Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.41
      1 /*	$NetBSD: nvme.c,v 1.41 2018/12/01 15:07:58 jdolecek Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.41 2018/12/01 15:07:58 jdolecek Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 #include "ioconf.h"
     44 
     45 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
     46 
     47 int nvme_adminq_size = 32;
     48 int nvme_ioq_size = 1024;
     49 
     50 static int	nvme_print(void *, const char *);
     51 
     52 static int	nvme_ready(struct nvme_softc *, uint32_t);
     53 static int	nvme_enable(struct nvme_softc *, u_int);
     54 static int	nvme_disable(struct nvme_softc *);
     55 static int	nvme_shutdown(struct nvme_softc *);
     56 
     57 #ifdef NVME_DEBUG
     58 static void	nvme_dumpregs(struct nvme_softc *);
     59 #endif
     60 static int	nvme_identify(struct nvme_softc *, u_int);
     61 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     62 		    void *);
     63 
     64 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     65 static void	nvme_ccbs_free(struct nvme_queue *);
     66 
     67 static struct nvme_ccb *
     68 		nvme_ccb_get(struct nvme_queue *, bool);
     69 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     70 
     71 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     72 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     73 		    struct nvme_ccb *, void *), int);
     74 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     78 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     79 		    struct nvme_cqe *);
     80 
     81 static struct nvme_queue *
     82 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     83 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     84 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     85 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     86 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     87 		    struct nvme_ccb *, void *));
     88 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     89 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     90 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
     91 		    bool (*)(void *), void *);
     92 
     93 static struct nvme_dmamem *
     94 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     95 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     96 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     97 		    int);
     98 
     99 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
    100 		    void *);
    101 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
    102 		    struct nvme_cqe *);
    103 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
    104 		    void *);
    105 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    106 		    struct nvme_cqe *);
    107 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    108 		    void *);
    109 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    110 		    struct nvme_cqe *);
    111 
    112 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    113 		    void *);
    114 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    115 		    struct nvme_cqe *);
    116 static int	nvme_command_passthrough(struct nvme_softc *,
    117 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    118 
    119 static int	nvme_get_number_of_queues(struct nvme_softc *, u_int *);
    120 
    121 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    122 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    123 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    124 #define NVME_TIMO_SY		60	/* sync cache timeout */
    125 
    126 #define nvme_read4(_s, _r) \
    127 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    128 #define nvme_write4(_s, _r, _v) \
    129 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    130 /*
    131  * Some controllers, at least Apple NVMe, always require split
    132  * transfers, so don't use bus_space_{read,write}_8() on LP64.
    133  */
    134 static inline uint64_t
    135 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    136 {
    137 	uint64_t v;
    138 	uint32_t *a = (uint32_t *)&v;
    139 
    140 #if _BYTE_ORDER == _LITTLE_ENDIAN
    141 	a[0] = nvme_read4(sc, r);
    142 	a[1] = nvme_read4(sc, r + 4);
    143 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    144 	a[1] = nvme_read4(sc, r);
    145 	a[0] = nvme_read4(sc, r + 4);
    146 #endif
    147 
    148 	return v;
    149 }
    150 
    151 static inline void
    152 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    153 {
    154 	uint32_t *a = (uint32_t *)&v;
    155 
    156 #if _BYTE_ORDER == _LITTLE_ENDIAN
    157 	nvme_write4(sc, r, a[0]);
    158 	nvme_write4(sc, r + 4, a[1]);
    159 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    160 	nvme_write4(sc, r, a[1]);
    161 	nvme_write4(sc, r + 4, a[0]);
    162 #endif
    163 }
    164 #define nvme_barrier(_s, _r, _l, _f) \
    165 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    166 
    167 #ifdef NVME_DEBUG
    168 static __used void
    169 nvme_dumpregs(struct nvme_softc *sc)
    170 {
    171 	uint64_t r8;
    172 	uint32_t r4;
    173 
    174 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    175 	r8 = nvme_read8(sc, NVME_CAP);
    176 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    177 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    178 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    179 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    180 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    181 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    182 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    183 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    184 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    185 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    186 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    187 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    188 
    189 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    190 
    191 	r4 = nvme_read4(sc, NVME_CC);
    192 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    193 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    194 	    (1 << NVME_CC_IOCQES_R(r4)));
    195 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    196 	    (1 << NVME_CC_IOSQES_R(r4)));
    197 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    198 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    199 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    200 	    (1 << NVME_CC_MPS_R(r4)));
    201 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    202 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    203 
    204 	r4 = nvme_read4(sc, NVME_CSTS);
    205 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    206 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    207 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    208 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    209 
    210 	r4 = nvme_read4(sc, NVME_AQA);
    211 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    212 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    213 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    214 
    215 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    216 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    217 #undef	DEVNAME
    218 }
    219 #endif	/* NVME_DEBUG */
    220 
    221 static int
    222 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    223 {
    224 	u_int i = 0;
    225 
    226 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    227 		if (i++ > sc->sc_rdy_to)
    228 			return ENXIO;
    229 
    230 		delay(1000);
    231 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    232 	}
    233 
    234 	return 0;
    235 }
    236 
    237 static int
    238 nvme_enable(struct nvme_softc *sc, u_int mps)
    239 {
    240 	uint32_t cc, csts;
    241 	int error;
    242 
    243 	cc = nvme_read4(sc, NVME_CC);
    244 	csts = nvme_read4(sc, NVME_CSTS);
    245 
    246 	/*
    247 	 * See note in nvme_disable. Short circuit if we're already enabled.
    248 	 */
    249 	if (ISSET(cc, NVME_CC_EN)) {
    250 		if (ISSET(csts, NVME_CSTS_RDY))
    251 			return 0;
    252 
    253 		goto waitready;
    254 	} else {
    255 		/* EN == 0 already wait for RDY == 0 or fail */
    256 		error = nvme_ready(sc, 0);
    257 		if (error)
    258 			return error;
    259 	}
    260 
    261 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    262 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    263 	delay(5000);
    264 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    265 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    266 	delay(5000);
    267 
    268 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    269 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    270 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    271 	delay(5000);
    272 
    273 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    274 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    275 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    276 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    277 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    278 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    279 	SET(cc, NVME_CC_MPS(mps));
    280 	SET(cc, NVME_CC_EN);
    281 
    282 	nvme_write4(sc, NVME_CC, cc);
    283 	nvme_barrier(sc, 0, sc->sc_ios,
    284 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    285 
    286     waitready:
    287 	return nvme_ready(sc, NVME_CSTS_RDY);
    288 }
    289 
    290 static int
    291 nvme_disable(struct nvme_softc *sc)
    292 {
    293 	uint32_t cc, csts;
    294 	int error;
    295 
    296 	cc = nvme_read4(sc, NVME_CC);
    297 	csts = nvme_read4(sc, NVME_CSTS);
    298 
    299 	/*
    300 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
    301 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
    302 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
    303 	 * isn't the desired value. Short circuit if we're already disabled.
