nvme.c revision 1.44.2.2 1 /* $NetBSD: nvme.c,v 1.44.2.2 2019/09/26 19:13:14 martin Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.44.2.2 2019/09/26 19:13:14 martin Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
46
47 int nvme_adminq_size = 32;
48 int nvme_ioq_size = 1024;
49
50 static int nvme_print(void *, const char *);
51
52 static int nvme_ready(struct nvme_softc *, uint32_t);
53 static int nvme_enable(struct nvme_softc *, u_int);
54 static int nvme_disable(struct nvme_softc *);
55 static int nvme_shutdown(struct nvme_softc *);
56
57 #ifdef NVME_DEBUG
58 static void nvme_dumpregs(struct nvme_softc *);
59 #endif
60 static int nvme_identify(struct nvme_softc *, u_int);
61 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
62 void *);
63
64 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
65 static void nvme_ccbs_free(struct nvme_queue *);
66
67 static struct nvme_ccb *
68 nvme_ccb_get(struct nvme_queue *, bool);
69 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
70
71 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
72 struct nvme_ccb *, void (*)(struct nvme_queue *,
73 struct nvme_ccb *, void *), int);
74 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
78 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
79 struct nvme_cqe *);
80
81 static struct nvme_queue *
82 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
83 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
84 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
86 struct nvme_ccb *, void (*)(struct nvme_queue *,
87 struct nvme_ccb *, void *));
88 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
89 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
90 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
91 bool (*)(void *), void *);
92
93 static struct nvme_dmamem *
94 nvme_dmamem_alloc(struct nvme_softc *, size_t);
95 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
96 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
97 int);
98
99 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
100 void *);
101 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
102 struct nvme_cqe *);
103 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
108 void *);
109 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
110 struct nvme_cqe *);
111
112 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
113 void *);
114 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
115 struct nvme_cqe *);
116 static int nvme_command_passthrough(struct nvme_softc *,
117 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
118
119 static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
120
121 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
122 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
123 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
124 #define NVME_TIMO_SY 60 /* sync cache timeout */
125
126 #define nvme_read4(_s, _r) \
127 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
128 #define nvme_write4(_s, _r, _v) \
129 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
130 /*
131 * Some controllers, at least Apple NVMe, always require split
132 * transfers, so don't use bus_space_{read,write}_8() on LP64.
133 */
134 static inline uint64_t
135 nvme_read8(struct nvme_softc *sc, bus_size_t r)
136 {
137 uint64_t v;
138 uint32_t *a = (uint32_t *)&v;
139
140 #if _BYTE_ORDER == _LITTLE_ENDIAN
141 a[0] = nvme_read4(sc, r);
142 a[1] = nvme_read4(sc, r + 4);
143 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
144 a[1] = nvme_read4(sc, r);
145 a[0] = nvme_read4(sc, r + 4);
146 #endif
147
148 return v;
149 }
150
151 static inline void
152 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
153 {
154 uint32_t *a = (uint32_t *)&v;
155
156 #if _BYTE_ORDER == _LITTLE_ENDIAN
157 nvme_write4(sc, r, a[0]);
158 nvme_write4(sc, r + 4, a[1]);
159 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
160 nvme_write4(sc, r, a[1]);
161 nvme_write4(sc, r + 4, a[0]);
162 #endif
163 }
164 #define nvme_barrier(_s, _r, _l, _f) \
165 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
166
167 #ifdef NVME_DEBUG
168 static __used void
169 nvme_dumpregs(struct nvme_softc *sc)
170 {
171 uint64_t r8;
172 uint32_t r4;
173
174 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
175 r8 = nvme_read8(sc, NVME_CAP);
176 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
177 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
178 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
179 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
180 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
181 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
182 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
183 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
184 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
185 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
186 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
187 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
188
189 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
190
191 r4 = nvme_read4(sc, NVME_CC);
192 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
193 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
194 (1 << NVME_CC_IOCQES_R(r4)));
195 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
196 (1 << NVME_CC_IOSQES_R(r4)));
197 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
198 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
199 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
200 (1 << NVME_CC_MPS_R(r4)));
201 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
202 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
203
204 r4 = nvme_read4(sc, NVME_CSTS);
205 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
206 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
207 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
208 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
209
210 r4 = nvme_read4(sc, NVME_AQA);
211 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
212 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
213 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
214
215 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
216 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
217 #undef DEVNAME
218 }
219 #endif /* NVME_DEBUG */
220
221 static int
222 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
223 {
224 u_int i = 0;
225
226 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
227 if (i++ > sc->sc_rdy_to)
228 return ENXIO;
229
230 delay(1000);
231 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
232 }
233
234 return 0;
235 }
236
237 static int
238 nvme_enable(struct nvme_softc *sc, u_int mps)
239 {
240 uint32_t cc, csts;
241 int error;
242
243 cc = nvme_read4(sc, NVME_CC);
244 csts = nvme_read4(sc, NVME_CSTS);
245
246 /*
247 * See note in nvme_disable. Short circuit if we're already enabled.
248 */
249 if (ISSET(cc, NVME_CC_EN)) {
250 if (ISSET(csts, NVME_CSTS_RDY))
251 return 0;
252
253 goto waitready;
254 } else {
255 /* EN == 0 already wait for RDY == 0 or fail */
256 error = nvme_ready(sc, 0);
257 if (error)
258 return error;
259 }
260
261 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
262 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
263 delay(5000);
264 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267
268 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
269 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
270 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
271 delay(5000);
272
273 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
274 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
275 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
276 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
277 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
278 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
279 SET(cc, NVME_CC_MPS(mps));
280 SET(cc, NVME_CC_EN);
281
282 nvme_write4(sc, NVME_CC, cc);
283 nvme_barrier(sc, 0, sc->sc_ios,
284 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
285
286 waitready:
287 return nvme_ready(sc, NVME_CSTS_RDY);
288 }
289
290 static int
291 nvme_disable(struct nvme_softc *sc)
292 {
293 uint32_t cc, csts;
294 int error;
295
296 cc = nvme_read4(sc, NVME_CC);
297 csts = nvme_read4(sc, NVME_CSTS);
298
299 /*
300 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
301 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
302 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
303 * isn't the desired value. Short circuit if we're already disabled.
