nvme.c revision 1.42 1 /* $NetBSD: nvme.c,v 1.42 2019/04/24 23:39:23 mlelstv Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.42 2019/04/24 23:39:23 mlelstv Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
46
47 int nvme_adminq_size = 32;
48 int nvme_ioq_size = 1024;
49
50 static int nvme_print(void *, const char *);
51
52 static int nvme_ready(struct nvme_softc *, uint32_t);
53 static int nvme_enable(struct nvme_softc *, u_int);
54 static int nvme_disable(struct nvme_softc *);
55 static int nvme_shutdown(struct nvme_softc *);
56
57 #ifdef NVME_DEBUG
58 static void nvme_dumpregs(struct nvme_softc *);
59 #endif
60 static int nvme_identify(struct nvme_softc *, u_int);
61 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
62 void *);
63
64 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
65 static void nvme_ccbs_free(struct nvme_queue *);
66
67 static struct nvme_ccb *
68 nvme_ccb_get(struct nvme_queue *, bool);
69 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
70
71 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
72 struct nvme_ccb *, void (*)(struct nvme_queue *,
73 struct nvme_ccb *, void *), int);
74 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
78 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
79 struct nvme_cqe *);
80
81 static struct nvme_queue *
82 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
83 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
84 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
86 struct nvme_ccb *, void (*)(struct nvme_queue *,
87 struct nvme_ccb *, void *));
88 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
89 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
90 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
91 bool (*)(void *), void *);
92
93 static struct nvme_dmamem *
94 nvme_dmamem_alloc(struct nvme_softc *, size_t);
95 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
96 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
97 int);
98
99 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
100 void *);
101 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
102 struct nvme_cqe *);
103 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
108 void *);
109 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
110 struct nvme_cqe *);
111
112 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
113 void *);
114 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
115 struct nvme_cqe *);
116 static int nvme_command_passthrough(struct nvme_softc *,
117 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
118
119 static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
120
121 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
122 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
123 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
124 #define NVME_TIMO_SY 60 /* sync cache timeout */
125
126 #define nvme_read4(_s, _r) \
127 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
128 #define nvme_write4(_s, _r, _v) \
129 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
130 /*
131 * Some controllers, at least Apple NVMe, always require split
132 * transfers, so don't use bus_space_{read,write}_8() on LP64.
133 */
134 static inline uint64_t
135 nvme_read8(struct nvme_softc *sc, bus_size_t r)
136 {
137 uint64_t v;
138 uint32_t *a = (uint32_t *)&v;
139
140 #if _BYTE_ORDER == _LITTLE_ENDIAN
141 a[0] = nvme_read4(sc, r);
142 a[1] = nvme_read4(sc, r + 4);
143 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
144 a[1] = nvme_read4(sc, r);
145 a[0] = nvme_read4(sc, r + 4);
146 #endif
147
148 return v;
149 }
150
151 static inline void
152 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
153 {
154 uint32_t *a = (uint32_t *)&v;
155
156 #if _BYTE_ORDER == _LITTLE_ENDIAN
157 nvme_write4(sc, r, a[0]);
158 nvme_write4(sc, r + 4, a[1]);
159 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
160 nvme_write4(sc, r, a[1]);
161 nvme_write4(sc, r + 4, a[0]);
162 #endif
163 }
164 #define nvme_barrier(_s, _r, _l, _f) \
165 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
166
167 #ifdef NVME_DEBUG
168 static __used void
169 nvme_dumpregs(struct nvme_softc *sc)
170 {
171 uint64_t r8;
172 uint32_t r4;
173
174 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
175 r8 = nvme_read8(sc, NVME_CAP);
176 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
177 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
178 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
179 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
180 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
181 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
182 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
183 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
184 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
185 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
186 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
187 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
188
189 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
190
191 r4 = nvme_read4(sc, NVME_CC);
192 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
193 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
194 (1 << NVME_CC_IOCQES_R(r4)));
195 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
196 (1 << NVME_CC_IOSQES_R(r4)));
197 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
198 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
199 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
200 (1 << NVME_CC_MPS_R(r4)));
201 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
202 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
203
204 r4 = nvme_read4(sc, NVME_CSTS);
205 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
206 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
207 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
208 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
209
210 r4 = nvme_read4(sc, NVME_AQA);
211 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
212 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
213 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
214
215 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
216 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
217 #undef DEVNAME
218 }
219 #endif /* NVME_DEBUG */
220
221 static int
222 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
223 {
224 u_int i = 0;
225
226 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
227 if (i++ > sc->sc_rdy_to)
228 return ENXIO;
229
230 delay(1000);
231 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
232 }
233
234 return 0;
235 }
236
237 static int
238 nvme_enable(struct nvme_softc *sc, u_int mps)
239 {
240 uint32_t cc, csts;
241 int error;
242
243 cc = nvme_read4(sc, NVME_CC);
244 csts = nvme_read4(sc, NVME_CSTS);
245
246 /*
247 * See note in nvme_disable. Short circuit if we're already enabled.
248 */
249 if (ISSET(cc, NVME_CC_EN)) {
250 if (ISSET(csts, NVME_CSTS_RDY))
251 return 0;
252
253 goto waitready;
254 } else {
255 /* EN == 0 already wait for RDY == 0 or fail */
256 error = nvme_ready(sc, 0);
257 if (error)
258 return error;
259 }
260
261 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
262 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
263 delay(5000);
264 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267
268 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
269 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
270 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
271 delay(5000);
272
273 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
274 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
275 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
276 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
277 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
278 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
279 SET(cc, NVME_CC_MPS(mps));
280 SET(cc, NVME_CC_EN);
281
282 nvme_write4(sc, NVME_CC, cc);
283 nvme_barrier(sc, 0, sc->sc_ios,
284 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
285
286 waitready:
287 return nvme_ready(sc, NVME_CSTS_RDY);
288 }
289
290 static int
291 nvme_disable(struct nvme_softc *sc)
292 {
293 uint32_t cc, csts;
294 int error;
295
296 cc = nvme_read4(sc, NVME_CC);
297 csts = nvme_read4(sc, NVME_CSTS);
298
299 /*
300 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
301 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
302 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
303 * isn't the desired value. Short circuit if we're already disabled.
