Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.51
      1 /*	$NetBSD: nvme.c,v 1.51 2020/09/24 09:59:11 ryo Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.51 2020/09/24 09:59:11 ryo Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 #include "ioconf.h"
     44 
     45 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
     46 
     47 int nvme_adminq_size = 32;
     48 int nvme_ioq_size = 1024;
     49 
     50 static int	nvme_print(void *, const char *);
     51 
     52 static int	nvme_ready(struct nvme_softc *, uint32_t);
     53 static int	nvme_enable(struct nvme_softc *, u_int);
     54 static int	nvme_disable(struct nvme_softc *);
     55 static int	nvme_shutdown(struct nvme_softc *);
     56 
     57 #ifdef NVME_DEBUG
     58 static void	nvme_dumpregs(struct nvme_softc *);
     59 #endif
     60 static int	nvme_identify(struct nvme_softc *, u_int);
     61 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     62 		    void *);
     63 
     64 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     65 static void	nvme_ccbs_free(struct nvme_queue *);
     66 
     67 static struct nvme_ccb *
     68 		nvme_ccb_get(struct nvme_queue *, bool);
     69 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     70 
     71 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     72 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     73 		    struct nvme_ccb *, void *), int);
     74 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     78 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     79 		    struct nvme_cqe *);
     80 
     81 static struct nvme_queue *
     82 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     83 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     84 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     85 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     86 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     87 		    struct nvme_ccb *, void *));
     88 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     89 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     90 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
     91 		    bool (*)(void *), void *);
     92 
     93 static struct nvme_dmamem *
     94 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     95 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     96 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     97 		    int);
     98 
     99 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
    100 		    void *);
    101 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
    102 		    struct nvme_cqe *);
    103 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
    104 		    void *);
    105 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    106 		    struct nvme_cqe *);
    107 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    108 		    void *);
    109 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    110 		    struct nvme_cqe *);
    111 
    112 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    113 		    void *);
    114 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    115 		    struct nvme_cqe *);
    116 static int	nvme_command_passthrough(struct nvme_softc *,
    117 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    118 
    119 static int	nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
    120 		    u_int *);
    121 
    122 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    123 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    124 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    125 #define NVME_TIMO_SY		60	/* sync cache timeout */
    126 
    127 #define nvme_read4(_s, _r) \
    128 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    129 #define nvme_write4(_s, _r, _v) \
    130 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    131 /*
    132  * Some controllers, at least Apple NVMe, always require split
    133  * transfers, so don't use bus_space_{read,write}_8() on LP64.
    134  */
    135 static inline uint64_t
    136 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    137 {
    138 	uint64_t v;
    139 	uint32_t *a = (uint32_t *)&v;
    140 
    141 #if _BYTE_ORDER == _LITTLE_ENDIAN
    142 	a[0] = nvme_read4(sc, r);
    143 	a[1] = nvme_read4(sc, r + 4);
    144 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    145 	a[1] = nvme_read4(sc, r);
    146 	a[0] = nvme_read4(sc, r + 4);
    147 #endif
    148 
    149 	return v;
    150 }
    151 
    152 static inline void
    153 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    154 {
    155 	uint32_t *a = (uint32_t *)&v;
    156 
    157 #if _BYTE_ORDER == _LITTLE_ENDIAN
    158 	nvme_write4(sc, r, a[0]);
    159 	nvme_write4(sc, r + 4, a[1]);
    160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    161 	nvme_write4(sc, r, a[1]);
    162 	nvme_write4(sc, r + 4, a[0]);
    163 #endif
    164 }
    165 #define nvme_barrier(_s, _r, _l, _f) \
    166 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    167 
    168 #ifdef NVME_DEBUG
    169 static __used void
    170 nvme_dumpregs(struct nvme_softc *sc)
    171 {
    172 	uint64_t r8;
    173 	uint32_t r4;
    174 
    175 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    176 	r8 = nvme_read8(sc, NVME_CAP);
    177 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    178 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    179 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    180 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    181 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    182 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    183 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    184 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    185 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    186 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    187 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    188 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    189 
    190 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    191 
    192 	r4 = nvme_read4(sc, NVME_CC);
    193 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    194 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    195 	    (1 << NVME_CC_IOCQES_R(r4)));
    196 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    197 	    (1 << NVME_CC_IOSQES_R(r4)));
    198 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    199 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    200 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    201 	    (1 << NVME_CC_MPS_R(r4)));
    202 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    203 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    204 
    205 	r4 = nvme_read4(sc, NVME_CSTS);
    206 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    207 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    208 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    209 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    210 
    211 	r4 = nvme_read4(sc, NVME_AQA);
    212 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    213 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    214 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    215 
    216 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    217 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    218 #undef	DEVNAME
    219 }
    220 #endif	/* NVME_DEBUG */
    221 
    222 static int
    223 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    224 {
    225 	u_int i = 0;
    226 
    227 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    228 		if (i++ > sc->sc_rdy_to)
    229 			return ENXIO;
    230 
    231 		delay(1000);
    232 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    233 	}
    234 
    235 	return 0;
    236 }
    237 
    238 static int
    239 nvme_enable(struct nvme_softc *sc, u_int mps)
    240 {
    241 	uint32_t cc, csts;
    242 	int error;
    243 
    244 	cc = nvme_read4(sc, NVME_CC);
    245 	csts = nvme_read4(sc, NVME_CSTS);
    246 
    247 	/*
    248 	 * See note in nvme_disable. Short circuit if we're already enabled.
    249 	 */
    250 	if (ISSET(cc, NVME_CC_EN)) {
    251 		if (ISSET(csts, NVME_CSTS_RDY))
    252 			return 0;
    253 
    254 		goto waitready;
    255 	} else {
    256 		/* EN == 0 already wait for RDY == 0 or fail */
    257 		error = nvme_ready(sc, 0);
    258 		if (error)
    259 			return error;
    260 	}
    261 
    262 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    263 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    264 	delay(5000);
    265 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    266 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    267 	delay(5000);
    268 
    269 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    270 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    271 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    272 	delay(5000);
    273 
    274 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    275 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    276 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    277 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    278 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    279 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    280 	SET(cc, NVME_CC_MPS(mps));
    281 	SET(cc, NVME_CC_EN);
    282 
    283 	nvme_write4(sc, NVME_CC, cc);
    284 	nvme_barrier(sc, 0, sc->sc_ios,
    285 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    286 
    287     waitready:
    288 	return nvme_ready(sc, NVME_CSTS_RDY);
    289 }
    290 
    291 static int
    292 nvme_disable(struct nvme_softc *sc)
    293 {
    294 	uint32_t cc, csts;
    295 	int error;
    296 
    297 	cc = nvme_read4(sc, NVME_CC);
    298 	csts = nvme_read4(sc, NVME_CSTS);
    299 
    300 	/*
    301 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
    302 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
    303 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
    304 	 * isn't the desired value. Short circuit if we're already disabled.
    305 	 */
    306 	if (ISSET(cc, NVME_CC_EN)) {
    307 		if (!ISSET(csts, NVME_CSTS_RDY)) {
    308 			/* EN == 1, wait for RDY == 1 or fail */
    309 			error = nvme_ready(sc, NVME_CSTS_RDY);
    310 			if (error)
    311 				return error;
    312 		}
    313 	} else {
    314 		/* EN == 0 already wait for RDY == 0 */
    315 		if (!ISSET(csts, NVME_CSTS_RDY))
    316 			return 0;
    317 
    318 		goto waitready;
    319 	}
    320 
    321 	CLR(cc, NVME_CC_EN);
    322 	nvme_write4(sc, NVME_CC, cc);
    323 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    324 
    325 	/*
    326 	 * Some drives have issues with accessing the mmio after we disable,
    327 	 * so delay for a bit after we write the bit to cope with these issues.