304 */
305 if (ISSET(cc, NVME_CC_EN)) {
306 if (!ISSET(csts, NVME_CSTS_RDY)) {
307 /* EN == 1, wait for RDY == 1 or fail */
308 error = nvme_ready(sc, NVME_CSTS_RDY);
309 if (error)
310 return error;
311 }
312 } else {
313 /* EN == 0 already wait for RDY == 0 */
314 if (!ISSET(csts, NVME_CSTS_RDY))
315 return 0;
316
317 goto waitready;
318 }
319
320 CLR(cc, NVME_CC_EN);
321 nvme_write4(sc, NVME_CC, cc);
322 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
323
324 /*
325 * Some drives have issues with accessing the mmio after we disable,
326 * so delay for a bit after we write the bit to cope with these issues.
327 */
328 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
329 delay(B4_CHK_RDY_DELAY_MS);
330
331 waitready:
332 return nvme_ready(sc, 0);
333 }
334
335 int
336 nvme_attach(struct nvme_softc *sc)
337 {
338 uint64_t cap;
339 uint32_t reg;
340 u_int dstrd;
341 u_int mps = PAGE_SHIFT;
342 u_int ioq_allocated;
343 uint16_t adminq_entries = nvme_adminq_size;
344 uint16_t ioq_entries = nvme_ioq_size;
345 int i;
346
347 reg = nvme_read4(sc, NVME_VS);
348 if (reg == 0xffffffff) {
349 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
350 return 1;
351 }
352
353 if (NVME_VS_TER(reg) == 0)
354 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
355 NVME_VS_MNR(reg));
356 else
357 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
358 NVME_VS_MNR(reg), NVME_VS_TER(reg));
359
360 cap = nvme_read8(sc, NVME_CAP);
361 dstrd = NVME_CAP_DSTRD(cap);
362 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
363 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
364 "is greater than CPU page size %u\n",
365 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
366 return 1;
367 }
368 if (NVME_CAP_MPSMAX(cap) < mps)
369 mps = NVME_CAP_MPSMAX(cap);
370 if (ioq_entries > NVME_CAP_MQES(cap))
371 ioq_entries = NVME_CAP_MQES(cap);
372
373 /* set initial values to be used for admin queue during probe */
374 sc->sc_rdy_to = NVME_CAP_TO(cap);
375 sc->sc_mps = 1 << mps;
376 sc->sc_mdts = MAXPHYS;
377 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
378
379 if (nvme_disable(sc) != 0) {
380 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
381 return 1;
382 }
383
384 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
385 if (sc->sc_admin_q == NULL) {
386 aprint_error_dev(sc->sc_dev,
387 "unable to allocate admin queue\n");
388 return 1;
389 }
390 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
391 goto free_admin_q;
392
393 if (nvme_enable(sc, mps) != 0) {
394 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
395 goto disestablish_admin_q;
396 }
397
398 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
399 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
400 goto disable;
401 }
402 if (sc->sc_nn == 0) {
403 aprint_error_dev(sc->sc_dev, "namespace not found\n");
404 goto disable;
405 }
406
407 /* we know how big things are now */
408 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
409
410 /* reallocate ccbs of admin queue with new max sgl. */
411 nvme_ccbs_free(sc->sc_admin_q);
412 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
413
414 if (sc->sc_use_mq) {
415 /* Limit the number of queues to the number allocated in HW */
416 if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
417 aprint_error_dev(sc->sc_dev,
418 "unable to get number of queues\n");
419 goto disable;
420 }
421 if (sc->sc_nq > ioq_allocated)
422 sc->sc_nq = ioq_allocated;
423 }
424
425 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
426 for (i = 0; i < sc->sc_nq; i++) {
427 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
428 if (sc->sc_q[i] == NULL) {
429 aprint_error_dev(sc->sc_dev,
430 "unable to allocate io queue\n");
431 goto free_q;
432 }
433 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
434 aprint_error_dev(sc->sc_dev,
435 "unable to create io queue\n");
436 nvme_q_free(sc, sc->sc_q[i]);
437 goto free_q;
438 }
439 }
440
441 if (!sc->sc_use_mq)
442 nvme_write4(sc, NVME_INTMC, 1);
443
444 /* probe subdevices */
445 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
446 KM_SLEEP);
447 nvme_rescan(sc->sc_dev, "nvme", &i);
448
449 return 0;
450
451 free_q:
452 while (--i >= 0) {
453 nvme_q_delete(sc, sc->sc_q[i]);
454 nvme_q_free(sc, sc->sc_q[i]);
455 }
456 disable:
457 nvme_disable(sc);
458 disestablish_admin_q:
459 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
460 free_admin_q:
461 nvme_q_free(sc, sc->sc_admin_q);
462
463 return 1;
464 }
465
466 int
467 nvme_rescan(device_t self, const char *attr, const int *flags)
468 {
469 struct nvme_softc *sc = device_private(self);
470 struct nvme_attach_args naa;
471 uint64_t cap;
472 int ioq_entries = nvme_ioq_size;
473 int i;
474
475 cap = nvme_read8(sc, NVME_CAP);
476 if (ioq_entries > NVME_CAP_MQES(cap))
477 ioq_entries = NVME_CAP_MQES(cap);
478
479 for (i = 0; i < sc->sc_nn; i++) {
480 if (sc->sc_namespaces[i].dev)
481 continue;
482 memset(&naa, 0, sizeof(naa));
483 naa.naa_nsid = i + 1;
484 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
485 naa.naa_maxphys = sc->sc_mdts;
486 naa.naa_typename = sc->sc_modelname;
487 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
488 nvme_print);
489 }
490 return 0;
491 }
492
493 static int
494 nvme_print(void *aux, const char *pnp)
495 {
496 struct nvme_attach_args *naa = aux;
497
498 if (pnp)
499 aprint_normal("at %s", pnp);
500
501 if (naa->naa_nsid > 0)
502 aprint_normal(" nsid %d", naa->naa_nsid);
503
504 return UNCONF;
505 }
506
507 int
508 nvme_detach(struct nvme_softc *sc, int flags)
509 {
510 int i, error;
511
512 error = config_detach_children(sc->sc_dev, flags);
513 if (error)
514 return error;
515
516 error = nvme_shutdown(sc);
517 if (error)
518 return error;
519
520 /* from now on we are committed to detach, following will never fail */
521 for (i = 0; i < sc->sc_nq; i++)
522 nvme_q_free(sc, sc->sc_q[i]);
523 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
524 nvme_q_free(sc, sc->sc_admin_q);
525
526 return 0;
527 }
528
529 static int
530 nvme_shutdown(struct nvme_softc *sc)
531 {
532 uint32_t cc, csts;
533 bool disabled = false;
534 int i;
535
536 if (!sc->sc_use_mq)
537 nvme_write4(sc, NVME_INTMS, 1);
538
539 for (i = 0; i < sc->sc_nq; i++) {
540 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
