nvme.c revision 1.51 1 /* $NetBSD: nvme.c,v 1.51 2020/09/24 09:59:11 ryo Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.51 2020/09/24 09:59:11 ryo Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
46
47 int nvme_adminq_size = 32;
48 int nvme_ioq_size = 1024;
49
50 static int nvme_print(void *, const char *);
51
52 static int nvme_ready(struct nvme_softc *, uint32_t);
53 static int nvme_enable(struct nvme_softc *, u_int);
54 static int nvme_disable(struct nvme_softc *);
55 static int nvme_shutdown(struct nvme_softc *);
56
57 #ifdef NVME_DEBUG
58 static void nvme_dumpregs(struct nvme_softc *);
59 #endif
60 static int nvme_identify(struct nvme_softc *, u_int);
61 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
62 void *);
63
64 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
65 static void nvme_ccbs_free(struct nvme_queue *);
66
67 static struct nvme_ccb *
68 nvme_ccb_get(struct nvme_queue *, bool);
69 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
70
71 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
72 struct nvme_ccb *, void (*)(struct nvme_queue *,
73 struct nvme_ccb *, void *), int);
74 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
78 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
79 struct nvme_cqe *);
80
81 static struct nvme_queue *
82 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
83 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
84 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
86 struct nvme_ccb *, void (*)(struct nvme_queue *,
87 struct nvme_ccb *, void *));
88 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
89 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
90 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
91 bool (*)(void *), void *);
92
93 static struct nvme_dmamem *
94 nvme_dmamem_alloc(struct nvme_softc *, size_t);
95 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
96 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
97 int);
98
99 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
100 void *);
101 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
102 struct nvme_cqe *);
103 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
108 void *);
109 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
110 struct nvme_cqe *);
111
112 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
113 void *);
114 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
115 struct nvme_cqe *);
116 static int nvme_command_passthrough(struct nvme_softc *,
117 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
118
119 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
120 u_int *);
121
122 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
123 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
124 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
125 #define NVME_TIMO_SY 60 /* sync cache timeout */
126
127 #define nvme_read4(_s, _r) \
128 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
129 #define nvme_write4(_s, _r, _v) \
130 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
131 /*
132 * Some controllers, at least Apple NVMe, always require split
133 * transfers, so don't use bus_space_{read,write}_8() on LP64.
134 */
135 static inline uint64_t
136 nvme_read8(struct nvme_softc *sc, bus_size_t r)
137 {
138 uint64_t v;
139 uint32_t *a = (uint32_t *)&v;
140
141 #if _BYTE_ORDER == _LITTLE_ENDIAN
142 a[0] = nvme_read4(sc, r);
143 a[1] = nvme_read4(sc, r + 4);
144 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
145 a[1] = nvme_read4(sc, r);
146 a[0] = nvme_read4(sc, r + 4);
147 #endif
148
149 return v;
150 }
151
152 static inline void
153 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
154 {
155 uint32_t *a = (uint32_t *)&v;
156
157 #if _BYTE_ORDER == _LITTLE_ENDIAN
158 nvme_write4(sc, r, a[0]);
159 nvme_write4(sc, r + 4, a[1]);
160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
161 nvme_write4(sc, r, a[1]);
162 nvme_write4(sc, r + 4, a[0]);
163 #endif
164 }
165 #define nvme_barrier(_s, _r, _l, _f) \
166 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
167
168 #ifdef NVME_DEBUG
169 static __used void
170 nvme_dumpregs(struct nvme_softc *sc)
171 {
172 uint64_t r8;
173 uint32_t r4;
174
175 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
176 r8 = nvme_read8(sc, NVME_CAP);
177 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
178 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
179 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
180 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
181 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
182 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
183 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
184 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
185 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
186 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
187 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
188 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
189
190 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
191
192 r4 = nvme_read4(sc, NVME_CC);
193 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
194 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
195 (1 << NVME_CC_IOCQES_R(r4)));
196 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
197 (1 << NVME_CC_IOSQES_R(r4)));
198 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
199 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
200 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
201 (1 << NVME_CC_MPS_R(r4)));
202 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
203 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
204
205 r4 = nvme_read4(sc, NVME_CSTS);
206 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
207 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
208 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
209 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
210
211 r4 = nvme_read4(sc, NVME_AQA);
212 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
213 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
214 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
215
216 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
217 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
218 #undef DEVNAME
219 }
220 #endif /* NVME_DEBUG */
221
222 static int
223 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
224 {
225 u_int i = 0;
226
227 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
228 if (i++ > sc->sc_rdy_to)
229 return ENXIO;
230
231 delay(1000);
232 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
233 }
234
235 return 0;
236 }
237
238 static int
239 nvme_enable(struct nvme_softc *sc, u_int mps)
240 {
241 uint32_t cc, csts;
242 int error;
243
244 cc = nvme_read4(sc, NVME_CC);
245 csts = nvme_read4(sc, NVME_CSTS);
246
247 /*
248 * See note in nvme_disable. Short circuit if we're already enabled.