304 */
305 if (ISSET(cc, NVME_CC_EN)) {
306 if (!ISSET(csts, NVME_CSTS_RDY)) {
307 /* EN == 1, wait for RDY == 1 or fail */
308 error = nvme_ready(sc, NVME_CSTS_RDY);
309 if (error)
310 return error;
311 }
312 } else {
313 /* EN == 0 already wait for RDY == 0 */
314 if (!ISSET(csts, NVME_CSTS_RDY))
315 return 0;
316
317 goto waitready;
318 }
319
320 CLR(cc, NVME_CC_EN);
321 nvme_write4(sc, NVME_CC, cc);
322 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
323
324 /*
325 * Some drives have issues with accessing the mmio after we disable,
326 * so delay for a bit after we write the bit to cope with these issues.
327 */
328 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
329 delay(B4_CHK_RDY_DELAY_MS);
330
331 waitready:
332 return nvme_ready(sc, 0);
333 }
334
335 int
336 nvme_attach(struct nvme_softc *sc)
337 {
338 uint64_t cap;
339 uint32_t reg;
340 u_int dstrd;
341 u_int mps = PAGE_SHIFT;
342 u_int ioq_allocated;
343 uint16_t adminq_entries = nvme_adminq_size;
344 uint16_t ioq_entries = nvme_ioq_size;
345 int i;
346
347 reg = nvme_read4(sc, NVME_VS);
348 if (reg == 0xffffffff) {
349 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
350 return 1;
351 }
352
353 if (NVME_VS_TER(reg) == 0)
354 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
355 NVME_VS_MNR(reg));
356 else
357 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
358 NVME_VS_MNR(reg), NVME_VS_TER(reg));
359
360 cap = nvme_read8(sc, NVME_CAP);
361 dstrd = NVME_CAP_DSTRD(cap);
362 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
363 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
364 "is greater than CPU page size %u\n",
365 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
366 return 1;
367 }
368 if (NVME_CAP_MPSMAX(cap) < mps)
369 mps = NVME_CAP_MPSMAX(cap);
370 if (ioq_entries > NVME_CAP_MQES(cap))
371 ioq_entries = NVME_CAP_MQES(cap);
372
373 /* set initial values to be used for admin queue during probe */
374 sc->sc_rdy_to = NVME_CAP_TO(cap);
375 sc->sc_mps = 1 << mps;
376 sc->sc_mdts = MAXPHYS;
377 sc->sc_max_sgl = 2;
378
379 if (nvme_disable(sc) != 0) {
380 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
381 return 1;
382 }
383
384 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
385 if (sc->sc_admin_q == NULL) {
386 aprint_error_dev(sc->sc_dev,
387 "unable to allocate admin queue\n");
388 return 1;
389 }
390 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
391 goto free_admin_q;
392
393 if (nvme_enable(sc, mps) != 0) {
394 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
395 goto disestablish_admin_q;
396 }
397
398 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
399 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
400 goto disable;
401 }
402
403 /* we know how big things are now */
404 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
405
406 /* reallocate ccbs of admin queue with new max sgl. */
407 nvme_ccbs_free(sc->sc_admin_q);
408 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
409
410 if (sc->sc_use_mq) {
411 /* Limit the number of queues to the number allocated in HW */
412 if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
413 aprint_error_dev(sc->sc_dev,
414 "unable to get number of queues\n");
415 goto disable;
416 }
417 if (sc->sc_nq > ioq_allocated)
418 sc->sc_nq = ioq_allocated;
419 }
420
421 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
422 for (i = 0; i < sc->sc_nq; i++) {
423 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
424 if (sc->sc_q[i] == NULL) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to allocate io queue\n");
427 goto free_q;
428 }
429 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
430 aprint_error_dev(sc->sc_dev,
431 "unable to create io queue\n");
432 nvme_q_free(sc, sc->sc_q[i]);
433 goto free_q;
434 }
435 }
436
437 if (!sc->sc_use_mq)
438 nvme_write4(sc, NVME_INTMC, 1);
439
440 /* probe subdevices */
441 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
442 KM_SLEEP);
443 nvme_rescan(sc->sc_dev, "nvme", &i);
444
445 return 0;
446
447 free_q:
448 while (--i >= 0) {
449 nvme_q_delete(sc, sc->sc_q[i]);
450 nvme_q_free(sc, sc->sc_q[i]);
451 }
452 disable:
453 nvme_disable(sc);
454 disestablish_admin_q:
455 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
456 free_admin_q:
457 nvme_q_free(sc, sc->sc_admin_q);
458
459 return 1;
460 }
461
462 int
463 nvme_rescan(device_t self, const char *attr, const int *flags)
464 {
465 struct nvme_softc *sc = device_private(self);
466 struct nvme_attach_args naa;
467 uint64_t cap;
468 int ioq_entries = nvme_ioq_size;
469 int i;
470
471 cap = nvme_read8(sc, NVME_CAP);
472 if (ioq_entries > NVME_CAP_MQES(cap))
473 ioq_entries = NVME_CAP_MQES(cap);
474
475 for (i = 0; i < sc->sc_nn; i++) {
476 if (sc->sc_namespaces[i].dev)
477 continue;
478 memset(&naa, 0, sizeof(naa));
479 naa.naa_nsid = i + 1;
480 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
481 naa.naa_maxphys = sc->sc_mdts;
482 naa.naa_typename = sc->sc_modelname;
483 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
484 nvme_print);
485 }
486 return 0;
487 }
488
489 static int
490 nvme_print(void *aux, const char *pnp)
491 {
492 struct nvme_attach_args *naa = aux;
493
494 if (pnp)
495 aprint_normal("at %s", pnp);
496
497 if (naa->naa_nsid > 0)
498 aprint_normal(" nsid %d", naa->naa_nsid);
499
500 return UNCONF;
501 }
502
503 int
504 nvme_detach(struct nvme_softc *sc, int flags)
505 {
506 int i, error;
507
508 error = config_detach_children(sc->sc_dev, flags);
509 if (error)
510 return error;
511
512 error = nvme_shutdown(sc);
513 if (error)
514 return error;
515
516 /* from now on we are committed to detach, following will never fail */
517 for (i = 0; i < sc->sc_nq; i++)
518 nvme_q_free(sc, sc->sc_q[i]);
519 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
520 nvme_q_free(sc, sc->sc_admin_q);
521
522 return 0;
523 }
524
525 static int
526 nvme_shutdown(struct nvme_softc *sc)
527 {
528 uint32_t cc, csts;
529 bool disabled = false;
530 int i;
531
532 if (!sc->sc_use_mq)
533 nvme_write4(sc, NVME_INTMS, 1);
534
535 for (i = 0; i < sc->sc_nq; i++) {
536 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
537 aprint_error_dev(sc->sc_dev,
538 "unable to delete io queue %d, disabling\n", i + 1);