    304 	 */
    305 	if (ISSET(cc, NVME_CC_EN)) {
    306 		if (!ISSET(csts, NVME_CSTS_RDY)) {
    307 			/* EN == 1, wait for RDY == 1 or fail */
    308 			error = nvme_ready(sc, NVME_CSTS_RDY);
    309 			if (error)
    310 				return error;
    311 		}
    312 	} else {
    313 		/* EN == 0 already wait for RDY == 0 */
    314 		if (!ISSET(csts, NVME_CSTS_RDY))
    315 			return 0;
    316 
    317 		goto waitready;
    318 	}
    319 
    320 	CLR(cc, NVME_CC_EN);
    321 	nvme_write4(sc, NVME_CC, cc);
    322 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    323 
    324 	/*
    325 	 * Some drives have issues with accessing the mmio after we disable,
    326 	 * so delay for a bit after we write the bit to cope with these issues.
    327 	 */
    328 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
    329 		delay(B4_CHK_RDY_DELAY_MS);
    330 
    331     waitready:
    332 	return nvme_ready(sc, 0);
    333 }
    334 
    335 int
    336 nvme_attach(struct nvme_softc *sc)
    337 {
    338 	uint64_t cap;
    339 	uint32_t reg;
    340 	u_int dstrd;
    341 	u_int mps = PAGE_SHIFT;
    342 	u_int ioq_allocated;
    343 	uint16_t adminq_entries = nvme_adminq_size;
    344 	uint16_t ioq_entries = nvme_ioq_size;
    345 	int i;
    346 
    347 	reg = nvme_read4(sc, NVME_VS);
    348 	if (reg == 0xffffffff) {
    349 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    350 		return 1;
    351 	}
    352 
    353 	if (NVME_VS_TER(reg) == 0)
    354 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    355 		    NVME_VS_MNR(reg));
    356 	else
    357 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    358 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    359 
    360 	cap = nvme_read8(sc, NVME_CAP);
    361 	dstrd = NVME_CAP_DSTRD(cap);
    362 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    363 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    364 		    "is greater than CPU page size %u\n",
    365 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    366 		return 1;
    367 	}
    368 	if (NVME_CAP_MPSMAX(cap) < mps)
    369 		mps = NVME_CAP_MPSMAX(cap);
    370 	if (ioq_entries > NVME_CAP_MQES(cap))
    371 		ioq_entries = NVME_CAP_MQES(cap);
    372 
    373 	/* set initial values to be used for admin queue during probe */
    374 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    375 	sc->sc_mps = 1 << mps;
    376 	sc->sc_mdts = MAXPHYS;
    377 	sc->sc_max_sgl = 2;
    378 
    379 	if (nvme_disable(sc) != 0) {
    380 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    381 		return 1;
    382 	}
    383 
    384 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    385 	if (sc->sc_admin_q == NULL) {
    386 		aprint_error_dev(sc->sc_dev,
    387 		    "unable to allocate admin queue\n");
    388 		return 1;
    389 	}
    390 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    391 		goto free_admin_q;
    392 
    393 	if (nvme_enable(sc, mps) != 0) {
    394 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    395 		goto disestablish_admin_q;
    396 	}
    397 
    398 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    399 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    400 		goto disable;
    401 	}
    402 
    403 	/* we know how big things are now */
    404 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    405 
    406 	/* reallocate ccbs of admin queue with new max sgl. */
    407 	nvme_ccbs_free(sc->sc_admin_q);
    408 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    409 
    410 	if (sc->sc_use_mq) {
    411 		/* Limit the number of queues to the number allocated in HW */
    412 		if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
    413 			aprint_error_dev(sc->sc_dev,
    414 			    "unable to get number of queues\n");
    415 			goto disable;
    416 		}
    417 		if (sc->sc_nq > ioq_allocated)
    418 			sc->sc_nq = ioq_allocated;
    419 	}
    420 
    421 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    422 	for (i = 0; i < sc->sc_nq; i++) {
    423 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    424 		if (sc->sc_q[i] == NULL) {
    425 			aprint_error_dev(sc->sc_dev,
    426 			    "unable to allocate io queue\n");
    427 			goto free_q;
    428 		}
    429 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    430 			aprint_error_dev(sc->sc_dev,
    431 			    "unable to create io queue\n");
    432 			nvme_q_free(sc, sc->sc_q[i]);
    433 			goto free_q;
    434 		}
    435 	}
    436 
    437 	if (!sc->sc_use_mq)
    438 		nvme_write4(sc, NVME_INTMC, 1);
    439 
    440 	/* probe subdevices */
    441 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    442 	    KM_SLEEP);
    443 	nvme_rescan(sc->sc_dev, "nvme", &i);
    444 
    445 	return 0;
    446 
    447 free_q:
    448 	while (--i >= 0) {
    449 		nvme_q_delete(sc, sc->sc_q[i]);
    450 		nvme_q_free(sc, sc->sc_q[i]);
    451 	}
    452 disable:
    453 	nvme_disable(sc);
    454 disestablish_admin_q:
    455 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    456 free_admin_q:
    457 	nvme_q_free(sc, sc->sc_admin_q);
    458 
    459 	return 1;
    460 }
    461 
    462 int
    463 nvme_rescan(device_t self, const char *attr, const int *flags)
    464 {
    465 	struct nvme_softc *sc = device_private(self);
    466 	struct nvme_attach_args naa;
    467 	uint64_t cap;
    468 	int ioq_entries = nvme_ioq_size;
    469 	int i;
    470 
    471 	cap = nvme_read8(sc, NVME_CAP);
    472 	if (ioq_entries > NVME_CAP_MQES(cap))
    473 		ioq_entries = NVME_CAP_MQES(cap);
    474 
    475 	for (i = 0; i < sc->sc_nn; i++) {
    476 		if (sc->sc_namespaces[i].dev)
    477 			continue;
    478 		memset(&naa, 0, sizeof(naa));
    479 		naa.naa_nsid = i + 1;
    480 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    481 		naa.naa_maxphys = sc->sc_mdts;
    482 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    483 		    nvme_print);
    484 	}
    485 	return 0;
    486 }
    487 
    488 static int
    489 nvme_print(void *aux, const char *pnp)
    490 {
    491 	struct nvme_attach_args *naa = aux;
    492 
    493 	if (pnp)
    494 		aprint_normal("at %s", pnp);
    495 
    496 	if (naa->naa_nsid > 0)
    497 		aprint_normal(" nsid %d", naa->naa_nsid);
    498 
    499 	return UNCONF;
    500 }
    501 
    502 int
    503 nvme_detach(struct nvme_softc *sc, int flags)
    504 {
    505 	int i, error;
    506 
    507 	error = config_detach_children(sc->sc_dev, flags);
    508 	if (error)
    509 		return error;
    510 
    511 	error = nvme_shutdown(sc);
    512 	if (error)
    513 		return error;
    514 
    515 	/* from now on we are committed to detach, following will never fail */
    516 	for (i = 0; i < sc->sc_nq; i++)
    517 		nvme_q_free(sc, sc->sc_q[i]);
    518 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    519 	nvme_q_free(sc, sc->sc_admin_q);
    520 
    521 	return 0;
    522 }
    523 
    524 static int
    525 nvme_shutdown(struct nvme_softc *sc)
    526 {
    527 	uint32_t cc, csts;
    528 	bool disabled = false;
    529 	int i;
    530 
    531 	if (!sc->sc_use_mq)
    532 		nvme_write4(sc, NVME_INTMS, 1);
    533 
    534 	for (i = 0; i < sc->sc_nq; i++) {
    535 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    536 			aprint_error_dev(sc->sc_dev,
    537 			    "unable to delete io queue %d, disabling\n", i + 1);
    538 			disabled = true;
