nvme.c revision 1.44.2.6 1 /* $NetBSD: nvme.c,v 1.44.2.6 2021/06/21 17:25:48 martin Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.44.2.6 2021/06/21 17:25:48 martin Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
46
47 int nvme_adminq_size = 32;
48 int nvme_ioq_size = 1024;
49
50 static int nvme_print(void *, const char *);
51
52 static int nvme_ready(struct nvme_softc *, uint32_t);
53 static int nvme_enable(struct nvme_softc *, u_int);
54 static int nvme_disable(struct nvme_softc *);
55 static int nvme_shutdown(struct nvme_softc *);
56
57 #ifdef NVME_DEBUG
58 static void nvme_dumpregs(struct nvme_softc *);
59 #endif
60 static int nvme_identify(struct nvme_softc *, u_int);
61 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
62 void *);
63
64 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
65 static void nvme_ccbs_free(struct nvme_queue *);
66
67 static struct nvme_ccb *
68 nvme_ccb_get(struct nvme_queue *, bool);
69 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
70
71 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
72 struct nvme_ccb *, void (*)(struct nvme_queue *,
73 struct nvme_ccb *, void *), int);
74 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
78 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
79 struct nvme_cqe *);
80
81 static struct nvme_queue *
82 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
83 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
84 static void nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
85 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
86 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
87 struct nvme_ccb *, void (*)(struct nvme_queue *,
88 struct nvme_ccb *, void *));
89 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
90 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
91 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
92 bool (*)(void *), void *);
93
94 static struct nvme_dmamem *
95 nvme_dmamem_alloc(struct nvme_softc *, size_t);
96 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
97 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
98 int);
99
100 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
101 void *);
102 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
103 struct nvme_cqe *);
104 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
105 void *);
106 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
107 struct nvme_cqe *);
108 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
109 void *);
110 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
111 struct nvme_cqe *);
112
113 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
114 void *);
115 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
116 struct nvme_cqe *);
117 static int nvme_command_passthrough(struct nvme_softc *,
118 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
119
120 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
121 u_int *);
122
123 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
124 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
125 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
126 #define NVME_TIMO_SY 60 /* sync cache timeout */
127
128 #define nvme_read4(_s, _r) \
129 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
130 #define nvme_write4(_s, _r, _v) \
131 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
132 /*
133 * Some controllers, at least Apple NVMe, always require split
134 * transfers, so don't use bus_space_{read,write}_8() on LP64.
135 */
136 static inline uint64_t
137 nvme_read8(struct nvme_softc *sc, bus_size_t r)
138 {
139 uint64_t v;
140 uint32_t *a = (uint32_t *)&v;
141
142 #if _BYTE_ORDER == _LITTLE_ENDIAN
143 a[0] = nvme_read4(sc, r);
144 a[1] = nvme_read4(sc, r + 4);
145 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
146 a[1] = nvme_read4(sc, r);
147 a[0] = nvme_read4(sc, r + 4);
148 #endif
149
150 return v;
151 }
152
153 static inline void
154 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
155 {
156 uint32_t *a = (uint32_t *)&v;
157
158 #if _BYTE_ORDER == _LITTLE_ENDIAN
159 nvme_write4(sc, r, a[0]);
160 nvme_write4(sc, r + 4, a[1]);
161 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
162 nvme_write4(sc, r, a[1]);
163 nvme_write4(sc, r + 4, a[0]);
164 #endif
165 }
166 #define nvme_barrier(_s, _r, _l, _f) \
167 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
168
169 #ifdef NVME_DEBUG
170 static __used void
171 nvme_dumpregs(struct nvme_softc *sc)
172 {
173 uint64_t r8;
174 uint32_t r4;
175
176 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
177 r8 = nvme_read8(sc, NVME_CAP);
178 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
179 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
180 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
181 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
182 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
183 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
184 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
185 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
186 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
187 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
188 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
189 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
190
191 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
192
193 r4 = nvme_read4(sc, NVME_CC);
194 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
195 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
196 (1 << NVME_CC_IOCQES_R(r4)));
197 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
198 (1 << NVME_CC_IOSQES_R(r4)));
199 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
200 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
201 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
202 (1 << NVME_CC_MPS_R(r4)));
203 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
204 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
205
206 r4 = nvme_read4(sc, NVME_CSTS);
207 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
208 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
209 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
210 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
211
212 r4 = nvme_read4(sc, NVME_AQA);
213 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
214 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
215 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
216
217 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
218 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
219 #undef DEVNAME
220 }
221 #endif /* NVME_DEBUG */
222
223 static int
224 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
225 {
226 u_int i = 0;
227
228 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
229 if (i++ > sc->sc_rdy_to)
230 return ENXIO;
231
232 delay(1000);
233 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
234 }
235
236 return 0;
237 }
238
239 static int
240 nvme_enable(struct nvme_softc *sc, u_int mps)
241 {
242 uint32_t cc, csts;
243 int error;
244
245 cc = nvme_read4(sc, NVME_CC);
246 csts = nvme_read4(sc, NVME_CSTS);
247
248 /*
249 * See note in nvme_disable. Short circuit if we're already enabled.
250 */
251 if (ISSET(cc, NVME_CC_EN)) {
252 if (ISSET(csts, NVME_CSTS_RDY))
253 return 0;
254
255 goto waitready;
256 } else {
257 /* EN == 0 already wait for RDY == 0 or fail */
258 error = nvme_ready(sc, 0);
259 if (error)
260 return error;
261 }
262
263 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
264 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
265 delay(5000);
266 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
267 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
268 delay(5000);
269
270 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
271 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
272 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
273 delay(5000);
274
275 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
276 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
277 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
278 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
279 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
280 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
281 SET(cc, NVME_CC_MPS(mps));
282 SET(cc, NVME_CC_EN);
283
284 nvme_write4(sc, NVME_CC, cc);
285 nvme_barrier(sc, 0, sc->sc_ios,
286 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
287
288 waitready:
289 return nvme_ready(sc, NVME_CSTS_RDY);
290 }
291
292 static int
293 nvme_disable(struct nvme_softc *sc)
294 {
295 uint32_t cc, csts;
296 int error;
297
298 cc = nvme_read4(sc, NVME_CC);
299 csts = nvme_read4(sc, NVME_CSTS);
300
301 /*
302 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
303 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
304 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
305 * isn't the desired value. Short circuit if we're already disabled.
306 */
307 if (ISSET(cc, NVME_CC_EN)) {
308 if (!ISSET(csts, NVME_CSTS_RDY)) {
309 /* EN == 1, wait for RDY == 1 or fail */
310 error = nvme_ready(sc, NVME_CSTS_RDY);
311 if (error)
312 return error;
313 }
314 } else {
315 /* EN == 0 already wait for RDY == 0 */
316 if (!ISSET(csts, NVME_CSTS_RDY))
317 return 0;
318
319 goto waitready;
320 }
321
322 CLR(cc, NVME_CC_EN);
323 nvme_write4(sc, NVME_CC, cc);
324 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
325
326 /*
327 * Some drives have issues with accessing the mmio after we disable,
328 * so delay for a bit after we write the bit to cope with these issues.