539 disabled = true;
540 }
541 }
542 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
543 if (disabled)
544 goto disable;
545
546 cc = nvme_read4(sc, NVME_CC);
547 CLR(cc, NVME_CC_SHN_MASK);
548 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
549 nvme_write4(sc, NVME_CC, cc);
550
551 for (i = 0; i < 4000; i++) {
552 nvme_barrier(sc, 0, sc->sc_ios,
553 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
554 csts = nvme_read4(sc, NVME_CSTS);
555 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
556 return 0;
557
558 delay(1000);
559 }
560
561 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
562
563 disable:
564 nvme_disable(sc);
565 return 0;
566 }
567
568 void
569 nvme_childdet(device_t self, device_t child)
570 {
571 struct nvme_softc *sc = device_private(self);
572 int i;
573
574 for (i = 0; i < sc->sc_nn; i++) {
575 if (sc->sc_namespaces[i].dev == child) {
576 /* Already freed ns->ident. */
577 sc->sc_namespaces[i].dev = NULL;
578 break;
579 }
580 }
581 }
582
583 int
584 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
585 {
586 struct nvme_sqe sqe;
587 struct nvm_identify_namespace *identify;
588 struct nvme_dmamem *mem;
589 struct nvme_ccb *ccb;
590 struct nvme_namespace *ns;
591 int rv;
592
593 KASSERT(nsid > 0);
594
595 ccb = nvme_ccb_get(sc->sc_admin_q, false);
596 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
597
598 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
599 if (mem == NULL) {
600 nvme_ccb_put(sc->sc_admin_q, ccb);
601 return ENOMEM;
602 }
603
604 memset(&sqe, 0, sizeof(sqe));
605 sqe.opcode = NVM_ADMIN_IDENTIFY;
606 htolem32(&sqe.nsid, nsid);
607 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
608 htolem32(&sqe.cdw10, 0);
609
610 ccb->ccb_done = nvme_empty_done;
611 ccb->ccb_cookie = &sqe;
612
613 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
614 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
615 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
616
617 nvme_ccb_put(sc->sc_admin_q, ccb);
618
619 if (rv != 0) {
620 rv = EIO;
621 goto done;
622 }
623
624 /* commit */
625
626 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
627 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
628
629 /* Convert data to host endian */
630 nvme_identify_namespace_swapbytes(identify);
631
632 ns = nvme_ns_get(sc, nsid);
633 KASSERT(ns);
634 KASSERT(ns->ident == NULL);
635 ns->ident = identify;
636
637 done:
638 nvme_dmamem_free(sc, mem);
639
640 return rv;
641 }
642
643 int
644 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
645 struct buf *bp, void *data, size_t datasize,
646 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
647 {
648 struct nvme_queue *q = nvme_get_q(sc);
649 struct nvme_ccb *ccb;
650 bus_dmamap_t dmap;
651 int i, error;
652
653 ccb = nvme_ccb_get(q, false);
654 if (ccb == NULL)
655 return EAGAIN;
656
657 ccb->ccb_done = nvme_ns_io_done;
658 ccb->ccb_cookie = cookie;
659
660 /* namespace context */
661 ccb->nnc_nsid = nsid;
662 ccb->nnc_flags = flags;
663 ccb->nnc_buf = bp;
664 ccb->nnc_datasize = datasize;
665 ccb->nnc_secsize = secsize;
666 ccb->nnc_blkno = blkno;
667 ccb->nnc_done = nnc_done;
668
669 dmap = ccb->ccb_dmamap;
670 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
671 datasize, NULL,
672 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
673 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
674 (ISSET(flags, NVME_NS_CTX_F_READ) ?
675 BUS_DMA_READ : BUS_DMA_WRITE));
676 if (error) {
677 nvme_ccb_put(q, ccb);
678 return error;
679 }
680
681 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
682 ISSET(flags, NVME_NS_CTX_F_READ) ?
683 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
684
685 if (dmap->dm_nsegs > 2) {
686 for (i = 1; i < dmap->dm_nsegs; i++) {
687 htolem64(&ccb->ccb_prpl[i - 1],
688 dmap->dm_segs[i].ds_addr);
689 }
690 bus_dmamap_sync(sc->sc_dmat,
691 NVME_DMA_MAP(q->q_ccb_prpls),
692 ccb->ccb_prpl_off,
693 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
694 BUS_DMASYNC_PREWRITE);
695 }
696
697 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
698 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
699 return EIO;
700 return 0;
701 }
702
703 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
704 return 0;
705 }
706
707 static void
708 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
709 {
710 struct nvme_sqe_io *sqe = slot;
711 bus_dmamap_t dmap = ccb->ccb_dmamap;
712
713 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
714 NVM_CMD_READ : NVM_CMD_WRITE;
715 htolem32(&sqe->nsid, ccb->nnc_nsid);
716
717 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
718 switch (dmap->dm_nsegs) {
719 case 1:
720 break;
721 case 2:
722 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
723 break;
724 default:
725 /* the prp list is already set up and synced */
726 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
727 break;
728 }
729
730 htolem64(&sqe->slba, ccb->nnc_blkno);
731
732 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
733 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
734
735 /* guaranteed by upper layers, but check just in case */
736 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
737 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
738 }
739
740 static void
741 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
742 struct nvme_cqe *cqe)
743 {
744 struct nvme_softc *sc = q->q_sc;
745 bus_dmamap_t dmap = ccb->ccb_dmamap;
746 void *nnc_cookie = ccb->ccb_cookie;
747 nvme_nnc_done nnc_done = ccb->nnc_done;
748 struct buf *bp = ccb->nnc_buf;
749
750 if (dmap->dm_nsegs > 2) {
751 bus_dmamap_sync(sc->sc_dmat,
752 NVME_DMA_MAP(q->q_ccb_prpls),
753 ccb->ccb_prpl_off,
754 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
755 BUS_DMASYNC_POSTWRITE);
756 }
757
758 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
759 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
760 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
761
762 bus_dmamap_unload(sc->sc_dmat, dmap);
763 nvme_ccb_put(q, ccb);
764
765 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
766 }
767
768 /*
769 * If there is no volatile write cache, it makes no sense to issue
770 * flush commands or query for the status.