    328 	 */
    329 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
    330 		delay(B4_CHK_RDY_DELAY_MS);
    331 
    332     waitready:
    333 	return nvme_ready(sc, 0);
    334 }
    335 
    336 int
    337 nvme_attach(struct nvme_softc *sc)
    338 {
    339 	uint64_t cap;
    340 	uint32_t reg;
    341 	u_int dstrd;
    342 	u_int mps = PAGE_SHIFT;
    343 	u_int ncq, nsq;
    344 	uint16_t adminq_entries = nvme_adminq_size;
    345 	uint16_t ioq_entries = nvme_ioq_size;
    346 	int i;
    347 
    348 	reg = nvme_read4(sc, NVME_VS);
    349 	if (reg == 0xffffffff) {
    350 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    351 		return 1;
    352 	}
    353 
    354 	if (NVME_VS_TER(reg) == 0)
    355 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    356 		    NVME_VS_MNR(reg));
    357 	else
    358 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    359 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    360 
    361 	cap = nvme_read8(sc, NVME_CAP);
    362 	dstrd = NVME_CAP_DSTRD(cap);
    363 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    364 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    365 		    "is greater than CPU page size %u\n",
    366 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    367 		return 1;
    368 	}
    369 	if (NVME_CAP_MPSMAX(cap) < mps)
    370 		mps = NVME_CAP_MPSMAX(cap);
    371 	if (ioq_entries > NVME_CAP_MQES(cap))
    372 		ioq_entries = NVME_CAP_MQES(cap);
    373 
    374 	/* set initial values to be used for admin queue during probe */
    375 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    376 	sc->sc_mps = 1 << mps;
    377 	sc->sc_mdts = MAXPHYS;
    378 	sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
    379 
    380 	if (nvme_disable(sc) != 0) {
    381 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    382 		return 1;
    383 	}
    384 
    385 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    386 	if (sc->sc_admin_q == NULL) {
    387 		aprint_error_dev(sc->sc_dev,
    388 		    "unable to allocate admin queue\n");
    389 		return 1;
    390 	}
    391 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    392 		goto free_admin_q;
    393 
    394 	if (nvme_enable(sc, mps) != 0) {
    395 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    396 		goto disestablish_admin_q;
    397 	}
    398 
    399 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    400 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    401 		goto disable;
    402 	}
    403 	if (sc->sc_nn == 0) {
    404 		aprint_error_dev(sc->sc_dev, "namespace not found\n");
    405 		goto disable;
    406 	}
    407 
    408 	/* we know how big things are now */
    409 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    410 
    411 	/* reallocate ccbs of admin queue with new max sgl. */
    412 	nvme_ccbs_free(sc->sc_admin_q);
    413 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    414 
    415 	if (sc->sc_use_mq) {
    416 		/* Limit the number of queues to the number allocated in HW */
    417 		if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
    418 			aprint_error_dev(sc->sc_dev,
    419 			    "unable to get number of queues\n");
    420 			goto disable;
    421 		}
    422 		if (sc->sc_nq > ncq)
    423 			sc->sc_nq = ncq;
    424 		if (sc->sc_nq > nsq)
    425 			sc->sc_nq = nsq;
    426 	}
    427 
    428 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    429 	for (i = 0; i < sc->sc_nq; i++) {
    430 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    431 		if (sc->sc_q[i] == NULL) {
    432 			aprint_error_dev(sc->sc_dev,
    433 			    "unable to allocate io queue\n");
    434 			goto free_q;
    435 		}
    436 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    437 			aprint_error_dev(sc->sc_dev,
    438 			    "unable to create io queue\n");
    439 			nvme_q_free(sc, sc->sc_q[i]);
    440 			goto free_q;
    441 		}
    442 	}
    443 
    444 	if (!sc->sc_use_mq)
    445 		nvme_write4(sc, NVME_INTMC, 1);
    446 
    447 	/* probe subdevices */
    448 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    449 	    KM_SLEEP);
    450 	nvme_rescan(sc->sc_dev, "nvme", &i);
    451 
    452 	return 0;
    453 
    454 free_q:
    455 	while (--i >= 0) {
    456 		nvme_q_delete(sc, sc->sc_q[i]);
    457 		nvme_q_free(sc, sc->sc_q[i]);
    458 	}
    459 disable:
    460 	nvme_disable(sc);
    461 disestablish_admin_q:
    462 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    463 free_admin_q:
    464 	nvme_q_free(sc, sc->sc_admin_q);
    465 
    466 	return 1;
    467 }
    468 
    469 int
    470 nvme_rescan(device_t self, const char *attr, const int *flags)
    471 {
    472 	struct nvme_softc *sc = device_private(self);
    473 	struct nvme_attach_args naa;
    474 	struct nvm_namespace_format *f;
    475 	struct nvme_namespace *ns;
    476 	uint64_t cap;
    477 	int ioq_entries = nvme_ioq_size;
    478 	int i;
    479 	int error;
    480 
    481 	cap = nvme_read8(sc, NVME_CAP);
    482 	if (ioq_entries > NVME_CAP_MQES(cap))
    483 		ioq_entries = NVME_CAP_MQES(cap);
    484 
    485 	for (i = 1; i <= sc->sc_nn; i++) {
    486 		if (sc->sc_namespaces[i - 1].dev)
    487 			continue;
    488 
    489 		/* identify to check for availability */
    490 		error = nvme_ns_identify(sc, i);
    491 		if (error) {
    492 			aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
    493 			continue;
    494 		}
    495 
    496 		ns = nvme_ns_get(sc, i);
    497 		KASSERT(ns);
    498 
    499 		f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
    500 
    501 		/*
    502 		 * NVME1.0e 6.11 Identify command
    503 		 *
    504 		 * LBADS values smaller than 9 are not supported, a value
    505 		 * of zero means that the format is not used.