541 aprint_error_dev(sc->sc_dev,
542 "unable to delete io queue %d, disabling\n", i + 1);
543 disabled = true;
544 }
545 }
546 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
547 if (disabled)
548 goto disable;
549
550 cc = nvme_read4(sc, NVME_CC);
551 CLR(cc, NVME_CC_SHN_MASK);
552 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
553 nvme_write4(sc, NVME_CC, cc);
554
555 for (i = 0; i < 4000; i++) {
556 nvme_barrier(sc, 0, sc->sc_ios,
557 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
558 csts = nvme_read4(sc, NVME_CSTS);
559 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
560 return 0;
561
562 delay(1000);
563 }
564
565 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
566
567 disable:
568 nvme_disable(sc);
569 return 0;
570 }
571
572 void
573 nvme_childdet(device_t self, device_t child)
574 {
575 struct nvme_softc *sc = device_private(self);
576 int i;
577
578 for (i = 0; i < sc->sc_nn; i++) {
579 if (sc->sc_namespaces[i].dev == child) {
580 /* Already freed ns->ident. */
581 sc->sc_namespaces[i].dev = NULL;
582 break;
583 }
584 }
585 }
586
587 int
588 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
589 {
590 struct nvme_sqe sqe;
591 struct nvm_identify_namespace *identify;
592 struct nvme_dmamem *mem;
593 struct nvme_ccb *ccb;
594 struct nvme_namespace *ns;
595 int rv;
596
597 KASSERT(nsid > 0);
598
599 ccb = nvme_ccb_get(sc->sc_admin_q, false);
600 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
601
602 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
603 if (mem == NULL) {
604 nvme_ccb_put(sc->sc_admin_q, ccb);
605 return ENOMEM;
606 }
607
608 memset(&sqe, 0, sizeof(sqe));
609 sqe.opcode = NVM_ADMIN_IDENTIFY;
610 htolem32(&sqe.nsid, nsid);
611 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
612 htolem32(&sqe.cdw10, 0);
613
614 ccb->ccb_done = nvme_empty_done;
615 ccb->ccb_cookie = &sqe;
616
617 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
618 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
619 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
620
621 nvme_ccb_put(sc->sc_admin_q, ccb);
622
623 if (rv != 0) {
624 rv = EIO;
625 goto done;
626 }
627
628 /* commit */
629
630 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
631 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
632
633 /* Convert data to host endian */
634 nvme_identify_namespace_swapbytes(identify);
635
636 ns = nvme_ns_get(sc, nsid);
637 KASSERT(ns);
638 KASSERT(ns->ident == NULL);
639 ns->ident = identify;
640
641 done:
642 nvme_dmamem_free(sc, mem);
643
644 return rv;
645 }
646
647 int
648 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
649 struct buf *bp, void *data, size_t datasize,
650 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
651 {
652 struct nvme_queue *q = nvme_get_q(sc, bp, false);
653 struct nvme_ccb *ccb;
654 bus_dmamap_t dmap;
655 int i, error;
656
657 ccb = nvme_ccb_get(q, false);
658 if (ccb == NULL)
659 return EAGAIN;
660
661 ccb->ccb_done = nvme_ns_io_done;
662 ccb->ccb_cookie = cookie;
663
664 /* namespace context */
665 ccb->nnc_nsid = nsid;
666 ccb->nnc_flags = flags;
667 ccb->nnc_buf = bp;
668 ccb->nnc_datasize = datasize;
669 ccb->nnc_secsize = secsize;
670 ccb->nnc_blkno = blkno;
671 ccb->nnc_done = nnc_done;
672
673 dmap = ccb->ccb_dmamap;
674 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
675 datasize, NULL,
676 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
677 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
678 (ISSET(flags, NVME_NS_CTX_F_READ) ?
679 BUS_DMA_READ : BUS_DMA_WRITE));
680 if (error) {
681 nvme_ccb_put(q, ccb);
682 return error;
683 }
684
685 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
686 ISSET(flags, NVME_NS_CTX_F_READ) ?
687 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
688
689 if (dmap->dm_nsegs > 2) {
690 for (i = 1; i < dmap->dm_nsegs; i++) {
691 htolem64(&ccb->ccb_prpl[i - 1],
692 dmap->dm_segs[i].ds_addr);
693 }
694 bus_dmamap_sync(sc->sc_dmat,
695 NVME_DMA_MAP(q->q_ccb_prpls),
696 ccb->ccb_prpl_off,
697 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
698 BUS_DMASYNC_PREWRITE);
699 }
700
701 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
702 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
703 return EIO;
704 return 0;
705 }
706
707 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
708 return 0;
709 }
710
711 static void
712 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
713 {
714 struct nvme_sqe_io *sqe = slot;
715 bus_dmamap_t dmap = ccb->ccb_dmamap;
716
717 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
718 NVM_CMD_READ : NVM_CMD_WRITE;
719 htolem32(&sqe->nsid, ccb->nnc_nsid);
720
721 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
722 switch (dmap->dm_nsegs) {
723 case 1:
724 break;
725 case 2:
726 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
727 break;
728 default:
729 /* the prp list is already set up and synced */
730 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
731 break;
732 }
733
734 htolem64(&sqe->slba, ccb->nnc_blkno);
735
736 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
737 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
738
739 /* guaranteed by upper layers, but check just in case */
740 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
741 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
742 }
743
744 static void
745 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
746 struct nvme_cqe *cqe)
747 {
748 struct nvme_softc *sc = q->q_sc;
749 bus_dmamap_t dmap = ccb->ccb_dmamap;
750 void *nnc_cookie = ccb->ccb_cookie;
751 nvme_nnc_done nnc_done = ccb->nnc_done;
752 struct buf *bp = ccb->nnc_buf;
753
754 if (dmap->dm_nsegs > 2) {
755 bus_dmamap_sync(sc->sc_dmat,
756 NVME_DMA_MAP(q->q_ccb_prpls),
757 ccb->ccb_prpl_off,
758 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
759 BUS_DMASYNC_POSTWRITE);
760 }
761
762 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
763 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
764 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
765
766 bus_dmamap_unload(sc->sc_dmat, dmap);
767 nvme_ccb_put(q, ccb);
768
769 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
770 }
771
772 /*
773 * If there is no volatile write cache, it makes no sense to issue
774 * flush commands or query for the status.
