
1608 mutex_exit(&q->q_ccb_mtx);
1609
1610 nvme_dmamem_free(sc, q->q_ccb_prpls);
1611 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1612 q->q_ccbs = NULL;
1613 cv_destroy(&q->q_ccb_wait);
1614 mutex_destroy(&q->q_ccb_mtx);
1615 }
1616
1617 static struct nvme_queue *
1618 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1619 {
1620 struct nvme_queue *q;
1621
1622 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1623 q->q_sc = sc;
1624 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1625 sizeof(struct nvme_sqe) * entries);
1626 if (q->q_sq_dmamem == NULL)
1627 goto free;
1628
1629 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1630 sizeof(struct nvme_cqe) * entries);
1631 if (q->q_cq_dmamem == NULL)
1632 goto free_sq;
1633
1634 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1635 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1636
1637 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1638 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1639 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1640 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1641 q->q_id = id;
1642 q->q_entries = entries;
1643 q->q_sq_tail = 0;
1644 q->q_cq_head = 0;
1645 q->q_cq_phase = NVME_CQE_PHASE;
1646
1647 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1648 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1649
1650 /*
1651 * Due to definition of full and empty queue (queue is empty
1652 * when head == tail, full when tail is one less then head),
1653 * we can actually only have (entries - 1) in-flight commands.
1654 */
1655 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1656 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1657 goto free_cq;
1658 }
1659
1660 return q;
1661
1662 free_cq:
1663 nvme_dmamem_free(sc, q->q_cq_dmamem);
1664 free_sq:
1665 nvme_dmamem_free(sc, q->q_sq_dmamem);
1666 free:
1667 kmem_free(q, sizeof(*q));
1668
1669 return NULL;
1670 }
1671
1672 static void
1673 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1674 {
1675 nvme_ccbs_free(q);
1676 mutex_destroy(&q->q_sq_mtx);
1677 mutex_destroy(&q->q_cq_mtx);
1678 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1679 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1680 nvme_dmamem_free(sc, q->q_cq_dmamem);
1681 nvme_dmamem_free(sc, q->q_sq_dmamem);
1682 kmem_free(q, sizeof(*q));
1683 }
1684
1685 int
1686 nvme_intr(void *xsc)
1687 {
1688 struct nvme_softc *sc = xsc;
1689
1690 /*
1691 * INTx is level triggered, controller deasserts the interrupt only
1692 * when we advance command queue head via write to the doorbell.
1693 * Tell the controller to block the interrupts while we process
1694 * the queue(s).
1695 */
1696 nvme_write4(sc, NVME_INTMS, 1);
1697
1698 softint_schedule(sc->sc_softih[0]);
1699
1700 /* don't know, might not have been for us */
1701 return 1;
1702 }
1703
1704 void
1705 nvme_softintr_intx(void *xq)
1706 {
1707 struct nvme_queue *q = xq;
1708 struct nvme_softc *sc = q->q_sc;
1709
1710 nvme_q_complete(sc, sc->sc_admin_q);
1711 if (sc->sc_q != NULL)
1712 nvme_q_complete(sc, sc->sc_q[0]);
1713
1714 /*
1715 * Processing done, tell controller to issue interrupts again. There
1716 * is no race, as NVMe spec requires the controller to maintain state,
1717 * and assert the interrupt whenever there are unacknowledged
1718 * completion queue entries.
1719 */
1720 nvme_write4(sc, NVME_INTMC, 1);
1721 }
1722
1723 int
1724 nvme_intr_msi(void *xq)
1725 {
1726 struct nvme_queue *q = xq;
1727
1728 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1729 && q->q_sc->sc_softih[q->q_id]);
1730
1731 /*
1732 * MSI/MSI-X are edge triggered, so can handover processing to softint
1733 * without masking the interrupt.