771 */
772 static bool
773 nvme_has_volatile_write_cache(struct nvme_softc *sc)
774 {
775 /* sc_identify is filled during attachment */
776 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
777 }
778
779 static bool
780 nvme_ns_sync_finished(void *cookie)
781 {
782 int *result = cookie;
783
784 return (*result != 0);
785 }
786
787 int
788 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
789 {
790 struct nvme_queue *q = nvme_get_q(sc);
791 struct nvme_ccb *ccb;
792 int result = 0;
793
794 if (!nvme_has_volatile_write_cache(sc)) {
795 /* cache not present, no value in trying to flush it */
796 return 0;
797 }
798
799 ccb = nvme_ccb_get(q, true);
800 if (ccb == NULL)
801 return EAGAIN;
802
803 ccb->ccb_done = nvme_ns_sync_done;
804 ccb->ccb_cookie = &result;
805
806 /* namespace context */
807 ccb->nnc_nsid = nsid;
808 ccb->nnc_flags = flags;
809 ccb->nnc_done = NULL;
810
811 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
812 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
813 return EIO;
814 return 0;
815 }
816
817 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
818
819 /* wait for completion */
820 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
821 KASSERT(result != 0);
822
823 return (result > 0) ? 0 : EIO;
824 }
825
826 static void
827 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
828 {
829 struct nvme_sqe *sqe = slot;
830
831 sqe->opcode = NVM_CMD_FLUSH;
832 htolem32(&sqe->nsid, ccb->nnc_nsid);
833 }
834
835 static void
836 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
837 struct nvme_cqe *cqe)
838 {
839 int *result = ccb->ccb_cookie;
840 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
841
842 if (status == NVME_CQE_SC_SUCCESS)
843 *result = 1;
844 else
845 *result = -1;
846
847 nvme_ccb_put(q, ccb);
848 }
849
850 static bool
851 nvme_getcache_finished(void *xc)
852 {
853 int *addr = xc;
854
855 return (*addr != 0);
856 }
857
858 /*
859 * Get status of volatile write cache. Always asynchronous.
860 */
861 int
862 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
863 {
864 struct nvme_ccb *ccb;
865 struct nvme_queue *q = sc->sc_admin_q;
866 int result = 0, error;
867
868 if (!nvme_has_volatile_write_cache(sc)) {
869 /* cache simply not present */
870 *addr = 0;
871 return 0;
872 }
873
874 ccb = nvme_ccb_get(q, true);
875 KASSERT(ccb != NULL);
876
877 ccb->ccb_done = nvme_getcache_done;
878 ccb->ccb_cookie = &result;
879
880 /* namespace context */
881 ccb->nnc_flags = 0;
882 ccb->nnc_done = NULL;
883
884 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
885
886 /* wait for completion */
887 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
888 KASSERT(result != 0);
889
890 if (result > 0) {
891 *addr = result;
892 error = 0;
893 } else
894 error = EINVAL;
895
896 return error;
897 }
898
899 static void
900 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
901 {
902 struct nvme_sqe *sqe = slot;
903
904 sqe->opcode = NVM_ADMIN_GET_FEATURES;
905 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
906 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
907 }
908
909 static void
910 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
911 struct nvme_cqe *cqe)
912 {
913 int *addr = ccb->ccb_cookie;
914 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
915 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
916 int result;
917
918 if (status == NVME_CQE_SC_SUCCESS) {
919 result = 0;
920
921 /*
922 * DPO not supported, Dataset Management (DSM) field doesn't
923 * specify the same semantics. FUA is always supported.
924 */
925 result = DKCACHE_FUA;
926
927 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
928 result |= DKCACHE_WRITE;
929
930 /*
931 * If volatile write cache is present, the flag shall also be
932 * settable.
933 */
934 result |= DKCACHE_WCHANGE;
935
936 /*
937 * ONCS field indicates whether the optional SAVE is also
938 * supported for Set Features. According to spec v1.3,
939 * Volatile Write Cache however doesn't support persistency
940 * across power cycle/reset.
941 */
942
943 } else {
944 result = -1;
945 }
946
947 *addr = result;
948
949 nvme_ccb_put(q, ccb);
950 }
951
952 struct nvme_setcache_state {
953 int dkcache;
954 int result;
955 };
956
957 static bool
958 nvme_setcache_finished(void *xc)
959 {
960 struct nvme_setcache_state *st = xc;
961
962 return (st->result != 0);
963 }
964
965 static void
966 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
967 {
968 struct nvme_sqe *sqe = slot;
969 struct nvme_setcache_state *st = ccb->ccb_cookie;
970
971 sqe->opcode = NVM_ADMIN_SET_FEATURES;
972 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
973 if (st->dkcache & DKCACHE_WRITE)
974 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
975 }
976
977 static void
978 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
979 struct nvme_cqe *cqe)
980 {
981 struct nvme_setcache_state *st = ccb->ccb_cookie;
982 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
983
984 if (status == NVME_CQE_SC_SUCCESS) {
985 st->result = 1;
986 } else {
987 st->result = -1;
988 }
989
990 nvme_ccb_put(q, ccb);
991 }
992
993 /*
994 * Set status of volatile write cache. Always asynchronous.