329 */
330 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
331 delay(B4_CHK_RDY_DELAY_MS);
332
333 waitready:
334 return nvme_ready(sc, 0);
335 }
336
337 int
338 nvme_attach(struct nvme_softc *sc)
339 {
340 uint64_t cap;
341 uint32_t reg;
342 u_int mps = PAGE_SHIFT;
343 u_int ncq, nsq;
344 uint16_t adminq_entries = nvme_adminq_size;
345 uint16_t ioq_entries = nvme_ioq_size;
346 int i;
347
348 reg = nvme_read4(sc, NVME_VS);
349 if (reg == 0xffffffff) {
350 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
351 return 1;
352 }
353
354 if (NVME_VS_TER(reg) == 0)
355 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
356 NVME_VS_MNR(reg));
357 else
358 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
359 NVME_VS_MNR(reg), NVME_VS_TER(reg));
360
361 cap = nvme_read8(sc, NVME_CAP);
362 sc->sc_dstrd = NVME_CAP_DSTRD(cap);
363 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
364 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
365 "is greater than CPU page size %u\n",
366 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
367 return 1;
368 }
369 if (NVME_CAP_MPSMAX(cap) < mps)
370 mps = NVME_CAP_MPSMAX(cap);
371 if (ioq_entries > NVME_CAP_MQES(cap))
372 ioq_entries = NVME_CAP_MQES(cap);
373
374 /* set initial values to be used for admin queue during probe */
375 sc->sc_rdy_to = NVME_CAP_TO(cap);
376 sc->sc_mps = 1 << mps;
377 sc->sc_mdts = MAXPHYS;
378 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
379
380 if (nvme_disable(sc) != 0) {
381 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
382 return 1;
383 }
384
385 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
386 sc->sc_dstrd);
387 if (sc->sc_admin_q == NULL) {
388 aprint_error_dev(sc->sc_dev,
389 "unable to allocate admin queue\n");
390 return 1;
391 }
392 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
393 goto free_admin_q;
394
395 if (nvme_enable(sc, mps) != 0) {
396 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
397 goto disestablish_admin_q;
398 }
399
400 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
401 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
402 goto disable;
403 }
404 if (sc->sc_nn == 0) {
405 aprint_error_dev(sc->sc_dev, "namespace not found\n");
406 goto disable;
407 }
408
409 /* we know how big things are now */
410 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
411
412 /* reallocate ccbs of admin queue with new max sgl. */
413 nvme_ccbs_free(sc->sc_admin_q);
414 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
415
416 if (sc->sc_use_mq) {
417 /* Limit the number of queues to the number allocated in HW */
418 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
419 aprint_error_dev(sc->sc_dev,
420 "unable to get number of queues\n");
421 goto disable;
422 }
423 if (sc->sc_nq > ncq)
424 sc->sc_nq = ncq;
425 if (sc->sc_nq > nsq)
426 sc->sc_nq = nsq;
427 }
428
429 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
430 for (i = 0; i < sc->sc_nq; i++) {
431 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
432 sc->sc_dstrd);
433 if (sc->sc_q[i] == NULL) {
434 aprint_error_dev(sc->sc_dev,
435 "unable to allocate io queue\n");
436 goto free_q;
437 }
438 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
439 aprint_error_dev(sc->sc_dev,
440 "unable to create io queue\n");
441 nvme_q_free(sc, sc->sc_q[i]);
442 goto free_q;
443 }
444 }
445
446 if (!sc->sc_use_mq)
447 nvme_write4(sc, NVME_INTMC, 1);
448
449 /* probe subdevices */
450 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
451 KM_SLEEP);
452 nvme_rescan(sc->sc_dev, "nvme", &i);
453
454 return 0;
455
456 free_q:
457 while (--i >= 0) {
458 nvme_q_delete(sc, sc->sc_q[i]);
459 nvme_q_free(sc, sc->sc_q[i]);
460 }
461 disable:
462 nvme_disable(sc);
463 disestablish_admin_q:
464 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
465 free_admin_q:
466 nvme_q_free(sc, sc->sc_admin_q);
467
468 return 1;
469 }
470
471 int
472 nvme_rescan(device_t self, const char *attr, const int *flags)
473 {
474 struct nvme_softc *sc = device_private(self);
475 struct nvme_attach_args naa;
476 struct nvm_namespace_format *f;
477 struct nvme_namespace *ns;
478 uint64_t cap;
479 int ioq_entries = nvme_ioq_size;
480 int i;
481 int error;
482
483 cap = nvme_read8(sc, NVME_CAP);
484 if (ioq_entries > NVME_CAP_MQES(cap))
485 ioq_entries = NVME_CAP_MQES(cap);
486
487 for (i = 1; i <= sc->sc_nn; i++) {
488 if (sc->sc_namespaces[i - 1].dev)
489 continue;
490
491 /* identify to check for availability */
492 error = nvme_ns_identify(sc, i);
493 if (error) {
494 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
495 continue;
496 }
497
498 ns = nvme_ns_get(sc, i);
499 KASSERT(ns);
500
501 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
502
503 /*
504 * NVME1.0e 6.11 Identify command
505 *
506 * LBADS values smaller than 9 are not supported, a value
507 * of zero means that the format is not used.