1734 */
1735 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1736
1737 return 1;
1738 }
1739
1740 void
1741 nvme_softintr_msi(void *xq)
1742 {
1743 struct nvme_queue *q = xq;
1744 struct nvme_softc *sc = q->q_sc;
1745
1746 nvme_q_complete(sc, q);
1747 }
1748
1749 static struct nvme_dmamem *
1750 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1751 {
1752 struct nvme_dmamem *ndm;
1753 int nsegs;
1754
1755 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1756 if (ndm == NULL)
1757 return NULL;
1758
1759 ndm->ndm_size = size;
1760
1761 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1762 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1763 goto ndmfree;
1764
1765 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1766 1, &nsegs, BUS_DMA_WAITOK) != 0)
1767 goto destroy;
1768
1769 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1770 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1771 goto free;
1772 memset(ndm->ndm_kva, 0, size);
1773
1774 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1775 NULL, BUS_DMA_WAITOK) != 0)
1776 goto unmap;
1777
1778 return ndm;
1779
1780 unmap:
1781 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1782 free:
1783 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1784 destroy:
1785 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1786 ndmfree:
1787 kmem_free(ndm, sizeof(*ndm));
1788 return NULL;
1789 }
1790
1791 static void
1792 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1793 {
1794 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1795 0, NVME_DMA_LEN(mem), ops);
1796 }
1797
1798 void
1799 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1800 {
1801 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1802 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1803 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1804 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1805 kmem_free(ndm, sizeof(*ndm));
1806 }
1807
1808 /*
1809 * ioctl
1810 */
1811
1812 dev_type_open(nvmeopen);
1813 dev_type_close(nvmeclose);
1814 dev_type_ioctl(nvmeioctl);
1815
1816 const struct cdevsw nvme_cdevsw = {
1817 .d_open = nvmeopen,
1818 .d_close = nvmeclose,
1819 .d_read = noread,
1820 .d_write = nowrite,
1821 .d_ioctl = nvmeioctl,
1822 .d_stop = nostop,
1823 .d_tty = notty,
1824 .d_poll = nopoll,
1825 .d_mmap = nommap,
1826 .d_kqfilter = nokqfilter,
1827 .d_discard = nodiscard,
1828 .d_flag = D_OTHER,
1829 };
1830
1831 /*
1832 * Accept an open operation on the control device.
1833 */
1834 int
1835 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1836 {
1837 struct nvme_softc *sc;
1838 int unit = minor(dev) / 0x10000;
1839 int nsid = minor(dev) & 0xffff;
1840 int nsidx;
1841
1842 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1843 return ENXIO;
1844 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1845 return ENXIO;
1846
1847 if (nsid == 0) {
1848 /* controller */
1849 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1850 return EBUSY;
1851 SET(sc->sc_flags, NVME_F_OPEN);
1852 } else {
1853 /* namespace */
1854 nsidx = nsid - 1;
1855 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1856 return ENXIO;
1857 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1858 return EBUSY;
1859 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1860 }
1861 return 0;
1862 }
1863
1864 /*
1865 * Accept the last close on the control device.
1866 */
1867 int
1868 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1869 {
1870 struct nvme_softc *sc;
1871 int unit = minor(dev) / 0x10000;
1872 int nsid = minor(dev) & 0xffff;
1873 int nsidx;
1874
1875 sc = device_lookup_private(&nvme_cd, unit);
1876 if (sc == NULL)
1877 return ENXIO;
1878
1879 if (nsid == 0) {
1880 /* controller */
1881 CLR(sc->sc_flags, NVME_F_OPEN);
1882 } else {
1883 /* namespace */
1884 nsidx = nsid - 1;
1885 if (nsidx >= sc->sc_nn)
1886 return ENXIO;
1887 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1888 }
1889
1890 return 0;
1891 }
1892
1893 /*
1894 * Handle control operations.
1895 */
1896 int
1897 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1898 {
1899 struct nvme_softc *sc;
1900 int unit = minor(dev) / 0x10000;
1901 int nsid = minor(dev) & 0xffff;
1902 struct nvme_pt_command *pt;
1903
1904 sc = device_lookup_private(&nvme_cd, unit);
1905 if (sc == NULL)
1906 return ENXIO;
1907
1908 switch (cmd) {
1909 case NVME_PASSTHROUGH_CMD:
1910 pt = data;
1911 return nvme_command_passthrough(sc, data,
1912 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1913 }
1914
1915 return ENOTTY;
1916 }
1917