    539 		}
    540 	}
    541 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    542 	if (disabled)
    543 		goto disable;
    544 
    545 	cc = nvme_read4(sc, NVME_CC);
    546 	CLR(cc, NVME_CC_SHN_MASK);
    547 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    548 	nvme_write4(sc, NVME_CC, cc);
    549 
    550 	for (i = 0; i < 4000; i++) {
    551 		nvme_barrier(sc, 0, sc->sc_ios,
    552 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    553 		csts = nvme_read4(sc, NVME_CSTS);
    554 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    555 			return 0;
    556 
    557 		delay(1000);
    558 	}
    559 
    560 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    561 
    562 disable:
    563 	nvme_disable(sc);
    564 	return 0;
    565 }
    566 
    567 void
    568 nvme_childdet(device_t self, device_t child)
    569 {
    570 	struct nvme_softc *sc = device_private(self);
    571 	int i;
    572 
    573 	for (i = 0; i < sc->sc_nn; i++) {
    574 		if (sc->sc_namespaces[i].dev == child) {
    575 			/* Already freed ns->ident. */
    576 			sc->sc_namespaces[i].dev = NULL;
    577 			break;
    578 		}
    579 	}
    580 }
    581 
    582 int
    583 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    584 {
    585 	struct nvme_sqe sqe;
    586 	struct nvm_identify_namespace *identify;
    587 	struct nvme_dmamem *mem;
    588 	struct nvme_ccb *ccb;
    589 	struct nvme_namespace *ns;
    590 	int rv;
    591 
    592 	KASSERT(nsid > 0);
    593 
    594 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
    595 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    596 
    597 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    598 	if (mem == NULL) {
    599 		nvme_ccb_put(sc->sc_admin_q, ccb);
    600 		return ENOMEM;
    601 	}
    602 
    603 	memset(&sqe, 0, sizeof(sqe));
    604 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    605 	htolem32(&sqe.nsid, nsid);
    606 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    607 	htolem32(&sqe.cdw10, 0);
    608 
    609 	ccb->ccb_done = nvme_empty_done;
    610 	ccb->ccb_cookie = &sqe;
    611 
    612 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    613 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    614 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    615 
    616 	nvme_ccb_put(sc->sc_admin_q, ccb);
    617 
    618 	if (rv != 0) {
    619 		rv = EIO;
    620 		goto done;
    621 	}
    622 
    623 	/* commit */
    624 
    625 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    626 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    627 
    628 	/* Convert data to host endian */
    629 	nvme_identify_namespace_swapbytes(identify);
    630 
    631 	ns = nvme_ns_get(sc, nsid);
    632 	KASSERT(ns);
    633 	KASSERT(ns->ident == NULL);
    634 	ns->ident = identify;
    635 
    636 done:
    637 	nvme_dmamem_free(sc, mem);
    638 
    639 	return rv;
    640 }
    641 
    642 int
    643 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    644     struct buf *bp, void *data, size_t datasize,
    645     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    646 {
    647 	struct nvme_queue *q = nvme_get_q(sc);
    648 	struct nvme_ccb *ccb;
    649 	bus_dmamap_t dmap;
    650 	int i, error;
    651 
    652 	ccb = nvme_ccb_get(q, false);
    653 	if (ccb == NULL)
    654 		return EAGAIN;
    655 
    656 	ccb->ccb_done = nvme_ns_io_done;
    657 	ccb->ccb_cookie = cookie;
    658 
    659 	/* namespace context */
    660 	ccb->nnc_nsid = nsid;
    661 	ccb->nnc_flags = flags;
    662 	ccb->nnc_buf = bp;
    663 	ccb->nnc_datasize = datasize;
    664 	ccb->nnc_secsize = secsize;
    665 	ccb->nnc_blkno = blkno;
    666 	ccb->nnc_done = nnc_done;
    667 
    668 	dmap = ccb->ccb_dmamap;
    669 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    670 	    datasize, NULL,
    671 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    672 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    673 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    674 	      BUS_DMA_READ : BUS_DMA_WRITE));
    675 	if (error) {
    676 		nvme_ccb_put(q, ccb);
    677 		return error;
    678 	}
    679 
    680 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    681 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    682 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    683 
    684 	if (dmap->dm_nsegs > 2) {
    685 		for (i = 1; i < dmap->dm_nsegs; i++) {
    686 			htolem64(&ccb->ccb_prpl[i - 1],
    687 			    dmap->dm_segs[i].ds_addr);
    688 		}
    689 		bus_dmamap_sync(sc->sc_dmat,
    690 		    NVME_DMA_MAP(q->q_ccb_prpls),
    691 		    ccb->ccb_prpl_off,
    692 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    693 		    BUS_DMASYNC_PREWRITE);
    694 	}
    695 
    696 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    697 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    698 			return EIO;
    699 		return 0;
    700 	}
    701 
    702 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    703 	return 0;
    704 }
    705 
    706 static void
    707 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    708 {
    709 	struct nvme_sqe_io *sqe = slot;
    710 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    711 
    712 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    713 	    NVM_CMD_READ : NVM_CMD_WRITE;
    714 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    715 
    716 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    717 	switch (dmap->dm_nsegs) {
    718 	case 1:
    719 		break;
    720 	case 2:
    721 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    722 		break;
    723 	default:
    724 		/* the prp list is already set up and synced */
    725 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    726 		break;
    727 	}
    728 
    729 	htolem64(&sqe->slba, ccb->nnc_blkno);
    730 
    731 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    732 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    733 
    734 	/* guaranteed by upper layers, but check just in case */
    735 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    736 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    737 }
    738 
    739 static void
    740 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    741     struct nvme_cqe *cqe)
    742 {
    743 	struct nvme_softc *sc = q->q_sc;
    744 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    745 	void *nnc_cookie = ccb->ccb_cookie;
    746 	nvme_nnc_done nnc_done = ccb->nnc_done;
    747 	struct buf *bp = ccb->nnc_buf;
    748 
    749 	if (dmap->dm_nsegs > 2) {
    750 		bus_dmamap_sync(sc->sc_dmat,
    751 		    NVME_DMA_MAP(q->q_ccb_prpls),
    752 		    ccb->ccb_prpl_off,
    753 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    754 		    BUS_DMASYNC_POSTWRITE);
    755 	}
    756 
    757 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    758 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    759 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    760 
    761 	bus_dmamap_unload(sc->sc_dmat, dmap);
    762 	nvme_ccb_put(q, ccb);
    763 
    764 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    765 }
    766 
    767 /*
    768  * If there is no volatile write cache, it makes no sense to issue
    769  * flush commands or query for the status.