995 */
996 int
997 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
998 {
999 struct nvme_ccb *ccb;
1000 struct nvme_queue *q = sc->sc_admin_q;
1001 int error;
1002 struct nvme_setcache_state st;
1003
1004 if (!nvme_has_volatile_write_cache(sc)) {
1005 /* cache simply not present */
1006 return EOPNOTSUPP;
1007 }
1008
1009 if (dkcache & ~(DKCACHE_WRITE)) {
1010 /* unsupported parameters */
1011 return EOPNOTSUPP;
1012 }
1013
1014 ccb = nvme_ccb_get(q, true);
1015 KASSERT(ccb != NULL);
1016
1017 memset(&st, 0, sizeof(st));
1018 st.dkcache = dkcache;
1019
1020 ccb->ccb_done = nvme_setcache_done;
1021 ccb->ccb_cookie = &st;
1022
1023 /* namespace context */
1024 ccb->nnc_flags = 0;
1025 ccb->nnc_done = NULL;
1026
1027 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1028
1029 /* wait for completion */
1030 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1031 KASSERT(st.result != 0);
1032
1033 if (st.result > 0)
1034 error = 0;
1035 else
1036 error = EINVAL;
1037
1038 return error;
1039 }
1040
1041 void
1042 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1043 {
1044 struct nvme_namespace *ns;
1045 struct nvm_identify_namespace *identify;
1046
1047 ns = nvme_ns_get(sc, nsid);
1048 KASSERT(ns);
1049
1050 identify = ns->ident;
1051 ns->ident = NULL;
1052 if (identify != NULL)
1053 kmem_free(identify, sizeof(*identify));
1054 }
1055
1056 struct nvme_pt_state {
1057 struct nvme_pt_command *pt;
1058 bool finished;
1059 };
1060
1061 static void
1062 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1063 {
1064 struct nvme_softc *sc = q->q_sc;
1065 struct nvme_sqe *sqe = slot;
1066 struct nvme_pt_state *state = ccb->ccb_cookie;
1067 struct nvme_pt_command *pt = state->pt;
1068 bus_dmamap_t dmap = ccb->ccb_dmamap;
1069 int i;
1070
1071 sqe->opcode = pt->cmd.opcode;
1072 htolem32(&sqe->nsid, pt->cmd.nsid);
1073
1074 if (pt->buf != NULL && pt->len > 0) {
1075 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1076 switch (dmap->dm_nsegs) {
1077 case 1:
1078 break;
1079 case 2:
1080 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1081 break;
1082 default:
1083 for (i = 1; i < dmap->dm_nsegs; i++) {
1084 htolem64(&ccb->ccb_prpl[i - 1],
1085 dmap->dm_segs[i].ds_addr);
1086 }
1087 bus_dmamap_sync(sc->sc_dmat,
1088 NVME_DMA_MAP(q->q_ccb_prpls),
1089 ccb->ccb_prpl_off,
1090 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1091 BUS_DMASYNC_PREWRITE);
1092 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1093 break;
1094 }
1095 }
1096
1097 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1098 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1099 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1100 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1101 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1102 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1103 }
1104
1105 static void
1106 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1107 {
1108 struct nvme_softc *sc = q->q_sc;
1109 struct nvme_pt_state *state = ccb->ccb_cookie;
1110 struct nvme_pt_command *pt = state->pt;
1111 bus_dmamap_t dmap = ccb->ccb_dmamap;
1112
1113 if (pt->buf != NULL && pt->len > 0) {
1114 if (dmap->dm_nsegs > 2) {
1115 bus_dmamap_sync(sc->sc_dmat,
1116 NVME_DMA_MAP(q->q_ccb_prpls),
1117 ccb->ccb_prpl_off,
1118 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1119 BUS_DMASYNC_POSTWRITE);
1120 }
1121
1122 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1123 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1124 bus_dmamap_unload(sc->sc_dmat, dmap);
1125 }
1126
1127 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1128 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1129
1130 state->finished = true;
1131
1132 nvme_ccb_put(q, ccb);
1133 }
1134
1135 static bool
1136 nvme_pt_finished(void *cookie)
1137 {
1138 struct nvme_pt_state *state = cookie;
1139
1140 return state->finished;
1141 }
1142
1143 static int
1144 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1145 uint16_t nsid, struct lwp *l, bool is_adminq)
1146 {
1147 struct nvme_queue *q;
1148 struct nvme_ccb *ccb;
1149 void *buf = NULL;
1150 struct nvme_pt_state state;
1151 int error;
1152
1153 /* limit command size to maximum data transfer size */
1154 if ((pt->buf == NULL && pt->len > 0) ||
1155 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1156 return EINVAL;
1157
1158 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1159 ccb = nvme_ccb_get(q, true);
1160 KASSERT(ccb != NULL);
1161
1162 if (pt->buf != NULL) {
1163 KASSERT(pt->len > 0);
1164 buf = kmem_alloc(pt->len, KM_SLEEP);
1165 if (!pt->is_read) {
1166 error = copyin(pt->buf, buf, pt->len);
1167 if (error)
1168 goto kmem_free;
1169 }
1170 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1171 pt->len, NULL,
1172 BUS_DMA_WAITOK |
1173 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1174 if (error)
1175 goto kmem_free;
1176 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1177 0, ccb->ccb_dmamap->dm_mapsize,
1178 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1179 }
1180
1181 memset(&state, 0, sizeof(state));
1182 state.pt = pt;
1183 state.finished = false;
1184
1185 ccb->ccb_done = nvme_pt_done;
1186 ccb->ccb_cookie = &state;
1187
1188 pt->cmd.nsid = nsid;
1189
1190 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1191
1192 /* wait for completion */
1193 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1194 KASSERT(state.finished);
1195
1196 error = 0;
1197
1198 if (buf != NULL) {
1199 if (error == 0 && pt->is_read)
1200 error = copyout(buf, pt->buf, pt->len);
1201 kmem_free:
1202 kmem_free(buf, pt->len);
1203 }
1204
1205 return error;
1206 }
1207
1208 static void
1209 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1210 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1211 {
1212 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1213 uint32_t tail;
1214
1215 mutex_enter(&q->q_sq_mtx);
1216 tail = q->q_sq_tail;
1217 if (++q->q_sq_tail >= q->q_entries)
1218 q->q_sq_tail = 0;
1219
1220 sqe += tail;
1221
1222 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1223 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1224 memset(sqe, 0, sizeof(*sqe));
1225 (*fill)(q, ccb, sqe);
1226 htolem16(&sqe->cid, ccb->ccb_id);
1227 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1228 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1229
1230 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1231 mutex_exit(&q->q_sq_mtx);
1232 }
1233
1234 struct nvme_poll_state {
1235 struct nvme_sqe s;
1236 struct nvme_cqe c;
1237 void *cookie;
1238 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1239 };
1240
1241 static int
1242 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1243 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1244 {
1245 struct nvme_poll_state state;
1246 uint16_t flags;
1247 int step = 10;
1248 int maxloop = timo_sec * 1000000 / step;
1249 int error = 0;
1250
1251 memset(&state, 0, sizeof(state));
1252 (*fill)(q, ccb, &state.s);
1253
1254 state.done = ccb->ccb_done;
1255 state.cookie = ccb->ccb_cookie;
1256
1257 ccb->ccb_done = nvme_poll_done;
1258 ccb->ccb_cookie = &state;
1259
1260 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1261 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1262 if (nvme_q_complete(sc, q) == 0)
1263 delay(step);
1264
1265 if (timo_sec >= 0 && --maxloop <= 0) {
1266 error = ETIMEDOUT;
1267 break;
1268 }
1269 }
1270
1271 if (error == 0) {
1272 flags = lemtoh16(&state.c.flags);
1273 return flags & ~NVME_CQE_PHASE;
1274 } else {
1275 /*
1276 * If it succeds later, it would hit ccb which will have been
1277 * already reused for something else. Not good. Cross
1278 * fingers and hope for best. XXX do controller reset?
