nvme.c revision 1.39 1 /* $NetBSD: nvme.c,v 1.39 2018/04/18 10:11:45 nonaka Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.39 2018/04/18 10:11:45 nonaka Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
46
47 int nvme_adminq_size = 32;
48 int nvme_ioq_size = 1024;
49
50 static int nvme_print(void *, const char *);
51
52 static int nvme_ready(struct nvme_softc *, uint32_t);
53 static int nvme_enable(struct nvme_softc *, u_int);
54 static int nvme_disable(struct nvme_softc *);
55 static int nvme_shutdown(struct nvme_softc *);
56
57 #ifdef NVME_DEBUG
58 static void nvme_dumpregs(struct nvme_softc *);
59 #endif
60 static int nvme_identify(struct nvme_softc *, u_int);
61 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
62 void *);
63
64 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
65 static void nvme_ccbs_free(struct nvme_queue *);
66
67 static struct nvme_ccb *
68 nvme_ccb_get(struct nvme_queue *, bool);
69 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
70
71 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
72 struct nvme_ccb *, void (*)(struct nvme_queue *,
73 struct nvme_ccb *, void *), int);
74 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
78 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
79 struct nvme_cqe *);
80
81 static struct nvme_queue *
82 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
83 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
84 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
86 struct nvme_ccb *, void (*)(struct nvme_queue *,
87 struct nvme_ccb *, void *));
88 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
89 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
90 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
91 bool (*)(void *), void *);
92
93 static struct nvme_dmamem *
94 nvme_dmamem_alloc(struct nvme_softc *, size_t);
95 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
96 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
97 int);
98
99 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
100 void *);
101 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
102 struct nvme_cqe *);
103 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
108 void *);
109 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
110 struct nvme_cqe *);
111
112 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
113 void *);
114 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
115 struct nvme_cqe *);
116 static int nvme_command_passthrough(struct nvme_softc *,
117 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
118
119 static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
120
121 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
122 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
123 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
124 #define NVME_TIMO_SY 60 /* sync cache timeout */
125
126 #define nvme_read4(_s, _r) \
127 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
128 #define nvme_write4(_s, _r, _v) \
129 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
130 /*
131 * Some controllers, at least Apple NVMe, always require split
132 * transfers, so don't use bus_space_{read,write}_8() on LP64.
133 */
134 static inline uint64_t
135 nvme_read8(struct nvme_softc *sc, bus_size_t r)
136 {
137 uint64_t v;
138 uint32_t *a = (uint32_t *)&v;
139
140 #if _BYTE_ORDER == _LITTLE_ENDIAN
141 a[0] = nvme_read4(sc, r);
142 a[1] = nvme_read4(sc, r + 4);
143 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
144 a[1] = nvme_read4(sc, r);
145 a[0] = nvme_read4(sc, r + 4);
146 #endif
147
148 return v;
149 }
150
151 static inline void
152 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
153 {
154 uint32_t *a = (uint32_t *)&v;
155
156 #if _BYTE_ORDER == _LITTLE_ENDIAN
157 nvme_write4(sc, r, a[0]);
158 nvme_write4(sc, r + 4, a[1]);
159 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
160 nvme_write4(sc, r, a[1]);
161 nvme_write4(sc, r + 4, a[0]);
162 #endif
163 }
164 #define nvme_barrier(_s, _r, _l, _f) \
165 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
166
167 #ifdef NVME_DEBUG
168 static __used void
169 nvme_dumpregs(struct nvme_softc *sc)
170 {
171 uint64_t r8;
172 uint32_t r4;
173
174 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
175 r8 = nvme_read8(sc, NVME_CAP);
176 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
177 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
178 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
179 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
180 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
181 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
182 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
183 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
184 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
185 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
186 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
187 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
188
189 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
190
191 r4 = nvme_read4(sc, NVME_CC);
192 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
193 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
194 (1 << NVME_CC_IOCQES_R(r4)));
195 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
196 (1 << NVME_CC_IOSQES_R(r4)));
197 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
198 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
199 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
200 (1 << NVME_CC_MPS_R(r4)));
201 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
202 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
203
204 r4 = nvme_read4(sc, NVME_CSTS);
205 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
206 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
207 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
208 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
209
210 r4 = nvme_read4(sc, NVME_AQA);
211 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
212 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
213 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
214
215 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
216 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
217 #undef DEVNAME
218 }
219 #endif /* NVME_DEBUG */
220
221 static int
222 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
223 {
224 u_int i = 0;
225
226 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
227 if (i++ > sc->sc_rdy_to)
228 return ENXIO;
229
230 delay(1000);
231 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
232 }
233
234 return 0;
235 }
236
237 static int
238 nvme_enable(struct nvme_softc *sc, u_int mps)
239 {
240 uint32_t cc, csts;
241 int error;
242
243 cc = nvme_read4(sc, NVME_CC);
244 csts = nvme_read4(sc, NVME_CSTS);
245
246 /*
247 * See note in nvme_disable. Short circuit if we're already enabled.
248 */
249 if (ISSET(cc, NVME_CC_EN)) {
250 if (ISSET(csts, NVME_CSTS_RDY))
251 return 0;
252
253 goto waitready;
254 } else {
255 /* EN == 0 already wait for RDY == 0 or fail */
256 error = nvme_ready(sc, 0);
257 if (error)
258 return error;
259 }
260
261 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
262 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
263 delay(5000);
264 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267
268 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
269 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
270 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
271 delay(5000);
272
273 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
274 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
275 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
276 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
277 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
278 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
279 SET(cc, NVME_CC_MPS(mps));
280 SET(cc, NVME_CC_EN);
281
282 nvme_write4(sc, NVME_CC, cc);
283 nvme_barrier(sc, 0, sc->sc_ios,
284 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
285
286 waitready:
287 return nvme_ready(sc, NVME_CSTS_RDY);
288 }
289
290 static int
291 nvme_disable(struct nvme_softc *sc)
292 {
293 uint32_t cc, csts;
294 int error;
295
296 cc = nvme_read4(sc, NVME_CC);
297 csts = nvme_read4(sc, NVME_CSTS);
298
299 /*
300 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
301 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
302 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
303 * isn't the desired value. Short circuit if we're already disabled.