775 */
776 static bool
777 nvme_has_volatile_write_cache(struct nvme_softc *sc)
778 {
779 /* sc_identify is filled during attachment */
780 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
781 }
782
783 static bool
784 nvme_ns_sync_finished(void *cookie)
785 {
786 int *result = cookie;
787
788 return (*result != 0);
789 }
790
791 int
792 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
793 {
794 struct nvme_queue *q = nvme_get_q(sc, NULL, true);
795 struct nvme_ccb *ccb;
796 int result = 0;
797
798 if (!nvme_has_volatile_write_cache(sc)) {
799 /* cache not present, no value in trying to flush it */
800 return 0;
801 }
802
803 ccb = nvme_ccb_get(q, true);
804 KASSERT(ccb != NULL);
805
806 ccb->ccb_done = nvme_ns_sync_done;
807 ccb->ccb_cookie = &result;
808
809 /* namespace context */
810 ccb->nnc_nsid = nsid;
811 ccb->nnc_flags = flags;
812 ccb->nnc_done = NULL;
813
814 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
815 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
816 return EIO;
817 return 0;
818 }
819
820 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
821
822 /* wait for completion */
823 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
824 KASSERT(result != 0);
825
826 return (result > 0) ? 0 : EIO;
827 }
828
829 static void
830 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
831 {
832 struct nvme_sqe *sqe = slot;
833
834 sqe->opcode = NVM_CMD_FLUSH;
835 htolem32(&sqe->nsid, ccb->nnc_nsid);
836 }
837
838 static void
839 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
840 struct nvme_cqe *cqe)
841 {
842 int *result = ccb->ccb_cookie;
843 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
844
845 if (status == NVME_CQE_SC_SUCCESS)
846 *result = 1;
847 else
848 *result = -1;
849
850 nvme_ccb_put(q, ccb);
851 }
852
853 static bool
854 nvme_getcache_finished(void *xc)
855 {
856 int *addr = xc;
857
858 return (*addr != 0);
859 }
860
861 /*
862 * Get status of volatile write cache. Always asynchronous.
863 */
864 int
865 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
866 {
867 struct nvme_ccb *ccb;
868 struct nvme_queue *q = sc->sc_admin_q;
869 int result = 0, error;
870
871 if (!nvme_has_volatile_write_cache(sc)) {
872 /* cache simply not present */
873 *addr = 0;
874 return 0;
875 }
876
877 ccb = nvme_ccb_get(q, true);
878 KASSERT(ccb != NULL);
879
880 ccb->ccb_done = nvme_getcache_done;
881 ccb->ccb_cookie = &result;
882
883 /* namespace context */
884 ccb->nnc_flags = 0;
885 ccb->nnc_done = NULL;
886
887 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
888
889 /* wait for completion */
890 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
891 KASSERT(result != 0);
892
893 if (result > 0) {
894 *addr = result;
895 error = 0;
896 } else
897 error = EINVAL;
898
899 return error;
900 }
901
902 static void
903 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
904 {
905 struct nvme_sqe *sqe = slot;
906
907 sqe->opcode = NVM_ADMIN_GET_FEATURES;
908 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
909 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
910 }
911
912 static void
913 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
914 struct nvme_cqe *cqe)
915 {
916 int *addr = ccb->ccb_cookie;
917 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
918 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
919 int result;
920
921 if (status == NVME_CQE_SC_SUCCESS) {
922 result = 0;
923
924 /*
925 * DPO not supported, Dataset Management (DSM) field doesn't
926 * specify the same semantics. FUA is always supported.
927 */
928 result = DKCACHE_FUA;
929
930 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
931 result |= DKCACHE_WRITE;
932
933 /*
934 * If volatile write cache is present, the flag shall also be
935 * settable.
936 */
937 result |= DKCACHE_WCHANGE;
938
939 /*
940 * ONCS field indicates whether the optional SAVE is also
941 * supported for Set Features. According to spec v1.3,
942 * Volatile Write Cache however doesn't support persistency
943 * across power cycle/reset.
944 */
945
946 } else {
947 result = -1;
948 }
949
950 *addr = result;
951
952 nvme_ccb_put(q, ccb);
953 }
954
955 struct nvme_setcache_state {
956 int dkcache;
957 int result;
958 };
959
960 static bool
961 nvme_setcache_finished(void *xc)
962 {
963 struct nvme_setcache_state *st = xc;
964
965 return (st->result != 0);
966 }
967
968 static void
969 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
970 {
971 struct nvme_sqe *sqe = slot;
972 struct nvme_setcache_state *st = ccb->ccb_cookie;
973
974 sqe->opcode = NVM_ADMIN_SET_FEATURES;
975 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
976 if (st->dkcache & DKCACHE_WRITE)
977 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
978 }
979
980 static void
981 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
982 struct nvme_cqe *cqe)
983 {
984 struct nvme_setcache_state *st = ccb->ccb_cookie;
985 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
986
987 if (status == NVME_CQE_SC_SUCCESS) {
988 st->result = 1;
989 } else {
990 st->result = -1;
991 }
992
993 nvme_ccb_put(q, ccb);
994 }
995
996 /*
997 * Set status of volatile write cache. Always asynchronous.