249 */
250 if (ISSET(cc, NVME_CC_EN)) {
251 if (ISSET(csts, NVME_CSTS_RDY))
252 return 0;
253
254 goto waitready;
255 } else {
256 /* EN == 0 already wait for RDY == 0 or fail */
257 error = nvme_ready(sc, 0);
258 if (error)
259 return error;
260 }
261
262 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
263 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
264 delay(5000);
265 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
266 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
267 delay(5000);
268
269 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
270 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
271 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
272 delay(5000);
273
274 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
275 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
276 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
277 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
278 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
279 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
280 SET(cc, NVME_CC_MPS(mps));
281 SET(cc, NVME_CC_EN);
282
283 nvme_write4(sc, NVME_CC, cc);
284 nvme_barrier(sc, 0, sc->sc_ios,
285 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
286
287 waitready:
288 return nvme_ready(sc, NVME_CSTS_RDY);
289 }
290
291 static int
292 nvme_disable(struct nvme_softc *sc)
293 {
294 uint32_t cc, csts;
295 int error;
296
297 cc = nvme_read4(sc, NVME_CC);
298 csts = nvme_read4(sc, NVME_CSTS);
299
300 /*
301 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
302 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
303 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
304 * isn't the desired value. Short circuit if we're already disabled.
305 */
306 if (ISSET(cc, NVME_CC_EN)) {
307 if (!ISSET(csts, NVME_CSTS_RDY)) {
308 /* EN == 1, wait for RDY == 1 or fail */
309 error = nvme_ready(sc, NVME_CSTS_RDY);
310 if (error)
311 return error;
312 }
313 } else {
314 /* EN == 0 already wait for RDY == 0 */
315 if (!ISSET(csts, NVME_CSTS_RDY))
316 return 0;
317
318 goto waitready;
319 }
320
321 CLR(cc, NVME_CC_EN);
322 nvme_write4(sc, NVME_CC, cc);
323 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
324
325 /*
326 * Some drives have issues with accessing the mmio after we disable,
327 * so delay for a bit after we write the bit to cope with these issues.
328 */
329 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
330 delay(B4_CHK_RDY_DELAY_MS);
331
332 waitready:
333 return nvme_ready(sc, 0);
334 }
335
336 int
337 nvme_attach(struct nvme_softc *sc)
338 {
339 uint64_t cap;
340 uint32_t reg;
341 u_int dstrd;
342 u_int mps = PAGE_SHIFT;
343 u_int ncq, nsq;
344 uint16_t adminq_entries = nvme_adminq_size;
345 uint16_t ioq_entries = nvme_ioq_size;
346 int i;
347
348 reg = nvme_read4(sc, NVME_VS);
349 if (reg == 0xffffffff) {
350 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
351 return 1;
352 }
353
354 if (NVME_VS_TER(reg) == 0)
355 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
356 NVME_VS_MNR(reg));
357 else
358 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
359 NVME_VS_MNR(reg), NVME_VS_TER(reg));
360
361 cap = nvme_read8(sc, NVME_CAP);
362 dstrd = NVME_CAP_DSTRD(cap);
363 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
364 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
365 "is greater than CPU page size %u\n",
366 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
367 return 1;
368 }
369 if (NVME_CAP_MPSMAX(cap) < mps)
370 mps = NVME_CAP_MPSMAX(cap);
371 if (ioq_entries > NVME_CAP_MQES(cap))
372 ioq_entries = NVME_CAP_MQES(cap);
373
374 /* set initial values to be used for admin queue during probe */
375 sc->sc_rdy_to = NVME_CAP_TO(cap);
376 sc->sc_mps = 1 << mps;
377 sc->sc_mdts = MAXPHYS;
378 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
379
380 if (nvme_disable(sc) != 0) {
381 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
382 return 1;
383 }
384
385 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
386 if (sc->sc_admin_q == NULL) {
387 aprint_error_dev(sc->sc_dev,
388 "unable to allocate admin queue\n");
389 return 1;
390 }
391 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
392 goto free_admin_q;
393
394 if (nvme_enable(sc, mps) != 0) {
395 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
396 goto disestablish_admin_q;
397 }
398
399 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
400 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
401 goto disable;
402 }
403 if (sc->sc_nn == 0) {
404 aprint_error_dev(sc->sc_dev, "namespace not found\n");
405 goto disable;
406 }
407
408 /* we know how big things are now */
409 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
410
411 /* reallocate ccbs of admin queue with new max sgl. */