508 */
509 if (f->lbads < 9) {
510 if (f->lbads > 0)
511 aprint_error_dev(self,
512 "unsupported logical data size %u\n", f->lbads);
513 continue;
514 }
515
516 memset(&naa, 0, sizeof(naa));
517 naa.naa_nsid = i;
518 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
519 naa.naa_maxphys = sc->sc_mdts;
520 naa.naa_typename = sc->sc_modelname;
521 sc->sc_namespaces[i - 1].dev = config_found(sc->sc_dev, &naa,
522 nvme_print);
523 }
524 return 0;
525 }
526
527 static int
528 nvme_print(void *aux, const char *pnp)
529 {
530 struct nvme_attach_args *naa = aux;
531
532 if (pnp)
533 aprint_normal("at %s", pnp);
534
535 if (naa->naa_nsid > 0)
536 aprint_normal(" nsid %d", naa->naa_nsid);
537
538 return UNCONF;
539 }
540
541 int
542 nvme_detach(struct nvme_softc *sc, int flags)
543 {
544 int i, error;
545
546 error = config_detach_children(sc->sc_dev, flags);
547 if (error)
548 return error;
549
550 error = nvme_shutdown(sc);
551 if (error)
552 return error;
553
554 /* from now on we are committed to detach, following will never fail */
555 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
556 for (i = 0; i < sc->sc_nq; i++)
557 nvme_q_free(sc, sc->sc_q[i]);
558 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
559 nvme_q_free(sc, sc->sc_admin_q);
560
561 return 0;
562 }
563
564 int
565 nvme_suspend(struct nvme_softc *sc)
566 {
567
568 return nvme_shutdown(sc);
569 }
570
571 int
572 nvme_resume(struct nvme_softc *sc)
573 {
574 int ioq_entries = nvme_ioq_size;
575 uint64_t cap;
576 int i, error;
577
578 error = nvme_disable(sc);
579 if (error) {
580 device_printf(sc->sc_dev, "unable to disable controller\n");
581 return error;
582 }
583
584 nvme_q_reset(sc, sc->sc_admin_q);
585
586 error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
587 if (error) {
588 device_printf(sc->sc_dev, "unable to enable controller\n");
589 return error;
590 }
591
592 for (i = 0; i < sc->sc_nq; i++) {
593 cap = nvme_read8(sc, NVME_CAP);
594 if (ioq_entries > NVME_CAP_MQES(cap))
595 ioq_entries = NVME_CAP_MQES(cap);
596 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
597 sc->sc_dstrd);
598 if (sc->sc_q[i] == NULL) {
599 error = ENOMEM;
600 device_printf(sc->sc_dev, "unable to allocate io q %d"
601 "\n", i);
602 goto disable;
603 }
604 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
605 error = EIO;
606 device_printf(sc->sc_dev, "unable to create io q %d"
607 "\n", i);
608 nvme_q_free(sc, sc->sc_q[i]);
609 goto free_q;
610 }
611 }
612
613 nvme_write4(sc, NVME_INTMC, 1);
614
615 return 0;
616
617 free_q:
618 while (i --> 0)
619 nvme_q_free(sc, sc->sc_q[i]);
620 disable:
621 (void)nvme_disable(sc);
622
623 return error;
624 }
625
626 static int
627 nvme_shutdown(struct nvme_softc *sc)
628 {
629 uint32_t cc, csts;
630 bool disabled = false;
631 int i;
632
633 if (!sc->sc_use_mq)
634 nvme_write4(sc, NVME_INTMS, 1);
635
636 for (i = 0; i < sc->sc_nq; i++) {
637 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
638 aprint_error_dev(sc->sc_dev,
639 "unable to delete io queue %d, disabling\n", i + 1);
640 disabled = true;
641 }
642 }
643 if (disabled)
644 goto disable;
645
646 cc = nvme_read4(sc, NVME_CC);
647 CLR(cc, NVME_CC_SHN_MASK);
648 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
649 nvme_write4(sc, NVME_CC, cc);
650
651 for (i = 0; i < 4000; i++) {
652 nvme_barrier(sc, 0, sc->sc_ios,
653 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
654 csts = nvme_read4(sc, NVME_CSTS);
655 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
656 return 0;
657
658 delay(1000);
659 }
660
661 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
662
663 disable:
664 nvme_disable(sc);
665 return 0;
666 }
667
668 void
669 nvme_childdet(device_t self, device_t child)
670 {
671 struct nvme_softc *sc = device_private(self);
672 int i;
673
674 for (i = 0; i < sc->sc_nn; i++) {
675 if (sc->sc_namespaces[i].dev == child) {
676 /* Already freed ns->ident. */
677 sc->sc_namespaces[i].dev = NULL;
678 break;
679 }
680 }
681 }
682
683 int
684 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
685 {
686 struct nvme_sqe sqe;
687 struct nvm_identify_namespace *identify;
688 struct nvme_dmamem *mem;
689 struct nvme_ccb *ccb;
690 struct nvme_namespace *ns;
691 int rv;
692
693 KASSERT(nsid > 0);
694
695 ns = nvme_ns_get(sc, nsid);
696 KASSERT(ns);
697
698 if (ns->ident != NULL)
699 return 0;
700
701 ccb = nvme_ccb_get(sc->sc_admin_q, false);
702 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
703
704 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
705 if (mem == NULL) {
706 nvme_ccb_put(sc->sc_admin_q, ccb);
707 return ENOMEM;
708 }
709
710 memset(&sqe, 0, sizeof(sqe));
711 sqe.opcode = NVM_ADMIN_IDENTIFY;
712 htolem32(&sqe.nsid, nsid);
713 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
714 htolem32(&sqe.cdw10, 0);
715
716 ccb->ccb_done = nvme_empty_done;
717 ccb->ccb_cookie = &sqe;
718
719 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
720 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
721 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
722
723 nvme_ccb_put(sc->sc_admin_q, ccb);
724
725 if (rv != 0) {
726 rv = EIO;
727 goto done;
728 }
729
730 /* commit */
731
732 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
733 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
734
735 /* Convert data to host endian */
736 nvme_identify_namespace_swapbytes(identify);
737
738 ns->ident = identify;
739
740 done:
741 nvme_dmamem_free(sc, mem);
742
743 return rv;
744 }
745
746 int
747 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
748 struct buf *bp, void *data, size_t datasize,
749 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
750 {
751 struct nvme_queue *q = nvme_get_q(sc, bp, false);
752 struct nvme_ccb *ccb;
753 bus_dmamap_t dmap;
754 int i, error;
755
756 ccb = nvme_ccb_get(q, false);
757 if (ccb == NULL)
758 return EAGAIN;
759
760 ccb->ccb_done = nvme_ns_io_done;
761 ccb->ccb_cookie = cookie;
762
763 /* namespace context */
764 ccb->nnc_nsid = nsid;
765 ccb->nnc_flags = flags;
766 ccb->nnc_buf = bp;
767 ccb->nnc_datasize = datasize;
768 ccb->nnc_secsize = secsize;
769 ccb->nnc_blkno = blkno;
770 ccb->nnc_done = nnc_done;
771
772 dmap = ccb->ccb_dmamap;
773 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
774 datasize, NULL,
775 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
776 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
777 (ISSET(flags, NVME_NS_CTX_F_READ) ?
778 BUS_DMA_READ : BUS_DMA_WRITE));
779 if (error) {
780 nvme_ccb_put(q, ccb);
781 return error;