    770  */
    771 static bool
    772 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    773 {
    774 	/* sc_identify is filled during attachment */
    775 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    776 }
    777 
    778 static bool
    779 nvme_ns_sync_finished(void *cookie)
    780 {
    781 	int *result = cookie;
    782 
    783 	return (*result != 0);
    784 }
    785 
    786 int
    787 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
    788 {
    789 	struct nvme_queue *q = nvme_get_q(sc);
    790 	struct nvme_ccb *ccb;
    791 	int result = 0;
    792 
    793 	if (!nvme_has_volatile_write_cache(sc)) {
    794 		/* cache not present, no value in trying to flush it */
    795 		return 0;
    796 	}
    797 
    798 	ccb = nvme_ccb_get(q, true);
    799 	if (ccb == NULL)
    800 		return EAGAIN;
    801 
    802 	ccb->ccb_done = nvme_ns_sync_done;
    803 	ccb->ccb_cookie = &result;
    804 
    805 	/* namespace context */
    806 	ccb->nnc_nsid = nsid;
    807 	ccb->nnc_flags = flags;
    808 	ccb->nnc_done = NULL;
    809 
    810 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    811 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    812 			return EIO;
    813 		return 0;
    814 	}
    815 
    816 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    817 
    818 	/* wait for completion */
    819 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
    820 	KASSERT(result != 0);
    821 
    822 	return (result > 0) ? 0 : EIO;
    823 }
    824 
    825 static void
    826 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    827 {
    828 	struct nvme_sqe *sqe = slot;
    829 
    830 	sqe->opcode = NVM_CMD_FLUSH;
    831 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    832 }
    833 
    834 static void
    835 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    836     struct nvme_cqe *cqe)
    837 {
    838 	int *result = ccb->ccb_cookie;
    839 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    840 
    841 	if (status == NVME_CQE_SC_SUCCESS)
    842 		*result = 1;
    843 	else
    844 		*result = -1;
    845 
    846 	nvme_ccb_put(q, ccb);
    847 }
    848 
    849 static bool
    850 nvme_getcache_finished(void *xc)
    851 {
    852 	int *addr = xc;
    853 
    854 	return (*addr != 0);
    855 }
    856 
    857 /*
    858  * Get status of volatile write cache. Always asynchronous.
    859  */
    860 int
    861 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
    862 {
    863 	struct nvme_ccb *ccb;
    864 	struct nvme_queue *q = sc->sc_admin_q;
    865 	int result = 0, error;
    866 
    867 	if (!nvme_has_volatile_write_cache(sc)) {
    868 		/* cache simply not present */
    869 		*addr = 0;
    870 		return 0;
    871 	}
    872 
    873 	ccb = nvme_ccb_get(q, true);
    874 	KASSERT(ccb != NULL);
    875 
    876 	ccb->ccb_done = nvme_getcache_done;
    877 	ccb->ccb_cookie = &result;
    878 
    879 	/* namespace context */
    880 	ccb->nnc_flags = 0;
    881 	ccb->nnc_done = NULL;
    882 
    883 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
    884 
    885 	/* wait for completion */
    886 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
    887 	KASSERT(result != 0);
    888 
    889 	if (result > 0) {
    890 		*addr = result;
    891 		error = 0;
    892 	} else
    893 		error = EINVAL;
    894 
    895 	return error;
    896 }
    897 
    898 static void
    899 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    900 {
    901 	struct nvme_sqe *sqe = slot;
    902 
    903 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
    904 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
    905 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
    906 }
    907 
    908 static void
    909 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    910     struct nvme_cqe *cqe)
    911 {
    912 	int *addr = ccb->ccb_cookie;
    913 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    914 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
    915 	int result;
    916 
    917 	if (status == NVME_CQE_SC_SUCCESS) {
    918 		result = 0;
    919 
    920 		/*
    921 		 * DPO not supported, Dataset Management (DSM) field doesn't
    922 		 * specify the same semantics. FUA is always supported.
    923 		 */
    924 		result = DKCACHE_FUA;
    925 
    926 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
    927 			result |= DKCACHE_WRITE;
    928 
    929 		/*
    930 		 * If volatile write cache is present, the flag shall also be
    931 		 * settable.
    932 		 */
    933 		result |= DKCACHE_WCHANGE;
    934 
    935 		/*
    936 		 * ONCS field indicates whether the optional SAVE is also
    937 		 * supported for Set Features. According to spec v1.3,
    938 		 * Volatile Write Cache however doesn't support persistency
    939 		 * across power cycle/reset.
    940 		 */
    941 
    942 	} else {
    943 		result = -1;
    944 	}
    945 
    946 	*addr = result;
    947 
    948 	nvme_ccb_put(q, ccb);
    949 }
    950 
    951 struct nvme_setcache_state {
    952 	int dkcache;
    953 	int result;
    954 };
    955 
    956 static bool
    957 nvme_setcache_finished(void *xc)
    958 {
    959 	struct nvme_setcache_state *st = xc;
    960 
    961 	return (st->result != 0);
    962 }
    963 
    964 static void
    965 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    966 {
    967 	struct nvme_sqe *sqe = slot;
    968 	struct nvme_setcache_state *st = ccb->ccb_cookie;
    969 
    970 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
    971 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
    972 	if (st->dkcache & DKCACHE_WRITE)
    973 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
    974 }
    975 
    976 static void
    977 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    978     struct nvme_cqe *cqe)
    979 {
    980 	struct nvme_setcache_state *st = ccb->ccb_cookie;
    981 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    982 
    983 	if (status == NVME_CQE_SC_SUCCESS) {
    984 		st->result = 1;
    985 	} else {
    986 		st->result = -1;
    987 	}
    988 
    989 	nvme_ccb_put(q, ccb);
    990 }
    991 
    992 /*
    993  * Set status of volatile write cache. Always asynchronous.