998 */
999 int
1000 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1001 {
1002 struct nvme_ccb *ccb;
1003 struct nvme_queue *q = sc->sc_admin_q;
1004 int error;
1005 struct nvme_setcache_state st;
1006
1007 if (!nvme_has_volatile_write_cache(sc)) {
1008 /* cache simply not present */
1009 return EOPNOTSUPP;
1010 }
1011
1012 if (dkcache & ~(DKCACHE_WRITE)) {
1013 /* unsupported parameters */
1014 return EOPNOTSUPP;
1015 }
1016
1017 ccb = nvme_ccb_get(q, true);
1018 KASSERT(ccb != NULL);
1019
1020 memset(&st, 0, sizeof(st));
1021 st.dkcache = dkcache;
1022
1023 ccb->ccb_done = nvme_setcache_done;
1024 ccb->ccb_cookie = &st;
1025
1026 /* namespace context */
1027 ccb->nnc_flags = 0;
1028 ccb->nnc_done = NULL;
1029
1030 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1031
1032 /* wait for completion */
1033 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1034 KASSERT(st.result != 0);
1035
1036 if (st.result > 0)
1037 error = 0;
1038 else
1039 error = EINVAL;
1040
1041 return error;
1042 }
1043
1044 void
1045 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1046 {
1047 struct nvme_namespace *ns;
1048 struct nvm_identify_namespace *identify;
1049
1050 ns = nvme_ns_get(sc, nsid);
1051 KASSERT(ns);
1052
1053 identify = ns->ident;
1054 ns->ident = NULL;
1055 if (identify != NULL)
1056 kmem_free(identify, sizeof(*identify));
1057 }
1058
1059 struct nvme_pt_state {
1060 struct nvme_pt_command *pt;
1061 bool finished;
1062 };
1063
1064 static void
1065 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1066 {
1067 struct nvme_softc *sc = q->q_sc;
1068 struct nvme_sqe *sqe = slot;
1069 struct nvme_pt_state *state = ccb->ccb_cookie;
1070 struct nvme_pt_command *pt = state->pt;
1071 bus_dmamap_t dmap = ccb->ccb_dmamap;
1072 int i;
1073
1074 sqe->opcode = pt->cmd.opcode;
1075 htolem32(&sqe->nsid, pt->cmd.nsid);
1076
1077 if (pt->buf != NULL && pt->len > 0) {
1078 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1079 switch (dmap->dm_nsegs) {
1080 case 1:
1081 break;
1082 case 2:
1083 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1084 break;
1085 default:
1086 for (i = 1; i < dmap->dm_nsegs; i++) {
1087 htolem64(&ccb->ccb_prpl[i - 1],
1088 dmap->dm_segs[i].ds_addr);
1089 }
1090 bus_dmamap_sync(sc->sc_dmat,
1091 NVME_DMA_MAP(q->q_ccb_prpls),
1092 ccb->ccb_prpl_off,
1093 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1094 BUS_DMASYNC_PREWRITE);
1095 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1096 break;
1097 }
1098 }
1099
1100 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1101 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1102 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1103 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1104 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1105 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1106 }
1107
1108 static void
1109 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1110 {
1111 struct nvme_softc *sc = q->q_sc;
1112 struct nvme_pt_state *state = ccb->ccb_cookie;
1113 struct nvme_pt_command *pt = state->pt;
1114 bus_dmamap_t dmap = ccb->ccb_dmamap;
1115
1116 if (pt->buf != NULL && pt->len > 0) {
1117 if (dmap->dm_nsegs > 2) {
1118 bus_dmamap_sync(sc->sc_dmat,
1119 NVME_DMA_MAP(q->q_ccb_prpls),
1120 ccb->ccb_prpl_off,
1121 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1122 BUS_DMASYNC_POSTWRITE);
1123 }
1124
1125 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1126 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1127 bus_dmamap_unload(sc->sc_dmat, dmap);
1128 }
1129
1130 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1131 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1132
1133 state->finished = true;
1134
1135 nvme_ccb_put(q, ccb);
1136 }
1137
1138 static bool
1139 nvme_pt_finished(void *cookie)
1140 {
1141 struct nvme_pt_state *state = cookie;
1142
1143 return state->finished;
1144 }
1145
1146 static int
1147 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1148 uint16_t nsid, struct lwp *l, bool is_adminq)
1149 {
1150 struct nvme_queue *q;
1151 struct nvme_ccb *ccb;
1152 void *buf = NULL;
1153 struct nvme_pt_state state;
1154 int error;
1155
1156 /* limit command size to maximum data transfer size */
1157 if ((pt->buf == NULL && pt->len > 0) ||
1158 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1159 return EINVAL;
1160
1161 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1162 ccb = nvme_ccb_get(q, true);
1163 KASSERT(ccb != NULL);
1164
1165 if (pt->buf != NULL) {
1166 KASSERT(pt->len > 0);
1167 buf = kmem_alloc(pt->len, KM_SLEEP);
1168 if (!pt->is_read) {
1169 error = copyin(pt->buf, buf, pt->len);
1170 if (error)
1171 goto kmem_free;
1172 }
1173 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1174 pt->len, NULL,
1175 BUS_DMA_WAITOK |
1176 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1177 if (error)
1178 goto kmem_free;
1179 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1180 0, ccb->ccb_dmamap->dm_mapsize,
1181 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1182 }
1183
1184 memset(&state, 0, sizeof(state));
1185 state.pt = pt;
1186 state.finished = false;
1187
1188 ccb->ccb_done = nvme_pt_done;
1189 ccb->ccb_cookie = &state;
1190
1191 pt->cmd.nsid = nsid;
1192
1193 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1194
1195 /* wait for completion */
1196 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1197 KASSERT(state.finished);
1198
1199 error = 0;
1200
1201 if (buf != NULL) {
1202 if (error == 0 && pt->is_read)
1203 error = copyout(buf, pt->buf, pt->len);
1204 kmem_free:
1205 kmem_free(buf, pt->len);
1206 }
1207
1208 return error;
1209 }
1210
1211 static void
1212 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1213 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1214 {
1215 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1216 uint32_t tail;
1217
1218 mutex_enter(&q->q_sq_mtx);
1219 tail = q->q_sq_tail;
1220 if (++q->q_sq_tail >= q->q_entries)
1221 q->q_sq_tail = 0;
1222
1223 sqe += tail;
1224
1225 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1226 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1227 memset(sqe, 0, sizeof(*sqe));
1228 (*fill)(q, ccb, sqe);
1229 htolem16(&sqe->cid, ccb->ccb_id);
1230 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1231 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1232
1233 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1234 mutex_exit(&q->q_sq_mtx);
1235 }
1236
1237 struct nvme_poll_state {
1238 struct nvme_sqe s;
1239 struct nvme_cqe c;
1240 void *cookie;
1241 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1242 };
1243
1244 static int
1245 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1246 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1247 {
1248 struct nvme_poll_state state;
1249 uint16_t flags;
1250 int step = 10;
1251 int maxloop = timo_sec * 1000000 / step;
1252 int error = 0;
1253
1254 memset(&state, 0, sizeof(state));
1255 (*fill)(q, ccb, &state.s);
1256
1257 state.done = ccb->ccb_done;
1258 state.cookie = ccb->ccb_cookie;
1259
1260 ccb->ccb_done = nvme_poll_done;
1261 ccb->ccb_cookie = &state;
1262
1263 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1264 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1265 if (nvme_q_complete(sc, q) == 0)
1266 delay(step);
1267
1268 if (timo_sec >= 0 && --maxloop <= 0) {
1269 error = ETIMEDOUT;
1270 break;
1271 }
1272 }
1273
1274 if (error == 0) {
1275 flags = lemtoh16(&state.c.flags);
1276 return flags & ~NVME_CQE_PHASE;
1277 } else {
1278 /*
1279 * If it succeds later, it would hit ccb which will have been
1280 * already reused for something else. Not good. Cross
1281 * fingers and hope for best. XXX do controller reset?
