Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.49
      1 /*	$NetBSD: nvme.c,v 1.49 2020/07/28 15:59:19 jdolecek Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.49 2020/07/28 15:59:19 jdolecek Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 #include "ioconf.h"
     44 
     45 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
     46 
     47 int nvme_adminq_size = 32;
     48 int nvme_ioq_size = 1024;
     49 
     50 static int	nvme_print(void *, const char *);
     51 
     52 static int	nvme_ready(struct nvme_softc *, uint32_t);
     53 static int	nvme_enable(struct nvme_softc *, u_int);
     54 static int	nvme_disable(struct nvme_softc *);
     55 static int	nvme_shutdown(struct nvme_softc *);
     56 
     57 #ifdef NVME_DEBUG
     58 static void	nvme_dumpregs(struct nvme_softc *);
     59 #endif
     60 static int	nvme_identify(struct nvme_softc *, u_int);
     61 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     62 		    void *);
     63 
     64 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     65 static void	nvme_ccbs_free(struct nvme_queue *);
     66 
     67 static struct nvme_ccb *
     68 		nvme_ccb_get(struct nvme_queue *, bool);
     69 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     70 
     71 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     72 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     73 		    struct nvme_ccb *, void *), int);
     74 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     78 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     79 		    struct nvme_cqe *);
     80 
     81 static struct nvme_queue *
     82 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     83 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     84 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     85 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     86 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     87 		    struct nvme_ccb *, void *));
     88 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     89 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     90 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
     91 		    bool (*)(void *), void *);
     92 
     93 static struct nvme_dmamem *
     94 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     95 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     96 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     97 		    int);
     98 
     99 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
    100 		    void *);
    101 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
    102 		    struct nvme_cqe *);
    103 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
    104 		    void *);
    105 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    106 		    struct nvme_cqe *);
    107 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    108 		    void *);
    109 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    110 		    struct nvme_cqe *);
    111 
    112 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    113 		    void *);
    114 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    115 		    struct nvme_cqe *);
    116 static int	nvme_command_passthrough(struct nvme_softc *,
    117 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    118 
    119 static int	nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
    120 		    u_int *);
    121 
    122 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    123 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    124 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    125 #define NVME_TIMO_SY		60	/* sync cache timeout */
    126 
    127 #define nvme_read4(_s, _r) \
    128 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    129 #define nvme_write4(_s, _r, _v) \
    130 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    131 /*
    132  * Some controllers, at least Apple NVMe, always require split
    133  * transfers, so don't use bus_space_{read,write}_8() on LP64.
    134  */
    135 static inline uint64_t
    136 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    137 {
    138 	uint64_t v;
    139 	uint32_t *a = (uint32_t *)&v;
    140 
    141 #if _BYTE_ORDER == _LITTLE_ENDIAN
    142 	a[0] = nvme_read4(sc, r);
    143 	a[1] = nvme_read4(sc, r + 4);
    144 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    145 	a[1] = nvme_read4(sc, r);
    146 	a[0] = nvme_read4(sc, r + 4);
    147 #endif
    148 
    149 	return v;
    150 }
    151 
    152 static inline void
    153 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    154 {
    155 	uint32_t *a = (uint32_t *)&v;
    156 
    157 #if _BYTE_ORDER == _LITTLE_ENDIAN
    158 	nvme_write4(sc, r, a[0]);
    159 	nvme_write4(sc, r + 4, a[1]);
    160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    161 	nvme_write4(sc, r, a[1]);
    162 	nvme_write4(sc, r + 4, a[0]);
    163 #endif
    164 }
    165 #define nvme_barrier(_s, _r, _l, _f) \
    166 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    167 
    168 #ifdef NVME_DEBUG
    169 static __used void
    170 nvme_dumpregs(struct nvme_softc *sc)
    171 {
    172 	uint64_t r8;
    173 	uint32_t r4;
    174 
    175 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    176 	r8 = nvme_read8(sc, NVME_CAP);
    177 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    178 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    179 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    180 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    181 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    182 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    183 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    184 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    185 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    186 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    187 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    188 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    189 
    190 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    191 
    192 	r4 = nvme_read4(sc, NVME_CC);
    193 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    194 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    195 	    (1 << NVME_CC_IOCQES_R(r4)));
    196 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    197 	    (1 << NVME_CC_IOSQES_R(r4)));
    198 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    199 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    200 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    201 	    (1 << NVME_CC_MPS_R(r4)));
    202 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    203 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    204 
    205 	r4 = nvme_read4(sc, NVME_CSTS);
    206 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    207 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    208 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    209 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    210 
    211 	r4 = nvme_read4(sc, NVME_AQA);
    212 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    213 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    214 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    215 
    216 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    217 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    218 #undef	DEVNAME
    219 }
    220 #endif	/* NVME_DEBUG */
    221 
    222 static int
    223 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    224 {
    225 	u_int i = 0;
    226 
    227 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    228 		if (i++ > sc->sc_rdy_to)
    229 			return ENXIO;
    230 
    231 		delay(1000);
    232 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    233 	}
    234 
    235 	return 0;
    236 }
    237 
    238 static int
    239 nvme_enable(struct nvme_softc *sc, u_int mps)
    240 {
    241 	uint32_t cc, csts;
    242 	int error;
    243 
    244 	cc = nvme_read4(sc, NVME_CC);
    245 	csts = nvme_read4(sc, NVME_CSTS);
    246 
    247 	/*
    248 	 * See note in nvme_disable. Short circuit if we're already enabled.
    249 	 */
    250 	if (ISSET(cc, NVME_CC_EN)) {
    251 		if (ISSET(csts, NVME_CSTS_RDY))
    252 			return 0;
    253 
    254 		goto waitready;
    255 	} else {
    256 		/* EN == 0 already wait for RDY == 0 or fail */
    257 		error = nvme_ready(sc, 0);
    258 		if (error)
    259 			return error;
    260 	}
    261 
    262 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    263 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    264 	delay(5000);
    265 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    266 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    267 	delay(5000);
    268 
    269 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    270 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    271 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    272 	delay(5000);
    273 
    274 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    275 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    276 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    277 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    278 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    279 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    280 	SET(cc, NVME_CC_MPS(mps));
    281 	SET(cc, NVME_CC_EN);
    282 
    283 	nvme_write4(sc, NVME_CC, cc);
    284 	nvme_barrier(sc, 0, sc->sc_ios,
    285 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    286 
    287     waitready:
    288 	return nvme_ready(sc, NVME_CSTS_RDY);
    289 }
    290 
    291 static int
    292 nvme_disable(struct nvme_softc *sc)
    293 {
    294 	uint32_t cc, csts;
    295 	int error;
    296 
    297 	cc = nvme_read4(sc, NVME_CC);
    298 	csts = nvme_read4(sc, NVME_CSTS);
    299 
    300 	/*
    301 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
    302 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
    303 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
    304 	 * isn't the desired value. Short circuit if we're already disabled.