    506 		 */
    507 		if (f->lbads < 9) {
    508 			if (f->lbads > 0)
    509 				aprint_error_dev(self,
    510 						 "unsupported logical data size %u\n", f->lbads);
    511 			continue;
    512 		}
    513 
    514 		memset(&naa, 0, sizeof(naa));
    515 		naa.naa_nsid = i;
    516 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    517 		naa.naa_maxphys = sc->sc_mdts;
    518 		naa.naa_typename = sc->sc_modelname;
    519 		sc->sc_namespaces[i - 1].dev = config_found(sc->sc_dev, &naa,
    520 		    nvme_print);
    521 	}
    522 	return 0;
    523 }
    524 
    525 static int
    526 nvme_print(void *aux, const char *pnp)
    527 {
    528 	struct nvme_attach_args *naa = aux;
    529 
    530 	if (pnp)
    531 		aprint_normal("ld at %s", pnp);
    532 
    533 	if (naa->naa_nsid > 0)
    534 		aprint_normal(" nsid %d", naa->naa_nsid);
    535 
    536 	return UNCONF;
    537 }
    538 
    539 int
    540 nvme_detach(struct nvme_softc *sc, int flags)
    541 {
    542 	int i, error;
    543 
    544 	error = config_detach_children(sc->sc_dev, flags);
    545 	if (error)
    546 		return error;
    547 
    548 	error = nvme_shutdown(sc);
    549 	if (error)
    550 		return error;
    551 
    552 	/* from now on we are committed to detach, following will never fail */
    553 	for (i = 0; i < sc->sc_nq; i++)
    554 		nvme_q_free(sc, sc->sc_q[i]);
    555 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    556 	nvme_q_free(sc, sc->sc_admin_q);
    557 
    558 	return 0;
    559 }
    560 
    561 static int
    562 nvme_shutdown(struct nvme_softc *sc)
    563 {
    564 	uint32_t cc, csts;
    565 	bool disabled = false;
    566 	int i;
    567 
    568 	if (!sc->sc_use_mq)
    569 		nvme_write4(sc, NVME_INTMS, 1);
    570 
    571 	for (i = 0; i < sc->sc_nq; i++) {
    572 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    573 			aprint_error_dev(sc->sc_dev,
    574 			    "unable to delete io queue %d, disabling\n", i + 1);
    575 			disabled = true;
    576 		}
    577 	}
    578 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    579 	if (disabled)
    580 		goto disable;
    581 
    582 	cc = nvme_read4(sc, NVME_CC);
    583 	CLR(cc, NVME_CC_SHN_MASK);
    584 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    585 	nvme_write4(sc, NVME_CC, cc);
    586 
    587 	for (i = 0; i < 4000; i++) {
    588 		nvme_barrier(sc, 0, sc->sc_ios,
    589 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    590 		csts = nvme_read4(sc, NVME_CSTS);
    591 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    592 			return 0;
    593 
    594 		delay(1000);
    595 	}
    596 
    597 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    598 
    599 disable:
    600 	nvme_disable(sc);
    601 	return 0;
    602 }
    603 
    604 void
    605 nvme_childdet(device_t self, device_t child)
    606 {
    607 	struct nvme_softc *sc = device_private(self);
    608 	int i;
    609 
    610 	for (i = 0; i < sc->sc_nn; i++) {
    611 		if (sc->sc_namespaces[i].dev == child) {
    612 			/* Already freed ns->ident. */
    613 			sc->sc_namespaces[i].dev = NULL;
    614 			break;
    615 		}
    616 	}
    617 }
    618 
    619 int
    620 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    621 {
    622 	struct nvme_sqe sqe;
    623 	struct nvm_identify_namespace *identify;
    624 	struct nvme_dmamem *mem;
    625 	struct nvme_ccb *ccb;
    626 	struct nvme_namespace *ns;
    627 	int rv;
    628 
    629 	KASSERT(nsid > 0);
    630 
    631 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
    632 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    633 
    634 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    635 	if (mem == NULL) {
    636 		nvme_ccb_put(sc->sc_admin_q, ccb);
    637 		return ENOMEM;
    638 	}
    639 
    640 	memset(&sqe, 0, sizeof(sqe));
    641 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    642 	htolem32(&sqe.nsid, nsid);
    643 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    644 	htolem32(&sqe.cdw10, 0);
    645 
    646 	ccb->ccb_done = nvme_empty_done;
    647 	ccb->ccb_cookie = &sqe;
    648 
    649 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    650 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    651 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    652 
    653 	nvme_ccb_put(sc->sc_admin_q, ccb);
    654 
    655 	if (rv != 0) {
    656 		rv = EIO;
    657 		goto done;
    658 	}
    659 
    660 	/* commit */
    661 
    662 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    663 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    664 
    665 	/* Convert data to host endian */
    666 	nvme_identify_namespace_swapbytes(identify);
    667 
    668 	ns = nvme_ns_get(sc, nsid);
    669 	KASSERT(ns);
    670 	KASSERT(ns->ident == NULL);
    671 	ns->ident = identify;
    672 
    673 done:
    674 	nvme_dmamem_free(sc, mem);
    675 
    676 	return rv;
    677 }
    678 
    679 int
    680 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    681     struct buf *bp, void *data, size_t datasize,
    682     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    683 {
    684 	struct nvme_queue *q = nvme_get_q(sc, bp, false);
    685 	struct nvme_ccb *ccb;
    686 	bus_dmamap_t dmap;
    687 	int i, error;
    688 
    689 	ccb = nvme_ccb_get(q, false);
    690 	if (ccb == NULL)
    691 		return EAGAIN;
    692 
    693 	ccb->ccb_done = nvme_ns_io_done;
    694 	ccb->ccb_cookie = cookie;
    695 
    696 	/* namespace context */
    697 	ccb->nnc_nsid = nsid;
    698 	ccb->nnc_flags = flags;
    699 	ccb->nnc_buf = bp;
    700 	ccb->nnc_datasize = datasize;
    701 	ccb->nnc_secsize = secsize;
    702 	ccb->nnc_blkno = blkno;
    703 	ccb->nnc_done = nnc_done;
    704 
    705 	dmap = ccb->ccb_dmamap;
    706 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    707 	    datasize, NULL,
    708 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    709 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    710 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    711 	      BUS_DMA_READ : BUS_DMA_WRITE));
    712 	if (error) {
    713 		nvme_ccb_put(q, ccb);
    714 		return error;
    715 	}
    716 
    717 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    718 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    719 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    720 
    721 	if (dmap->dm_nsegs > 2) {
    722 		for (i = 1; i < dmap->dm_nsegs; i++) {
    723 			htolem64(&ccb->ccb_prpl[i - 1],
    724 			    dmap->dm_segs[i].ds_addr);
    725 		}
    726 		bus_dmamap_sync(sc->sc_dmat,
    727 		    NVME_DMA_MAP(q->q_ccb_prpls),
    728 		    ccb->ccb_prpl_off,
    729 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    730 		    BUS_DMASYNC_PREWRITE);
    731 	}
    732 
    733 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    734 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    735 			return EIO;
    736 		return 0;
    737 	}
    738 
    739 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    740 	return 0;
    741 }
    742 
    743 static void
    744 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    745 {
    746 	struct nvme_sqe_io *sqe = slot;
    747 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    748 
    749 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    750 	    NVM_CMD_READ : NVM_CMD_WRITE;
    751 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    752 
    753 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    754 	switch (dmap->dm_nsegs) {
    755 	case 1:
    756 		break;
    757 	case 2:
    758 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    759 		break;
    760 	default:
    761 		/* the prp list is already set up and synced */
    762 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    763 		break;
    764 	}
    765 
    766 	htolem64(&sqe->slba, ccb->nnc_blkno);
    767 
    768 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    769 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    770 
    771 	/* guaranteed by upper layers, but check just in case */
    772 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    773 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    774 }
    775 
    776 static void
    777 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    778     struct nvme_cqe *cqe)
    779 {
    780 	struct nvme_softc *sc = q->q_sc;
    781 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    782 	void *nnc_cookie = ccb->ccb_cookie;
    783 	nvme_nnc_done nnc_done = ccb->nnc_done;
    784 	struct buf *bp = ccb->nnc_buf;
    785 
    786 	if (dmap->dm_nsegs > 2) {
    787 		bus_dmamap_sync(sc->sc_dmat,
    788 		    NVME_DMA_MAP(q->q_ccb_prpls),
    789 		    ccb->ccb_prpl_off,
    790 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    791 		    BUS_DMASYNC_POSTWRITE);
    792 	}
    793 
    794 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    795 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    796 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    797 
    798 	bus_dmamap_unload(sc->sc_dmat, dmap);
    799 	nvme_ccb_put(q, ccb);
    800 
    801 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    802 }
    803 
    804 /*
    805  * If there is no volatile write cache, it makes no sense to issue
    806  * flush commands or query for the status.