1282 */
1283 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1284
1285 /* Invoke the callback to clean state anyway */
1286 struct nvme_cqe cqe;
1287 memset(&cqe, 0, sizeof(cqe));
1288 ccb->ccb_done(q, ccb, &cqe);
1289
1290 return 1;
1291 }
1292 }
1293
1294 static void
1295 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1296 {
1297 struct nvme_sqe *sqe = slot;
1298 struct nvme_poll_state *state = ccb->ccb_cookie;
1299
1300 *sqe = state->s;
1301 }
1302
1303 static void
1304 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1305 struct nvme_cqe *cqe)
1306 {
1307 struct nvme_poll_state *state = ccb->ccb_cookie;
1308
1309 state->c = *cqe;
1310 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1311
1312 ccb->ccb_cookie = state->cookie;
1313 state->done(q, ccb, &state->c);
1314 }
1315
1316 static void
1317 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1318 {
1319 struct nvme_sqe *src = ccb->ccb_cookie;
1320 struct nvme_sqe *dst = slot;
1321
1322 *dst = *src;
1323 }
1324
1325 static void
1326 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1327 struct nvme_cqe *cqe)
1328 {
1329 }
1330
1331 static int
1332 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1333 {
1334 struct nvme_ccb *ccb;
1335 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1336 uint16_t flags;
1337 int rv = 0;
1338
1339 mutex_enter(&q->q_cq_mtx);
1340
1341 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1342 for (;;) {
1343 cqe = &ring[q->q_cq_head];
1344 flags = lemtoh16(&cqe->flags);
1345 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1346 break;
1347
1348 ccb = &q->q_ccbs[cqe->cid];
1349
1350 if (++q->q_cq_head >= q->q_entries) {
1351 q->q_cq_head = 0;
1352 q->q_cq_phase ^= NVME_CQE_PHASE;
1353 }
1354
1355 #ifdef DEBUG
1356 /*
1357 * If we get spurious completion notification, something
1358 * is seriously hosed up. Very likely DMA to some random
1359 * memory place happened, so just bail out.
1360 */
1361 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1362 panic("%s: invalid ccb detected",
1363 device_xname(sc->sc_dev));
1364 /* NOTREACHED */
1365 }
1366 #endif
1367
1368 rv++;
1369
1370 /*
1371 * Unlock the mutex before calling the ccb_done callback
1372 * and re-lock afterwards. The callback triggers lddone()
1373 * which schedules another i/o, and also calls nvme_ccb_put().
1374 * Unlock/relock avoids possibility of deadlock.
1375 */
1376 mutex_exit(&q->q_cq_mtx);
1377 ccb->ccb_done(q, ccb, cqe);
1378 mutex_enter(&q->q_cq_mtx);
1379 }
1380 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1381
1382 if (rv)
1383 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1384
1385 mutex_exit(&q->q_cq_mtx);
1386
1387 return rv;
1388 }
1389
1390 static void
1391 nvme_q_wait_complete(struct nvme_softc *sc,
1392 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1393 {
1394 mutex_enter(&q->q_ccb_mtx);
1395 if (finished(cookie))
1396 goto out;
1397
1398 for(;;) {
1399 q->q_ccb_waiting = true;
1400 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1401
1402 if (finished(cookie))
1403 break;
1404 }
1405
1406 out:
1407 mutex_exit(&q->q_ccb_mtx);
1408 }
1409
1410 static int
1411 nvme_identify(struct nvme_softc *sc, u_int mps)
1412 {
1413 char sn[41], mn[81], fr[17];
1414 struct nvm_identify_controller *identify;
1415 struct nvme_dmamem *mem;
1416 struct nvme_ccb *ccb;
1417 u_int mdts;
1418 int rv = 1;
1419
1420 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1421 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1422
1423 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1424 if (mem == NULL)
1425 return 1;
1426
1427 ccb->ccb_done = nvme_empty_done;
1428 ccb->ccb_cookie = mem;
1429
1430 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1431 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1432 NVME_TIMO_IDENT);
1433 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1434
1435 nvme_ccb_put(sc->sc_admin_q, ccb);
1436
1437 if (rv != 0)
1438 goto done;
1439
1440 identify = NVME_DMA_KVA(mem);
1441 sc->sc_identify = *identify;
1442 identify = NULL;
1443
1444 /* Convert data to host endian */
1445 nvme_identify_controller_swapbytes(&sc->sc_identify);
1446
1447 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1448 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1449 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1450 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1451 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1452 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1453 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1454 sn);
1455
1456 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1457
1458 if (sc->sc_identify.mdts > 0) {
1459 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1460 if (mdts < sc->sc_mdts)
1461 sc->sc_mdts = mdts;
1462 }
1463
1464 sc->sc_nn = sc->sc_identify.nn;
1465
1466 done:
1467 nvme_dmamem_free(sc, mem);
1468
1469 return rv;
1470 }
1471
1472 static int
1473 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1474 {
1475 struct nvme_sqe_q sqe;
1476 struct nvme_ccb *ccb;
1477 int rv;
1478
1479 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1480 return 1;
1481
1482 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1483 KASSERT(ccb != NULL);
1484
1485 ccb->ccb_done = nvme_empty_done;
1486 ccb->ccb_cookie = &sqe;
1487
1488 memset(&sqe, 0, sizeof(sqe));
1489 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1490 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1491 htolem16(&sqe.qsize, q->q_entries - 1);
1492 htolem16(&sqe.qid, q->q_id);
1493 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1494 if (sc->sc_use_mq)
1495 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1496
1497 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1498 if (rv != 0)
1499 goto fail;
1500
1501 ccb->ccb_done = nvme_empty_done;
1502 ccb->ccb_cookie = &sqe;
1503
1504 memset(&sqe, 0, sizeof(sqe));
1505 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1506 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1507 htolem16(&sqe.qsize, q->q_entries - 1);
1508 htolem16(&sqe.qid, q->q_id);
1509 htolem16(&sqe.cqid, q->q_id);
1510 sqe.qflags = NVM_SQE_Q_PC;
1511
1512 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1513 if (rv != 0)
1514 goto fail;
1515
1516 nvme_ccb_put(sc->sc_admin_q, ccb);
1517 return 0;
1518
1519 fail:
1520 if (sc->sc_use_mq)
1521 sc->sc_intr_disestablish(sc, q->q_id);
1522
1523 nvme_ccb_put(sc->sc_admin_q, ccb);
1524 return rv;
1525 }
1526
1527 static int
1528 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1529 {