    305 	 */
    306 	if (ISSET(cc, NVME_CC_EN)) {
    307 		if (!ISSET(csts, NVME_CSTS_RDY)) {
    308 			/* EN == 1, wait for RDY == 1 or fail */
    309 			error = nvme_ready(sc, NVME_CSTS_RDY);
    310 			if (error)
    311 				return error;
    312 		}
    313 	} else {
    314 		/* EN == 0 already wait for RDY == 0 */
    315 		if (!ISSET(csts, NVME_CSTS_RDY))
    316 			return 0;
    317 
    318 		goto waitready;
    319 	}
    320 
    321 	CLR(cc, NVME_CC_EN);
    322 	nvme_write4(sc, NVME_CC, cc);
    323 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    324 
    325 	/*
    326 	 * Some drives have issues with accessing the mmio after we disable,
    327 	 * so delay for a bit after we write the bit to cope with these issues.
    328 	 */
    329 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
    330 		delay(B4_CHK_RDY_DELAY_MS);
    331 
    332     waitready:
    333 	return nvme_ready(sc, 0);
    334 }
    335 
    336 int
    337 nvme_attach(struct nvme_softc *sc)
    338 {
    339 	uint64_t cap;
    340 	uint32_t reg;
    341 	u_int dstrd;
    342 	u_int mps = PAGE_SHIFT;
    343 	u_int ncq, nsq;
    344 	uint16_t adminq_entries = nvme_adminq_size;
    345 	uint16_t ioq_entries = nvme_ioq_size;
    346 	int i;
    347 
    348 	reg = nvme_read4(sc, NVME_VS);
    349 	if (reg == 0xffffffff) {
    350 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    351 		return 1;
    352 	}
    353 
    354 	if (NVME_VS_TER(reg) == 0)
    355 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    356 		    NVME_VS_MNR(reg));
    357 	else
    358 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    359 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    360 
    361 	cap = nvme_read8(sc, NVME_CAP);
    362 	dstrd = NVME_CAP_DSTRD(cap);
    363 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    364 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    365 		    "is greater than CPU page size %u\n",
    366 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    367 		return 1;
    368 	}
    369 	if (NVME_CAP_MPSMAX(cap) < mps)
    370 		mps = NVME_CAP_MPSMAX(cap);
    371 	if (ioq_entries > NVME_CAP_MQES(cap))
    372 		ioq_entries = NVME_CAP_MQES(cap);
    373 
    374 	/* set initial values to be used for admin queue during probe */
    375 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    376 	sc->sc_mps = 1 << mps;
    377 	sc->sc_mdts = MAXPHYS;
    378 	sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
    379 
    380 	if (nvme_disable(sc) != 0) {
    381 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    382 		return 1;
    383 	}
    384 
    385 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    386 	if (sc->sc_admin_q == NULL) {
    387 		aprint_error_dev(sc->sc_dev,
    388 		    "unable to allocate admin queue\n");
    389 		return 1;
    390 	}
    391 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    392 		goto free_admin_q;
    393 
    394 	if (nvme_enable(sc, mps) != 0) {
    395 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    396 		goto disestablish_admin_q;
    397 	}
    398 
    399 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    400 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    401 		goto disable;
    402 	}
    403 	if (sc->sc_nn == 0) {
    404 		aprint_error_dev(sc->sc_dev, "namespace not found\n");
    405 		goto disable;
    406 	}
    407 
    408 	/* we know how big things are now */
    409 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    410 
    411 	/* reallocate ccbs of admin queue with new max sgl. */
    412 	nvme_ccbs_free(sc->sc_admin_q);
    413 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    414 
    415 	if (sc->sc_use_mq) {
    416 		/* Limit the number of queues to the number allocated in HW */
    417 		if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
    418 			aprint_error_dev(sc->sc_dev,
    419 			    "unable to get number of queues\n");
    420 			goto disable;
    421 		}
    422 		if (sc->sc_nq > ncq)
    423 			sc->sc_nq = ncq;
    424 		if (sc->sc_nq > nsq)
    425 			sc->sc_nq = nsq;
    426 	}
    427 
    428 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    429 	for (i = 0; i < sc->sc_nq; i++) {
    430 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    431 		if (sc->sc_q[i] == NULL) {
    432 			aprint_error_dev(sc->sc_dev,
    433 			    "unable to allocate io queue\n");
    434 			goto free_q;
    435 		}
    436 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    437 			aprint_error_dev(sc->sc_dev,
    438 			    "unable to create io queue\n");
    439 			nvme_q_free(sc, sc->sc_q[i]);
    440 			goto free_q;
    441 		}
    442 	}
    443 
    444 	if (!sc->sc_use_mq)
    445 		nvme_write4(sc, NVME_INTMC, 1);
    446 
    447 	/* probe subdevices */
    448 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    449 	    KM_SLEEP);
    450 	nvme_rescan(sc->sc_dev, "nvme", &i);
    451 
    452 	return 0;
    453 
    454 free_q:
    455 	while (--i >= 0) {
    456 		nvme_q_delete(sc, sc->sc_q[i]);
    457 		nvme_q_free(sc, sc->sc_q[i]);
    458 	}
    459 disable:
    460 	nvme_disable(sc);
    461 disestablish_admin_q:
    462 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    463 free_admin_q:
    464 	nvme_q_free(sc, sc->sc_admin_q);
    465 
    466 	return 1;
    467 }
    468 
    469 int
    470 nvme_rescan(device_t self, const char *attr, const int *flags)
    471 {
    472 	struct nvme_softc *sc = device_private(self);
    473 	struct nvme_attach_args naa;
    474 	uint64_t cap;
    475 	int ioq_entries = nvme_ioq_size;
    476 	int i;
    477 
    478 	cap = nvme_read8(sc, NVME_CAP);
    479 	if (ioq_entries > NVME_CAP_MQES(cap))
    480 		ioq_entries = NVME_CAP_MQES(cap);
    481 
    482 	for (i = 0; i < sc->sc_nn; i++) {
    483 		if (sc->sc_namespaces[i].dev)
    484 			continue;
    485 		memset(&naa, 0, sizeof(naa));
    486 		naa.naa_nsid = i + 1;
    487 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    488 		naa.naa_maxphys = sc->sc_mdts;
    489 		naa.naa_typename = sc->sc_modelname;
    490 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    491 		    nvme_print);
    492 	}
    493 	return 0;
    494 }
    495 
    496 static int
    497 nvme_print(void *aux, const char *pnp)
    498 {
    499 	struct nvme_attach_args *naa = aux;
    500 
    501 	if (pnp)
    502 		aprint_normal("ld at %s", pnp);
    503 
    504 	if (naa->naa_nsid > 0)
    505 		aprint_normal(" nsid %d", naa->naa_nsid);
    506 
    507 	return UNCONF;
    508 }
    509 
    510 int
    511 nvme_detach(struct nvme_softc *sc, int flags)
    512 {
    513 	int i, error;
    514 
    515 	error = config_detach_children(sc->sc_dev, flags);
    516 	if (error)
    517 		return error;
    518 
    519 	error = nvme_shutdown(sc);
    520 	if (error)
    521 		return error;
    522 
    523 	/* from now on we are committed to detach, following will never fail */
    524 	for (i = 0; i < sc->sc_nq; i++)
    525 		nvme_q_free(sc, sc->sc_q[i]);
    526 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    527 	nvme_q_free(sc, sc->sc_admin_q);
    528 
    529 	return 0;
    530 }
    531 
    532 static int
    533 nvme_shutdown(struct nvme_softc *sc)
    534 {
    535 	uint32_t cc, csts;
    536 	bool disabled = false;
    537 	int i;
    538 
    539 	if (!sc->sc_use_mq)
    540 		nvme_write4(sc, NVME_INTMS, 1);
    541 
    542 	for (i = 0; i < sc->sc_nq; i++) {
    543 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    544 			aprint_error_dev(sc->sc_dev,