1279 */
1280 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1281
1282 /* Invoke the callback to clean state anyway */
1283 struct nvme_cqe cqe;
1284 memset(&cqe, 0, sizeof(cqe));
1285 ccb->ccb_done(q, ccb, &cqe);
1286
1287 return 1;
1288 }
1289 }
1290
1291 static void
1292 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1293 {
1294 struct nvme_sqe *sqe = slot;
1295 struct nvme_poll_state *state = ccb->ccb_cookie;
1296
1297 *sqe = state->s;
1298 }
1299
1300 static void
1301 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1302 struct nvme_cqe *cqe)
1303 {
1304 struct nvme_poll_state *state = ccb->ccb_cookie;
1305
1306 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1307 state->c = *cqe;
1308
1309 ccb->ccb_cookie = state->cookie;
1310 state->done(q, ccb, &state->c);
1311 }
1312
1313 static void
1314 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1315 {
1316 struct nvme_sqe *src = ccb->ccb_cookie;
1317 struct nvme_sqe *dst = slot;
1318
1319 *dst = *src;
1320 }
1321
1322 static void
1323 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1324 struct nvme_cqe *cqe)
1325 {
1326 }
1327
1328 static int
1329 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1330 {
1331 struct nvme_ccb *ccb;
1332 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1333 uint16_t flags;
1334 int rv = 0;
1335
1336 mutex_enter(&q->q_cq_mtx);
1337
1338 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1339 for (;;) {
1340 cqe = &ring[q->q_cq_head];
1341 flags = lemtoh16(&cqe->flags);
1342 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1343 break;
1344
1345 ccb = &q->q_ccbs[cqe->cid];
1346
1347 if (++q->q_cq_head >= q->q_entries) {
1348 q->q_cq_head = 0;
1349 q->q_cq_phase ^= NVME_CQE_PHASE;
1350 }
1351
1352 #ifdef DEBUG
1353 /*
1354 * If we get spurious completion notification, something
1355 * is seriously hosed up. Very likely DMA to some random
1356 * memory place happened, so just bail out.
1357 */
1358 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1359 panic("%s: invalid ccb detected",
1360 device_xname(sc->sc_dev));
1361 /* NOTREACHED */
1362 }
1363 #endif
1364
1365 rv++;
1366
1367 /*
1368 * Unlock the mutex before calling the ccb_done callback
1369 * and re-lock afterwards. The callback triggers lddone()
1370 * which schedules another i/o, and also calls nvme_ccb_put().
1371 * Unlock/relock avoids possibility of deadlock.
1372 */
1373 mutex_exit(&q->q_cq_mtx);
1374 ccb->ccb_done(q, ccb, cqe);
1375 mutex_enter(&q->q_cq_mtx);
1376 }
1377 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1378
1379 if (rv)
1380 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1381
1382 mutex_exit(&q->q_cq_mtx);
1383
1384 return rv;
1385 }
1386
1387 static void
1388 nvme_q_wait_complete(struct nvme_softc *sc,
1389 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1390 {
1391 mutex_enter(&q->q_ccb_mtx);
1392 if (finished(cookie))
1393 goto out;
1394
1395 for(;;) {
1396 q->q_ccb_waiting = true;
1397 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1398
1399 if (finished(cookie))
1400 break;
1401 }
1402
1403 out:
1404 mutex_exit(&q->q_ccb_mtx);
1405 }
1406
1407 static int
1408 nvme_identify(struct nvme_softc *sc, u_int mps)
1409 {
1410 char sn[41], mn[81], fr[17];
1411 struct nvm_identify_controller *identify;
1412 struct nvme_dmamem *mem;
1413 struct nvme_ccb *ccb;
1414 u_int mdts;
1415 int rv = 1;
1416
1417 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1418 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1419
1420 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1421 if (mem == NULL)
1422 return 1;
1423
1424 ccb->ccb_done = nvme_empty_done;
1425 ccb->ccb_cookie = mem;
1426
1427 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1428 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1429 NVME_TIMO_IDENT);
1430 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1431
1432 nvme_ccb_put(sc->sc_admin_q, ccb);
1433
1434 if (rv != 0)
1435 goto done;
1436
1437 identify = NVME_DMA_KVA(mem);
1438 sc->sc_identify = *identify;
1439 identify = NULL;
1440
1441 /* Convert data to host endian */
1442 nvme_identify_controller_swapbytes(&sc->sc_identify);
1443
1444 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1445 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1446 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1447 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1448 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1449 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1450 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1451 sn);
1452
1453 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1454
1455 if (sc->sc_identify.mdts > 0) {
1456 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1457 if (mdts < sc->sc_mdts)
1458 sc->sc_mdts = mdts;
1459 }
1460
1461 sc->sc_nn = sc->sc_identify.nn;
1462
1463 done:
1464 nvme_dmamem_free(sc, mem);
1465
1466 return rv;
1467 }
1468
1469 static int
1470 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1471 {
1472 struct nvme_sqe_q sqe;
1473 struct nvme_ccb *ccb;
1474 int rv;
1475
1476 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1477 return 1;
1478
1479 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1480 KASSERT(ccb != NULL);
1481
1482 ccb->ccb_done = nvme_empty_done;
1483 ccb->ccb_cookie = &sqe;
1484
1485 memset(&sqe, 0, sizeof(sqe));
1486 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1487 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1488 htolem16(&sqe.qsize, q->q_entries - 1);
1489 htolem16(&sqe.qid, q->q_id);
1490 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1491 if (sc->sc_use_mq)
1492 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1493
1494 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1495 if (rv != 0)
1496 goto fail;
1497
1498 ccb->ccb_done = nvme_empty_done;
1499 ccb->ccb_cookie = &sqe;
1500
1501 memset(&sqe, 0, sizeof(sqe));
1502 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1503 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1504 htolem16(&sqe.qsize, q->q_entries - 1);
1505 htolem16(&sqe.qid, q->q_id);
1506 htolem16(&sqe.cqid, q->q_id);
1507 sqe.qflags = NVM_SQE_Q_PC;
1508
1509 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1510 if (rv != 0)
1511 goto fail;
1512
1513 nvme_ccb_put(sc->sc_admin_q, ccb);
1514 return 0;
1515
1516 fail:
1517 if (sc->sc_use_mq)
1518 sc->sc_intr_disestablish(sc, q->q_id);
1519
1520 nvme_ccb_put(sc->sc_admin_q, ccb);
1521 return rv;
1522 }
1523
1524 static int
1525 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1526 {