1530 struct nvme_sqe_q sqe;
1531 struct nvme_ccb *ccb;
1532 int rv;
1533
1534 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1535 KASSERT(ccb != NULL);
1536
1537 ccb->ccb_done = nvme_empty_done;
1538 ccb->ccb_cookie = &sqe;
1539
1540 memset(&sqe, 0, sizeof(sqe));
1541 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1542 htolem16(&sqe.qid, q->q_id);
1543
1544 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1545 if (rv != 0)
1546 goto fail;
1547
1548 ccb->ccb_done = nvme_empty_done;
1549 ccb->ccb_cookie = &sqe;
1550
1551 memset(&sqe, 0, sizeof(sqe));
1552 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1553 htolem16(&sqe.qid, q->q_id);
1554
1555 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1556 if (rv != 0)
1557 goto fail;
1558
1559 fail:
1560 nvme_ccb_put(sc->sc_admin_q, ccb);
1561
1562 if (rv == 0 && sc->sc_use_mq) {
1563 if (sc->sc_intr_disestablish(sc, q->q_id))
1564 rv = 1;
1565 }
1566
1567 return rv;
1568 }
1569
1570 static void
1571 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1572 {
1573 struct nvme_sqe *sqe = slot;
1574 struct nvme_dmamem *mem = ccb->ccb_cookie;
1575
1576 sqe->opcode = NVM_ADMIN_IDENTIFY;
1577 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1578 htolem32(&sqe->cdw10, 1);
1579 }
1580
1581 static int
1582 nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
1583 {
1584 struct nvme_pt_state state;
1585 struct nvme_pt_command pt;
1586 struct nvme_ccb *ccb;
1587 uint16_t ncqa, nsqa;
1588 int rv;
1589
1590 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1591 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1592
1593 memset(&pt, 0, sizeof(pt));
1594 pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
1595 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1596
1597 memset(&state, 0, sizeof(state));
1598 state.pt = &pt;
1599 state.finished = false;
1600
1601 ccb->ccb_done = nvme_pt_done;
1602 ccb->ccb_cookie = &state;
1603
1604 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1605
1606 if (rv != 0) {
1607 *nqap = 0;
1608 return EIO;
1609 }
1610
1611 ncqa = pt.cpl.cdw0 >> 16;
1612 nsqa = pt.cpl.cdw0 & 0xffff;
1613 *nqap = MIN(ncqa, nsqa) + 1;
1614
1615 return 0;
1616 }
1617
1618 static int
1619 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1620 {
1621 struct nvme_softc *sc = q->q_sc;
1622 struct nvme_ccb *ccb;
1623 bus_addr_t off;
1624 uint64_t *prpl;
1625 u_int i;
1626
1627 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1628 cv_init(&q->q_ccb_wait, "nvmeqw");
1629 q->q_ccb_waiting = false;
1630 SIMPLEQ_INIT(&q->q_ccb_list);
1631
1632 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1633
1634 q->q_nccbs = nccbs;
1635 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1636 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1637
1638 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1639 off = 0;
1640
1641 for (i = 0; i < nccbs; i++) {
1642 ccb = &q->q_ccbs[i];
1643
1644 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1645 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1646 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1647 &ccb->ccb_dmamap) != 0)
1648 goto free_maps;
1649
1650 ccb->ccb_id = i;
1651 ccb->ccb_prpl = prpl;
1652 ccb->ccb_prpl_off = off;
1653 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1654
1655 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1656
1657 prpl += sc->sc_max_sgl;
1658 off += sizeof(*prpl) * sc->sc_max_sgl;
1659 }
1660
1661 return 0;
1662
1663 free_maps:
1664 nvme_ccbs_free(q);
1665 return 1;
1666 }
1667
1668 static struct nvme_ccb *
1669 nvme_ccb_get(struct nvme_queue *q, bool wait)
1670 {
1671 struct nvme_ccb *ccb = NULL;
1672
1673 mutex_enter(&q->q_ccb_mtx);
1674 again:
1675 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1676 if (ccb != NULL) {
1677 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1678 #ifdef DEBUG
1679 ccb->ccb_cookie = NULL;
1680 #endif
1681 } else {
1682 if (__predict_false(wait)) {
1683 q->q_ccb_waiting = true;
1684 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1685 goto again;
1686 }
1687 }
1688 mutex_exit(&q->q_ccb_mtx);
1689
1690 return ccb;
1691 }
1692
1693 static void
1694 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1695 {
1696
1697 mutex_enter(&q->q_ccb_mtx);
1698 #ifdef DEBUG
1699 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1700 #endif
1701 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1702
1703 /* It's unlikely there are any waiters, it's not used for regular I/O */
1704 if (__predict_false(q->q_ccb_waiting)) {
1705 q->q_ccb_waiting = false;
1706 cv_broadcast(&q->q_ccb_wait);
1707 }
1708
1709 mutex_exit(&q->q_ccb_mtx);
1710 }
1711
1712 static void
1713 nvme_ccbs_free(struct nvme_queue *q)
1714 {
1715 struct nvme_softc *sc = q->q_sc;
1716 struct nvme_ccb *ccb;
1717
1718 mutex_enter(&q->q_ccb_mtx);
1719 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1720 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1721 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1722 }
1723 mutex_exit(&q->q_ccb_mtx);
1724
1725 nvme_dmamem_free(sc, q->q_ccb_prpls);
1726 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1727 q->q_ccbs = NULL;
1728 cv_destroy(&q->q_ccb_wait);
1729 mutex_destroy(&q->q_ccb_mtx);
1730 }
1731
1732 static struct nvme_queue *
1733 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1734 {
1735 struct nvme_queue *q;
1736
1737 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1738 q->q_sc = sc;
1739 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1740 sizeof(struct nvme_sqe) * entries);
1741 if (q->q_sq_dmamem == NULL)
1742 goto free;
1743
1744 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1745 sizeof(struct nvme_cqe) * entries);
1746 if (q->q_cq_dmamem == NULL)
1747 goto free_sq;
1748
1749 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1750 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1751
1752 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1753 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1754 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1755 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1756 q->q_id = id;
1757 q->q_entries = entries;
1758 q->q_sq_tail = 0;
1759 q->q_cq_head = 0;
1760 q->q_cq_phase = NVME_CQE_PHASE;
1761
1762 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1763 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1764
1765 /*
1766 * Due to definition of full and empty queue (queue is empty
1767 * when head == tail, full when tail is one less then head),
1768 * we can actually only have (entries - 1) in-flight commands.