304 */
305 if (ISSET(cc, NVME_CC_EN)) {
306 if (!ISSET(csts, NVME_CSTS_RDY)) {
307 /* EN == 1, wait for RDY == 1 or fail */
308 error = nvme_ready(sc, NVME_CSTS_RDY);
309 if (error)
310 return error;
311 }
312 } else {
313 /* EN == 0 already wait for RDY == 0 */
314 if (!ISSET(csts, NVME_CSTS_RDY))
315 return 0;
316
317 goto waitready;
318 }
319
320 CLR(cc, NVME_CC_EN);
321 nvme_write4(sc, NVME_CC, cc);
322 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
323
324 /*
325 * Some drives have issues with accessing the mmio after we disable,
326 * so delay for a bit after we write the bit to cope with these issues.
327 */
328 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
329 delay(B4_CHK_RDY_DELAY_MS);
330
331 waitready:
332 return nvme_ready(sc, 0);
333 }
334
335 int
336 nvme_attach(struct nvme_softc *sc)
337 {
338 uint64_t cap;
339 uint32_t reg;
340 u_int dstrd;
341 u_int mps = PAGE_SHIFT;
342 u_int ioq_allocated;
343 uint16_t adminq_entries = nvme_adminq_size;
344 uint16_t ioq_entries = nvme_ioq_size;
345 int i;
346
347 reg = nvme_read4(sc, NVME_VS);
348 if (reg == 0xffffffff) {
349 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
350 return 1;
351 }
352
353 if (NVME_VS_TER(reg) == 0)
354 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
355 NVME_VS_MNR(reg));
356 else
357 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
358 NVME_VS_MNR(reg), NVME_VS_TER(reg));
359
360 cap = nvme_read8(sc, NVME_CAP);
361 dstrd = NVME_CAP_DSTRD(cap);
362 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
363 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
364 "is greater than CPU page size %u\n",
365 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
366 return 1;
367 }
368 if (NVME_CAP_MPSMAX(cap) < mps)
369 mps = NVME_CAP_MPSMAX(cap);
370 if (ioq_entries > NVME_CAP_MQES(cap))
371 ioq_entries = NVME_CAP_MQES(cap);
372
373 /* set initial values to be used for admin queue during probe */
374 sc->sc_rdy_to = NVME_CAP_TO(cap);
375 sc->sc_mps = 1 << mps;
376 sc->sc_mdts = MAXPHYS;
377 sc->sc_max_sgl = 2;
378
379 if (nvme_disable(sc) != 0) {
380 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
381 return 1;
382 }
383
384 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
385 if (sc->sc_admin_q == NULL) {
386 aprint_error_dev(sc->sc_dev,
387 "unable to allocate admin queue\n");
388 return 1;
389 }
390 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
391 goto free_admin_q;
392
393 if (nvme_enable(sc, mps) != 0) {
394 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
395 goto disestablish_admin_q;
396 }
397
398 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
399 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
400 goto disable;
401 }
402
403 /* we know how big things are now */
404 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
405
406 /* reallocate ccbs of admin queue with new max sgl. */
407 nvme_ccbs_free(sc->sc_admin_q);
408 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
409
410 if (sc->sc_use_mq) {
411 /* Limit the number of queues to the number allocated in HW */
412 if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
413 aprint_error_dev(sc->sc_dev,
414 "unable to get number of queues\n");
415 goto disable;
416 }
417 if (sc->sc_nq > ioq_allocated)
418 sc->sc_nq = ioq_allocated;
419 }
420
421 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
422 for (i = 0; i < sc->sc_nq; i++) {
423 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
424 if (sc->sc_q[i] == NULL) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to allocate io queue\n");
427 goto free_q;
428 }
429 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
430 aprint_error_dev(sc->sc_dev,
431 "unable to create io queue\n");
432 nvme_q_free(sc, sc->sc_q[i]);
433 goto free_q;
434 }
435 }
436
437 if (!sc->sc_use_mq)
438 nvme_write4(sc, NVME_INTMC, 1);
439
440 /* probe subdevices */
441 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
442 KM_SLEEP);
443 nvme_rescan(sc->sc_dev, "nvme", &i);
444
445 return 0;
446
447 free_q:
448 while (--i >= 0) {
449 nvme_q_delete(sc, sc->sc_q[i]);
450 nvme_q_free(sc, sc->sc_q[i]);
451 }
452 disable:
453 nvme_disable(sc);
454 disestablish_admin_q:
455 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
456 free_admin_q:
457 nvme_q_free(sc, sc->sc_admin_q);
458
459 return 1;
460 }
461
462 int
463 nvme_rescan(device_t self, const char *attr, const int *flags)
464 {
465 struct nvme_softc *sc = device_private(self);
466 struct nvme_attach_args naa;
467 uint64_t cap;
468 int ioq_entries = nvme_ioq_size;
469 int i;
470
471 cap = nvme_read8(sc, NVME_CAP);
472 if (ioq_entries > NVME_CAP_MQES(cap))
473 ioq_entries = NVME_CAP_MQES(cap);
474
475 for (i = 0; i < sc->sc_nn; i++) {
476 if (sc->sc_namespaces[i].dev)
477 continue;
478 memset(&naa, 0, sizeof(naa));
479 naa.naa_nsid = i + 1;
480 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
481 naa.naa_maxphys = sc->sc_mdts;
482 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
483 nvme_print);
484 }
485 return 0;
486 }
487
488 static int
489 nvme_print(void *aux, const char *pnp)
490 {
491 struct nvme_attach_args *naa = aux;
492
493 if (pnp)
494 aprint_normal("at %s", pnp);
495
496 if (naa->naa_nsid > 0)
497 aprint_normal(" nsid %d", naa->naa_nsid);
498
499 return UNCONF;
500 }
501
502 int
503 nvme_detach(struct nvme_softc *sc, int flags)
504 {
505 int i, error;
506
507 error = config_detach_children(sc->sc_dev, flags);
508 if (error)
509 return error;
510
511 error = nvme_shutdown(sc);
512 if (error)
513 return error;
514
515 /* from now on we are committed to detach, following will never fail */
516 for (i = 0; i < sc->sc_nq; i++)
517 nvme_q_free(sc, sc->sc_q[i]);
518 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
519 nvme_q_free(sc, sc->sc_admin_q);
520
521 return 0;
522 }
523
524 static int
525 nvme_shutdown(struct nvme_softc *sc)
526 {
527 uint32_t cc, csts;
528 bool disabled = false;
529 int i;
530
531 if (!sc->sc_use_mq)
532 nvme_write4(sc, NVME_INTMS, 1);
533
534 for (i = 0; i < sc->sc_nq; i++) {
535 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
536 aprint_error_dev(sc->sc_dev,
537 "unable to delete io queue %d, disabling\n", i + 1);