    994  */
    995 int
    996 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
    997 {
    998 	struct nvme_ccb *ccb;
    999 	struct nvme_queue *q = sc->sc_admin_q;
   1000 	int error;
   1001 	struct nvme_setcache_state st;
   1002 
   1003 	if (!nvme_has_volatile_write_cache(sc)) {
   1004 		/* cache simply not present */
   1005 		return EOPNOTSUPP;
   1006 	}
   1007 
   1008 	if (dkcache & ~(DKCACHE_WRITE)) {
   1009 		/* unsupported parameters */
   1010 		return EOPNOTSUPP;
   1011 	}
   1012 
   1013 	ccb = nvme_ccb_get(q, true);
   1014 	KASSERT(ccb != NULL);
   1015 
   1016 	memset(&st, 0, sizeof(st));
   1017 	st.dkcache = dkcache;
   1018 
   1019 	ccb->ccb_done = nvme_setcache_done;
   1020 	ccb->ccb_cookie = &st;
   1021 
   1022 	/* namespace context */
   1023 	ccb->nnc_flags = 0;
   1024 	ccb->nnc_done = NULL;
   1025 
   1026 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
   1027 
   1028 	/* wait for completion */
   1029 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
   1030 	KASSERT(st.result != 0);
   1031 
   1032 	if (st.result > 0)
   1033 		error = 0;
   1034 	else
   1035 		error = EINVAL;
   1036 
   1037 	return error;
   1038 }
   1039 
   1040 void
   1041 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
   1042 {
   1043 	struct nvme_namespace *ns;
   1044 	struct nvm_identify_namespace *identify;
   1045 
   1046 	ns = nvme_ns_get(sc, nsid);
   1047 	KASSERT(ns);
   1048 
   1049 	identify = ns->ident;
   1050 	ns->ident = NULL;
   1051 	if (identify != NULL)
   1052 		kmem_free(identify, sizeof(*identify));
   1053 }
   1054 
   1055 struct nvme_pt_state {
   1056 	struct nvme_pt_command *pt;
   1057 	bool finished;
   1058 };
   1059 
   1060 static void
   1061 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1062 {
   1063 	struct nvme_softc *sc = q->q_sc;
   1064 	struct nvme_sqe *sqe = slot;
   1065 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1066 	struct nvme_pt_command *pt = state->pt;
   1067 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1068 	int i;
   1069 
   1070 	sqe->opcode = pt->cmd.opcode;
   1071 	htolem32(&sqe->nsid, pt->cmd.nsid);
   1072 
   1073 	if (pt->buf != NULL && pt->len > 0) {
   1074 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
   1075 		switch (dmap->dm_nsegs) {
   1076 		case 1:
   1077 			break;
   1078 		case 2:
   1079 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
   1080 			break;
   1081 		default:
   1082 			for (i = 1; i < dmap->dm_nsegs; i++) {
   1083 				htolem64(&ccb->ccb_prpl[i - 1],
   1084 				    dmap->dm_segs[i].ds_addr);
   1085 			}
   1086 			bus_dmamap_sync(sc->sc_dmat,
   1087 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1088 			    ccb->ccb_prpl_off,
   1089 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1090 			    BUS_DMASYNC_PREWRITE);
   1091 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
   1092 			break;
   1093 		}
   1094 	}
   1095 
   1096 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
   1097 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
   1098 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
   1099 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
   1100 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
   1101 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
   1102 }
   1103 
   1104 static void
   1105 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
   1106 {
   1107 	struct nvme_softc *sc = q->q_sc;
   1108 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1109 	struct nvme_pt_command *pt = state->pt;
   1110 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1111 
   1112 	if (pt->buf != NULL && pt->len > 0) {
   1113 		if (dmap->dm_nsegs > 2) {
   1114 			bus_dmamap_sync(sc->sc_dmat,
   1115 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1116 			    ccb->ccb_prpl_off,
   1117 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1118 			    BUS_DMASYNC_POSTWRITE);
   1119 		}
   1120 
   1121 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
   1122 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1123 		bus_dmamap_unload(sc->sc_dmat, dmap);
   1124 	}
   1125 
   1126 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
   1127 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
   1128 
   1129 	state->finished = true;
   1130 
   1131 	nvme_ccb_put(q, ccb);
   1132 }
   1133 
   1134 static bool
   1135 nvme_pt_finished(void *cookie)
   1136 {
   1137 	struct nvme_pt_state *state = cookie;
   1138 
   1139 	return state->finished;
   1140 }
   1141 
   1142 static int
   1143 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
   1144     uint16_t nsid, struct lwp *l, bool is_adminq)
   1145 {
   1146 	struct nvme_queue *q;
   1147 	struct nvme_ccb *ccb;
   1148 	void *buf = NULL;
   1149 	struct nvme_pt_state state;
   1150 	int error;
   1151 
   1152 	/* limit command size to maximum data transfer size */
   1153 	if ((pt->buf == NULL && pt->len > 0) ||
   1154 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
   1155 		return EINVAL;
   1156 
   1157 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
   1158 	ccb = nvme_ccb_get(q, true);
   1159 	KASSERT(ccb != NULL);
   1160 
   1161 	if (pt->buf != NULL) {
   1162 		KASSERT(pt->len > 0);
   1163 		buf = kmem_alloc(pt->len, KM_SLEEP);
   1164 		if (!pt->is_read) {
   1165 			error = copyin(pt->buf, buf, pt->len);
   1166 			if (error)
   1167 				goto kmem_free;
   1168 		}
   1169 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
   1170 		    pt->len, NULL,
   1171 		    BUS_DMA_WAITOK |
   1172 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
   1173 		if (error)
   1174 			goto kmem_free;
   1175 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
   1176 		    0, ccb->ccb_dmamap->dm_mapsize,
   1177 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
   1178 	}
   1179 
   1180 	memset(&state, 0, sizeof(state));
   1181 	state.pt = pt;
   1182 	state.finished = false;
   1183 
   1184 	ccb->ccb_done = nvme_pt_done;
   1185 	ccb->ccb_cookie = &state;
   1186 
   1187 	pt->cmd.nsid = nsid;
   1188 
   1189 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
   1190 
   1191 	/* wait for completion */
   1192 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
   1193 	KASSERT(state.finished);
   1194 
   1195 	error = 0;
   1196 
   1197 	if (buf != NULL) {
   1198 		if (error == 0 && pt->is_read)
   1199 			error = copyout(buf, pt->buf, pt->len);
   1200 kmem_free:
   1201 		kmem_free(buf, pt->len);
   1202 	}
   1203 
   1204 	return error;
   1205 }
   1206 
   1207 static void
   1208 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1209     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
   1210 {
   1211 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
   1212 	uint32_t tail;
   1213 
   1214 	mutex_enter(&q->q_sq_mtx);
   1215 	tail = q->q_sq_tail;
   1216 	if (++q->q_sq_tail >= q->q_entries)
   1217 		q->q_sq_tail = 0;
   1218 
   1219 	sqe += tail;
   1220 
   1221 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1222 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
   1223 	memset(sqe, 0, sizeof(*sqe));
   1224 	(*fill)(q, ccb, sqe);
   1225 	htolem16(&sqe->cid, ccb->ccb_id);
   1226 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1227 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1228 
   1229 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
   1230 	mutex_exit(&q->q_sq_mtx);
   1231 }
   1232 
   1233 struct nvme_poll_state {
   1234 	struct nvme_sqe s;
   1235 	struct nvme_cqe c;
   1236 	void *cookie;
   1237 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1238 };
   1239 
   1240 static int
   1241 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1242     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1243 {
   1244 	struct nvme_poll_state state;
   1245 	uint16_t flags;
   1246 	int step = 10;
   1247 	int maxloop = timo_sec * 1000000 / step;
   1248 	int error = 0;
   1249 
   1250 	memset(&state, 0, sizeof(state));
   1251 	(*fill)(q, ccb, &state.s);
   1252 
   1253 	state.done = ccb->ccb_done;
   1254 	state.cookie = ccb->ccb_cookie;
   1255 
   1256 	ccb->ccb_done = nvme_poll_done;
   1257 	ccb->ccb_cookie = &state;
   1258 
   1259 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1260 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1261 		if (nvme_q_complete(sc, q) == 0)
   1262 			delay(step);
   1263 
   1264 		if (timo_sec >= 0 && --maxloop <= 0) {
   1265 			error = ETIMEDOUT;
   1266 			break;
   1267 		}
   1268 	}
   1269 
   1270 	if (error == 0) {
   1271 		flags = lemtoh16(&state.c.flags);
   1272 		return flags & ~NVME_CQE_PHASE;
   1273 	} else {
   1274 		/*
   1275 		 * If it succeds later, it would hit ccb which will have been
   1276 		 * already reused for something else. Not good. Cross
   1277 		 * fingers and hope for best. XXX do controller reset?