    545 			    "unable to delete io queue %d, disabling\n", i + 1);
    546 			disabled = true;
    547 		}
    548 	}
    549 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    550 	if (disabled)
    551 		goto disable;
    552 
    553 	cc = nvme_read4(sc, NVME_CC);
    554 	CLR(cc, NVME_CC_SHN_MASK);
    555 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    556 	nvme_write4(sc, NVME_CC, cc);
    557 
    558 	for (i = 0; i < 4000; i++) {
    559 		nvme_barrier(sc, 0, sc->sc_ios,
    560 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    561 		csts = nvme_read4(sc, NVME_CSTS);
    562 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    563 			return 0;
    564 
    565 		delay(1000);
    566 	}
    567 
    568 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    569 
    570 disable:
    571 	nvme_disable(sc);
    572 	return 0;
    573 }
    574 
    575 void
    576 nvme_childdet(device_t self, device_t child)
    577 {
    578 	struct nvme_softc *sc = device_private(self);
    579 	int i;
    580 
    581 	for (i = 0; i < sc->sc_nn; i++) {
    582 		if (sc->sc_namespaces[i].dev == child) {
    583 			/* Already freed ns->ident. */
    584 			sc->sc_namespaces[i].dev = NULL;
    585 			break;
    586 		}
    587 	}
    588 }
    589 
    590 int
    591 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    592 {
    593 	struct nvme_sqe sqe;
    594 	struct nvm_identify_namespace *identify;
    595 	struct nvme_dmamem *mem;
    596 	struct nvme_ccb *ccb;
    597 	struct nvme_namespace *ns;
    598 	int rv;
    599 
    600 	KASSERT(nsid > 0);
    601 
    602 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
    603 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    604 
    605 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    606 	if (mem == NULL) {
    607 		nvme_ccb_put(sc->sc_admin_q, ccb);
    608 		return ENOMEM;
    609 	}
    610 
    611 	memset(&sqe, 0, sizeof(sqe));
    612 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    613 	htolem32(&sqe.nsid, nsid);
    614 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    615 	htolem32(&sqe.cdw10, 0);
    616 
    617 	ccb->ccb_done = nvme_empty_done;
    618 	ccb->ccb_cookie = &sqe;
    619 
    620 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    621 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    622 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    623 
    624 	nvme_ccb_put(sc->sc_admin_q, ccb);
    625 
    626 	if (rv != 0) {
    627 		rv = EIO;
    628 		goto done;
    629 	}
    630 
    631 	/* commit */
    632 
    633 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    634 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    635 
    636 	/* Convert data to host endian */
    637 	nvme_identify_namespace_swapbytes(identify);
    638 
    639 	ns = nvme_ns_get(sc, nsid);
    640 	KASSERT(ns);
    641 	KASSERT(ns->ident == NULL);
    642 	ns->ident = identify;
    643 
    644 done:
    645 	nvme_dmamem_free(sc, mem);
    646 
    647 	return rv;
    648 }
    649 
    650 int
    651 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    652     struct buf *bp, void *data, size_t datasize,
    653     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    654 {
    655 	struct nvme_queue *q = nvme_get_q(sc, bp, false);
    656 	struct nvme_ccb *ccb;
    657 	bus_dmamap_t dmap;
    658 	int i, error;
    659 
    660 	ccb = nvme_ccb_get(q, false);
    661 	if (ccb == NULL)
    662 		return EAGAIN;
    663 
    664 	ccb->ccb_done = nvme_ns_io_done;
    665 	ccb->ccb_cookie = cookie;
    666 
    667 	/* namespace context */
    668 	ccb->nnc_nsid = nsid;
    669 	ccb->nnc_flags = flags;
    670 	ccb->nnc_buf = bp;
    671 	ccb->nnc_datasize = datasize;
    672 	ccb->nnc_secsize = secsize;
    673 	ccb->nnc_blkno = blkno;
    674 	ccb->nnc_done = nnc_done;
    675 
    676 	dmap = ccb->ccb_dmamap;
    677 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    678 	    datasize, NULL,
    679 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    680 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    681 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    682 	      BUS_DMA_READ : BUS_DMA_WRITE));
    683 	if (error) {
    684 		nvme_ccb_put(q, ccb);
    685 		return error;
    686 	}
    687 
    688 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    689 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    690 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    691 
    692 	if (dmap->dm_nsegs > 2) {
    693 		for (i = 1; i < dmap->dm_nsegs; i++) {
    694 			htolem64(&ccb->ccb_prpl[i - 1],
    695 			    dmap->dm_segs[i].ds_addr);
    696 		}
    697 		bus_dmamap_sync(sc->sc_dmat,
    698 		    NVME_DMA_MAP(q->q_ccb_prpls),
    699 		    ccb->ccb_prpl_off,
    700 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    701 		    BUS_DMASYNC_PREWRITE);
    702 	}
    703 
    704 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    705 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    706 			return EIO;
    707 		return 0;
    708 	}
    709 
    710 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    711 	return 0;
    712 }
    713 
    714 static void
    715 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    716 {
    717 	struct nvme_sqe_io *sqe = slot;
    718 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    719 
    720 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    721 	    NVM_CMD_READ : NVM_CMD_WRITE;
    722 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    723 
    724 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    725 	switch (dmap->dm_nsegs) {
    726 	case 1:
    727 		break;
    728 	case 2:
    729 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    730 		break;
    731 	default:
    732 		/* the prp list is already set up and synced */
    733 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    734 		break;
    735 	}
    736 
    737 	htolem64(&sqe->slba, ccb->nnc_blkno);
    738 
    739 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    740 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    741 
    742 	/* guaranteed by upper layers, but check just in case */
    743 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    744 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    745 }
    746 
    747 static void
    748 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    749     struct nvme_cqe *cqe)
    750 {
    751 	struct nvme_softc *sc = q->q_sc;
    752 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    753 	void *nnc_cookie = ccb->ccb_cookie;
    754 	nvme_nnc_done nnc_done = ccb->nnc_done;
    755 	struct buf *bp = ccb->nnc_buf;
    756 
    757 	if (dmap->dm_nsegs > 2) {
    758 		bus_dmamap_sync(sc->sc_dmat,
    759 		    NVME_DMA_MAP(q->q_ccb_prpls),
    760 		    ccb->ccb_prpl_off,
    761 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    762 		    BUS_DMASYNC_POSTWRITE);
    763 	}
    764 
    765 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    766 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    767 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    768 
    769 	bus_dmamap_unload(sc->sc_dmat, dmap);
    770 	nvme_ccb_put(q, ccb);
    771 
    772 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    773 }
    774 
    775 /*
    776  * If there is no volatile write cache, it makes no sense to issue
    777  * flush commands or query for the status.