1527 struct nvme_sqe_q sqe;
1528 struct nvme_ccb *ccb;
1529 int rv;
1530
1531 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1532 KASSERT(ccb != NULL);
1533
1534 ccb->ccb_done = nvme_empty_done;
1535 ccb->ccb_cookie = &sqe;
1536
1537 memset(&sqe, 0, sizeof(sqe));
1538 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1539 htolem16(&sqe.qid, q->q_id);
1540
1541 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1542 if (rv != 0)
1543 goto fail;
1544
1545 ccb->ccb_done = nvme_empty_done;
1546 ccb->ccb_cookie = &sqe;
1547
1548 memset(&sqe, 0, sizeof(sqe));
1549 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1550 htolem16(&sqe.qid, q->q_id);
1551
1552 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1553 if (rv != 0)
1554 goto fail;
1555
1556 fail:
1557 nvme_ccb_put(sc->sc_admin_q, ccb);
1558
1559 if (rv == 0 && sc->sc_use_mq) {
1560 if (sc->sc_intr_disestablish(sc, q->q_id))
1561 rv = 1;
1562 }
1563
1564 return rv;
1565 }
1566
1567 static void
1568 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1569 {
1570 struct nvme_sqe *sqe = slot;
1571 struct nvme_dmamem *mem = ccb->ccb_cookie;
1572
1573 sqe->opcode = NVM_ADMIN_IDENTIFY;
1574 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1575 htolem32(&sqe->cdw10, 1);
1576 }
1577
1578 static int
1579 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
1580 {
1581 struct nvme_pt_state state;
1582 struct nvme_pt_command pt;
1583 struct nvme_ccb *ccb;
1584 uint16_t ncqa, nsqa;
1585 int rv;
1586
1587 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1588 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1589
1590 memset(&pt, 0, sizeof(pt));
1591 pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
1592 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1593
1594 memset(&state, 0, sizeof(state));
1595 state.pt = &pt;
1596 state.finished = false;
1597
1598 ccb->ccb_done = nvme_pt_done;
1599 ccb->ccb_cookie = &state;
1600
1601 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1602
1603 if (rv != 0) {
1604 *nqap = 0;
1605 return EIO;
1606 }
1607
1608 ncqa = pt.cpl.cdw0 >> 16;
1609 nsqa = pt.cpl.cdw0 & 0xffff;
1610 *nqap = MIN(ncqa, nsqa) + 1;
1611
1612 return 0;
1613 }
1614
1615 static int
1616 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1617 {
1618 struct nvme_softc *sc = q->q_sc;
1619 struct nvme_ccb *ccb;
1620 bus_addr_t off;
1621 uint64_t *prpl;
1622 u_int i;
1623
1624 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1625 cv_init(&q->q_ccb_wait, "nvmeqw");
1626 q->q_ccb_waiting = false;
1627 SIMPLEQ_INIT(&q->q_ccb_list);
1628
1629 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1630
1631 q->q_nccbs = nccbs;
1632 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1633 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1634
1635 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1636 off = 0;
1637
1638 for (i = 0; i < nccbs; i++) {
1639 ccb = &q->q_ccbs[i];
1640
1641 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1642 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1643 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1644 &ccb->ccb_dmamap) != 0)
1645 goto free_maps;
1646
1647 ccb->ccb_id = i;
1648 ccb->ccb_prpl = prpl;
1649 ccb->ccb_prpl_off = off;
1650 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1651
1652 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1653
1654 prpl += sc->sc_max_sgl;
1655 off += sizeof(*prpl) * sc->sc_max_sgl;
1656 }
1657
1658 return 0;
1659
1660 free_maps:
1661 nvme_ccbs_free(q);
1662 return 1;
1663 }
1664
1665 static struct nvme_ccb *
1666 nvme_ccb_get(struct nvme_queue *q, bool wait)
1667 {
1668 struct nvme_ccb *ccb = NULL;
1669
1670 mutex_enter(&q->q_ccb_mtx);
1671 again:
1672 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1673 if (ccb != NULL) {
1674 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1675 #ifdef DEBUG
1676 ccb->ccb_cookie = NULL;
1677 #endif
1678 } else {
1679 if (__predict_false(wait)) {
1680 q->q_ccb_waiting = true;
1681 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1682 goto again;
1683 }
1684 }
1685 mutex_exit(&q->q_ccb_mtx);
1686
1687 return ccb;
1688 }
1689
1690 static void
1691 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1692 {
1693
1694 mutex_enter(&q->q_ccb_mtx);
1695 #ifdef DEBUG
1696 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1697 #endif
1698 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1699
1700 /* It's unlikely there are any waiters, it's not used for regular I/O */
1701 if (__predict_false(q->q_ccb_waiting)) {
1702 q->q_ccb_waiting = false;
1703 cv_broadcast(&q->q_ccb_wait);
1704 }
1705
1706 mutex_exit(&q->q_ccb_mtx);
1707 }
1708
1709 static void
1710 nvme_ccbs_free(struct nvme_queue *q)
1711 {
1712 struct nvme_softc *sc = q->q_sc;
1713 struct nvme_ccb *ccb;
1714
1715 mutex_enter(&q->q_ccb_mtx);
1716 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1717 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1718 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1719 }
1720 mutex_exit(&q->q_ccb_mtx);
1721
1722 nvme_dmamem_free(sc, q->q_ccb_prpls);
1723 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1724 q->q_ccbs = NULL;
1725 cv_destroy(&q->q_ccb_wait);
1726 mutex_destroy(&q->q_ccb_mtx);
1727 }
1728
1729 static struct nvme_queue *
1730 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1731 {
1732 struct nvme_queue *q;
1733
1734 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1735 q->q_sc = sc;
1736 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1737 sizeof(struct nvme_sqe) * entries);
1738 if (q->q_sq_dmamem == NULL)
1739 goto free;
1740
1741 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1742 sizeof(struct nvme_cqe) * entries);
1743 if (q->q_cq_dmamem == NULL)
1744 goto free_sq;
1745
1746 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1747 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1748
1749 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1750 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1751 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1752 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1753 q->q_id = id;
1754 q->q_entries = entries;
1755 q->q_sq_tail = 0;
1756 q->q_cq_head = 0;
1757 q->q_cq_phase = NVME_CQE_PHASE;
1758
1759 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1760 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1761
1762 /*
1763 * Due to definition of full and empty queue (queue is empty
1764 * when head == tail, full when tail is one less then head),
1765 * we can actually only have (entries - 1) in-flight commands.