   1278 		 */
   1279 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
   1280 
   1281 		/* Invoke the callback to clean state anyway */
   1282 		struct nvme_cqe cqe;
   1283 		memset(&cqe, 0, sizeof(cqe));
   1284 		ccb->ccb_done(q, ccb, &cqe);
   1285 
   1286 		return 1;
   1287 	}
   1288 }
   1289 
   1290 static void
   1291 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1292 {
   1293 	struct nvme_sqe *sqe = slot;
   1294 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1295 
   1296 	*sqe = state->s;
   1297 }
   1298 
   1299 static void
   1300 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1301     struct nvme_cqe *cqe)
   1302 {
   1303 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1304 
   1305 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
   1306 	state->c = *cqe;
   1307 
   1308 	ccb->ccb_cookie = state->cookie;
   1309 	state->done(q, ccb, &state->c);
   1310 }
   1311 
   1312 static void
   1313 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1314 {
   1315 	struct nvme_sqe *src = ccb->ccb_cookie;
   1316 	struct nvme_sqe *dst = slot;
   1317 
   1318 	*dst = *src;
   1319 }
   1320 
   1321 static void
   1322 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1323     struct nvme_cqe *cqe)
   1324 {
   1325 }
   1326 
   1327 static int
   1328 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1329 {
   1330 	struct nvme_ccb *ccb;
   1331 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1332 	uint16_t flags;
   1333 	int rv = 0;
   1334 
   1335 	mutex_enter(&q->q_cq_mtx);
   1336 
   1337 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1338 	for (;;) {
   1339 		cqe = &ring[q->q_cq_head];
   1340 		flags = lemtoh16(&cqe->flags);
   1341 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1342 			break;
   1343 
   1344 		ccb = &q->q_ccbs[cqe->cid];
   1345 
   1346 		if (++q->q_cq_head >= q->q_entries) {
   1347 			q->q_cq_head = 0;
   1348 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1349 		}
   1350 
   1351 #ifdef DEBUG
   1352 		/*
   1353 		 * If we get spurious completion notification, something
   1354 		 * is seriously hosed up. Very likely DMA to some random
   1355 		 * memory place happened, so just bail out.
   1356 		 */
   1357 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1358 			panic("%s: invalid ccb detected",
   1359 			    device_xname(sc->sc_dev));
   1360 			/* NOTREACHED */
   1361 		}
   1362 #endif
   1363 
   1364 		rv++;
   1365 
   1366 		/*
   1367 		 * Unlock the mutex before calling the ccb_done callback
   1368 		 * and re-lock afterwards. The callback triggers lddone()
   1369 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1370 		 * Unlock/relock avoids possibility of deadlock.
   1371 		 */
   1372 		mutex_exit(&q->q_cq_mtx);
   1373 		ccb->ccb_done(q, ccb, cqe);
   1374 		mutex_enter(&q->q_cq_mtx);
   1375 	}
   1376 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1377 
   1378 	if (rv)
   1379 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1380 
   1381 	mutex_exit(&q->q_cq_mtx);
   1382 
   1383 	return rv;
   1384 }
   1385 
   1386 static void
   1387 nvme_q_wait_complete(struct nvme_softc *sc,
   1388     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
   1389 {
   1390 	mutex_enter(&q->q_ccb_mtx);
   1391 	if (finished(cookie))
   1392 		goto out;
   1393 
   1394 	for(;;) {
   1395 		q->q_ccb_waiting = true;
   1396 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1397 
   1398 		if (finished(cookie))
   1399 			break;
   1400 	}
   1401 
   1402 out:
   1403 	mutex_exit(&q->q_ccb_mtx);
   1404 }
   1405 
   1406 static int
   1407 nvme_identify(struct nvme_softc *sc, u_int mps)
   1408 {
   1409 	char sn[41], mn[81], fr[17];
   1410 	struct nvm_identify_controller *identify;
   1411 	struct nvme_dmamem *mem;
   1412 	struct nvme_ccb *ccb;
   1413 	u_int mdts;
   1414 	int rv = 1;
   1415 
   1416 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1417 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1418 
   1419 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1420 	if (mem == NULL)
   1421 		return 1;
   1422 
   1423 	ccb->ccb_done = nvme_empty_done;
   1424 	ccb->ccb_cookie = mem;
   1425 
   1426 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1427 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1428 	    NVME_TIMO_IDENT);
   1429 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1430 
   1431 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1432 
   1433 	if (rv != 0)
   1434 		goto done;
   1435 
   1436 	identify = NVME_DMA_KVA(mem);
   1437 	sc->sc_identify = *identify;
   1438 	identify = NULL;
   1439 
   1440 	/* Convert data to host endian */
   1441 	nvme_identify_controller_swapbytes(&sc->sc_identify);
   1442 
   1443 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
   1444 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1445 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
   1446 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1447 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
   1448 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1449 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1450 	    sn);
   1451 
   1452 	if (sc->sc_identify.mdts > 0) {
   1453 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
   1454 		if (mdts < sc->sc_mdts)
   1455 			sc->sc_mdts = mdts;
   1456 	}
   1457 
   1458 	sc->sc_nn = sc->sc_identify.nn;
   1459 
   1460 done:
   1461 	nvme_dmamem_free(sc, mem);
   1462 
   1463 	return rv;
   1464 }
   1465 
   1466 static int
   1467 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1468 {
   1469 	struct nvme_sqe_q sqe;
   1470 	struct nvme_ccb *ccb;
   1471 	int rv;
   1472 
   1473 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1474 		return 1;
   1475 
   1476 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1477 	KASSERT(ccb != NULL);
   1478 
   1479 	ccb->ccb_done = nvme_empty_done;
   1480 	ccb->ccb_cookie = &sqe;
   1481 
   1482 	memset(&sqe, 0, sizeof(sqe));
   1483 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1484 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1485 	htolem16(&sqe.qsize, q->q_entries - 1);
   1486 	htolem16(&sqe.qid, q->q_id);
   1487 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1488 	if (sc->sc_use_mq)
   1489 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1490 
   1491 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1492 	if (rv != 0)
   1493 		goto fail;
   1494 
   1495 	ccb->ccb_done = nvme_empty_done;
   1496 	ccb->ccb_cookie = &sqe;
   1497 
   1498 	memset(&sqe, 0, sizeof(sqe));
   1499 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1500 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1501 	htolem16(&sqe.qsize, q->q_entries - 1);
   1502 	htolem16(&sqe.qid, q->q_id);
   1503 	htolem16(&sqe.cqid, q->q_id);
   1504 	sqe.qflags = NVM_SQE_Q_PC;
   1505 
   1506 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1507 	if (rv != 0)
   1508 		goto fail;
   1509 
   1510 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1511 	return 0;
   1512 
   1513 fail:
   1514 	if (sc->sc_use_mq)
   1515 		sc->sc_intr_disestablish(sc, q->q_id);
   1516 
   1517 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1518 	return rv;
   1519 }
   1520 
   1521 static int
   1522 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1523 {