    778  */
    779 static bool
    780 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    781 {
    782 	/* sc_identify is filled during attachment */
    783 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    784 }
    785 
    786 static bool
    787 nvme_ns_sync_finished(void *cookie)
    788 {
    789 	int *result = cookie;
    790 
    791 	return (*result != 0);
    792 }
    793 
    794 int
    795 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
    796 {
    797 	struct nvme_queue *q = nvme_get_q(sc, NULL, true);
    798 	struct nvme_ccb *ccb;
    799 	int result = 0;
    800 
    801 	if (!nvme_has_volatile_write_cache(sc)) {
    802 		/* cache not present, no value in trying to flush it */
    803 		return 0;
    804 	}
    805 
    806 	ccb = nvme_ccb_get(q, true);
    807 	KASSERT(ccb != NULL);
    808 
    809 	ccb->ccb_done = nvme_ns_sync_done;
    810 	ccb->ccb_cookie = &result;
    811 
    812 	/* namespace context */
    813 	ccb->nnc_nsid = nsid;
    814 	ccb->nnc_flags = flags;
    815 	ccb->nnc_done = NULL;
    816 
    817 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    818 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    819 			return EIO;
    820 		return 0;
    821 	}
    822 
    823 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    824 
    825 	/* wait for completion */
    826 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
    827 	KASSERT(result != 0);
    828 
    829 	return (result > 0) ? 0 : EIO;
    830 }
    831 
    832 static void
    833 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    834 {
    835 	struct nvme_sqe *sqe = slot;
    836 
    837 	sqe->opcode = NVM_CMD_FLUSH;
    838 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    839 }
    840 
    841 static void
    842 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    843     struct nvme_cqe *cqe)
    844 {
    845 	int *result = ccb->ccb_cookie;
    846 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    847 
    848 	if (status == NVME_CQE_SC_SUCCESS)
    849 		*result = 1;
    850 	else
    851 		*result = -1;
    852 
    853 	nvme_ccb_put(q, ccb);
    854 }
    855 
    856 static bool
    857 nvme_getcache_finished(void *xc)
    858 {
    859 	int *addr = xc;
    860 
    861 	return (*addr != 0);
    862 }
    863 
    864 /*
    865  * Get status of volatile write cache. Always asynchronous.
    866  */
    867 int
    868 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
    869 {
    870 	struct nvme_ccb *ccb;
    871 	struct nvme_queue *q = sc->sc_admin_q;
    872 	int result = 0, error;
    873 
    874 	if (!nvme_has_volatile_write_cache(sc)) {
    875 		/* cache simply not present */
    876 		*addr = 0;
    877 		return 0;
    878 	}
    879 
    880 	ccb = nvme_ccb_get(q, true);
    881 	KASSERT(ccb != NULL);
    882 
    883 	ccb->ccb_done = nvme_getcache_done;
    884 	ccb->ccb_cookie = &result;
    885 
    886 	/* namespace context */
    887 	ccb->nnc_flags = 0;
    888 	ccb->nnc_done = NULL;
    889 
    890 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
    891 
    892 	/* wait for completion */
    893 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
    894 	KASSERT(result != 0);
    895 
    896 	if (result > 0) {
    897 		*addr = result;
    898 		error = 0;
    899 	} else
    900 		error = EINVAL;
    901 
    902 	return error;
    903 }
    904 
    905 static void
    906 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    907 {
    908 	struct nvme_sqe *sqe = slot;
    909 
    910 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
    911 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
    912 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
    913 }
    914 
    915 static void
    916 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    917     struct nvme_cqe *cqe)
    918 {
    919 	int *addr = ccb->ccb_cookie;
    920 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    921 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
    922 	int result;
    923 
    924 	if (status == NVME_CQE_SC_SUCCESS) {
    925 		result = 0;
    926 
    927 		/*
    928 		 * DPO not supported, Dataset Management (DSM) field doesn't
    929 		 * specify the same semantics. FUA is always supported.
    930 		 */
    931 		result = DKCACHE_FUA;
    932 
    933 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
    934 			result |= DKCACHE_WRITE;
    935 
    936 		/*
    937 		 * If volatile write cache is present, the flag shall also be
    938 		 * settable.
    939 		 */
    940 		result |= DKCACHE_WCHANGE;
    941 
    942 		/*
    943 		 * ONCS field indicates whether the optional SAVE is also
    944 		 * supported for Set Features. According to spec v1.3,
    945 		 * Volatile Write Cache however doesn't support persistency
    946 		 * across power cycle/reset.
    947 		 */
    948 
    949 	} else {
    950 		result = -1;
    951 	}
    952 
    953 	*addr = result;
    954 
    955 	nvme_ccb_put(q, ccb);
    956 }
    957 
    958 struct nvme_setcache_state {
    959 	int dkcache;
    960 	int result;
    961 };
    962 
    963 static bool
    964 nvme_setcache_finished(void *xc)
    965 {
    966 	struct nvme_setcache_state *st = xc;
    967 
    968 	return (st->result != 0);
    969 }
    970 
    971 static void
    972 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    973 {
    974 	struct nvme_sqe *sqe = slot;
    975 	struct nvme_setcache_state *st = ccb->ccb_cookie;
    976 
    977 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
    978 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
    979 	if (st->dkcache & DKCACHE_WRITE)
    980 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
    981 }
    982 
    983 static void
    984 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    985     struct nvme_cqe *cqe)
    986 {
    987 	struct nvme_setcache_state *st = ccb->ccb_cookie;
    988 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    989 
    990 	if (status == NVME_CQE_SC_SUCCESS) {
    991 		st->result = 1;
    992 	} else {
    993 		st->result = -1;
    994 	}
    995 
    996 	nvme_ccb_put(q, ccb);
    997 }
    998 
    999 /*
   1000  * Set status of volatile write cache. Always asynchronous.