    807  */
    808 static bool
    809 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    810 {
    811 	/* sc_identify is filled during attachment */
    812 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    813 }
    814 
    815 static bool
    816 nvme_ns_sync_finished(void *cookie)
    817 {
    818 	int *result = cookie;
    819 
    820 	return (*result != 0);
    821 }
    822 
    823 int
    824 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
    825 {
    826 	struct nvme_queue *q = nvme_get_q(sc, NULL, true);
    827 	struct nvme_ccb *ccb;
    828 	int result = 0;
    829 
    830 	if (!nvme_has_volatile_write_cache(sc)) {
    831 		/* cache not present, no value in trying to flush it */
    832 		return 0;
    833 	}
    834 
    835 	ccb = nvme_ccb_get(q, true);
    836 	KASSERT(ccb != NULL);
    837 
    838 	ccb->ccb_done = nvme_ns_sync_done;
    839 	ccb->ccb_cookie = &result;
    840 
    841 	/* namespace context */
    842 	ccb->nnc_nsid = nsid;
    843 	ccb->nnc_flags = flags;
    844 	ccb->nnc_done = NULL;
    845 
    846 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    847 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    848 			return EIO;
    849 		return 0;
    850 	}
    851 
    852 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    853 
    854 	/* wait for completion */
    855 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
    856 	KASSERT(result != 0);
    857 
    858 	return (result > 0) ? 0 : EIO;
    859 }
    860 
    861 static void
    862 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    863 {
    864 	struct nvme_sqe *sqe = slot;
    865 
    866 	sqe->opcode = NVM_CMD_FLUSH;
    867 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    868 }
    869 
    870 static void
    871 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    872     struct nvme_cqe *cqe)
    873 {
    874 	int *result = ccb->ccb_cookie;
    875 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    876 
    877 	if (status == NVME_CQE_SC_SUCCESS)
    878 		*result = 1;
    879 	else
    880 		*result = -1;
    881 
    882 	nvme_ccb_put(q, ccb);
    883 }
    884 
    885 static bool
    886 nvme_getcache_finished(void *xc)
    887 {
    888 	int *addr = xc;
    889 
    890 	return (*addr != 0);
    891 }
    892 
    893 /*
    894  * Get status of volatile write cache. Always asynchronous.
    895  */
    896 int
    897 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
    898 {
    899 	struct nvme_ccb *ccb;
    900 	struct nvme_queue *q = sc->sc_admin_q;
    901 	int result = 0, error;
    902 
    903 	if (!nvme_has_volatile_write_cache(sc)) {
    904 		/* cache simply not present */
    905 		*addr = 0;
    906 		return 0;
    907 	}
    908 
    909 	ccb = nvme_ccb_get(q, true);
    910 	KASSERT(ccb != NULL);
    911 
    912 	ccb->ccb_done = nvme_getcache_done;
    913 	ccb->ccb_cookie = &result;
    914 
    915 	/* namespace context */
    916 	ccb->nnc_flags = 0;
    917 	ccb->nnc_done = NULL;
    918 
    919 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
    920 
    921 	/* wait for completion */
    922 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
    923 	KASSERT(result != 0);
    924 
    925 	if (result > 0) {
    926 		*addr = result;
    927 		error = 0;
    928 	} else
    929 		error = EINVAL;
    930 
    931 	return error;
    932 }
    933 
    934 static void
    935 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    936 {
    937 	struct nvme_sqe *sqe = slot;
    938 
    939 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
    940 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
    941 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
    942 }
    943 
    944 static void
    945 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    946     struct nvme_cqe *cqe)
    947 {
    948 	int *addr = ccb->ccb_cookie;
    949 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    950 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
    951 	int result;
    952 
    953 	if (status == NVME_CQE_SC_SUCCESS) {
    954 		result = 0;
    955 
    956 		/*
    957 		 * DPO not supported, Dataset Management (DSM) field doesn't
    958 		 * specify the same semantics. FUA is always supported.
    959 		 */
    960 		result = DKCACHE_FUA;
    961 
    962 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
    963 			result |= DKCACHE_WRITE;
    964 
    965 		/*
    966 		 * If volatile write cache is present, the flag shall also be
    967 		 * settable.
    968 		 */
    969 		result |= DKCACHE_WCHANGE;
    970 
    971 		/*
    972 		 * ONCS field indicates whether the optional SAVE is also
    973 		 * supported for Set Features. According to spec v1.3,
    974 		 * Volatile Write Cache however doesn't support persistency
    975 		 * across power cycle/reset.
    976 		 */
    977 
    978 	} else {
    979 		result = -1;
    980 	}
    981 
    982 	*addr = result;
    983 
    984 	nvme_ccb_put(q, ccb);
    985 }
    986 
    987 struct nvme_setcache_state {
    988 	int dkcache;
    989 	int result;
    990 };
    991 
    992 static bool
    993 nvme_setcache_finished(void *xc)
    994 {
    995 	struct nvme_setcache_state *st = xc;
    996 
    997 	return (st->result != 0);
    998 }
    999 
   1000 static void
   1001 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1002 {
   1003 	struct nvme_sqe *sqe = slot;
   1004 	struct nvme_setcache_state *st = ccb->ccb_cookie;
   1005 
   1006 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
   1007 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
   1008 	if (st->dkcache & DKCACHE_WRITE)
   1009 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
   1010 }
   1011 
   1012 static void
   1013 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1014     struct nvme_cqe *cqe)
   1015 {
   1016 	struct nvme_setcache_state *st = ccb->ccb_cookie;
   1017 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
   1018 
   1019 	if (status == NVME_CQE_SC_SUCCESS) {
   1020 		st->result = 1;
   1021 	} else {
   1022 		st->result = -1;
   1023 	}
   1024 
   1025 	nvme_ccb_put(q, ccb);
   1026 }
   1027 
   1028 /*
   1029  * Set status of volatile write cache. Always asynchronous.