782 }
783
784 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
785 ISSET(flags, NVME_NS_CTX_F_READ) ?
786 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
787
788 if (dmap->dm_nsegs > 2) {
789 for (i = 1; i < dmap->dm_nsegs; i++) {
790 htolem64(&ccb->ccb_prpl[i - 1],
791 dmap->dm_segs[i].ds_addr);
792 }
793 bus_dmamap_sync(sc->sc_dmat,
794 NVME_DMA_MAP(q->q_ccb_prpls),
795 ccb->ccb_prpl_off,
796 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
797 BUS_DMASYNC_PREWRITE);
798 }
799
800 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
801 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
802 return EIO;
803 return 0;
804 }
805
806 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
807 return 0;
808 }
809
810 static void
811 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
812 {
813 struct nvme_sqe_io *sqe = slot;
814 bus_dmamap_t dmap = ccb->ccb_dmamap;
815
816 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
817 NVM_CMD_READ : NVM_CMD_WRITE;
818 htolem32(&sqe->nsid, ccb->nnc_nsid);
819
820 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
821 switch (dmap->dm_nsegs) {
822 case 1:
823 break;
824 case 2:
825 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
826 break;
827 default:
828 /* the prp list is already set up and synced */
829 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
830 break;
831 }
832
833 htolem64(&sqe->slba, ccb->nnc_blkno);
834
835 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
836 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
837
838 /* guaranteed by upper layers, but check just in case */
839 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
840 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
841 }
842
843 static void
844 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
845 struct nvme_cqe *cqe)
846 {
847 struct nvme_softc *sc = q->q_sc;
848 bus_dmamap_t dmap = ccb->ccb_dmamap;
849 void *nnc_cookie = ccb->ccb_cookie;
850 nvme_nnc_done nnc_done = ccb->nnc_done;
851 struct buf *bp = ccb->nnc_buf;
852
853 if (dmap->dm_nsegs > 2) {
854 bus_dmamap_sync(sc->sc_dmat,
855 NVME_DMA_MAP(q->q_ccb_prpls),
856 ccb->ccb_prpl_off,
857 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
858 BUS_DMASYNC_POSTWRITE);
859 }
860
861 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
862 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
863 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
864
865 bus_dmamap_unload(sc->sc_dmat, dmap);
866 nvme_ccb_put(q, ccb);
867
868 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
869 }
870
871 /*
872 * If there is no volatile write cache, it makes no sense to issue
873 * flush commands or query for the status.
874 */
875 static bool
876 nvme_has_volatile_write_cache(struct nvme_softc *sc)
877 {
878 /* sc_identify is filled during attachment */
879 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
880 }
881
882 static bool
883 nvme_ns_sync_finished(void *cookie)
884 {
885 int *result = cookie;
886
887 return (*result != 0);
888 }
889
890 int
891 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
892 {
893 struct nvme_queue *q = nvme_get_q(sc, NULL, true);
894 struct nvme_ccb *ccb;
895 int result = 0;
896
897 if (!nvme_has_volatile_write_cache(sc)) {
898 /* cache not present, no value in trying to flush it */
899 return 0;
900 }
901
902 ccb = nvme_ccb_get(q, true);
903 KASSERT(ccb != NULL);
904
905 ccb->ccb_done = nvme_ns_sync_done;
906 ccb->ccb_cookie = &result;
907
908 /* namespace context */
909 ccb->nnc_nsid = nsid;
910 ccb->nnc_flags = flags;
911 ccb->nnc_done = NULL;
912
913 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
914 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
915 return EIO;
916 return 0;
917 }
918
919 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
920
921 /* wait for completion */
922 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
923 KASSERT(result != 0);
924
925 return (result > 0) ? 0 : EIO;
926 }
927
928 static void
929 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
930 {
931 struct nvme_sqe *sqe = slot;
932
933 sqe->opcode = NVM_CMD_FLUSH;
934 htolem32(&sqe->nsid, ccb->nnc_nsid);
935 }
936
937 static void
938 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
939 struct nvme_cqe *cqe)
940 {
941 int *result = ccb->ccb_cookie;
942 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
943
944 if (status == NVME_CQE_SC_SUCCESS)
945 *result = 1;
946 else
947 *result = -1;
948
949 nvme_ccb_put(q, ccb);
950 }
951
952 static bool
953 nvme_getcache_finished(void *xc)
954 {
955 int *addr = xc;
956
957 return (*addr != 0);
958 }
959
960 /*
961 * Get status of volatile write cache. Always asynchronous.
962 */
963 int
964 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
965 {
966 struct nvme_ccb *ccb;
967 struct nvme_queue *q = sc->sc_admin_q;
968 int result = 0, error;
969
970 if (!nvme_has_volatile_write_cache(sc)) {
971 /* cache simply not present */
972 *addr = 0;
973 return 0;
974 }
975
976 ccb = nvme_ccb_get(q, true);
977 KASSERT(ccb != NULL);
978
979 ccb->ccb_done = nvme_getcache_done;
980 ccb->ccb_cookie = &result;
981
982 /* namespace context */
983 ccb->nnc_flags = 0;
984 ccb->nnc_done = NULL;
985
986 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
987
988 /* wait for completion */
989 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
990 KASSERT(result != 0);
991
992 if (result > 0) {
993 *addr = result;
994 error = 0;
995 } else
996 error = EINVAL;
997
998 return error;
999 }
1000
1001 static void
1002 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1003 {
1004 struct nvme_sqe *sqe = slot;
1005
1006 sqe->opcode = NVM_ADMIN_GET_FEATURES;
1007 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1008 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1009 }
1010
1011 static void
1012 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1013 struct nvme_cqe *cqe)
1014 {
1015 int *addr = ccb->ccb_cookie;
1016 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1017 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
1018 int result;
1019
1020 if (status == NVME_CQE_SC_SUCCESS) {
1021 result = 0;
1022
1023 /*
1024 * DPO not supported, Dataset Management (DSM) field doesn't
1025 * specify the same semantics. FUA is always supported.
1026 */
1027 result = DKCACHE_FUA;
1028
1029 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
1030 result |= DKCACHE_WRITE;
1031
1032 /*
1033 * If volatile write cache is present, the flag shall also be
1034 * settable.
1035 */
1036 result |= DKCACHE_WCHANGE;
1037
1038 /*
1039 * ONCS field indicates whether the optional SAVE is also
1040 * supported for Set Features. According to spec v1.3,
1041 * Volatile Write Cache however doesn't support persistency
1042 * across power cycle/reset.
1043 */
1044
1045 } else {
1046 result = -1;
1047 }
1048
1049 *addr = result;
1050
1051 nvme_ccb_put(q, ccb);
1052 }
1053
1054 struct nvme_setcache_state {
1055 int dkcache;
1056 int result;
1057 };
1058
1059 static bool
1060 nvme_setcache_finished(void *xc)
1061 {
1062 struct nvme_setcache_state *st = xc;
1063
1064 return (st->result != 0);
1065 }
1066
1067 static void
1068 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1069 {
1070 struct nvme_sqe *sqe = slot;
1071 struct nvme_setcache_state *st = ccb->ccb_cookie;
1072
1073 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1074 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1075 if (st->dkcache & DKCACHE_WRITE)
1076 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1077 }
1078
1079 static void
1080 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1081 struct nvme_cqe *cqe)
1082 {
1083 struct nvme_setcache_state *st = ccb->ccb_cookie;
1084 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1085
1086 if (status == NVME_CQE_SC_SUCCESS) {
1087 st->result = 1;
1088 } else {
1089 st->result = -1;
1090 }
1091
1092 nvme_ccb_put(q, ccb);
1093 }
1094
1095 /*
1096 * Set status of volatile write cache. Always asynchronous.