   1001  */
   1002 int
   1003 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
   1004 {
   1005 	struct nvme_ccb *ccb;
   1006 	struct nvme_queue *q = sc->sc_admin_q;
   1007 	int error;
   1008 	struct nvme_setcache_state st;
   1009 
   1010 	if (!nvme_has_volatile_write_cache(sc)) {
   1011 		/* cache simply not present */
   1012 		return EOPNOTSUPP;
   1013 	}
   1014 
   1015 	if (dkcache & ~(DKCACHE_WRITE)) {
   1016 		/* unsupported parameters */
   1017 		return EOPNOTSUPP;
   1018 	}
   1019 
   1020 	ccb = nvme_ccb_get(q, true);
   1021 	KASSERT(ccb != NULL);
   1022 
   1023 	memset(&st, 0, sizeof(st));
   1024 	st.dkcache = dkcache;
   1025 
   1026 	ccb->ccb_done = nvme_setcache_done;
   1027 	ccb->ccb_cookie = &st;
   1028 
   1029 	/* namespace context */
   1030 	ccb->nnc_flags = 0;
   1031 	ccb->nnc_done = NULL;
   1032 
   1033 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
   1034 
   1035 	/* wait for completion */
   1036 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
   1037 	KASSERT(st.result != 0);
   1038 
   1039 	if (st.result > 0)
   1040 		error = 0;
   1041 	else
   1042 		error = EINVAL;
   1043 
   1044 	return error;
   1045 }
   1046 
   1047 void
   1048 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
   1049 {
   1050 	struct nvme_namespace *ns;
   1051 	struct nvm_identify_namespace *identify;
   1052 
   1053 	ns = nvme_ns_get(sc, nsid);
   1054 	KASSERT(ns);
   1055 
   1056 	identify = ns->ident;
   1057 	ns->ident = NULL;
   1058 	if (identify != NULL)
   1059 		kmem_free(identify, sizeof(*identify));
   1060 }
   1061 
   1062 struct nvme_pt_state {
   1063 	struct nvme_pt_command *pt;
   1064 	bool finished;
   1065 };
   1066 
   1067 static void
   1068 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1069 {
   1070 	struct nvme_softc *sc = q->q_sc;
   1071 	struct nvme_sqe *sqe = slot;
   1072 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1073 	struct nvme_pt_command *pt = state->pt;
   1074 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1075 	int i;
   1076 
   1077 	sqe->opcode = pt->cmd.opcode;
   1078 	htolem32(&sqe->nsid, pt->cmd.nsid);
   1079 
   1080 	if (pt->buf != NULL && pt->len > 0) {
   1081 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
   1082 		switch (dmap->dm_nsegs) {
   1083 		case 1:
   1084 			break;
   1085 		case 2:
   1086 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
   1087 			break;
   1088 		default:
   1089 			for (i = 1; i < dmap->dm_nsegs; i++) {
   1090 				htolem64(&ccb->ccb_prpl[i - 1],
   1091 				    dmap->dm_segs[i].ds_addr);
   1092 			}
   1093 			bus_dmamap_sync(sc->sc_dmat,
   1094 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1095 			    ccb->ccb_prpl_off,
   1096 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1097 			    BUS_DMASYNC_PREWRITE);
   1098 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
   1099 			break;
   1100 		}
   1101 	}
   1102 
   1103 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
   1104 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
   1105 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
   1106 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
   1107 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
   1108 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
   1109 }
   1110 
   1111 static void
   1112 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
   1113 {
   1114 	struct nvme_softc *sc = q->q_sc;
   1115 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1116 	struct nvme_pt_command *pt = state->pt;
   1117 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1118 
   1119 	if (pt->buf != NULL && pt->len > 0) {
   1120 		if (dmap->dm_nsegs > 2) {
   1121 			bus_dmamap_sync(sc->sc_dmat,
   1122 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1123 			    ccb->ccb_prpl_off,
   1124 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1125 			    BUS_DMASYNC_POSTWRITE);
   1126 		}
   1127 
   1128 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
   1129 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1130 		bus_dmamap_unload(sc->sc_dmat, dmap);
   1131 	}
   1132 
   1133 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
   1134 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
   1135 
   1136 	state->finished = true;
   1137 
   1138 	nvme_ccb_put(q, ccb);
   1139 }
   1140 
   1141 static bool
   1142 nvme_pt_finished(void *cookie)
   1143 {
   1144 	struct nvme_pt_state *state = cookie;
   1145 
   1146 	return state->finished;
   1147 }
   1148 
   1149 static int
   1150 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
   1151     uint16_t nsid, struct lwp *l, bool is_adminq)
   1152 {
   1153 	struct nvme_queue *q;
   1154 	struct nvme_ccb *ccb;
   1155 	void *buf = NULL;
   1156 	struct nvme_pt_state state;
   1157 	int error;
   1158 
   1159 	/* limit command size to maximum data transfer size */
   1160 	if ((pt->buf == NULL && pt->len > 0) ||
   1161 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
   1162 		return EINVAL;
   1163 
   1164 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
   1165 	ccb = nvme_ccb_get(q, true);
   1166 	KASSERT(ccb != NULL);
   1167 
   1168 	if (pt->buf != NULL) {
   1169 		KASSERT(pt->len > 0);
   1170 		buf = kmem_alloc(pt->len, KM_SLEEP);
   1171 		if (!pt->is_read) {
   1172 			error = copyin(pt->buf, buf, pt->len);
   1173 			if (error)
   1174 				goto kmem_free;
   1175 		}
   1176 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
   1177 		    pt->len, NULL,
   1178 		    BUS_DMA_WAITOK |
   1179 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
   1180 		if (error)
   1181 			goto kmem_free;
   1182 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
   1183 		    0, ccb->ccb_dmamap->dm_mapsize,
   1184 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
   1185 	}
   1186 
   1187 	memset(&state, 0, sizeof(state));
   1188 	state.pt = pt;
   1189 	state.finished = false;
   1190 
   1191 	ccb->ccb_done = nvme_pt_done;
   1192 	ccb->ccb_cookie = &state;
   1193 
   1194 	pt->cmd.nsid = nsid;
   1195 
   1196 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
   1197 
   1198 	/* wait for completion */
   1199 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
   1200 	KASSERT(state.finished);
   1201 
   1202 	error = 0;
   1203 
   1204 	if (buf != NULL) {
   1205 		if (error == 0 && pt->is_read)
   1206 			error = copyout(buf, pt->buf, pt->len);
   1207 kmem_free:
   1208 		kmem_free(buf, pt->len);
   1209 	}
   1210 
   1211 	return error;
   1212 }
   1213 
   1214 static void
   1215 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1216     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
   1217 {
   1218 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
   1219 	uint32_t tail;
   1220 
   1221 	mutex_enter(&q->q_sq_mtx);
   1222 	tail = q->q_sq_tail;
   1223 	if (++q->q_sq_tail >= q->q_entries)
   1224 		q->q_sq_tail = 0;
   1225 
   1226 	sqe += tail;
   1227 
   1228 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1229 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
   1230 	memset(sqe, 0, sizeof(*sqe));
   1231 	(*fill)(q, ccb, sqe);
   1232 	htolem16(&sqe->cid, ccb->ccb_id);
   1233 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1234 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1235 
   1236 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
   1237 	mutex_exit(&q->q_sq_mtx);
   1238 }
   1239 
   1240 struct nvme_poll_state {
   1241 	struct nvme_sqe s;
   1242 	struct nvme_cqe c;
   1243 	void *cookie;
   1244 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1245 };
   1246 
   1247 static int
   1248 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1249     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1250 {
   1251 	struct nvme_poll_state state;
   1252 	uint16_t flags;
   1253 	int step = 10;
   1254 	int maxloop = timo_sec * 1000000 / step;
   1255 	int error = 0;
   1256 
   1257 	memset(&state, 0, sizeof(state));
   1258 	(*fill)(q, ccb, &state.s);
   1259 
   1260 	state.done = ccb->ccb_done;
   1261 	state.cookie = ccb->ccb_cookie;
   1262 
   1263 	ccb->ccb_done = nvme_poll_done;
   1264 	ccb->ccb_cookie = &state;
   1265 
   1266 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1267 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1268 		if (nvme_q_complete(sc, q) == 0)
   1269 			delay(step);
   1270 
   1271 		if (timo_sec >= 0 && --maxloop <= 0) {
   1272 			error = ETIMEDOUT;
   1273 			break;
   1274 		}
   1275 	}
   1276 
   1277 	if (error == 0) {
   1278 		flags = lemtoh16(&state.c.flags);
   1279 		return flags & ~NVME_CQE_PHASE;
   1280 	} else {
   1281 		/*
   1282 		 * If it succeds later, it would hit ccb which will have been
   1283 		 * already reused for something else. Not good. Cross
   1284 		 * fingers and hope for best. XXX do controller reset?