538 disabled = true;
539 }
540 }
541 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
542 if (disabled)
543 goto disable;
544
545 cc = nvme_read4(sc, NVME_CC);
546 CLR(cc, NVME_CC_SHN_MASK);
547 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
548 nvme_write4(sc, NVME_CC, cc);
549
550 for (i = 0; i < 4000; i++) {
551 nvme_barrier(sc, 0, sc->sc_ios,
552 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
553 csts = nvme_read4(sc, NVME_CSTS);
554 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
555 return 0;
556
557 delay(1000);
558 }
559
560 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
561
562 disable:
563 nvme_disable(sc);
564 return 0;
565 }
566
567 void
568 nvme_childdet(device_t self, device_t child)
569 {
570 struct nvme_softc *sc = device_private(self);
571 int i;
572
573 for (i = 0; i < sc->sc_nn; i++) {
574 if (sc->sc_namespaces[i].dev == child) {
575 /* Already freed ns->ident. */
576 sc->sc_namespaces[i].dev = NULL;
577 break;
578 }
579 }
580 }
581
582 int
583 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
584 {
585 struct nvme_sqe sqe;
586 struct nvm_identify_namespace *identify;
587 struct nvme_dmamem *mem;
588 struct nvme_ccb *ccb;
589 struct nvme_namespace *ns;
590 int rv;
591
592 KASSERT(nsid > 0);
593
594 ccb = nvme_ccb_get(sc->sc_admin_q, false);
595 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
596
597 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
598 if (mem == NULL) {
599 nvme_ccb_put(sc->sc_admin_q, ccb);
600 return ENOMEM;
601 }
602
603 memset(&sqe, 0, sizeof(sqe));
604 sqe.opcode = NVM_ADMIN_IDENTIFY;
605 htolem32(&sqe.nsid, nsid);
606 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
607 htolem32(&sqe.cdw10, 0);
608
609 ccb->ccb_done = nvme_empty_done;
610 ccb->ccb_cookie = &sqe;
611
612 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
613 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
614 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
615
616 nvme_ccb_put(sc->sc_admin_q, ccb);
617
618 if (rv != 0) {
619 rv = EIO;
620 goto done;
621 }
622
623 /* commit */
624
625 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
626 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
627
628 /* Convert data to host endian */
629 nvme_identify_namespace_swapbytes(identify);
630
631 ns = nvme_ns_get(sc, nsid);
632 KASSERT(ns);
633 KASSERT(ns->ident == NULL);
634 ns->ident = identify;
635
636 done:
637 nvme_dmamem_free(sc, mem);
638
639 return rv;
640 }
641
642 int
643 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
644 struct buf *bp, void *data, size_t datasize,
645 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
646 {
647 struct nvme_queue *q = nvme_get_q(sc);
648 struct nvme_ccb *ccb;
649 bus_dmamap_t dmap;
650 int i, error;
651
652 ccb = nvme_ccb_get(q, false);
653 if (ccb == NULL)
654 return EAGAIN;
655
656 ccb->ccb_done = nvme_ns_io_done;
657 ccb->ccb_cookie = cookie;
658
659 /* namespace context */
660 ccb->nnc_nsid = nsid;
661 ccb->nnc_flags = flags;
662 ccb->nnc_buf = bp;
663 ccb->nnc_datasize = datasize;
664 ccb->nnc_secsize = secsize;
665 ccb->nnc_blkno = blkno;
666 ccb->nnc_done = nnc_done;
667
668 dmap = ccb->ccb_dmamap;
669 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
670 datasize, NULL,
671 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
672 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
673 (ISSET(flags, NVME_NS_CTX_F_READ) ?
674 BUS_DMA_READ : BUS_DMA_WRITE));
675 if (error) {
676 nvme_ccb_put(q, ccb);
677 return error;
678 }
679
680 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
681 ISSET(flags, NVME_NS_CTX_F_READ) ?
682 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
683
684 if (dmap->dm_nsegs > 2) {
685 for (i = 1; i < dmap->dm_nsegs; i++) {
686 htolem64(&ccb->ccb_prpl[i - 1],
687 dmap->dm_segs[i].ds_addr);
688 }
689 bus_dmamap_sync(sc->sc_dmat,
690 NVME_DMA_MAP(q->q_ccb_prpls),
691 ccb->ccb_prpl_off,
692 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
693 BUS_DMASYNC_PREWRITE);
694 }
695
696 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
697 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
698 return EIO;
699 return 0;
700 }
701
702 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
703 return 0;
704 }
705
706 static void
707 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
708 {
709 struct nvme_sqe_io *sqe = slot;
710 bus_dmamap_t dmap = ccb->ccb_dmamap;
711
712 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
713 NVM_CMD_READ : NVM_CMD_WRITE;
714 htolem32(&sqe->nsid, ccb->nnc_nsid);
715
716 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
717 switch (dmap->dm_nsegs) {
718 case 1:
719 break;
720 case 2:
721 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
722 break;
723 default:
724 /* the prp list is already set up and synced */
725 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
726 break;
727 }
728
729 htolem64(&sqe->slba, ccb->nnc_blkno);
730
731 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
732 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
733
734 /* guaranteed by upper layers, but check just in case */
735 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
736 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
737 }
738
739 static void
740 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
741 struct nvme_cqe *cqe)
742 {
743 struct nvme_softc *sc = q->q_sc;
744 bus_dmamap_t dmap = ccb->ccb_dmamap;
745 void *nnc_cookie = ccb->ccb_cookie;
746 nvme_nnc_done nnc_done = ccb->nnc_done;
747 struct buf *bp = ccb->nnc_buf;
748
749 if (dmap->dm_nsegs > 2) {
750 bus_dmamap_sync(sc->sc_dmat,
751 NVME_DMA_MAP(q->q_ccb_prpls),
752 ccb->ccb_prpl_off,
753 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
754 BUS_DMASYNC_POSTWRITE);
755 }
756
757 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
758 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
759 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
760
761 bus_dmamap_unload(sc->sc_dmat, dmap);
762 nvme_ccb_put(q, ccb);
763
764 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
765 }
766
767 /*
768 * If there is no volatile write cache, it makes no sense to issue
769 * flush commands or query for the status.