1769 */
1770 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1771 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1772 goto free_cq;
1773 }
1774
1775 return q;
1776
1777 free_cq:
1778 nvme_dmamem_free(sc, q->q_cq_dmamem);
1779 free_sq:
1780 nvme_dmamem_free(sc, q->q_sq_dmamem);
1781 free:
1782 kmem_free(q, sizeof(*q));
1783
1784 return NULL;
1785 }
1786
1787 static void
1788 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1789 {
1790 nvme_ccbs_free(q);
1791 mutex_destroy(&q->q_sq_mtx);
1792 mutex_destroy(&q->q_cq_mtx);
1793 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1794 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1795 nvme_dmamem_free(sc, q->q_cq_dmamem);
1796 nvme_dmamem_free(sc, q->q_sq_dmamem);
1797 kmem_free(q, sizeof(*q));
1798 }
1799
1800 int
1801 nvme_intr(void *xsc)
1802 {
1803 struct nvme_softc *sc = xsc;
1804
1805 /*
1806 * INTx is level triggered, controller deasserts the interrupt only
1807 * when we advance command queue head via write to the doorbell.
1808 * Tell the controller to block the interrupts while we process
1809 * the queue(s).
1810 */
1811 nvme_write4(sc, NVME_INTMS, 1);
1812
1813 softint_schedule(sc->sc_softih[0]);
1814
1815 /* don't know, might not have been for us */
1816 return 1;
1817 }
1818
1819 void
1820 nvme_softintr_intx(void *xq)
1821 {
1822 struct nvme_queue *q = xq;
1823 struct nvme_softc *sc = q->q_sc;
1824
1825 nvme_q_complete(sc, sc->sc_admin_q);
1826 if (sc->sc_q != NULL)
1827 nvme_q_complete(sc, sc->sc_q[0]);
1828
1829 /*
1830 * Processing done, tell controller to issue interrupts again. There
1831 * is no race, as NVMe spec requires the controller to maintain state,
1832 * and assert the interrupt whenever there are unacknowledged
1833 * completion queue entries.
1834 */
1835 nvme_write4(sc, NVME_INTMC, 1);
1836 }
1837
1838 int
1839 nvme_intr_msi(void *xq)
1840 {
1841 struct nvme_queue *q = xq;
1842
1843 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1844 && q->q_sc->sc_softih[q->q_id]);
1845
1846 /*
1847 * MSI/MSI-X are edge triggered, so can handover processing to softint
1848 * without masking the interrupt.
1849 */
1850 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1851
1852 return 1;
1853 }
1854
1855 void
1856 nvme_softintr_msi(void *xq)
1857 {
1858 struct nvme_queue *q = xq;
1859 struct nvme_softc *sc = q->q_sc;
1860
1861 nvme_q_complete(sc, q);
1862 }
1863
1864 static struct nvme_dmamem *
1865 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1866 {
1867 struct nvme_dmamem *ndm;
1868 int nsegs;
1869
1870 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1871 if (ndm == NULL)
1872 return NULL;
1873
1874 ndm->ndm_size = size;
1875
1876 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
1877 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1878 goto ndmfree;
1879
1880 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1881 1, &nsegs, BUS_DMA_WAITOK) != 0)
1882 goto destroy;
1883
1884 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1885 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1886 goto free;
1887 memset(ndm->ndm_kva, 0, size);
1888
1889 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1890 NULL, BUS_DMA_WAITOK) != 0)
1891 goto unmap;
1892
1893 return ndm;
1894
1895 unmap:
1896 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1897 free:
1898 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1899 destroy:
1900 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1901 ndmfree:
1902 kmem_free(ndm, sizeof(*ndm));
1903 return NULL;
1904 }
1905
1906 static void
1907 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1908 {
1909 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1910 0, NVME_DMA_LEN(mem), ops);
1911 }
1912
1913 void
1914 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1915 {
1916 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1917 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1918 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1919 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1920 kmem_free(ndm, sizeof(*ndm));
1921 }
1922
1923 /*
1924 * ioctl
1925 */
1926
1927 dev_type_open(nvmeopen);
1928 dev_type_close(nvmeclose);
1929 dev_type_ioctl(nvmeioctl);
1930
1931 const struct cdevsw nvme_cdevsw = {
1932 .d_open = nvmeopen,
1933 .d_close = nvmeclose,
1934 .d_read = noread,
1935 .d_write = nowrite,
1936 .d_ioctl = nvmeioctl,
1937 .d_stop = nostop,
1938 .d_tty = notty,
1939 .d_poll = nopoll,
1940 .d_mmap = nommap,
1941 .d_kqfilter = nokqfilter,
1942 .d_discard = nodiscard,
1943 .d_flag = D_OTHER,
1944 };
1945
1946 /*
1947 * Accept an open operation on the control device.
1948 */
1949 int
1950 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1951 {
1952 struct nvme_softc *sc;
1953 int unit = minor(dev) / 0x10000;
1954 int nsid = minor(dev) & 0xffff;
1955 int nsidx;
1956
1957 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1958 return ENXIO;
1959 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1960 return ENXIO;
1961
1962 if (nsid == 0) {
1963 /* controller */
1964 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1965 return EBUSY;
1966 SET(sc->sc_flags, NVME_F_OPEN);
1967 } else {
1968 /* namespace */
1969 nsidx = nsid - 1;
1970 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1971 return ENXIO;
1972 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1973 return EBUSY;
1974 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1975 }
1976 return 0;
1977 }
1978
1979 /*
1980 * Accept the last close on the control device.
1981 */
1982 int
1983 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1984 {
1985 struct nvme_softc *sc;
1986 int unit = minor(dev) / 0x10000;
1987 int nsid = minor(dev) & 0xffff;
1988 int nsidx;
1989
1990 sc = device_lookup_private(&nvme_cd, unit);
1991 if (sc == NULL)
1992 return ENXIO;
1993
1994 if (nsid == 0) {
1995 /* controller */
1996 CLR(sc->sc_flags, NVME_F_OPEN);
1997 } else {
1998 /* namespace */
1999 nsidx = nsid - 1;
2000 if (nsidx >= sc->sc_nn)
2001 return ENXIO;
2002 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2003 }
2004
2005 return 0;
2006 }
2007
2008 /*
2009 * Handle control operations.
2010 */
2011 int
2012 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2013 {
2014 struct nvme_softc *sc;
2015 int unit = minor(dev) / 0x10000;
2016 int nsid = minor(dev) & 0xffff;
2017 struct nvme_pt_command *pt;
2018
2019 sc = device_lookup_private(&nvme_cd, unit);
2020 if (sc == NULL)
2021 return ENXIO;
2022
2023 switch (cmd) {
2024 case NVME_PASSTHROUGH_CMD:
2025 pt = data;
2026 return nvme_command_passthrough(sc, data,
2027 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2028 }
2029
2030 return ENOTTY;
2031 }
2032