   1285 		 */
   1286 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
   1287 
   1288 		/* Invoke the callback to clean state anyway */
   1289 		struct nvme_cqe cqe;
   1290 		memset(&cqe, 0, sizeof(cqe));
   1291 		ccb->ccb_done(q, ccb, &cqe);
   1292 
   1293 		return 1;
   1294 	}
   1295 }
   1296 
   1297 static void
   1298 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1299 {
   1300 	struct nvme_sqe *sqe = slot;
   1301 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1302 
   1303 	*sqe = state->s;
   1304 }
   1305 
   1306 static void
   1307 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1308     struct nvme_cqe *cqe)
   1309 {
   1310 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1311 
   1312 	state->c = *cqe;
   1313 	SET(state->c.flags, htole16(NVME_CQE_PHASE));
   1314 
   1315 	ccb->ccb_cookie = state->cookie;
   1316 	state->done(q, ccb, &state->c);
   1317 }
   1318 
   1319 static void
   1320 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1321 {
   1322 	struct nvme_sqe *src = ccb->ccb_cookie;
   1323 	struct nvme_sqe *dst = slot;
   1324 
   1325 	*dst = *src;
   1326 }
   1327 
   1328 static void
   1329 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1330     struct nvme_cqe *cqe)
   1331 {
   1332 }
   1333 
   1334 static int
   1335 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1336 {
   1337 	struct nvme_ccb *ccb;
   1338 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1339 	uint16_t flags;
   1340 	int rv = 0;
   1341 
   1342 	mutex_enter(&q->q_cq_mtx);
   1343 
   1344 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1345 	for (;;) {
   1346 		cqe = &ring[q->q_cq_head];
   1347 		flags = lemtoh16(&cqe->flags);
   1348 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1349 			break;
   1350 
   1351 		ccb = &q->q_ccbs[cqe->cid];
   1352 
   1353 		if (++q->q_cq_head >= q->q_entries) {
   1354 			q->q_cq_head = 0;
   1355 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1356 		}
   1357 
   1358 #ifdef DEBUG
   1359 		/*
   1360 		 * If we get spurious completion notification, something
   1361 		 * is seriously hosed up. Very likely DMA to some random
   1362 		 * memory place happened, so just bail out.
   1363 		 */
   1364 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1365 			panic("%s: invalid ccb detected",
   1366 			    device_xname(sc->sc_dev));
   1367 			/* NOTREACHED */
   1368 		}
   1369 #endif
   1370 
   1371 		rv++;
   1372 
   1373 		/*
   1374 		 * Unlock the mutex before calling the ccb_done callback
   1375 		 * and re-lock afterwards. The callback triggers lddone()
   1376 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1377 		 * Unlock/relock avoids possibility of deadlock.
   1378 		 */
   1379 		mutex_exit(&q->q_cq_mtx);
   1380 		ccb->ccb_done(q, ccb, cqe);
   1381 		mutex_enter(&q->q_cq_mtx);
   1382 	}
   1383 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1384 
   1385 	if (rv)
   1386 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1387 
   1388 	mutex_exit(&q->q_cq_mtx);
   1389 
   1390 	return rv;
   1391 }
   1392 
   1393 static void
   1394 nvme_q_wait_complete(struct nvme_softc *sc,
   1395     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
   1396 {
   1397 	mutex_enter(&q->q_ccb_mtx);
   1398 	if (finished(cookie))
   1399 		goto out;
   1400 
   1401 	for(;;) {
   1402 		q->q_ccb_waiting = true;
   1403 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1404 
   1405 		if (finished(cookie))
   1406 			break;
   1407 	}
   1408 
   1409 out:
   1410 	mutex_exit(&q->q_ccb_mtx);
   1411 }
   1412 
   1413 static int
   1414 nvme_identify(struct nvme_softc *sc, u_int mps)
   1415 {
   1416 	char sn[41], mn[81], fr[17];
   1417 	struct nvm_identify_controller *identify;
   1418 	struct nvme_dmamem *mem;
   1419 	struct nvme_ccb *ccb;
   1420 	u_int mdts;
   1421 	int rv = 1;
   1422 
   1423 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1424 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1425 
   1426 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1427 	if (mem == NULL)
   1428 		return 1;
   1429 
   1430 	ccb->ccb_done = nvme_empty_done;
   1431 	ccb->ccb_cookie = mem;
   1432 
   1433 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1434 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1435 	    NVME_TIMO_IDENT);
   1436 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1437 
   1438 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1439 
   1440 	if (rv != 0)
   1441 		goto done;
   1442 
   1443 	identify = NVME_DMA_KVA(mem);
   1444 	sc->sc_identify = *identify;
   1445 	identify = NULL;
   1446 
   1447 	/* Convert data to host endian */
   1448 	nvme_identify_controller_swapbytes(&sc->sc_identify);
   1449 
   1450 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
   1451 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1452 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
   1453 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1454 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
   1455 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1456 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1457 	    sn);
   1458 
   1459 	strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
   1460 
   1461 	if (sc->sc_identify.mdts > 0) {
   1462 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
   1463 		if (mdts < sc->sc_mdts)
   1464 			sc->sc_mdts = mdts;
   1465 	}
   1466 
   1467 	sc->sc_nn = sc->sc_identify.nn;
   1468 
   1469 done:
   1470 	nvme_dmamem_free(sc, mem);
   1471 
   1472 	return rv;
   1473 }
   1474 
   1475 static int
   1476 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1477 {
   1478 	struct nvme_sqe_q sqe;
   1479 	struct nvme_ccb *ccb;
   1480 	int rv;
   1481 
   1482 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1483 		return 1;
   1484 
   1485 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1486 	KASSERT(ccb != NULL);
   1487 
   1488 	ccb->ccb_done = nvme_empty_done;
   1489 	ccb->ccb_cookie = &sqe;
   1490 
   1491 	memset(&sqe, 0, sizeof(sqe));
   1492 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1493 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1494 	htolem16(&sqe.qsize, q->q_entries - 1);
   1495 	htolem16(&sqe.qid, q->q_id);
   1496 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1497 	if (sc->sc_use_mq)
   1498 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1499 
   1500 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1501 	if (rv != 0)
   1502 		goto fail;
   1503 
   1504 	ccb->ccb_done = nvme_empty_done;
   1505 	ccb->ccb_cookie = &sqe;
   1506 
   1507 	memset(&sqe, 0, sizeof(sqe));
   1508 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1509 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1510 	htolem16(&sqe.qsize, q->q_entries - 1);
   1511 	htolem16(&sqe.qid, q->q_id);
   1512 	htolem16(&sqe.cqid, q->q_id);
   1513 	sqe.qflags = NVM_SQE_Q_PC;
   1514 
   1515 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1516 	if (rv != 0)
   1517 		goto fail;
   1518 
   1519 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1520 	return 0;
   1521 
   1522 fail:
   1523 	if (sc->sc_use_mq)
   1524 		sc->sc_intr_disestablish(sc, q->q_id);
   1525 
   1526 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1527 	return rv;
   1528 }
   1529 
   1530 static int
   1531 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1532 {
   1533 	struct nvme_sqe_q sqe;
   1534 	struct nvme_ccb *ccb;
   1535 	int rv;
   1536 