770 */
771 static bool
772 nvme_has_volatile_write_cache(struct nvme_softc *sc)
773 {
774 /* sc_identify is filled during attachment */
775 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
776 }
777
778 static bool
779 nvme_ns_sync_finished(void *cookie)
780 {
781 int *result = cookie;
782
783 return (*result != 0);
784 }
785
786 int
787 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
788 {
789 struct nvme_queue *q = nvme_get_q(sc);
790 struct nvme_ccb *ccb;
791 int result = 0;
792
793 if (!nvme_has_volatile_write_cache(sc)) {
794 /* cache not present, no value in trying to flush it */
795 return 0;
796 }
797
798 ccb = nvme_ccb_get(q, true);
799 if (ccb == NULL)
800 return EAGAIN;
801
802 ccb->ccb_done = nvme_ns_sync_done;
803 ccb->ccb_cookie = &result;
804
805 /* namespace context */
806 ccb->nnc_nsid = nsid;
807 ccb->nnc_flags = flags;
808 ccb->nnc_done = NULL;
809
810 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
811 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
812 return EIO;
813 return 0;
814 }
815
816 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
817
818 /* wait for completion */
819 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
820 KASSERT(result != 0);
821
822 return (result > 0) ? 0 : EIO;
823 }
824
825 static void
826 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
827 {
828 struct nvme_sqe *sqe = slot;
829
830 sqe->opcode = NVM_CMD_FLUSH;
831 htolem32(&sqe->nsid, ccb->nnc_nsid);
832 }
833
834 static void
835 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
836 struct nvme_cqe *cqe)
837 {
838 int *result = ccb->ccb_cookie;
839 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
840
841 if (status == NVME_CQE_SC_SUCCESS)
842 *result = 1;
843 else
844 *result = -1;
845
846 nvme_ccb_put(q, ccb);
847 }
848
849 static bool
850 nvme_getcache_finished(void *xc)
851 {
852 int *addr = xc;
853
854 return (*addr != 0);
855 }
856
857 /*
858 * Get status of volatile write cache. Always asynchronous.
859 */
860 int
861 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
862 {
863 struct nvme_ccb *ccb;
864 struct nvme_queue *q = sc->sc_admin_q;
865 int result = 0, error;
866
867 if (!nvme_has_volatile_write_cache(sc)) {
868 /* cache simply not present */
869 *addr = 0;
870 return 0;
871 }
872
873 ccb = nvme_ccb_get(q, true);
874 KASSERT(ccb != NULL);
875
876 ccb->ccb_done = nvme_getcache_done;
877 ccb->ccb_cookie = &result;
878
879 /* namespace context */
880 ccb->nnc_flags = 0;
881 ccb->nnc_done = NULL;
882
883 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
884
885 /* wait for completion */
886 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
887 KASSERT(result != 0);
888
889 if (result > 0) {
890 *addr = result;
891 error = 0;
892 } else
893 error = EINVAL;
894
895 return error;
896 }
897
898 static void
899 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
900 {
901 struct nvme_sqe *sqe = slot;
902
903 sqe->opcode = NVM_ADMIN_GET_FEATURES;
904 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
905 }
906
907 static void
908 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
909 struct nvme_cqe *cqe)
910 {
911 int *addr = ccb->ccb_cookie;
912 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
913 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
914 int result;
915
916 if (status == NVME_CQE_SC_SUCCESS) {
917 result = 0;
918
919 /*
920 * DPO not supported, Dataset Management (DSM) field doesn't
921 * specify the same semantics. FUA is always supported.
922 */
923 result = DKCACHE_FUA;
924
925 if (cdw0 & NVME_CQE_CDW0_VWC_WCE)
926 result |= DKCACHE_WRITE;
927
928 /*
929 * If volatile write cache is present, the flag shall also be
930 * settable.