   1524 	struct nvme_sqe_q sqe;
   1525 	struct nvme_ccb *ccb;
   1526 	int rv;
   1527 
   1528 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1529 	KASSERT(ccb != NULL);
   1530 
   1531 	ccb->ccb_done = nvme_empty_done;
   1532 	ccb->ccb_cookie = &sqe;
   1533 
   1534 	memset(&sqe, 0, sizeof(sqe));
   1535 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1536 	htolem16(&sqe.qid, q->q_id);
   1537 
   1538 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1539 	if (rv != 0)
   1540 		goto fail;
   1541 
   1542 	ccb->ccb_done = nvme_empty_done;
   1543 	ccb->ccb_cookie = &sqe;
   1544 
   1545 	memset(&sqe, 0, sizeof(sqe));
   1546 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1547 	htolem16(&sqe.qid, q->q_id);
   1548 
   1549 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1550 	if (rv != 0)
   1551 		goto fail;
   1552 
   1553 fail:
   1554 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1555 
   1556 	if (rv == 0 && sc->sc_use_mq) {
   1557 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1558 			rv = 1;
   1559 	}
   1560 
   1561 	return rv;
   1562 }
   1563 
   1564 static void
   1565 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1566 {
   1567 	struct nvme_sqe *sqe = slot;
   1568 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1569 
   1570 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1571 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1572 	htolem32(&sqe->cdw10, 1);
   1573 }
   1574 
   1575 static int
   1576 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
   1577 {
   1578 	struct nvme_pt_state state;
   1579 	struct nvme_pt_command pt;
   1580 	struct nvme_ccb *ccb;
   1581 	uint16_t ncqa, nsqa;
   1582 	int rv;
   1583 
   1584 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1585 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1586 
   1587 	memset(&pt, 0, sizeof(pt));
   1588 	pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
   1589 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
   1590 
   1591 	memset(&state, 0, sizeof(state));
   1592 	state.pt = &pt;
   1593 	state.finished = false;
   1594 
   1595 	ccb->ccb_done = nvme_pt_done;
   1596 	ccb->ccb_cookie = &state;
   1597 
   1598 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1599 
   1600 	if (rv != 0) {
   1601 		*nqap = 0;
   1602 		return EIO;
   1603 	}
   1604 
   1605 	ncqa = pt.cpl.cdw0 >> 16;
   1606 	nsqa = pt.cpl.cdw0 & 0xffff;
   1607 	*nqap = MIN(ncqa, nsqa) + 1;
   1608 
   1609 	return 0;
   1610 }
   1611 
   1612 static int
   1613 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1614 {
   1615 	struct nvme_softc *sc = q->q_sc;
   1616 	struct nvme_ccb *ccb;
   1617 	bus_addr_t off;
   1618 	uint64_t *prpl;
   1619 	u_int i;
   1620 
   1621 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1622 	cv_init(&q->q_ccb_wait, "nvmeqw");
   1623 	q->q_ccb_waiting = false;
   1624 	SIMPLEQ_INIT(&q->q_ccb_list);
   1625 
   1626 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1627 
   1628 	q->q_nccbs = nccbs;
   1629 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1630 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1631 
   1632 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1633 	off = 0;
   1634 
   1635 	for (i = 0; i < nccbs; i++) {
   1636 		ccb = &q->q_ccbs[i];
   1637 
   1638 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1639 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1640 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1641 		    &ccb->ccb_dmamap) != 0)
   1642 			goto free_maps;
   1643 
   1644 		ccb->ccb_id = i;
   1645 		ccb->ccb_prpl = prpl;
   1646 		ccb->ccb_prpl_off = off;
   1647 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1648 
   1649 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1650 
   1651 		prpl += sc->sc_max_sgl;
   1652 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1653 	}
   1654 
   1655 	return 0;
   1656 
   1657 free_maps:
   1658 	nvme_ccbs_free(q);
   1659 	return 1;
   1660 }
   1661 
   1662 static struct nvme_ccb *
   1663 nvme_ccb_get(struct nvme_queue *q, bool wait)
   1664 {
   1665 	struct nvme_ccb *ccb = NULL;
   1666 
   1667 	mutex_enter(&q->q_ccb_mtx);
   1668 again:
   1669 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1670 	if (ccb != NULL) {
   1671 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1672 #ifdef DEBUG
   1673 		ccb->ccb_cookie = NULL;
   1674 #endif
   1675 	} else {
   1676 		if (__predict_false(wait)) {
   1677 			q->q_ccb_waiting = true;
   1678 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1679 			goto again;
   1680 		}
   1681 	}
   1682 	mutex_exit(&q->q_ccb_mtx);
   1683 
   1684 	return ccb;
   1685 }
   1686 
   1687 static void
   1688 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1689 {
   1690 
   1691 	mutex_enter(&q->q_ccb_mtx);
   1692 #ifdef DEBUG
   1693 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1694 #endif
   1695 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1696 
   1697 	/* It's unlikely there are any waiters, it's not used for regular I/O */
   1698 	if (__predict_false(q->q_ccb_waiting)) {
   1699 		q->q_ccb_waiting = false;
   1700 		cv_broadcast(&q->q_ccb_wait);
   1701 	}
   1702 
   1703 	mutex_exit(&q->q_ccb_mtx);
   1704 }
   1705 
   1706 static void
   1707 nvme_ccbs_free(struct nvme_queue *q)
   1708 {
   1709 	struct nvme_softc *sc = q->q_sc;
   1710 	struct nvme_ccb *ccb;
   1711 
   1712 	mutex_enter(&q->q_ccb_mtx);
   1713 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1714 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1715 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1716 	}
   1717 	mutex_exit(&q->q_ccb_mtx);
   1718 
   1719 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1720 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1721 	q->q_ccbs = NULL;
   1722 	cv_destroy(&q->q_ccb_wait);
   1723 	mutex_destroy(&q->q_ccb_mtx);
   1724 }
   1725 
   1726 static struct nvme_queue *
   1727 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1728 {
   1729 	struct nvme_queue *q;
   1730 
   1731 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1732 	q->q_sc = sc;
   1733 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1734 	    sizeof(struct nvme_sqe) * entries);
   1735 	if (q->q_sq_dmamem == NULL)
   1736 		goto free;
   1737 
   1738 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1739 	    sizeof(struct nvme_cqe) * entries);
   1740 	if (q->q_cq_dmamem == NULL)
   1741 		goto free_sq;
   1742 
   1743 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1744 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1745 
   1746 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1747 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1748 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1749 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1750 	q->q_id = id;
   1751 	q->q_entries = entries;
   1752 	q->q_sq_tail = 0;
   1753 	q->q_cq_head = 0;
   1754 	q->q_cq_phase = NVME_CQE_PHASE;
   1755 
   1756 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1757 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1758 
   1759 	/*
   1760 	 * Due to definition of full and empty queue (queue is empty
   1761 	 * when head == tail, full when tail is one less then head),
   1762 	 * we can actually only have (entries - 1) in-flight commands.