1097 */
1098 int
1099 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1100 {
1101 struct nvme_ccb *ccb;
1102 struct nvme_queue *q = sc->sc_admin_q;
1103 int error;
1104 struct nvme_setcache_state st;
1105
1106 if (!nvme_has_volatile_write_cache(sc)) {
1107 /* cache simply not present */
1108 return EOPNOTSUPP;
1109 }
1110
1111 if (dkcache & ~(DKCACHE_WRITE)) {
1112 /* unsupported parameters */
1113 return EOPNOTSUPP;
1114 }
1115
1116 ccb = nvme_ccb_get(q, true);
1117 KASSERT(ccb != NULL);
1118
1119 memset(&st, 0, sizeof(st));
1120 st.dkcache = dkcache;
1121
1122 ccb->ccb_done = nvme_setcache_done;
1123 ccb->ccb_cookie = &st;
1124
1125 /* namespace context */
1126 ccb->nnc_flags = 0;
1127 ccb->nnc_done = NULL;
1128
1129 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1130
1131 /* wait for completion */
1132 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1133 KASSERT(st.result != 0);
1134
1135 if (st.result > 0)
1136 error = 0;
1137 else
1138 error = EINVAL;
1139
1140 return error;
1141 }
1142
1143 void
1144 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1145 {
1146 struct nvme_namespace *ns;
1147 struct nvm_identify_namespace *identify;
1148
1149 ns = nvme_ns_get(sc, nsid);
1150 KASSERT(ns);
1151
1152 identify = ns->ident;
1153 ns->ident = NULL;
1154 if (identify != NULL)
1155 kmem_free(identify, sizeof(*identify));
1156 }
1157
1158 struct nvme_pt_state {
1159 struct nvme_pt_command *pt;
1160 bool finished;
1161 };
1162
1163 static void
1164 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1165 {
1166 struct nvme_softc *sc = q->q_sc;
1167 struct nvme_sqe *sqe = slot;
1168 struct nvme_pt_state *state = ccb->ccb_cookie;
1169 struct nvme_pt_command *pt = state->pt;
1170 bus_dmamap_t dmap = ccb->ccb_dmamap;
1171 int i;
1172
1173 sqe->opcode = pt->cmd.opcode;
1174 htolem32(&sqe->nsid, pt->cmd.nsid);
1175
1176 if (pt->buf != NULL && pt->len > 0) {
1177 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1178 switch (dmap->dm_nsegs) {
1179 case 1:
1180 break;
1181 case 2:
1182 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1183 break;
1184 default:
1185 for (i = 1; i < dmap->dm_nsegs; i++) {
1186 htolem64(&ccb->ccb_prpl[i - 1],
1187 dmap->dm_segs[i].ds_addr);
1188 }
1189 bus_dmamap_sync(sc->sc_dmat,
1190 NVME_DMA_MAP(q->q_ccb_prpls),
1191 ccb->ccb_prpl_off,
1192 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1193 BUS_DMASYNC_PREWRITE);
1194 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1195 break;
1196 }
1197 }
1198
1199 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1200 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1201 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1202 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1203 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1204 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1205 }
1206
1207 static void
1208 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1209 {
1210 struct nvme_softc *sc = q->q_sc;
1211 struct nvme_pt_state *state = ccb->ccb_cookie;
1212 struct nvme_pt_command *pt = state->pt;
1213 bus_dmamap_t dmap = ccb->ccb_dmamap;
1214
1215 if (pt->buf != NULL && pt->len > 0) {
1216 if (dmap->dm_nsegs > 2) {
1217 bus_dmamap_sync(sc->sc_dmat,
1218 NVME_DMA_MAP(q->q_ccb_prpls),
1219 ccb->ccb_prpl_off,
1220 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1221 BUS_DMASYNC_POSTWRITE);
1222 }
1223
1224 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1225 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1226 bus_dmamap_unload(sc->sc_dmat, dmap);
1227 }
1228
1229 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1230 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1231
1232 state->finished = true;
1233
1234 nvme_ccb_put(q, ccb);
1235 }
1236
1237 static bool
1238 nvme_pt_finished(void *cookie)
1239 {
1240 struct nvme_pt_state *state = cookie;
1241
1242 return state->finished;
1243 }
1244
1245 static int
1246 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1247 uint16_t nsid, struct lwp *l, bool is_adminq)
1248 {
1249 struct nvme_queue *q;
1250 struct nvme_ccb *ccb;
1251 void *buf = NULL;
1252 struct nvme_pt_state state;
1253 int error;
1254
1255 /* limit command size to maximum data transfer size */
1256 if ((pt->buf == NULL && pt->len > 0) ||
1257 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1258 return EINVAL;
1259
1260 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1261 ccb = nvme_ccb_get(q, true);
1262 KASSERT(ccb != NULL);
1263
1264 if (pt->buf != NULL) {
1265 KASSERT(pt->len > 0);
1266 buf = kmem_alloc(pt->len, KM_SLEEP);
1267 if (!pt->is_read) {
1268 error = copyin(pt->buf, buf, pt->len);
1269 if (error)
1270 goto kmem_free;
1271 }
1272 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1273 pt->len, NULL,
1274 BUS_DMA_WAITOK |
1275 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1276 if (error)
1277 goto kmem_free;
1278 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1279 0, ccb->ccb_dmamap->dm_mapsize,
1280 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1281 }
1282
1283 memset(&state, 0, sizeof(state));
1284 state.pt = pt;
1285 state.finished = false;
1286
1287 ccb->ccb_done = nvme_pt_done;
1288 ccb->ccb_cookie = &state;
1289
1290 pt->cmd.nsid = nsid;
1291
1292 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1293
1294 /* wait for completion */
1295 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1296 KASSERT(state.finished);
1297
1298 error = 0;
1299
1300 if (buf != NULL) {
1301 if (error == 0 && pt->is_read)
1302 error = copyout(buf, pt->buf, pt->len);
1303 kmem_free:
1304 kmem_free(buf, pt->len);
1305 }
1306
1307 return error;
1308 }
1309
1310 static void
1311 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1312 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1313 {
1314 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1315 uint32_t tail;
1316
1317 mutex_enter(&q->q_sq_mtx);
1318 tail = q->q_sq_tail;
1319 if (++q->q_sq_tail >= q->q_entries)
1320 q->q_sq_tail = 0;
1321
1322 sqe += tail;
1323
1324 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1325 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1326 memset(sqe, 0, sizeof(*sqe));
1327 (*fill)(q, ccb, sqe);
1328 htolem16(&sqe->cid, ccb->ccb_id);
1329 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1330 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1331
1332 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1333 mutex_exit(&q->q_sq_mtx);
1334 }
1335
1336 struct nvme_poll_state {
1337 struct nvme_sqe s;
1338 struct nvme_cqe c;
1339 void *cookie;
1340 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1341 };
1342
1343 static int
1344 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1345 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1346 {
1347 struct nvme_poll_state state;
1348 uint16_t flags;
1349 int step = 10;
1350 int maxloop = timo_sec * 1000000 / step;
1351 int error = 0;
1352
1353 memset(&state, 0, sizeof(state));
1354 (*fill)(q, ccb, &state.s);
1355
1356 state.done = ccb->ccb_done;
1357 state.cookie = ccb->ccb_cookie;
1358
1359 ccb->ccb_done = nvme_poll_done;
1360 ccb->ccb_cookie = &state;
1361
1362 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1363 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1364 if (nvme_q_complete(sc, q) == 0)
1365 delay(step);
1366
1367 if (timo_sec >= 0 && --maxloop <= 0) {
1368 error = ETIMEDOUT;
1369 break;
1370 }
1371 }
1372
1373 if (error == 0) {
1374 flags = lemtoh16(&state.c.flags);
1375 return flags & ~NVME_CQE_PHASE;
1376 } else {
1377 /*
1378 * If it succeds later, it would hit ccb which will have been
1379 * already reused for something else. Not good. Cross
1380 * fingers and hope for best. XXX do controller reset?