931 */
932 result |= DKCACHE_WCHANGE;
933 } else {
934 result = -1;
935 }
936
937 *addr = result;
938
939 nvme_ccb_put(q, ccb);
940 }
941
942 void
943 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
944 {
945 struct nvme_namespace *ns;
946 struct nvm_identify_namespace *identify;
947
948 ns = nvme_ns_get(sc, nsid);
949 KASSERT(ns);
950
951 identify = ns->ident;
952 ns->ident = NULL;
953 if (identify != NULL)
954 kmem_free(identify, sizeof(*identify));
955 }
956
957 struct nvme_pt_state {
958 struct nvme_pt_command *pt;
959 bool finished;
960 };
961
962 static void
963 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
964 {
965 struct nvme_softc *sc = q->q_sc;
966 struct nvme_sqe *sqe = slot;
967 struct nvme_pt_state *state = ccb->ccb_cookie;
968 struct nvme_pt_command *pt = state->pt;
969 bus_dmamap_t dmap = ccb->ccb_dmamap;
970 int i;
971
972 sqe->opcode = pt->cmd.opcode;
973 htolem32(&sqe->nsid, pt->cmd.nsid);
974
975 if (pt->buf != NULL && pt->len > 0) {
976 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
977 switch (dmap->dm_nsegs) {
978 case 1:
979 break;
980 case 2:
981 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
982 break;
983 default:
984 for (i = 1; i < dmap->dm_nsegs; i++) {
985 htolem64(&ccb->ccb_prpl[i - 1],
986 dmap->dm_segs[i].ds_addr);
987 }
988 bus_dmamap_sync(sc->sc_dmat,
989 NVME_DMA_MAP(q->q_ccb_prpls),
990 ccb->ccb_prpl_off,
991 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
992 BUS_DMASYNC_PREWRITE);
993 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
994 break;
995 }
996 }
997
998 htolem32(&sqe->cdw10, pt->cmd.cdw10);
999 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1000 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1001 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1002 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1003 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1004 }
1005
1006 static void
1007 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1008 {
1009 struct nvme_softc *sc = q->q_sc;
1010 struct nvme_pt_state *state = ccb->ccb_cookie;
1011 struct nvme_pt_command *pt = state->pt;
1012 bus_dmamap_t dmap = ccb->ccb_dmamap;
1013
1014 if (pt->buf != NULL && pt->len > 0) {
1015 if (dmap->dm_nsegs > 2) {
1016 bus_dmamap_sync(sc->sc_dmat,
1017 NVME_DMA_MAP(q->q_ccb_prpls),
1018 ccb->ccb_prpl_off,
1019 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1020 BUS_DMASYNC_POSTWRITE);
1021 }
1022
1023 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1024 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1025 bus_dmamap_unload(sc->sc_dmat, dmap);
1026 }
1027
1028 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1029 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1030
1031 state->finished = true;
1032
1033 nvme_ccb_put(q, ccb);
1034 }
1035
1036 static bool
1037 nvme_pt_finished(void *cookie)
1038 {
1039 struct nvme_pt_state *state = cookie;
1040
1041 return state->finished;
1042 }
1043
1044 static int
1045 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1046 uint16_t nsid, struct lwp *l, bool is_adminq)
1047 {
1048 struct nvme_queue *q;
1049 struct nvme_ccb *ccb;
1050 void *buf = NULL;
1051 struct nvme_pt_state state;
1052 int error;
1053
1054 /* limit command size to maximum data transfer size */
1055 if ((pt->buf == NULL && pt->len > 0) ||
1056 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1057 return EINVAL;
1058
1059 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1060 ccb = nvme_ccb_get(q, true);
1061 KASSERT(ccb != NULL);
1062
1063 if (pt->buf != NULL) {
1064 KASSERT(pt->len > 0);
1065 buf = kmem_alloc(pt->len, KM_SLEEP);
1066 if (!pt->is_read) {
1067 error = copyin(pt->buf, buf, pt->len);
1068 if (error)
1069 goto kmem_free;
1070 }
1071 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1072 pt->len, NULL,
1073 BUS_DMA_WAITOK |
1074 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1075 if (error)
1076 goto kmem_free;
1077 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1078 0, ccb->ccb_dmamap->dm_mapsize,
1079 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1080 }
1081
1082 memset(&state, 0, sizeof(state));
1083 state.pt = pt;
1084 state.finished = false;
1085
1086 ccb->ccb_done = nvme_pt_done;
1087 ccb->ccb_cookie = &state;
1088
1089 pt->cmd.nsid = nsid;
1090
1091 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1092
1093 /* wait for completion */
1094 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1095 KASSERT(state.finished);
1096
1097 error = 0;
1098
1099 if (buf != NULL) {
1100 if (error == 0 && pt->is_read)
1101 error = copyout(buf, pt->buf, pt->len);
1102 kmem_free:
1103 kmem_free(buf, pt->len);
1104 }
1105
1106 return error;
1107 }
1108
1109 static void
1110 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1111 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1112 {
1113 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1114 uint32_t tail;
1115
1116 mutex_enter(&q->q_sq_mtx);
1117 tail = q->q_sq_tail;
1118 if (++q->q_sq_tail >= q->q_entries)
1119 q->q_sq_tail = 0;
1120
1121 sqe += tail;
1122
1123 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1124 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1125 memset(sqe, 0, sizeof(*sqe));
1126 (*fill)(q, ccb, sqe);
1127 htolem16(&sqe->cid, ccb->ccb_id);
1128 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1129 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1130
1131 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1132 mutex_exit(&q->q_sq_mtx);
1133 }
1134
1135 struct nvme_poll_state {
1136 struct nvme_sqe s;
1137 struct nvme_cqe c;
1138 void *cookie;
1139 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1140 };
1141
1142 static int
1143 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1144 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1145 {
1146 struct nvme_poll_state state;
1147 uint16_t flags;
1148 int step = 10;
1149 int maxloop = timo_sec * 1000000 / step;
1150 int error = 0;
1151
1152 memset(&state, 0, sizeof(state));
1153 (*fill)(q, ccb, &state.s);
1154
1155 state.done = ccb->ccb_done;
1156 state.cookie = ccb->ccb_cookie;
1157
1158 ccb->ccb_done = nvme_poll_done;
1159 ccb->ccb_cookie = &state;
1160
1161 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1162 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1163 if (nvme_q_complete(sc, q) == 0)
1164 delay(step);
1165
1166 if (timo_sec >= 0 && --maxloop <= 0) {
1167 error = ETIMEDOUT;
1168 break;
1169 }
1170 }
1171
1172 if (error == 0) {
1173 flags = lemtoh16(&state.c.flags);
1174 return flags & ~NVME_CQE_PHASE;
1175 } else {
1176 /*
1177 * If it succeds later, it would hit ccb which will have been
1178 * already reused for something else. Not good. Cross
1179 * fingers and hope for best. XXX do controller reset?
1180 */
1181 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1182
1183 /* Invoke the callback to clean state anyway */
1184 struct nvme_cqe cqe;
1185 memset(&cqe, 0, sizeof(cqe));
1186 ccb->ccb_done(q, ccb, &cqe);
1187
1188 return 1;
1189 }
1190 }
1191
1192 static void
1193 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1194 {
1195 struct nvme_sqe *sqe = slot;
1196 struct nvme_poll_state *state = ccb->ccb_cookie;
1197
1198 *sqe = state->s;
1199 }
1200
1201 static void
1202 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1203 struct nvme_cqe *cqe)
1204 {
1205 struct nvme_poll_state *state = ccb->ccb_cookie;
1206
1207 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1208 state->c = *cqe;
1209
1210 ccb->ccb_cookie = state->cookie;
1211 state->done(q, ccb, &state->c);
1212 }
1213
1214 static void
1215 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1216 {
1217 struct nvme_sqe *src = ccb->ccb_cookie;
1218 struct nvme_sqe *dst = slot;
1219
1220 *dst = *src;
1221 }
1222
1223 static void
1224 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1225 struct nvme_cqe *cqe)
1226 {
1227 }
1228
1229 static int
1230 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1231 {
1232 struct nvme_ccb *ccb;
1233 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1234 uint16_t flags;
1235 int rv = 0;
1236
1237 mutex_enter(&q->q_cq_mtx);
1238
1239 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1240 for (;;) {
1241 cqe = &ring[q->q_cq_head];
1242 flags = lemtoh16(&cqe->flags);
1243 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1244 break;
1245
1246 ccb = &q->q_ccbs[cqe->cid];
1247
1248 if (++q->q_cq_head >= q->q_entries) {
1249 q->q_cq_head = 0;
1250 q->q_cq_phase ^= NVME_CQE_PHASE;
1251 }
1252
1253 #ifdef DEBUG
1254 /*
1255 * If we get spurious completion notification, something
1256 * is seriously hosed up. Very likely DMA to some random
1257 * memory place happened, so just bail out.