   1030  */
   1031 int
   1032 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
   1033 {
   1034 	struct nvme_ccb *ccb;
   1035 	struct nvme_queue *q = sc->sc_admin_q;
   1036 	int error;
   1037 	struct nvme_setcache_state st;
   1038 
   1039 	if (!nvme_has_volatile_write_cache(sc)) {
   1040 		/* cache simply not present */
   1041 		return EOPNOTSUPP;
   1042 	}
   1043 
   1044 	if (dkcache & ~(DKCACHE_WRITE)) {
   1045 		/* unsupported parameters */
   1046 		return EOPNOTSUPP;
   1047 	}
   1048 
   1049 	ccb = nvme_ccb_get(q, true);
   1050 	KASSERT(ccb != NULL);
   1051 
   1052 	memset(&st, 0, sizeof(st));
   1053 	st.dkcache = dkcache;
   1054 
   1055 	ccb->ccb_done = nvme_setcache_done;
   1056 	ccb->ccb_cookie = &st;
   1057 
   1058 	/* namespace context */
   1059 	ccb->nnc_flags = 0;
   1060 	ccb->nnc_done = NULL;
   1061 
   1062 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
   1063 
   1064 	/* wait for completion */
   1065 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
   1066 	KASSERT(st.result != 0);
   1067 
   1068 	if (st.result > 0)
   1069 		error = 0;
   1070 	else
   1071 		error = EINVAL;
   1072 
   1073 	return error;
   1074 }
   1075 
   1076 void
   1077 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
   1078 {
   1079 	struct nvme_namespace *ns;
   1080 	struct nvm_identify_namespace *identify;
   1081 
   1082 	ns = nvme_ns_get(sc, nsid);
   1083 	KASSERT(ns);
   1084 
   1085 	identify = ns->ident;
   1086 	ns->ident = NULL;
   1087 	if (identify != NULL)
   1088 		kmem_free(identify, sizeof(*identify));
   1089 }
   1090 
   1091 struct nvme_pt_state {
   1092 	struct nvme_pt_command *pt;
   1093 	bool finished;
   1094 };
   1095 
   1096 static void
   1097 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1098 {
   1099 	struct nvme_softc *sc = q->q_sc;
   1100 	struct nvme_sqe *sqe = slot;
   1101 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1102 	struct nvme_pt_command *pt = state->pt;
   1103 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1104 	int i;
   1105 
   1106 	sqe->opcode = pt->cmd.opcode;
   1107 	htolem32(&sqe->nsid, pt->cmd.nsid);
   1108 
   1109 	if (pt->buf != NULL && pt->len > 0) {
   1110 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
   1111 		switch (dmap->dm_nsegs) {
   1112 		case 1:
   1113 			break;
   1114 		case 2:
   1115 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
   1116 			break;
   1117 		default:
   1118 			for (i = 1; i < dmap->dm_nsegs; i++) {
   1119 				htolem64(&ccb->ccb_prpl[i - 1],
   1120 				    dmap->dm_segs[i].ds_addr);
   1121 			}
   1122 			bus_dmamap_sync(sc->sc_dmat,
   1123 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1124 			    ccb->ccb_prpl_off,
   1125 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1126 			    BUS_DMASYNC_PREWRITE);
   1127 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
   1128 			break;
   1129 		}
   1130 	}
   1131 
   1132 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
   1133 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
   1134 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
   1135 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
   1136 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
   1137 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
   1138 }
   1139 
   1140 static void
   1141 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
   1142 {
   1143 	struct nvme_softc *sc = q->q_sc;
   1144 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1145 	struct nvme_pt_command *pt = state->pt;
   1146 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1147 
   1148 	if (pt->buf != NULL && pt->len > 0) {
   1149 		if (dmap->dm_nsegs > 2) {
   1150 			bus_dmamap_sync(sc->sc_dmat,
   1151 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1152 			    ccb->ccb_prpl_off,
   1153 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1154 			    BUS_DMASYNC_POSTWRITE);
   1155 		}
   1156 
   1157 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
   1158 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1159 		bus_dmamap_unload(sc->sc_dmat, dmap);
   1160 	}
   1161 
   1162 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
   1163 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
   1164 
   1165 	state->finished = true;
   1166 
   1167 	nvme_ccb_put(q, ccb);
   1168 }
   1169 
   1170 static bool
   1171 nvme_pt_finished(void *cookie)
   1172 {
   1173 	struct nvme_pt_state *state = cookie;
   1174 
   1175 	return state->finished;
   1176 }
   1177 
   1178 static int
   1179 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
   1180     uint16_t nsid, struct lwp *l, bool is_adminq)
   1181 {
   1182 	struct nvme_queue *q;
   1183 	struct nvme_ccb *ccb;
   1184 	void *buf = NULL;
   1185 	struct nvme_pt_state state;
   1186 	int error;
   1187 
   1188 	/* limit command size to maximum data transfer size */
   1189 	if ((pt->buf == NULL && pt->len > 0) ||
   1190 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
   1191 		return EINVAL;
   1192 
   1193 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
   1194 	ccb = nvme_ccb_get(q, true);
   1195 	KASSERT(ccb != NULL);
   1196 
   1197 	if (pt->buf != NULL) {
   1198 		KASSERT(pt->len > 0);
   1199 		buf = kmem_alloc(pt->len, KM_SLEEP);
   1200 		if (!pt->is_read) {
   1201 			error = copyin(pt->buf, buf, pt->len);
   1202 			if (error)
   1203 				goto kmem_free;
   1204 		}
   1205 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
   1206 		    pt->len, NULL,
   1207 		    BUS_DMA_WAITOK |
   1208 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
   1209 		if (error)
   1210 			goto kmem_free;
   1211 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
   1212 		    0, ccb->ccb_dmamap->dm_mapsize,
   1213 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
   1214 	}
   1215 
   1216 	memset(&state, 0, sizeof(state));
   1217 	state.pt = pt;
   1218 	state.finished = false;
   1219 
   1220 	ccb->ccb_done = nvme_pt_done;
   1221 	ccb->ccb_cookie = &state;
   1222 
   1223 	pt->cmd.nsid = nsid;
   1224 
   1225 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
   1226 
   1227 	/* wait for completion */
   1228 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
   1229 	KASSERT(state.finished);
   1230 
   1231 	error = 0;
   1232 
   1233 	if (buf != NULL) {
   1234 		if (error == 0 && pt->is_read)
   1235 			error = copyout(buf, pt->buf, pt->len);
   1236 kmem_free:
   1237 		kmem_free(buf, pt->len);
   1238 	}
   1239 
   1240 	return error;
   1241 }
   1242 
   1243 static void
   1244 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1245     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
   1246 {
   1247 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
   1248 	uint32_t tail;
   1249 
   1250 	mutex_enter(&q->q_sq_mtx);
   1251 	tail = q->q_sq_tail;
   1252 	if (++q->q_sq_tail >= q->q_entries)
   1253 		q->q_sq_tail = 0;
   1254 
   1255 	sqe += tail;
   1256 
   1257 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1258 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
   1259 	memset(sqe, 0, sizeof(*sqe));
   1260 	(*fill)(q, ccb, sqe);
   1261 	htolem16(&sqe->cid, ccb->ccb_id);
   1262 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1263 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1264 
   1265 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
   1266 	mutex_exit(&q->q_sq_mtx);
   1267 }
   1268 
   1269 struct nvme_poll_state {
   1270 	struct nvme_sqe s;
   1271 	struct nvme_cqe c;
   1272 	void *cookie;
   1273 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1274 };
   1275 
   1276 static int
   1277 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1278     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1279 {
   1280 	struct nvme_poll_state state;
   1281 	uint16_t flags;
   1282 	int step = 10;
   1283 	int maxloop = timo_sec * 1000000 / step;
   1284 	int error = 0;
   1285 
   1286 	memset(&state, 0, sizeof(state));
   1287 	(*fill)(q, ccb, &state.s);
   1288 
   1289 	state.done = ccb->ccb_done;
   1290 	state.cookie = ccb->ccb_cookie;
   1291 
   1292 	ccb->ccb_done = nvme_poll_done;
   1293 	ccb->ccb_cookie = &state;
   1294 
   1295 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1296 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1297 		if (nvme_q_complete(sc, q) == 0)
   1298 			delay(step);
   1299 
   1300 		if (timo_sec >= 0 && --maxloop <= 0) {
   1301 			error = ETIMEDOUT;
   1302 			break;
   1303 		}
   1304 	}
   1305 
   1306 	if (error == 0) {
   1307 		flags = lemtoh16(&state.c.flags);
   1308 		return flags & ~NVME_CQE_PHASE;
   1309 	} else {
   1310 		/*
   1311 		 * If it succeds later, it would hit ccb which will have been
   1312 		 * already reused for something else. Not good. Cross
   1313 		 * fingers and hope for best. XXX do controller reset?