1381 */
1382 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1383
1384 /* Invoke the callback to clean state anyway */
1385 struct nvme_cqe cqe;
1386 memset(&cqe, 0, sizeof(cqe));
1387 ccb->ccb_done(q, ccb, &cqe);
1388
1389 return 1;
1390 }
1391 }
1392
1393 static void
1394 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1395 {
1396 struct nvme_sqe *sqe = slot;
1397 struct nvme_poll_state *state = ccb->ccb_cookie;
1398
1399 *sqe = state->s;
1400 }
1401
1402 static void
1403 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1404 struct nvme_cqe *cqe)
1405 {
1406 struct nvme_poll_state *state = ccb->ccb_cookie;
1407
1408 state->c = *cqe;
1409 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1410
1411 ccb->ccb_cookie = state->cookie;
1412 state->done(q, ccb, &state->c);
1413 }
1414
1415 static void
1416 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1417 {
1418 struct nvme_sqe *src = ccb->ccb_cookie;
1419 struct nvme_sqe *dst = slot;
1420
1421 *dst = *src;
1422 }
1423
1424 static void
1425 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1426 struct nvme_cqe *cqe)
1427 {
1428 }
1429
1430 static int
1431 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1432 {
1433 struct nvme_ccb *ccb;
1434 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1435 uint16_t flags;
1436 int rv = 0;
1437
1438 mutex_enter(&q->q_cq_mtx);
1439
1440 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1441 for (;;) {
1442 cqe = &ring[q->q_cq_head];
1443 flags = lemtoh16(&cqe->flags);
1444 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1445 break;
1446
1447 ccb = &q->q_ccbs[cqe->cid];
1448
1449 if (++q->q_cq_head >= q->q_entries) {
1450 q->q_cq_head = 0;
1451 q->q_cq_phase ^= NVME_CQE_PHASE;
1452 }
1453
1454 #ifdef DEBUG
1455 /*
1456 * If we get spurious completion notification, something
1457 * is seriously hosed up. Very likely DMA to some random
1458 * memory place happened, so just bail out.
1459 */
1460 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1461 panic("%s: invalid ccb detected",
1462 device_xname(sc->sc_dev));
1463 /* NOTREACHED */
1464 }
1465 #endif
1466
1467 rv++;
1468
1469 /*
1470 * Unlock the mutex before calling the ccb_done callback
1471 * and re-lock afterwards. The callback triggers lddone()
1472 * which schedules another i/o, and also calls nvme_ccb_put().
1473 * Unlock/relock avoids possibility of deadlock.
1474 */
1475 mutex_exit(&q->q_cq_mtx);
1476 ccb->ccb_done(q, ccb, cqe);
1477 mutex_enter(&q->q_cq_mtx);
1478 }
1479 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1480
1481 if (rv)
1482 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1483
1484 mutex_exit(&q->q_cq_mtx);
1485
1486 return rv;
1487 }
1488
1489 static void
1490 nvme_q_wait_complete(struct nvme_softc *sc,
1491 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1492 {
1493 mutex_enter(&q->q_ccb_mtx);
1494 if (finished(cookie))
1495 goto out;
1496
1497 for(;;) {
1498 q->q_ccb_waiting = true;
1499 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1500
1501 if (finished(cookie))
1502 break;
1503 }
1504
1505 out:
1506 mutex_exit(&q->q_ccb_mtx);
1507 }
1508
1509 static int
1510 nvme_identify(struct nvme_softc *sc, u_int mps)
1511 {
1512 char sn[41], mn[81], fr[17];
1513 struct nvm_identify_controller *identify;
1514 struct nvme_dmamem *mem;
1515 struct nvme_ccb *ccb;
1516 u_int mdts;
1517 int rv = 1;
1518
1519 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1520 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1521
1522 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1523 if (mem == NULL)
1524 return 1;
1525
1526 ccb->ccb_done = nvme_empty_done;
1527 ccb->ccb_cookie = mem;
1528
1529 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1530 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1531 NVME_TIMO_IDENT);
1532 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1533
1534 nvme_ccb_put(sc->sc_admin_q, ccb);
1535
1536 if (rv != 0)
1537 goto done;
1538
1539 identify = NVME_DMA_KVA(mem);
1540 sc->sc_identify = *identify;
1541 identify = NULL;
1542
1543 /* Convert data to host endian */
1544 nvme_identify_controller_swapbytes(&sc->sc_identify);
1545
1546 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1547 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1548 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1549 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1550 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1551 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1552 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1553 sn);
1554
1555 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1556
1557 if (sc->sc_identify.mdts > 0) {
1558 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1559 if (mdts < sc->sc_mdts)
1560 sc->sc_mdts = mdts;
1561 }
1562
1563 sc->sc_nn = sc->sc_identify.nn;
1564
1565 done:
1566 nvme_dmamem_free(sc, mem);
1567
1568 return rv;
1569 }
1570
1571 static int
1572 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1573 {
1574 struct nvme_sqe_q sqe;
1575 struct nvme_ccb *ccb;
1576 int rv;
1577
1578 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1579 return 1;
1580
1581 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1582 KASSERT(ccb != NULL);
1583
1584 ccb->ccb_done = nvme_empty_done;
1585 ccb->ccb_cookie = &sqe;
1586
1587 memset(&sqe, 0, sizeof(sqe));
1588 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1589 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1590 htolem16(&sqe.qsize, q->q_entries - 1);
1591 htolem16(&sqe.qid, q->q_id);
1592 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1593 if (sc->sc_use_mq)
1594 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1595
1596 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1597 if (rv != 0)
1598 goto fail;
1599
1600 ccb->ccb_done = nvme_empty_done;
1601 ccb->ccb_cookie = &sqe;
1602
1603 memset(&sqe, 0, sizeof(sqe));
1604 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1605 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1606 htolem16(&sqe.qsize, q->q_entries - 1);
1607 htolem16(&sqe.qid, q->q_id);
1608 htolem16(&sqe.cqid, q->q_id);
1609 sqe.qflags = NVM_SQE_Q_PC;
1610
1611 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1612 if (rv != 0)
1613 goto fail;
1614
1615 nvme_ccb_put(sc->sc_admin_q, ccb);
1616 return 0;
1617
1618 fail:
1619 if (sc->sc_use_mq)
1620 sc->sc_intr_disestablish(sc, q->q_id);
1621
1622 nvme_ccb_put(sc->sc_admin_q, ccb);
1623 return rv;
1624 }
1625
1626 static int
1627 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1628 {
1629 struct nvme_sqe_q sqe;
1630 struct nvme_ccb *ccb;