1258 */
1259 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1260 panic("%s: invalid ccb detected",
1261 device_xname(sc->sc_dev));
1262 /* NOTREACHED */
1263 }
1264 #endif
1265
1266 rv++;
1267
1268 /*
1269 * Unlock the mutex before calling the ccb_done callback
1270 * and re-lock afterwards. The callback triggers lddone()
1271 * which schedules another i/o, and also calls nvme_ccb_put().
1272 * Unlock/relock avoids possibility of deadlock.
1273 */
1274 mutex_exit(&q->q_cq_mtx);
1275 ccb->ccb_done(q, ccb, cqe);
1276 mutex_enter(&q->q_cq_mtx);
1277 }
1278 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1279
1280 if (rv)
1281 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1282
1283 mutex_exit(&q->q_cq_mtx);
1284
1285 return rv;
1286 }
1287
1288 static void
1289 nvme_q_wait_complete(struct nvme_softc *sc,
1290 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1291 {
1292 mutex_enter(&q->q_ccb_mtx);
1293 if (finished(cookie))
1294 goto out;
1295
1296 for(;;) {
1297 q->q_ccb_waiting = true;
1298 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1299
1300 if (finished(cookie))
1301 break;
1302 }
1303
1304 out:
1305 mutex_exit(&q->q_ccb_mtx);
1306 }
1307
1308 static int
1309 nvme_identify(struct nvme_softc *sc, u_int mps)
1310 {
1311 char sn[41], mn[81], fr[17];
1312 struct nvm_identify_controller *identify;
1313 struct nvme_dmamem *mem;
1314 struct nvme_ccb *ccb;
1315 u_int mdts;
1316 int rv = 1;
1317
1318 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1319 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1320
1321 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1322 if (mem == NULL)
1323 return 1;
1324
1325 ccb->ccb_done = nvme_empty_done;
1326 ccb->ccb_cookie = mem;
1327
1328 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1329 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1330 NVME_TIMO_IDENT);
1331 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1332
1333 nvme_ccb_put(sc->sc_admin_q, ccb);
1334
1335 if (rv != 0)
1336 goto done;
1337
1338 identify = NVME_DMA_KVA(mem);
1339 sc->sc_identify = *identify;
1340 identify = NULL;
1341
1342 /* Convert data to host endian */
1343 nvme_identify_controller_swapbytes(&sc->sc_identify);
1344
1345 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1346 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1347 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1348 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1349 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1350 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1351 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1352 sn);
1353
1354 if (sc->sc_identify.mdts > 0) {
1355 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1356 if (mdts < sc->sc_mdts)
1357 sc->sc_mdts = mdts;
1358 }
1359
1360 sc->sc_nn = sc->sc_identify.nn;
1361
1362 done:
1363 nvme_dmamem_free(sc, mem);
1364
1365 return rv;
1366 }
1367
1368 static int
1369 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1370 {
1371 struct nvme_sqe_q sqe;
1372 struct nvme_ccb *ccb;
1373 int rv;
1374
1375 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1376 return 1;
1377
1378 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1379 KASSERT(ccb != NULL);
1380
1381 ccb->ccb_done = nvme_empty_done;
1382 ccb->ccb_cookie = &sqe;
1383
1384 memset(&sqe, 0, sizeof(sqe));
1385 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1386 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1387 htolem16(&sqe.qsize, q->q_entries - 1);
1388 htolem16(&sqe.qid, q->q_id);
1389 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1390 if (sc->sc_use_mq)
1391 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1392
1393 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1394 if (rv != 0)
1395 goto fail;
1396
1397 ccb->ccb_done = nvme_empty_done;
1398 ccb->ccb_cookie = &sqe;
1399
1400 memset(&sqe, 0, sizeof(sqe));
1401 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1402 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1403 htolem16(&sqe.qsize, q->q_entries - 1);
1404 htolem16(&sqe.qid, q->q_id);
1405 htolem16(&sqe.cqid, q->q_id);
1406 sqe.qflags = NVM_SQE_Q_PC;
1407
1408 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1409 if (rv != 0)
1410 goto fail;
1411
1412 fail:
1413 nvme_ccb_put(sc->sc_admin_q, ccb);
1414 return rv;
1415 }
1416
1417 static int
1418 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1419 {
1420 struct nvme_sqe_q sqe;
1421 struct nvme_ccb *ccb;
1422 int rv;
1423
1424 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1425 KASSERT(ccb != NULL);
1426
1427 ccb->ccb_done = nvme_empty_done;
1428 ccb->ccb_cookie = &sqe;
1429
1430 memset(&sqe, 0, sizeof(sqe));
1431 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1432 htolem16(&sqe.qid, q->q_id);
1433
1434 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1435 if (rv != 0)
1436 goto fail;
1437
1438 ccb->ccb_done = nvme_empty_done;
1439 ccb->ccb_cookie = &sqe;
1440
1441 memset(&sqe, 0, sizeof(sqe));
1442 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1443 htolem16(&sqe.qid, q->q_id);
1444
1445 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1446 if (rv != 0)
1447 goto fail;
1448
1449 fail:
1450 nvme_ccb_put(sc->sc_admin_q, ccb);
1451
1452 if (rv == 0 && sc->sc_use_mq) {
1453 if (sc->sc_intr_disestablish(sc, q->q_id))
1454 rv = 1;
1455 }
1456
1457 return rv;
1458 }
1459
1460 static void
1461 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1462 {
1463 struct nvme_sqe *sqe = slot;
1464 struct nvme_dmamem *mem = ccb->ccb_cookie;
1465
1466 sqe->opcode = NVM_ADMIN_IDENTIFY;
1467 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1468 htolem32(&sqe->cdw10, 1);
1469 }
1470
1471 static int
1472 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
1473 {
1474 struct nvme_pt_state state;
1475 struct nvme_pt_command pt;
1476 struct nvme_ccb *ccb;
1477 uint16_t ncqa, nsqa;
1478 int rv;
1479
1480 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1481 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1482