   1537 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1538 	KASSERT(ccb != NULL);
   1539 
   1540 	ccb->ccb_done = nvme_empty_done;
   1541 	ccb->ccb_cookie = &sqe;
   1542 
   1543 	memset(&sqe, 0, sizeof(sqe));
   1544 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1545 	htolem16(&sqe.qid, q->q_id);
   1546 
   1547 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1548 	if (rv != 0)
   1549 		goto fail;
   1550 
   1551 	ccb->ccb_done = nvme_empty_done;
   1552 	ccb->ccb_cookie = &sqe;
   1553 
   1554 	memset(&sqe, 0, sizeof(sqe));
   1555 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1556 	htolem16(&sqe.qid, q->q_id);
   1557 
   1558 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1559 	if (rv != 0)
   1560 		goto fail;
   1561 
   1562 fail:
   1563 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1564 
   1565 	if (rv == 0 && sc->sc_use_mq) {
   1566 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1567 			rv = 1;
   1568 	}
   1569 
   1570 	return rv;
   1571 }
   1572 
   1573 static void
   1574 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1575 {
   1576 	struct nvme_sqe *sqe = slot;
   1577 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1578 
   1579 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1580 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1581 	htolem32(&sqe->cdw10, 1);
   1582 }
   1583 
   1584 static int
   1585 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
   1586     u_int *nsqa)
   1587 {
   1588 	struct nvme_pt_state state;
   1589 	struct nvme_pt_command pt;
   1590 	struct nvme_ccb *ccb;
   1591 	int rv;
   1592 
   1593 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1594 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1595 
   1596 	memset(&pt, 0, sizeof(pt));
   1597 	pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
   1598 	htolem32(&pt.cmd.cdw10, NVM_FEATURE_NUMBER_OF_QUEUES);
   1599 	htolem32(&pt.cmd.cdw11, ((nq - 1) << 16) | (nq - 1));
   1600 
   1601 	memset(&state, 0, sizeof(state));
   1602 	state.pt = &pt;
   1603 	state.finished = false;
   1604 
   1605 	ccb->ccb_done = nvme_pt_done;
   1606 	ccb->ccb_cookie = &state;
   1607 
   1608 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1609 
   1610 	if (rv != 0) {
   1611 		*ncqa = *nsqa = 0;
   1612 		return EIO;
   1613 	}
   1614 
   1615 	*ncqa = (pt.cpl.cdw0 >> 16) + 1;
   1616 	*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
   1617 
   1618 	return 0;
   1619 }
   1620 
   1621 static int
   1622 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1623 {
   1624 	struct nvme_softc *sc = q->q_sc;
   1625 	struct nvme_ccb *ccb;
   1626 	bus_addr_t off;
   1627 	uint64_t *prpl;
   1628 	u_int i;
   1629 
   1630 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1631 	cv_init(&q->q_ccb_wait, "nvmeqw");
   1632 	q->q_ccb_waiting = false;
   1633 	SIMPLEQ_INIT(&q->q_ccb_list);
   1634 
   1635 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1636 
   1637 	q->q_nccbs = nccbs;
   1638 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1639 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1640 
   1641 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1642 	off = 0;
   1643 
   1644 	for (i = 0; i < nccbs; i++) {
   1645 		ccb = &q->q_ccbs[i];
   1646 
   1647 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1648 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1649 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1650 		    &ccb->ccb_dmamap) != 0)
   1651 			goto free_maps;
   1652 
   1653 		ccb->ccb_id = i;
   1654 		ccb->ccb_prpl = prpl;
   1655 		ccb->ccb_prpl_off = off;
   1656 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1657 
   1658 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1659 
   1660 		prpl += sc->sc_max_sgl;
   1661 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1662 	}
   1663 
   1664 	return 0;
   1665 
   1666 free_maps:
   1667 	nvme_ccbs_free(q);
   1668 	return 1;
   1669 }
   1670 
   1671 static struct nvme_ccb *
   1672 nvme_ccb_get(struct nvme_queue *q, bool wait)
   1673 {
   1674 	struct nvme_ccb *ccb = NULL;
   1675 
   1676 	mutex_enter(&q->q_ccb_mtx);
   1677 again:
   1678 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1679 	if (ccb != NULL) {
   1680 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1681 #ifdef DEBUG
   1682 		ccb->ccb_cookie = NULL;
   1683 #endif
   1684 	} else {
   1685 		if (__predict_false(wait)) {
   1686 			q->q_ccb_waiting = true;
   1687 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1688 			goto again;
   1689 		}
   1690 	}
   1691 	mutex_exit(&q->q_ccb_mtx);
   1692 
   1693 	return ccb;
   1694 }
   1695 
   1696 static void
   1697 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1698 {
   1699 
   1700 	mutex_enter(&q->q_ccb_mtx);
   1701 #ifdef DEBUG
   1702 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1703 #endif
   1704 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1705 
   1706 	/* It's unlikely there are any waiters, it's not used for regular I/O */
   1707 	if (__predict_false(q->q_ccb_waiting)) {
   1708 		q->q_ccb_waiting = false;
   1709 		cv_broadcast(&q->q_ccb_wait);
   1710 	}
   1711 
   1712 	mutex_exit(&q->q_ccb_mtx);
   1713 }
   1714 
   1715 static void
   1716 nvme_ccbs_free(struct nvme_queue *q)
   1717 {
   1718 	struct nvme_softc *sc = q->q_sc;
   1719 	struct nvme_ccb *ccb;
   1720 
   1721 	mutex_enter(&q->q_ccb_mtx);
   1722 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1723 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1724 		/*
   1725 		 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
   1726 		 * internally. don't hold spin mutex
   1727 		 */
   1728 		mutex_exit(&q->q_ccb_mtx);
   1729 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1730 		mutex_enter(&q->q_ccb_mtx);
   1731 	}
   1732 	mutex_exit(&q->q_ccb_mtx);
   1733 
   1734 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1735 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1736 	q->q_ccbs = NULL;
   1737 	cv_destroy(&q->q_ccb_wait);
   1738 	mutex_destroy(&q->q_ccb_mtx);
   1739 }
   1740 
   1741 static struct nvme_queue *
   1742 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1743 {
   1744 	struct nvme_queue *q;
   1745 
   1746 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1747 	q->q_sc = sc;
   1748 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1749 	    sizeof(struct nvme_sqe) * entries);
   1750 	if (q->q_sq_dmamem == NULL)
   1751 		goto free;
   1752 
   1753 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1754 	    sizeof(struct nvme_cqe) * entries);
   1755 	if (q->q_cq_dmamem == NULL)
   1756 		goto free_sq;
   1757 
   1758 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1759 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1760 
   1761 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1762 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1763 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1764 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1765 	q->q_id = id;
   1766 	q->q_entries = entries;
   1767 	q->q_sq_tail = 0;
   1768 	q->q_cq_head = 0;
   1769 	q->q_cq_phase = NVME_CQE_PHASE;
   1770 
   1771 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1772 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1773 
   1774 	/*
   1775 	 * Due to definition of full and empty queue (queue is empty
   1776 	 * when head == tail, full when tail is one less then head),
   1777 	 * we can actually only have (entries - 1) in-flight commands.