1631 int rv;
1632
1633 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1634 KASSERT(ccb != NULL);
1635
1636 ccb->ccb_done = nvme_empty_done;
1637 ccb->ccb_cookie = &sqe;
1638
1639 memset(&sqe, 0, sizeof(sqe));
1640 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1641 htolem16(&sqe.qid, q->q_id);
1642
1643 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1644 if (rv != 0)
1645 goto fail;
1646
1647 ccb->ccb_done = nvme_empty_done;
1648 ccb->ccb_cookie = &sqe;
1649
1650 memset(&sqe, 0, sizeof(sqe));
1651 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1652 htolem16(&sqe.qid, q->q_id);
1653
1654 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1655 if (rv != 0)
1656 goto fail;
1657
1658 fail:
1659 nvme_ccb_put(sc->sc_admin_q, ccb);
1660
1661 if (rv == 0 && sc->sc_use_mq) {
1662 if (sc->sc_intr_disestablish(sc, q->q_id))
1663 rv = 1;
1664 }
1665
1666 return rv;
1667 }
1668
1669 static void
1670 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1671 {
1672 struct nvme_sqe *sqe = slot;
1673 struct nvme_dmamem *mem = ccb->ccb_cookie;
1674
1675 sqe->opcode = NVM_ADMIN_IDENTIFY;
1676 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1677 htolem32(&sqe->cdw10, 1);
1678 }
1679
1680 static int
1681 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1682 u_int *nsqa)
1683 {
1684 struct nvme_pt_state state;
1685 struct nvme_pt_command pt;
1686 struct nvme_ccb *ccb;
1687 int rv;
1688
1689 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1690 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1691
1692 memset(&pt, 0, sizeof(pt));
1693 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1694 htolem32(&pt.cmd.cdw10, NVM_FEATURE_NUMBER_OF_QUEUES);
1695 htolem32(&pt.cmd.cdw11, ((nq - 1) << 16) | (nq - 1));
1696
1697 memset(&state, 0, sizeof(state));
1698 state.pt = &pt;
1699 state.finished = false;
1700
1701 ccb->ccb_done = nvme_pt_done;
1702 ccb->ccb_cookie = &state;
1703
1704 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1705
1706 if (rv != 0) {
1707 *ncqa = *nsqa = 0;
1708 return EIO;
1709 }
1710
1711 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1712 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1713
1714 return 0;
1715 }
1716
1717 static int
1718 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1719 {
1720 struct nvme_softc *sc = q->q_sc;
1721 struct nvme_ccb *ccb;
1722 bus_addr_t off;
1723 uint64_t *prpl;
1724 u_int i;
1725
1726 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1727 cv_init(&q->q_ccb_wait, "nvmeqw");
1728 q->q_ccb_waiting = false;
1729 SIMPLEQ_INIT(&q->q_ccb_list);
1730
1731 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1732
1733 q->q_nccbs = nccbs;
1734 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1735 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1736
1737 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1738 off = 0;
1739
1740 for (i = 0; i < nccbs; i++) {
1741 ccb = &q->q_ccbs[i];
1742
1743 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1744 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1745 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1746 &ccb->ccb_dmamap) != 0)
1747 goto free_maps;
1748
1749 ccb->ccb_id = i;
1750 ccb->ccb_prpl = prpl;
1751 ccb->ccb_prpl_off = off;
1752 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1753
1754 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1755
1756 prpl += sc->sc_max_sgl;
1757 off += sizeof(*prpl) * sc->sc_max_sgl;
1758 }
1759
1760 return 0;
1761
1762 free_maps:
1763 nvme_ccbs_free(q);
1764 return 1;
1765 }
1766
1767 static struct nvme_ccb *
1768 nvme_ccb_get(struct nvme_queue *q, bool wait)
1769 {
1770 struct nvme_ccb *ccb = NULL;
1771
1772 mutex_enter(&q->q_ccb_mtx);
1773 again:
1774 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1775 if (ccb != NULL) {
1776 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1777 #ifdef DEBUG
1778 ccb->ccb_cookie = NULL;
1779 #endif
1780 } else {
1781 if (__predict_false(wait)) {
1782 q->q_ccb_waiting = true;
1783 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1784 goto again;
1785 }
1786 }
1787 mutex_exit(&q->q_ccb_mtx);
1788
1789 return ccb;
1790 }
1791
1792 static void
1793 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1794 {
1795
1796 mutex_enter(&q->q_ccb_mtx);
1797 #ifdef DEBUG
1798 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1799 #endif
1800 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1801
1802 /* It's unlikely there are any waiters, it's not used for regular I/O */
1803 if (__predict_false(q->q_ccb_waiting)) {
1804 q->q_ccb_waiting = false;
1805 cv_broadcast(&q->q_ccb_wait);
1806 }
1807
1808 mutex_exit(&q->q_ccb_mtx);
1809 }
1810
1811 static void
1812 nvme_ccbs_free(struct nvme_queue *q)
1813 {
1814 struct nvme_softc *sc = q->q_sc;
1815 struct nvme_ccb *ccb;
1816
1817 mutex_enter(&q->q_ccb_mtx);
1818 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1819 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1820 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1821 }
1822 mutex_exit(&q->q_ccb_mtx);
1823
1824 nvme_dmamem_free(sc, q->q_ccb_prpls);
1825 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1826 q->q_ccbs = NULL;
1827 cv_destroy(&q->q_ccb_wait);
1828 mutex_destroy(&q->q_ccb_mtx);
1829 }
1830
1831 static struct nvme_queue *
1832 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1833 {
1834 struct nvme_queue *q;
1835
1836 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1837 q->q_sc = sc;
1838 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1839 sizeof(struct nvme_sqe) * entries);
1840 if (q->q_sq_dmamem == NULL)
1841 goto free;
1842
1843 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1844 sizeof(struct nvme_cqe) * entries);
1845 if (q->q_cq_dmamem == NULL)
1846 goto free_sq;
1847
1848 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1849 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1850
1851 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1852 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1853 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1854 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1855 q->q_id = id;
1856 q->q_entries = entries;
1857 q->q_sq_tail = 0;
1858 q->q_cq_head = 0;
1859 q->q_cq_phase = NVME_CQE_PHASE;
1860
1861 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1862 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1863
1864 /*
1865 * Due to definition of full and empty queue (queue is empty
1866 * when head == tail, full when tail is one less then head),
1867 * we can actually only have (entries - 1) in-flight commands.