   1314 		 */
   1315 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
   1316 
   1317 		/* Invoke the callback to clean state anyway */
   1318 		struct nvme_cqe cqe;
   1319 		memset(&cqe, 0, sizeof(cqe));
   1320 		ccb->ccb_done(q, ccb, &cqe);
   1321 
   1322 		return 1;
   1323 	}
   1324 }
   1325 
   1326 static void
   1327 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1328 {
   1329 	struct nvme_sqe *sqe = slot;
   1330 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1331 
   1332 	*sqe = state->s;
   1333 }
   1334 
   1335 static void
   1336 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1337     struct nvme_cqe *cqe)
   1338 {
   1339 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1340 
   1341 	state->c = *cqe;
   1342 	SET(state->c.flags, htole16(NVME_CQE_PHASE));
   1343 
   1344 	ccb->ccb_cookie = state->cookie;
   1345 	state->done(q, ccb, &state->c);
   1346 }
   1347 
   1348 static void
   1349 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1350 {
   1351 	struct nvme_sqe *src = ccb->ccb_cookie;
   1352 	struct nvme_sqe *dst = slot;
   1353 
   1354 	*dst = *src;
   1355 }
   1356 
   1357 static void
   1358 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1359     struct nvme_cqe *cqe)
   1360 {
   1361 }
   1362 
   1363 static int
   1364 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1365 {
   1366 	struct nvme_ccb *ccb;
   1367 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1368 	uint16_t flags;
   1369 	int rv = 0;
   1370 
   1371 	mutex_enter(&q->q_cq_mtx);
   1372 
   1373 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1374 	for (;;) {
   1375 		cqe = &ring[q->q_cq_head];
   1376 		flags = lemtoh16(&cqe->flags);
   1377 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1378 			break;
   1379 
   1380 		ccb = &q->q_ccbs[cqe->cid];
   1381 
   1382 		if (++q->q_cq_head >= q->q_entries) {
   1383 			q->q_cq_head = 0;
   1384 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1385 		}
   1386 
   1387 #ifdef DEBUG
   1388 		/*
   1389 		 * If we get spurious completion notification, something
   1390 		 * is seriously hosed up. Very likely DMA to some random
   1391 		 * memory place happened, so just bail out.
   1392 		 */
   1393 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1394 			panic("%s: invalid ccb detected",
   1395 			    device_xname(sc->sc_dev));
   1396 			/* NOTREACHED */
   1397 		}
   1398 #endif
   1399 
   1400 		rv++;
   1401 
   1402 		/*
   1403 		 * Unlock the mutex before calling the ccb_done callback
   1404 		 * and re-lock afterwards. The callback triggers lddone()
   1405 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1406 		 * Unlock/relock avoids possibility of deadlock.
   1407 		 */
   1408 		mutex_exit(&q->q_cq_mtx);
   1409 		ccb->ccb_done(q, ccb, cqe);
   1410 		mutex_enter(&q->q_cq_mtx);
   1411 	}
   1412 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1413 
   1414 	if (rv)
   1415 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1416 
   1417 	mutex_exit(&q->q_cq_mtx);
   1418 
   1419 	return rv;
   1420 }
   1421 
   1422 static void
   1423 nvme_q_wait_complete(struct nvme_softc *sc,
   1424     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
   1425 {
   1426 	mutex_enter(&q->q_ccb_mtx);
   1427 	if (finished(cookie))
   1428 		goto out;
   1429 
   1430 	for(;;) {
   1431 		q->q_ccb_waiting = true;
   1432 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1433 
   1434 		if (finished(cookie))
   1435 			break;
   1436 	}
   1437 
   1438 out:
   1439 	mutex_exit(&q->q_ccb_mtx);
   1440 }
   1441 
   1442 static int
   1443 nvme_identify(struct nvme_softc *sc, u_int mps)
   1444 {
   1445 	char sn[41], mn[81], fr[17];
   1446 	struct nvm_identify_controller *identify;
   1447 	struct nvme_dmamem *mem;
   1448 	struct nvme_ccb *ccb;
   1449 	u_int mdts;
   1450 	int rv = 1;
   1451 
   1452 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1453 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1454 
   1455 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1456 	if (mem == NULL)
   1457 		return 1;
   1458 
   1459 	ccb->ccb_done = nvme_empty_done;
   1460 	ccb->ccb_cookie = mem;
   1461 
   1462 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1463 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1464 	    NVME_TIMO_IDENT);
   1465 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1466 
   1467 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1468 
   1469 	if (rv != 0)
   1470 		goto done;
   1471 
   1472 	identify = NVME_DMA_KVA(mem);
   1473 	sc->sc_identify = *identify;
   1474 	identify = NULL;
   1475 
   1476 	/* Convert data to host endian */
   1477 	nvme_identify_controller_swapbytes(&sc->sc_identify);
   1478 
   1479 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
   1480 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1481 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
   1482 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1483 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
   1484 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1485 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1486 	    sn);
   1487 
   1488 	strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
   1489 
   1490 	if (sc->sc_identify.mdts > 0) {
   1491 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
   1492 		if (mdts < sc->sc_mdts)
   1493 			sc->sc_mdts = mdts;
   1494 	}
   1495 
   1496 	sc->sc_nn = sc->sc_identify.nn;
   1497 
   1498 done:
   1499 	nvme_dmamem_free(sc, mem);
   1500 
   1501 	return rv;
   1502 }
   1503 
   1504 static int
   1505 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1506 {
   1507 	struct nvme_sqe_q sqe;
   1508 	struct nvme_ccb *ccb;
   1509 	int rv;
   1510 
   1511 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1512 		return 1;
   1513 
   1514 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1515 	KASSERT(ccb != NULL);
   1516 
   1517 	ccb->ccb_done = nvme_empty_done;
   1518 	ccb->ccb_cookie = &sqe;
   1519 
   1520 	memset(&sqe, 0, sizeof(sqe));
   1521 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1522 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1523 	htolem16(&sqe.qsize, q->q_entries - 1);
   1524 	htolem16(&sqe.qid, q->q_id);
   1525 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1526 	if (sc->sc_use_mq)
   1527 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1528 
   1529 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1530 	if (rv != 0)
   1531 		goto fail;
   1532 
   1533 	ccb->ccb_done = nvme_empty_done;
   1534 	ccb->ccb_cookie = &sqe;
   1535 
   1536 	memset(&sqe, 0, sizeof(sqe));
   1537 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1538 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1539 	htolem16(&sqe.qsize, q->q_entries - 1);
   1540 	htolem16(&sqe.qid, q->q_id);
   1541 	htolem16(&sqe.cqid, q->q_id);
   1542 	sqe.qflags = NVM_SQE_Q_PC;
   1543 
   1544 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1545 	if (rv != 0)
   1546 		goto fail;
   1547 
   1548 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1549 	return 0;
   1550 
   1551 fail:
   1552 	if (sc->sc_use_mq)
   1553 		sc->sc_intr_disestablish(sc, q->q_id);
   1554 
   1555 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1556 	return rv;
   1557 }
   1558 
   1559 static int
   1560 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1561 {
   1562 	struct nvme_sqe_q sqe;
   1563 	struct nvme_ccb *ccb;
   1564 	int rv;
   1565 