   1778 	 */
   1779 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1780 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1781 		goto free_cq;
   1782 	}
   1783 
   1784 	return q;
   1785 
   1786 free_cq:
   1787 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1788 free_sq:
   1789 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1790 free:
   1791 	kmem_free(q, sizeof(*q));
   1792 
   1793 	return NULL;
   1794 }
   1795 
   1796 static void
   1797 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1798 {
   1799 	nvme_ccbs_free(q);
   1800 	mutex_destroy(&q->q_sq_mtx);
   1801 	mutex_destroy(&q->q_cq_mtx);
   1802 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1803 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1804 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1805 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1806 	kmem_free(q, sizeof(*q));
   1807 }
   1808 
   1809 int
   1810 nvme_intr(void *xsc)
   1811 {
   1812 	struct nvme_softc *sc = xsc;
   1813 
   1814 	/*
   1815 	 * INTx is level triggered, controller deasserts the interrupt only
   1816 	 * when we advance command queue head via write to the doorbell.
   1817 	 * Tell the controller to block the interrupts while we process
   1818 	 * the queue(s).
   1819 	 */
   1820 	nvme_write4(sc, NVME_INTMS, 1);
   1821 
   1822 	softint_schedule(sc->sc_softih[0]);
   1823 
   1824 	/* don't know, might not have been for us */
   1825 	return 1;
   1826 }
   1827 
   1828 void
   1829 nvme_softintr_intx(void *xq)
   1830 {
   1831 	struct nvme_queue *q = xq;
   1832 	struct nvme_softc *sc = q->q_sc;
   1833 
   1834 	nvme_q_complete(sc, sc->sc_admin_q);
   1835 	if (sc->sc_q != NULL)
   1836 	        nvme_q_complete(sc, sc->sc_q[0]);
   1837 
   1838 	/*
   1839 	 * Processing done, tell controller to issue interrupts again. There
   1840 	 * is no race, as NVMe spec requires the controller to maintain state,
   1841 	 * and assert the interrupt whenever there are unacknowledged
   1842 	 * completion queue entries.
   1843 	 */
   1844 	nvme_write4(sc, NVME_INTMC, 1);
   1845 }
   1846 
   1847 int
   1848 nvme_intr_msi(void *xq)
   1849 {
   1850 	struct nvme_queue *q = xq;
   1851 
   1852 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1853 	    && q->q_sc->sc_softih[q->q_id]);
   1854 
   1855 	/*
   1856 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1857 	 * without masking the interrupt.
   1858 	 */
   1859 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1860 
   1861 	return 1;
   1862 }
   1863 
   1864 void
   1865 nvme_softintr_msi(void *xq)
   1866 {
   1867 	struct nvme_queue *q = xq;
   1868 	struct nvme_softc *sc = q->q_sc;
   1869 
   1870 	nvme_q_complete(sc, q);
   1871 }
   1872 
   1873 static struct nvme_dmamem *
   1874 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1875 {
   1876 	struct nvme_dmamem *ndm;
   1877 	int nsegs;
   1878 
   1879 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1880 	if (ndm == NULL)
   1881 		return NULL;
   1882 
   1883 	ndm->ndm_size = size;
   1884 
   1885 	if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
   1886 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1887 		goto ndmfree;
   1888 
   1889 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1890 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1891 		goto destroy;
   1892 
   1893 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1894 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1895 		goto free;
   1896 	memset(ndm->ndm_kva, 0, size);
   1897 
   1898 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1899 	    NULL, BUS_DMA_WAITOK) != 0)
   1900 		goto unmap;
   1901 
   1902 	return ndm;
   1903 
   1904 unmap:
   1905 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1906 free:
   1907 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1908 destroy:
   1909 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1910 ndmfree:
   1911 	kmem_free(ndm, sizeof(*ndm));
   1912 	return NULL;
   1913 }
   1914 
   1915 static void
   1916 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1917 {
   1918 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1919 	    0, NVME_DMA_LEN(mem), ops);
   1920 }
   1921 
   1922 void
   1923 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1924 {
   1925 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1926 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1927 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1928 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1929 	kmem_free(ndm, sizeof(*ndm));
   1930 }
   1931 
   1932 /*
   1933  * ioctl
   1934  */
   1935 
   1936 dev_type_open(nvmeopen);
   1937 dev_type_close(nvmeclose);
   1938 dev_type_ioctl(nvmeioctl);
   1939 
   1940 const struct cdevsw nvme_cdevsw = {
   1941 	.d_open = nvmeopen,
   1942 	.d_close = nvmeclose,
   1943 	.d_read = noread,
   1944 	.d_write = nowrite,
   1945 	.d_ioctl = nvmeioctl,
   1946 	.d_stop = nostop,
   1947 	.d_tty = notty,
   1948 	.d_poll = nopoll,
   1949 	.d_mmap = nommap,
   1950 	.d_kqfilter = nokqfilter,
   1951 	.d_discard = nodiscard,
   1952 	.d_flag = D_OTHER,
   1953 };
   1954 
   1955 /*
   1956  * Accept an open operation on the control device.
   1957  */
   1958 int
   1959 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1960 {
   1961 	struct nvme_softc *sc;
   1962 	int unit = minor(dev) / 0x10000;
   1963 	int nsid = minor(dev) & 0xffff;
   1964 	int nsidx;
   1965 
   1966 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1967 		return ENXIO;
   1968 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1969 		return ENXIO;
   1970 
   1971 	if (nsid == 0) {
   1972 		/* controller */
   1973 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1974 			return EBUSY;
   1975 		SET(sc->sc_flags, NVME_F_OPEN);
   1976 	} else {
   1977 		/* namespace */
   1978 		nsidx = nsid - 1;
   1979 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1980 			return ENXIO;
   1981 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1982 			return EBUSY;
   1983 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1984 	}
   1985 	return 0;
   1986 }
   1987 
   1988 /*
   1989  * Accept the last close on the control device.
   1990  */
   1991 int
   1992 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1993 {
   1994 	struct nvme_softc *sc;
   1995 	int unit = minor(dev) / 0x10000;
   1996 	int nsid = minor(dev) & 0xffff;
   1997 	int nsidx;
   1998 
   1999 	sc = device_lookup_private(&nvme_cd, unit);
   2000 	if (sc == NULL)
   2001 		return ENXIO;
   2002 
   2003 	if (nsid == 0) {
   2004 		/* controller */
   2005 		CLR(sc->sc_flags, NVME_F_OPEN);
   2006 	} else {
   2007 		/* namespace */
   2008 		nsidx = nsid - 1;
   2009 		if (nsidx >= sc->sc_nn)
   2010 			return ENXIO;
   2011 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   2012 	}
   2013 
   2014 	return 0;
   2015 }
   2016 
   2017 /*
   2018  * Handle control operations.
   2019  */
   2020 int
   2021 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   2022 {
   2023 	struct nvme_softc *sc;
   2024 	int unit = minor(dev) / 0x10000;
   2025 	int nsid = minor(dev) & 0xffff;
   2026 	struct nvme_pt_command *pt;
   2027 
   2028 	sc = device_lookup_private(&nvme_cd, unit);
   2029 	if (sc == NULL)
   2030 		return ENXIO;
   2031 
   2032 	switch (cmd) {
   2033 	case NVME_PASSTHROUGH_CMD:
   2034 		pt = data;
   2035 		return nvme_command_passthrough(sc, data,
   2036 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   2037 	}
   2038 
   2039 	return ENOTTY;
   2040 }
   2041