1766 */
1767 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1768 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1769 goto free_cq;
1770 }
1771
1772 return q;
1773
1774 free_cq:
1775 nvme_dmamem_free(sc, q->q_cq_dmamem);
1776 free_sq:
1777 nvme_dmamem_free(sc, q->q_sq_dmamem);
1778 free:
1779 kmem_free(q, sizeof(*q));
1780
1781 return NULL;
1782 }
1783
1784 static void
1785 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1786 {
1787 nvme_ccbs_free(q);
1788 mutex_destroy(&q->q_sq_mtx);
1789 mutex_destroy(&q->q_cq_mtx);
1790 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1791 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1792 nvme_dmamem_free(sc, q->q_cq_dmamem);
1793 nvme_dmamem_free(sc, q->q_sq_dmamem);
1794 kmem_free(q, sizeof(*q));
1795 }
1796
1797 int
1798 nvme_intr(void *xsc)
1799 {
1800 struct nvme_softc *sc = xsc;
1801
1802 /*
1803 * INTx is level triggered, controller deasserts the interrupt only
1804 * when we advance command queue head via write to the doorbell.
1805 * Tell the controller to block the interrupts while we process
1806 * the queue(s).
1807 */
1808 nvme_write4(sc, NVME_INTMS, 1);
1809
1810 softint_schedule(sc->sc_softih[0]);
1811
1812 /* don't know, might not have been for us */
1813 return 1;
1814 }
1815
1816 void
1817 nvme_softintr_intx(void *xq)
1818 {
1819 struct nvme_queue *q = xq;
1820 struct nvme_softc *sc = q->q_sc;
1821
1822 nvme_q_complete(sc, sc->sc_admin_q);
1823 if (sc->sc_q != NULL)
1824 nvme_q_complete(sc, sc->sc_q[0]);
1825
1826 /*
1827 * Processing done, tell controller to issue interrupts again. There
1828 * is no race, as NVMe spec requires the controller to maintain state,
1829 * and assert the interrupt whenever there are unacknowledged
1830 * completion queue entries.
1831 */
1832 nvme_write4(sc, NVME_INTMC, 1);
1833 }
1834
1835 int
1836 nvme_intr_msi(void *xq)
1837 {
1838 struct nvme_queue *q = xq;
1839
1840 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1841 && q->q_sc->sc_softih[q->q_id]);
1842
1843 /*
1844 * MSI/MSI-X are edge triggered, so can handover processing to softint
1845 * without masking the interrupt.
1846 */
1847 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1848
1849 return 1;
1850 }
1851
1852 void
1853 nvme_softintr_msi(void *xq)
1854 {
1855 struct nvme_queue *q = xq;
1856 struct nvme_softc *sc = q->q_sc;
1857
1858 nvme_q_complete(sc, q);
1859 }
1860
1861 static struct nvme_dmamem *
1862 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1863 {
1864 struct nvme_dmamem *ndm;
1865 int nsegs;
1866
1867 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1868 if (ndm == NULL)
1869 return NULL;
1870
1871 ndm->ndm_size = size;
1872
1873 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1874 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1875 goto ndmfree;
1876
1877 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1878 1, &nsegs, BUS_DMA_WAITOK) != 0)
1879 goto destroy;
1880
1881 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1882 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1883 goto free;
1884 memset(ndm->ndm_kva, 0, size);
1885
1886 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1887 NULL, BUS_DMA_WAITOK) != 0)
1888 goto unmap;
1889
1890 return ndm;
1891
1892 unmap:
1893 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1894 free:
1895 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1896 destroy:
1897 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1898 ndmfree:
1899 kmem_free(ndm, sizeof(*ndm));
1900 return NULL;
1901 }
1902
1903 static void
1904 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1905 {
1906 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1907 0, NVME_DMA_LEN(mem), ops);
1908 }
1909
1910 void
1911 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1912 {
1913 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1914 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1915 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1916 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1917 kmem_free(ndm, sizeof(*ndm));
1918 }
1919
1920 /*
1921 * ioctl
1922 */
1923
1924 dev_type_open(nvmeopen);
1925 dev_type_close(nvmeclose);
1926 dev_type_ioctl(nvmeioctl);
1927
1928 const struct cdevsw nvme_cdevsw = {
1929 .d_open = nvmeopen,
1930 .d_close = nvmeclose,
1931 .d_read = noread,
1932 .d_write = nowrite,
1933 .d_ioctl = nvmeioctl,
1934 .d_stop = nostop,
1935 .d_tty = notty,
1936 .d_poll = nopoll,
1937 .d_mmap = nommap,
1938 .d_kqfilter = nokqfilter,
1939 .d_discard = nodiscard,
1940 .d_flag = D_OTHER,
1941 };
1942
1943 /*
1944 * Accept an open operation on the control device.
1945 */
1946 int
1947 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1948 {
1949 struct nvme_softc *sc;
1950 int unit = minor(dev) / 0x10000;
1951 int nsid = minor(dev) & 0xffff;
1952 int nsidx;
1953
1954 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1955 return ENXIO;
1956 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1957 return ENXIO;
1958
1959 if (nsid == 0) {
1960 /* controller */
1961 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1962 return EBUSY;
1963 SET(sc->sc_flags, NVME_F_OPEN);
1964 } else {
1965 /* namespace */
1966 nsidx = nsid - 1;
1967 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1968 return ENXIO;
1969 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1970 return EBUSY;
1971 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1972 }
1973 return 0;
1974 }
1975
1976 /*
1977 * Accept the last close on the control device.
1978 */
1979 int
1980 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1981 {
1982 struct nvme_softc *sc;
1983 int unit = minor(dev) / 0x10000;
1984 int nsid = minor(dev) & 0xffff;
1985 int nsidx;
1986
1987 sc = device_lookup_private(&nvme_cd, unit);
1988 if (sc == NULL)
1989 return ENXIO;
1990
1991 if (nsid == 0) {
1992 /* controller */
1993 CLR(sc->sc_flags, NVME_F_OPEN);
1994 } else {
1995 /* namespace */
1996 nsidx = nsid - 1;
1997 if (nsidx >= sc->sc_nn)
1998 return ENXIO;
1999 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2000 }
2001
2002 return 0;
2003 }
2004
2005 /*
2006 * Handle control operations.
2007 */
2008 int
2009 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2010 {
2011 struct nvme_softc *sc;
2012 int unit = minor(dev) / 0x10000;
2013 int nsid = minor(dev) & 0xffff;
2014 struct nvme_pt_command *pt;
2015
2016 sc = device_lookup_private(&nvme_cd, unit);
2017 if (sc == NULL)
2018 return ENXIO;
2019
2020 switch (cmd) {
2021 case NVME_PASSTHROUGH_CMD:
2022 pt = data;
2023 return nvme_command_passthrough(sc, data,
2024 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2025 }
2026
2027 return ENOTTY;
2028 }
2029