1483 memset(&pt, 0, sizeof(pt));
1484 pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
1485 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1486
1487 memset(&state, 0, sizeof(state));
1488 state.pt = &pt;
1489 state.finished = false;
1490
1491 ccb->ccb_done = nvme_pt_done;
1492 ccb->ccb_cookie = &state;
1493
1494 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1495
1496 if (rv != 0) {
1497 *nqap = 0;
1498 return EIO;
1499 }
1500
1501 ncqa = pt.cpl.cdw0 >> 16;
1502 nsqa = pt.cpl.cdw0 & 0xffff;
1503 *nqap = MIN(ncqa, nsqa) + 1;
1504
1505 return 0;
1506 }
1507
1508 static int
1509 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1510 {
1511 struct nvme_softc *sc = q->q_sc;
1512 struct nvme_ccb *ccb;
1513 bus_addr_t off;
1514 uint64_t *prpl;
1515 u_int i;
1516
1517 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1518 cv_init(&q->q_ccb_wait, "nvmeqw");
1519 q->q_ccb_waiting = false;
1520 SIMPLEQ_INIT(&q->q_ccb_list);
1521
1522 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1523
1524 q->q_nccbs = nccbs;
1525 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1526 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1527
1528 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1529 off = 0;
1530
1531 for (i = 0; i < nccbs; i++) {
1532 ccb = &q->q_ccbs[i];
1533
1534 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1535 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1536 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1537 &ccb->ccb_dmamap) != 0)
1538 goto free_maps;
1539
1540 ccb->ccb_id = i;
1541 ccb->ccb_prpl = prpl;
1542 ccb->ccb_prpl_off = off;
1543 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1544
1545 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1546
1547 prpl += sc->sc_max_sgl;
1548 off += sizeof(*prpl) * sc->sc_max_sgl;
1549 }
1550
1551 return 0;
1552
1553 free_maps:
1554 nvme_ccbs_free(q);
1555 return 1;
1556 }
1557
1558 static struct nvme_ccb *
1559 nvme_ccb_get(struct nvme_queue *q, bool wait)
1560 {
1561 struct nvme_ccb *ccb = NULL;
1562
1563 mutex_enter(&q->q_ccb_mtx);
1564 again:
1565 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1566 if (ccb != NULL) {
1567 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1568 #ifdef DEBUG
1569 ccb->ccb_cookie = NULL;
1570 #endif
1571 } else {
1572 if (__predict_false(wait)) {
1573 q->q_ccb_waiting = true;
1574 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1575 goto again;
1576 }
1577 }
1578 mutex_exit(&q->q_ccb_mtx);
1579
1580 return ccb;
1581 }
1582
1583 static void
1584 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1585 {
1586
1587 mutex_enter(&q->q_ccb_mtx);
1588 #ifdef DEBUG
1589 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1590 #endif
1591 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1592
1593 /* It's unlikely there are any waiters, it's not used for regular I/O */
1594 if (__predict_false(q->q_ccb_waiting)) {
1595 q->q_ccb_waiting = false;
1596 cv_broadcast(&q->q_ccb_wait);
1597 }
1598
1599 mutex_exit(&q->q_ccb_mtx);
1600 }
1601
1602 static void
1603 nvme_ccbs_free(struct nvme_queue *q)
1604 {
1605 struct nvme_softc *sc = q->q_sc;
1606 struct nvme_ccb *ccb;
1607
1608 mutex_enter(&q->q_ccb_mtx);
1609 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1610 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1611 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1612 }
1613 mutex_exit(&q->q_ccb_mtx);
1614
1615 nvme_dmamem_free(sc, q->q_ccb_prpls);
1616 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1617 q->q_ccbs = NULL;
1618 cv_destroy(&q->q_ccb_wait);
1619 mutex_destroy(&q->q_ccb_mtx);
1620 }
1621
1622 static struct nvme_queue *
1623 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1624 {
1625 struct nvme_queue *q;
1626
1627 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1628 q->q_sc = sc;
1629 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1630 sizeof(struct nvme_sqe) * entries);
1631 if (q->q_sq_dmamem == NULL)
1632 goto free;
1633
1634 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1635 sizeof(struct nvme_cqe) * entries);
1636 if (q->q_cq_dmamem == NULL)
1637 goto free_sq;
1638
1639 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1640 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1641
1642 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1643 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1644 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1645 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1646 q->q_id = id;
1647 q->q_entries = entries;
1648 q->q_sq_tail = 0;
1649 q->q_cq_head = 0;
1650 q->q_cq_phase = NVME_CQE_PHASE;
1651
1652 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1653 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1654
1655 /*
1656 * Due to definition of full and empty queue (queue is empty
1657 * when head == tail, full when tail is one less then head),
1658 * we can actually only have (entries - 1) in-flight commands.
1659 */
1660 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1661 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1662 goto free_cq;
1663 }
1664
1665 return q;
1666
1667 free_cq:
1668 nvme_dmamem_free(sc, q->q_cq_dmamem);
1669 free_sq:
1670 nvme_dmamem_free(sc, q->q_sq_dmamem);
1671 free:
1672 kmem_free(q, sizeof(*q));
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1679 {
1680 nvme_ccbs_free(q);
1681 mutex_destroy(&q->q_sq_mtx);
1682 mutex_destroy(&q->q_cq_mtx);
1683 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1684 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1685 nvme_dmamem_free(sc, q->q_cq_dmamem);
1686 nvme_dmamem_free(sc, q->q_sq_dmamem);
1687 kmem_free(q, sizeof(*q));
1688 }
1689
1690 int
1691 nvme_intr(void *xsc)
1692 {
1693 struct nvme_softc *sc = xsc;
1694
1695 /*
1696 * INTx is level triggered, controller deasserts the interrupt only
1697 * when we advance command queue head via write to the doorbell.