   1763 	 */
   1764 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1765 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1766 		goto free_cq;
   1767 	}
   1768 
   1769 	return q;
   1770 
   1771 free_cq:
   1772 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1773 free_sq:
   1774 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1775 free:
   1776 	kmem_free(q, sizeof(*q));
   1777 
   1778 	return NULL;
   1779 }
   1780 
   1781 static void
   1782 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1783 {
   1784 	nvme_ccbs_free(q);
   1785 	mutex_destroy(&q->q_sq_mtx);
   1786 	mutex_destroy(&q->q_cq_mtx);
   1787 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1788 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1789 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1790 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1791 	kmem_free(q, sizeof(*q));
   1792 }
   1793 
   1794 int
   1795 nvme_intr(void *xsc)
   1796 {
   1797 	struct nvme_softc *sc = xsc;
   1798 
   1799 	/*
   1800 	 * INTx is level triggered, controller deasserts the interrupt only
   1801 	 * when we advance command queue head via write to the doorbell.
   1802 	 * Tell the controller to block the interrupts while we process
   1803 	 * the queue(s).
   1804 	 */
   1805 	nvme_write4(sc, NVME_INTMS, 1);
   1806 
   1807 	softint_schedule(sc->sc_softih[0]);
   1808 
   1809 	/* don't know, might not have been for us */
   1810 	return 1;
   1811 }
   1812 
   1813 void
   1814 nvme_softintr_intx(void *xq)
   1815 {
   1816 	struct nvme_queue *q = xq;
   1817 	struct nvme_softc *sc = q->q_sc;
   1818 
   1819 	nvme_q_complete(sc, sc->sc_admin_q);
   1820 	if (sc->sc_q != NULL)
   1821 	        nvme_q_complete(sc, sc->sc_q[0]);
   1822 
   1823 	/*
   1824 	 * Processing done, tell controller to issue interrupts again. There
   1825 	 * is no race, as NVMe spec requires the controller to maintain state,
   1826 	 * and assert the interrupt whenever there are unacknowledged
   1827 	 * completion queue entries.
   1828 	 */
   1829 	nvme_write4(sc, NVME_INTMC, 1);
   1830 }
   1831 
   1832 int
   1833 nvme_intr_msi(void *xq)
   1834 {
   1835 	struct nvme_queue *q = xq;
   1836 
   1837 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1838 	    && q->q_sc->sc_softih[q->q_id]);
   1839 
   1840 	/*
   1841 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1842 	 * without masking the interrupt.
   1843 	 */
   1844 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1845 
   1846 	return 1;
   1847 }
   1848 
   1849 void
   1850 nvme_softintr_msi(void *xq)
   1851 {
   1852 	struct nvme_queue *q = xq;
   1853 	struct nvme_softc *sc = q->q_sc;
   1854 
   1855 	nvme_q_complete(sc, q);
   1856 }
   1857 
   1858 static struct nvme_dmamem *
   1859 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1860 {
   1861 	struct nvme_dmamem *ndm;
   1862 	int nsegs;
   1863 
   1864 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1865 	if (ndm == NULL)
   1866 		return NULL;
   1867 
   1868 	ndm->ndm_size = size;
   1869 
   1870 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1871 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1872 		goto ndmfree;
   1873 
   1874 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1875 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1876 		goto destroy;
   1877 
   1878 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1879 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1880 		goto free;
   1881 	memset(ndm->ndm_kva, 0, size);
   1882 
   1883 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1884 	    NULL, BUS_DMA_WAITOK) != 0)
   1885 		goto unmap;
   1886 
   1887 	return ndm;
   1888 
   1889 unmap:
   1890 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1891 free:
   1892 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1893 destroy:
   1894 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1895 ndmfree:
   1896 	kmem_free(ndm, sizeof(*ndm));
   1897 	return NULL;
   1898 }
   1899 
   1900 static void
   1901 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1902 {
   1903 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1904 	    0, NVME_DMA_LEN(mem), ops);
   1905 }
   1906 
   1907 void
   1908 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1909 {
   1910 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1911 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1912 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1913 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1914 	kmem_free(ndm, sizeof(*ndm));
   1915 }
   1916 
   1917 /*
   1918  * ioctl
   1919  */
   1920 
   1921 dev_type_open(nvmeopen);
   1922 dev_type_close(nvmeclose);
   1923 dev_type_ioctl(nvmeioctl);
   1924 
   1925 const struct cdevsw nvme_cdevsw = {
   1926 	.d_open = nvmeopen,
   1927 	.d_close = nvmeclose,
   1928 	.d_read = noread,
   1929 	.d_write = nowrite,
   1930 	.d_ioctl = nvmeioctl,
   1931 	.d_stop = nostop,
   1932 	.d_tty = notty,
   1933 	.d_poll = nopoll,
   1934 	.d_mmap = nommap,
   1935 	.d_kqfilter = nokqfilter,
   1936 	.d_discard = nodiscard,
   1937 	.d_flag = D_OTHER,
   1938 };
   1939 
   1940 /*
   1941  * Accept an open operation on the control device.
   1942  */
   1943 int
   1944 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1945 {
   1946 	struct nvme_softc *sc;
   1947 	int unit = minor(dev) / 0x10000;
   1948 	int nsid = minor(dev) & 0xffff;
   1949 	int nsidx;
   1950 
   1951 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1952 		return ENXIO;
   1953 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1954 		return ENXIO;
   1955 
   1956 	if (nsid == 0) {
   1957 		/* controller */
   1958 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1959 			return EBUSY;
   1960 		SET(sc->sc_flags, NVME_F_OPEN);
   1961 	} else {
   1962 		/* namespace */
   1963 		nsidx = nsid - 1;
   1964 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1965 			return ENXIO;
   1966 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1967 			return EBUSY;
   1968 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1969 	}
   1970 	return 0;
   1971 }
   1972 
   1973 /*
   1974  * Accept the last close on the control device.
   1975  */
   1976 int
   1977 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1978 {
   1979 	struct nvme_softc *sc;
   1980 	int unit = minor(dev) / 0x10000;
   1981 	int nsid = minor(dev) & 0xffff;
   1982 	int nsidx;
   1983 
   1984 	sc = device_lookup_private(&nvme_cd, unit);
   1985 	if (sc == NULL)
   1986 		return ENXIO;
   1987 
   1988 	if (nsid == 0) {
   1989 		/* controller */
   1990 		CLR(sc->sc_flags, NVME_F_OPEN);
   1991 	} else {
   1992 		/* namespace */
   1993 		nsidx = nsid - 1;
   1994 		if (nsidx >= sc->sc_nn)
   1995 			return ENXIO;
   1996 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1997 	}
   1998 
   1999 	return 0;
   2000 }
   2001 
   2002 /*
   2003  * Handle control operations.
   2004  */
   2005 int
   2006 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   2007 {
   2008 	struct nvme_softc *sc;
   2009 	int unit = minor(dev) / 0x10000;
   2010 	int nsid = minor(dev) & 0xffff;
   2011 	struct nvme_pt_command *pt;
   2012 
   2013 	sc = device_lookup_private(&nvme_cd, unit);
   2014 	if (sc == NULL)
   2015 		return ENXIO;
   2016 
   2017 	switch (cmd) {
   2018 	case NVME_PASSTHROUGH_CMD:
   2019 		pt = data;
   2020 		return nvme_command_passthrough(sc, data,
   2021 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   2022 	}
   2023 
   2024 	return ENOTTY;
   2025 }
   2026