   1566 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1567 	KASSERT(ccb != NULL);
   1568 
   1569 	ccb->ccb_done = nvme_empty_done;
   1570 	ccb->ccb_cookie = &sqe;
   1571 
   1572 	memset(&sqe, 0, sizeof(sqe));
   1573 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1574 	htolem16(&sqe.qid, q->q_id);
   1575 
   1576 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1577 	if (rv != 0)
   1578 		goto fail;
   1579 
   1580 	ccb->ccb_done = nvme_empty_done;
   1581 	ccb->ccb_cookie = &sqe;
   1582 
   1583 	memset(&sqe, 0, sizeof(sqe));
   1584 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1585 	htolem16(&sqe.qid, q->q_id);
   1586 
   1587 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1588 	if (rv != 0)
   1589 		goto fail;
   1590 
   1591 fail:
   1592 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1593 
   1594 	if (rv == 0 && sc->sc_use_mq) {
   1595 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1596 			rv = 1;
   1597 	}
   1598 
   1599 	return rv;
   1600 }
   1601 
   1602 static void
   1603 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1604 {
   1605 	struct nvme_sqe *sqe = slot;
   1606 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1607 
   1608 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1609 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1610 	htolem32(&sqe->cdw10, 1);
   1611 }
   1612 
   1613 static int
   1614 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
   1615     u_int *nsqa)
   1616 {
   1617 	struct nvme_pt_state state;
   1618 	struct nvme_pt_command pt;
   1619 	struct nvme_ccb *ccb;
   1620 	int rv;
   1621 
   1622 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1623 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1624 
   1625 	memset(&pt, 0, sizeof(pt));
   1626 	pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
   1627 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
   1628 	pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
   1629 
   1630 	memset(&state, 0, sizeof(state));
   1631 	state.pt = &pt;
   1632 	state.finished = false;
   1633 
   1634 	ccb->ccb_done = nvme_pt_done;
   1635 	ccb->ccb_cookie = &state;
   1636 
   1637 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1638 
   1639 	if (rv != 0) {
   1640 		*ncqa = *nsqa = 0;
   1641 		return EIO;
   1642 	}
   1643 
   1644 	*ncqa = (pt.cpl.cdw0 >> 16) + 1;
   1645 	*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
   1646 
   1647 	return 0;
   1648 }
   1649 
   1650 static int
   1651 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1652 {
   1653 	struct nvme_softc *sc = q->q_sc;
   1654 	struct nvme_ccb *ccb;
   1655 	bus_addr_t off;
   1656 	uint64_t *prpl;
   1657 	u_int i;
   1658 
   1659 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1660 	cv_init(&q->q_ccb_wait, "nvmeqw");
   1661 	q->q_ccb_waiting = false;
   1662 	SIMPLEQ_INIT(&q->q_ccb_list);
   1663 
   1664 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1665 
   1666 	q->q_nccbs = nccbs;
   1667 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1668 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1669 
   1670 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1671 	off = 0;
   1672 
   1673 	for (i = 0; i < nccbs; i++) {
   1674 		ccb = &q->q_ccbs[i];
   1675 
   1676 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1677 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1678 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1679 		    &ccb->ccb_dmamap) != 0)
   1680 			goto free_maps;
   1681 
   1682 		ccb->ccb_id = i;
   1683 		ccb->ccb_prpl = prpl;
   1684 		ccb->ccb_prpl_off = off;
   1685 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1686 
   1687 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1688 
   1689 		prpl += sc->sc_max_sgl;
   1690 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1691 	}
   1692 
   1693 	return 0;
   1694 
   1695 free_maps:
   1696 	nvme_ccbs_free(q);
   1697 	return 1;
   1698 }
   1699 
   1700 static struct nvme_ccb *
   1701 nvme_ccb_get(struct nvme_queue *q, bool wait)
   1702 {
   1703 	struct nvme_ccb *ccb = NULL;
   1704 
   1705 	mutex_enter(&q->q_ccb_mtx);
   1706 again:
   1707 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1708 	if (ccb != NULL) {
   1709 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1710 #ifdef DEBUG
   1711 		ccb->ccb_cookie = NULL;
   1712 #endif
   1713 	} else {
   1714 		if (__predict_false(wait)) {
   1715 			q->q_ccb_waiting = true;
   1716 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1717 			goto again;
   1718 		}
   1719 	}
   1720 	mutex_exit(&q->q_ccb_mtx);
   1721 
   1722 	return ccb;
   1723 }
   1724 
   1725 static void
   1726 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1727 {
   1728 
   1729 	mutex_enter(&q->q_ccb_mtx);
   1730 #ifdef DEBUG
   1731 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1732 #endif
   1733 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1734 
   1735 	/* It's unlikely there are any waiters, it's not used for regular I/O */
   1736 	if (__predict_false(q->q_ccb_waiting)) {
   1737 		q->q_ccb_waiting = false;
   1738 		cv_broadcast(&q->q_ccb_wait);
   1739 	}
   1740 
   1741 	mutex_exit(&q->q_ccb_mtx);
   1742 }
   1743 
   1744 static void
   1745 nvme_ccbs_free(struct nvme_queue *q)
   1746 {
   1747 	struct nvme_softc *sc = q->q_sc;
   1748 	struct nvme_ccb *ccb;
   1749 
   1750 	mutex_enter(&q->q_ccb_mtx);
   1751 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1752 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1753 		/*
   1754 		 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
   1755 		 * internally. don't hold spin mutex
   1756 		 */
   1757 		mutex_exit(&q->q_ccb_mtx);
   1758 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1759 		mutex_enter(&q->q_ccb_mtx);
   1760 	}
   1761 	mutex_exit(&q->q_ccb_mtx);
   1762 
   1763 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1764 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1765 	q->q_ccbs = NULL;
   1766 	cv_destroy(&q->q_ccb_wait);
   1767 	mutex_destroy(&q->q_ccb_mtx);
   1768 }
   1769 
   1770 static struct nvme_queue *
   1771 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1772 {
   1773 	struct nvme_queue *q;
   1774 
   1775 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1776 	q->q_sc = sc;
   1777 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1778 	    sizeof(struct nvme_sqe) * entries);
   1779 	if (q->q_sq_dmamem == NULL)
   1780 		goto free;
   1781 
   1782 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1783 	    sizeof(struct nvme_cqe) * entries);
   1784 	if (q->q_cq_dmamem == NULL)
   1785 		goto free_sq;
   1786 
   1787 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1788 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1789 
   1790 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1791 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1792 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1793 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1794 	q->q_id = id;
   1795 	q->q_entries = entries;
   1796 	q->q_sq_tail = 0;
   1797 	q->q_cq_head = 0;
   1798 	q->q_cq_phase = NVME_CQE_PHASE;
   1799 
   1800 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1801 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1802 
   1803 	/*
   1804 	 * Due to definition of full and empty queue (queue is empty
   1805 	 * when head == tail, full when tail is one less then head),
   1806 	 * we can actually only have (entries - 1) in-flight commands.