1868 */
1869 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1870 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1871 goto free_cq;
1872 }
1873
1874 return q;
1875
1876 free_cq:
1877 nvme_dmamem_free(sc, q->q_cq_dmamem);
1878 free_sq:
1879 nvme_dmamem_free(sc, q->q_sq_dmamem);
1880 free:
1881 kmem_free(q, sizeof(*q));
1882
1883 return NULL;
1884 }
1885
1886 static void
1887 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
1888 {
1889
1890 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1891 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1892
1893 q->q_sqtdbl = NVME_SQTDBL(q->q_id, sc->sc_dstrd);
1894 q->q_cqhdbl = NVME_CQHDBL(q->q_id, sc->sc_dstrd);
1895
1896 q->q_sq_tail = 0;
1897 q->q_cq_head = 0;
1898 q->q_cq_phase = NVME_CQE_PHASE;
1899
1900 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1901 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1902 }
1903
1904 static void
1905 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1906 {
1907 nvme_ccbs_free(q);
1908 mutex_destroy(&q->q_sq_mtx);
1909 mutex_destroy(&q->q_cq_mtx);
1910 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1911 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1912 nvme_dmamem_free(sc, q->q_cq_dmamem);
1913 nvme_dmamem_free(sc, q->q_sq_dmamem);
1914 kmem_free(q, sizeof(*q));
1915 }
1916
1917 int
1918 nvme_intr(void *xsc)
1919 {
1920 struct nvme_softc *sc = xsc;
1921
1922 /*
1923 * INTx is level triggered, controller deasserts the interrupt only
1924 * when we advance command queue head via write to the doorbell.
1925 * Tell the controller to block the interrupts while we process
1926 * the queue(s).
1927 */
1928 nvme_write4(sc, NVME_INTMS, 1);
1929
1930 softint_schedule(sc->sc_softih[0]);
1931
1932 /* don't know, might not have been for us */
1933 return 1;
1934 }
1935
1936 void
1937 nvme_softintr_intx(void *xq)
1938 {
1939 struct nvme_queue *q = xq;
1940 struct nvme_softc *sc = q->q_sc;
1941
1942 nvme_q_complete(sc, sc->sc_admin_q);
1943 if (sc->sc_q != NULL)
1944 nvme_q_complete(sc, sc->sc_q[0]);
1945
1946 /*
1947 * Processing done, tell controller to issue interrupts again. There
1948 * is no race, as NVMe spec requires the controller to maintain state,
1949 * and assert the interrupt whenever there are unacknowledged
1950 * completion queue entries.
1951 */
1952 nvme_write4(sc, NVME_INTMC, 1);
1953 }
1954
1955 int
1956 nvme_intr_msi(void *xq)
1957 {
1958 struct nvme_queue *q = xq;
1959
1960 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1961 && q->q_sc->sc_softih[q->q_id]);
1962
1963 /*
1964 * MSI/MSI-X are edge triggered, so can handover processing to softint
1965 * without masking the interrupt.
1966 */
1967 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1968
1969 return 1;
1970 }
1971
1972 void
1973 nvme_softintr_msi(void *xq)
1974 {
1975 struct nvme_queue *q = xq;
1976 struct nvme_softc *sc = q->q_sc;
1977
1978 nvme_q_complete(sc, q);
1979 }
1980
1981 static struct nvme_dmamem *
1982 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1983 {
1984 struct nvme_dmamem *ndm;
1985 int nsegs;
1986
1987 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1988 if (ndm == NULL)
1989 return NULL;
1990
1991 ndm->ndm_size = size;
1992
1993 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
1994 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1995 goto ndmfree;
1996
1997 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1998 1, &nsegs, BUS_DMA_WAITOK) != 0)
1999 goto destroy;
2000
2001 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
2002 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
2003 goto free;
2004 memset(ndm->ndm_kva, 0, size);
2005
2006 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
2007 NULL, BUS_DMA_WAITOK) != 0)
2008 goto unmap;
2009
2010 return ndm;
2011
2012 unmap:
2013 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
2014 free:
2015 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2016 destroy:
2017 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2018 ndmfree:
2019 kmem_free(ndm, sizeof(*ndm));
2020 return NULL;
2021 }
2022
2023 static void
2024 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
2025 {
2026 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
2027 0, NVME_DMA_LEN(mem), ops);
2028 }
2029
2030 void
2031 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
2032 {
2033 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
2034 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
2035 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2036 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2037 kmem_free(ndm, sizeof(*ndm));
2038 }
2039
2040 /*
2041 * ioctl
2042 */
2043
2044 dev_type_open(nvmeopen);
2045 dev_type_close(nvmeclose);
2046 dev_type_ioctl(nvmeioctl);
2047
2048 const struct cdevsw nvme_cdevsw = {
2049 .d_open = nvmeopen,
2050 .d_close = nvmeclose,
2051 .d_read = noread,
2052 .d_write = nowrite,
2053 .d_ioctl = nvmeioctl,
2054 .d_stop = nostop,
2055 .d_tty = notty,
2056 .d_poll = nopoll,
2057 .d_mmap = nommap,
2058 .d_kqfilter = nokqfilter,
2059 .d_discard = nodiscard,
2060 .d_flag = D_OTHER,
2061 };
2062
2063 /*
2064 * Accept an open operation on the control device.
2065 */
2066 int
2067 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2068 {
2069 struct nvme_softc *sc;
2070 int unit = minor(dev) / 0x10000;
2071 int nsid = minor(dev) & 0xffff;
2072 int nsidx;
2073
2074 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2075 return ENXIO;
2076 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2077 return ENXIO;
2078
2079 if (nsid == 0) {
2080 /* controller */
2081 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2082 return EBUSY;
2083 SET(sc->sc_flags, NVME_F_OPEN);
2084 } else {
2085 /* namespace */
2086 nsidx = nsid - 1;
2087 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2088 return ENXIO;
2089 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2090 return EBUSY;
2091 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2092 }
2093 return 0;
2094 }
2095
2096 /*
2097 * Accept the last close on the control device.
2098 */
2099 int
2100 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2101 {
2102 struct nvme_softc *sc;
2103 int unit = minor(dev) / 0x10000;
2104 int nsid = minor(dev) & 0xffff;
2105 int nsidx;
2106
2107 sc = device_lookup_private(&nvme_cd, unit);
2108 if (sc == NULL)
2109 return ENXIO;
2110
2111 if (nsid == 0) {
2112 /* controller */
2113 CLR(sc->sc_flags, NVME_F_OPEN);
2114 } else {
2115 /* namespace */
2116 nsidx = nsid - 1;
2117 if (nsidx >= sc->sc_nn)
2118 return ENXIO;
2119 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2120 }
2121
2122 return 0;
2123 }
2124
2125 /*
2126 * Handle control operations.
2127 */
2128 int
2129 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2130 {
2131 struct nvme_softc *sc;
2132 int unit = minor(dev) / 0x10000;
2133 int nsid = minor(dev) & 0xffff;
2134 struct nvme_pt_command *pt;
2135
2136 sc = device_lookup_private(&nvme_cd, unit);
2137 if (sc == NULL)
2138 return ENXIO;
2139
2140 switch (cmd) {
2141 case NVME_PASSTHROUGH_CMD:
2142 pt = data;
2143 return nvme_command_passthrough(sc, data,
2144 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2145 }
2146
2147 return ENOTTY;
2148 }
2149