1698 * Tell the controller to block the interrupts while we process
1699 * the queue(s).
1700 */
1701 nvme_write4(sc, NVME_INTMS, 1);
1702
1703 softint_schedule(sc->sc_softih[0]);
1704
1705 /* don't know, might not have been for us */
1706 return 1;
1707 }
1708
1709 void
1710 nvme_softintr_intx(void *xq)
1711 {
1712 struct nvme_queue *q = xq;
1713 struct nvme_softc *sc = q->q_sc;
1714
1715 nvme_q_complete(sc, sc->sc_admin_q);
1716 if (sc->sc_q != NULL)
1717 nvme_q_complete(sc, sc->sc_q[0]);
1718
1719 /*
1720 * Processing done, tell controller to issue interrupts again. There
1721 * is no race, as NVMe spec requires the controller to maintain state,
1722 * and assert the interrupt whenever there are unacknowledged
1723 * completion queue entries.
1724 */
1725 nvme_write4(sc, NVME_INTMC, 1);
1726 }
1727
1728 int
1729 nvme_intr_msi(void *xq)
1730 {
1731 struct nvme_queue *q = xq;
1732
1733 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1734 && q->q_sc->sc_softih[q->q_id]);
1735
1736 /*
1737 * MSI/MSI-X are edge triggered, so can handover processing to softint
1738 * without masking the interrupt.
1739 */
1740 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1741
1742 return 1;
1743 }
1744
1745 void
1746 nvme_softintr_msi(void *xq)
1747 {
1748 struct nvme_queue *q = xq;
1749 struct nvme_softc *sc = q->q_sc;
1750
1751 nvme_q_complete(sc, q);
1752 }
1753
1754 static struct nvme_dmamem *
1755 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1756 {
1757 struct nvme_dmamem *ndm;
1758 int nsegs;
1759
1760 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1761 if (ndm == NULL)
1762 return NULL;
1763
1764 ndm->ndm_size = size;
1765
1766 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1767 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1768 goto ndmfree;
1769
1770 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1771 1, &nsegs, BUS_DMA_WAITOK) != 0)
1772 goto destroy;
1773
1774 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1775 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1776 goto free;
1777 memset(ndm->ndm_kva, 0, size);
1778
1779 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1780 NULL, BUS_DMA_WAITOK) != 0)
1781 goto unmap;
1782
1783 return ndm;
1784
1785 unmap:
1786 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1787 free:
1788 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1789 destroy:
1790 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1791 ndmfree:
1792 kmem_free(ndm, sizeof(*ndm));
1793 return NULL;
1794 }
1795
1796 static void
1797 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1798 {
1799 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1800 0, NVME_DMA_LEN(mem), ops);
1801 }
1802
1803 void
1804 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1805 {
1806 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1807 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1808 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1809 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1810 kmem_free(ndm, sizeof(*ndm));
1811 }
1812
1813 /*
1814 * ioctl
1815 */
1816
1817 dev_type_open(nvmeopen);
1818 dev_type_close(nvmeclose);
1819 dev_type_ioctl(nvmeioctl);
1820
1821 const struct cdevsw nvme_cdevsw = {
1822 .d_open = nvmeopen,
1823 .d_close = nvmeclose,
1824 .d_read = noread,
1825 .d_write = nowrite,
1826 .d_ioctl = nvmeioctl,
1827 .d_stop = nostop,
1828 .d_tty = notty,
1829 .d_poll = nopoll,
1830 .d_mmap = nommap,
1831 .d_kqfilter = nokqfilter,
1832 .d_discard = nodiscard,
1833 .d_flag = D_OTHER,
1834 };
1835
1836 /*
1837 * Accept an open operation on the control device.
1838 */
1839 int
1840 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1841 {
1842 struct nvme_softc *sc;
1843 int unit = minor(dev) / 0x10000;
1844 int nsid = minor(dev) & 0xffff;
1845 int nsidx;
1846
1847 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1848 return ENXIO;
1849 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1850 return ENXIO;
1851
1852 if (nsid == 0) {
1853 /* controller */
1854 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1855 return EBUSY;
1856 SET(sc->sc_flags, NVME_F_OPEN);
1857 } else {
1858 /* namespace */
1859 nsidx = nsid - 1;
1860 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1861 return ENXIO;
1862 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1863 return EBUSY;
1864 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1865 }
1866 return 0;
1867 }
1868
1869 /*
1870 * Accept the last close on the control device.
1871 */
1872 int
1873 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1874 {
1875 struct nvme_softc *sc;
1876 int unit = minor(dev) / 0x10000;
1877 int nsid = minor(dev) & 0xffff;
1878 int nsidx;
1879
1880 sc = device_lookup_private(&nvme_cd, unit);
1881 if (sc == NULL)
1882 return ENXIO;
1883
1884 if (nsid == 0) {
1885 /* controller */
1886 CLR(sc->sc_flags, NVME_F_OPEN);
1887 } else {
1888 /* namespace */
1889 nsidx = nsid - 1;
1890 if (nsidx >= sc->sc_nn)
1891 return ENXIO;
1892 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1893 }
1894
1895 return 0;
1896 }
1897
1898 /*
1899 * Handle control operations.
1900 */
1901 int
1902 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1903 {
1904 struct nvme_softc *sc;
1905 int unit = minor(dev) / 0x10000;
1906 int nsid = minor(dev) & 0xffff;
1907 struct nvme_pt_command *pt;
1908
1909 sc = device_lookup_private(&nvme_cd, unit);
1910 if (sc == NULL)
1911 return ENXIO;
1912
1913 switch (cmd) {
1914 case NVME_PASSTHROUGH_CMD:
1915 pt = data;
1916 return nvme_command_passthrough(sc, data,
1917 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1918 }
1919
1920 return ENOTTY;
1921 }
1922