   1807 	 */
   1808 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1809 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1810 		goto free_cq;
   1811 	}
   1812 
   1813 	return q;
   1814 
   1815 free_cq:
   1816 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1817 free_sq:
   1818 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1819 free:
   1820 	kmem_free(q, sizeof(*q));
   1821 
   1822 	return NULL;
   1823 }
   1824 
   1825 static void
   1826 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1827 {
   1828 	nvme_ccbs_free(q);
   1829 	mutex_destroy(&q->q_sq_mtx);
   1830 	mutex_destroy(&q->q_cq_mtx);
   1831 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1832 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1833 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1834 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1835 	kmem_free(q, sizeof(*q));
   1836 }
   1837 
   1838 int
   1839 nvme_intr(void *xsc)
   1840 {
   1841 	struct nvme_softc *sc = xsc;
   1842 
   1843 	/*
   1844 	 * INTx is level triggered, controller deasserts the interrupt only
   1845 	 * when we advance command queue head via write to the doorbell.
   1846 	 * Tell the controller to block the interrupts while we process
   1847 	 * the queue(s).
   1848 	 */
   1849 	nvme_write4(sc, NVME_INTMS, 1);
   1850 
   1851 	softint_schedule(sc->sc_softih[0]);
   1852 
   1853 	/* don't know, might not have been for us */
   1854 	return 1;
   1855 }
   1856 
   1857 void
   1858 nvme_softintr_intx(void *xq)
   1859 {
   1860 	struct nvme_queue *q = xq;
   1861 	struct nvme_softc *sc = q->q_sc;
   1862 
   1863 	nvme_q_complete(sc, sc->sc_admin_q);
   1864 	if (sc->sc_q != NULL)
   1865 	        nvme_q_complete(sc, sc->sc_q[0]);
   1866 
   1867 	/*
   1868 	 * Processing done, tell controller to issue interrupts again. There
   1869 	 * is no race, as NVMe spec requires the controller to maintain state,
   1870 	 * and assert the interrupt whenever there are unacknowledged
   1871 	 * completion queue entries.
   1872 	 */
   1873 	nvme_write4(sc, NVME_INTMC, 1);
   1874 }
   1875 
   1876 int
   1877 nvme_intr_msi(void *xq)
   1878 {
   1879 	struct nvme_queue *q = xq;
   1880 
   1881 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1882 	    && q->q_sc->sc_softih[q->q_id]);
   1883 
   1884 	/*
   1885 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1886 	 * without masking the interrupt.
   1887 	 */
   1888 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1889 
   1890 	return 1;
   1891 }
   1892 
   1893 void
   1894 nvme_softintr_msi(void *xq)
   1895 {
   1896 	struct nvme_queue *q = xq;
   1897 	struct nvme_softc *sc = q->q_sc;
   1898 
   1899 	nvme_q_complete(sc, q);
   1900 }
   1901 
   1902 static struct nvme_dmamem *
   1903 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1904 {
   1905 	struct nvme_dmamem *ndm;
   1906 	int nsegs;
   1907 
   1908 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1909 	if (ndm == NULL)
   1910 		return NULL;
   1911 
   1912 	ndm->ndm_size = size;
   1913 
   1914 	if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
   1915 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1916 		goto ndmfree;
   1917 
   1918 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1919 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1920 		goto destroy;
   1921 
   1922 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1923 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1924 		goto free;
   1925 	memset(ndm->ndm_kva, 0, size);
   1926 
   1927 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1928 	    NULL, BUS_DMA_WAITOK) != 0)
   1929 		goto unmap;
   1930 
   1931 	return ndm;
   1932 
   1933 unmap:
   1934 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1935 free:
   1936 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1937 destroy:
   1938 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1939 ndmfree:
   1940 	kmem_free(ndm, sizeof(*ndm));
   1941 	return NULL;
   1942 }
   1943 
   1944 static void
   1945 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1946 {
   1947 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1948 	    0, NVME_DMA_LEN(mem), ops);
   1949 }
   1950 
   1951 void
   1952 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1953 {
   1954 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1955 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1956 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1957 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1958 	kmem_free(ndm, sizeof(*ndm));
   1959 }
   1960 
   1961 /*
   1962  * ioctl
   1963  */
   1964 
   1965 dev_type_open(nvmeopen);
   1966 dev_type_close(nvmeclose);
   1967 dev_type_ioctl(nvmeioctl);
   1968 
   1969 const struct cdevsw nvme_cdevsw = {
   1970 	.d_open = nvmeopen,
   1971 	.d_close = nvmeclose,
   1972 	.d_read = noread,
   1973 	.d_write = nowrite,
   1974 	.d_ioctl = nvmeioctl,
   1975 	.d_stop = nostop,
   1976 	.d_tty = notty,
   1977 	.d_poll = nopoll,
   1978 	.d_mmap = nommap,
   1979 	.d_kqfilter = nokqfilter,
   1980 	.d_discard = nodiscard,
   1981 	.d_flag = D_OTHER,
   1982 };
   1983 
   1984 /*
   1985  * Accept an open operation on the control device.
   1986  */
   1987 int
   1988 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1989 {
   1990 	struct nvme_softc *sc;
   1991 	int unit = minor(dev) / 0x10000;
   1992 	int nsid = minor(dev) & 0xffff;
   1993 	int nsidx;
   1994 
   1995 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1996 		return ENXIO;
   1997 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1998 		return ENXIO;
   1999 
   2000 	if (nsid == 0) {
   2001 		/* controller */
   2002 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   2003 			return EBUSY;
   2004 		SET(sc->sc_flags, NVME_F_OPEN);
   2005 	} else {
   2006 		/* namespace */
   2007 		nsidx = nsid - 1;
   2008 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   2009 			return ENXIO;
   2010 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   2011 			return EBUSY;
   2012 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   2013 	}
   2014 	return 0;
   2015 }
   2016 
   2017 /*
   2018  * Accept the last close on the control device.
   2019  */
   2020 int
   2021 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   2022 {
   2023 	struct nvme_softc *sc;
   2024 	int unit = minor(dev) / 0x10000;
   2025 	int nsid = minor(dev) & 0xffff;
   2026 	int nsidx;
   2027 
   2028 	sc = device_lookup_private(&nvme_cd, unit);
   2029 	if (sc == NULL)
   2030 		return ENXIO;
   2031 
   2032 	if (nsid == 0) {
   2033 		/* controller */
   2034 		CLR(sc->sc_flags, NVME_F_OPEN);
   2035 	} else {
   2036 		/* namespace */
   2037 		nsidx = nsid - 1;
   2038 		if (nsidx >= sc->sc_nn)
   2039 			return ENXIO;
   2040 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   2041 	}
   2042 
   2043 	return 0;
   2044 }
   2045 
   2046 /*
   2047  * Handle control operations.
   2048  */
   2049 int
   2050 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   2051 {
   2052 	struct nvme_softc *sc;
   2053 	int unit = minor(dev) / 0x10000;
   2054 	int nsid = minor(dev) & 0xffff;
   2055 	struct nvme_pt_command *pt;
   2056 
   2057 	sc = device_lookup_private(&nvme_cd, unit);
   2058 	if (sc == NULL)
   2059 		return ENXIO;
   2060 
   2061 	switch (cmd) {
   2062 	case NVME_PASSTHROUGH_CMD:
   2063 		pt = data;
   2064 		return nvme_command_passthrough(sc, data,
   2065 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   2066 	}
   2067 
   2068 	return ENOTTY;
   2069 }
   2070