412 nvme_ccbs_free(sc->sc_admin_q);
413 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
414
415 if (sc->sc_use_mq) {
416 /* Limit the number of queues to the number allocated in HW */
417 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
418 aprint_error_dev(sc->sc_dev,
419 "unable to get number of queues\n");
420 goto disable;
421 }
422 if (sc->sc_nq > ncq)
423 sc->sc_nq = ncq;
424 if (sc->sc_nq > nsq)
425 sc->sc_nq = nsq;
426 }
427
428 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
429 for (i = 0; i < sc->sc_nq; i++) {
430 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
431 if (sc->sc_q[i] == NULL) {
432 aprint_error_dev(sc->sc_dev,
433 "unable to allocate io queue\n");
434 goto free_q;
435 }
436 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
437 aprint_error_dev(sc->sc_dev,
438 "unable to create io queue\n");
439 nvme_q_free(sc, sc->sc_q[i]);
440 goto free_q;
441 }
442 }
443
444 if (!sc->sc_use_mq)
445 nvme_write4(sc, NVME_INTMC, 1);
446
447 /* probe subdevices */
448 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
449 KM_SLEEP);
450 nvme_rescan(sc->sc_dev, "nvme", &i);
451
452 return 0;
453
454 free_q:
455 while (--i >= 0) {
456 nvme_q_delete(sc, sc->sc_q[i]);
457 nvme_q_free(sc, sc->sc_q[i]);
458 }
459 disable:
460 nvme_disable(sc);
461 disestablish_admin_q:
462 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
463 free_admin_q:
464 nvme_q_free(sc, sc->sc_admin_q);
465
466 return 1;
467 }
468
469 int
470 nvme_rescan(device_t self, const char *attr, const int *flags)
471 {
472 struct nvme_softc *sc = device_private(self);
473 struct nvme_attach_args naa;
474 struct nvm_namespace_format *f;
475 struct nvme_namespace *ns;
476 uint64_t cap;
477 int ioq_entries = nvme_ioq_size;
478 int i;
479 int error;
480
481 cap = nvme_read8(sc, NVME_CAP);
482 if (ioq_entries > NVME_CAP_MQES(cap))
483 ioq_entries = NVME_CAP_MQES(cap);
484
485 for (i = 1; i <= sc->sc_nn; i++) {
486 if (sc->sc_namespaces[i - 1].dev)
487 continue;
488
489 /* identify to check for availability */
490 error = nvme_ns_identify(sc, i);
491 if (error) {
492 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
493 continue;
494 }
495
496 ns = nvme_ns_get(sc, i);
497 KASSERT(ns);
498
499 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
500
501 /*
502 * NVME1.0e 6.11 Identify command
503 *
504 * LBADS values smaller than 9 are not supported, a value
505 * of zero means that the format is not used.
506 */
507 if (f->lbads < 9) {
508 if (f->lbads > 0)
509 aprint_error_dev(self,
510 "unsupported logical data size %u\n", f->lbads);
511 continue;
512 }
513
514 memset(&naa, 0, sizeof(naa));
515 naa.naa_nsid = i;
516 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
517 naa.naa_maxphys = sc->sc_mdts;
518 naa.naa_typename = sc->sc_modelname;
519 sc->sc_namespaces[i - 1].dev = config_found(sc->sc_dev, &naa,
520 nvme_print);
521 }
522 return 0;
523 }
524
525 static int
526 nvme_print(void *aux, const char *pnp)
527 {
528 struct nvme_attach_args *naa = aux;
529
530 if (pnp)
531 aprint_normal("ld at %s", pnp);
532
533 if (naa->naa_nsid > 0)
534 aprint_normal(" nsid %d", naa->naa_nsid);
535
536 return UNCONF;
537 }
538
539 int
540 nvme_detach(struct nvme_softc *sc, int flags)
541 {
542 int i, error;
543
544 error = config_detach_children(sc->sc_dev, flags);
545 if (error)
546 return error;
547
548 error = nvme_shutdown(sc);
549 if (error)
550 return error;
551
552 /* from now on we are committed to detach, following will never fail */
553 for (i = 0; i < sc->sc_nq; i++)
554 nvme_q_free(sc, sc->sc_q[i]);
555 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
556 nvme_q_free(sc, sc->sc_admin_q);
557
558 return 0;
559 }
560
561 static int
562 nvme_shutdown(struct nvme_softc *sc)
563 {
564 uint32_t cc, csts;
565 bool disabled = false;
566 int i;
567
568 if (!sc->sc_use_mq)
569 nvme_write4(sc, NVME_INTMS, 1);
570
571 for (i = 0; i < sc->sc_nq; i++) {
572 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
573 aprint_error_dev(sc->sc_dev,
574 "unable to delete io queue %d, disabling\n", i + 1);
575 disabled = true;
576 }
577 }
578 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
579 if (disabled)
580 goto disable;
581
582 cc = nvme_read4(sc, NVME_CC);
583 CLR(cc, NVME_CC_SHN_MASK);
584 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
585 nvme_write4(sc, NVME_CC, cc);
586
587 for (i = 0; i < 4000; i++) {
588 nvme_barrier(sc, 0, sc->sc_ios,
589 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
590 csts = nvme_read4(sc, NVME_CSTS);
591 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
592 return 0;
593
594 delay(1000);
595 }
596
597 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
598
599 disable:
600 nvme_disable(sc);
601 return 0;
602 }
603
604 void
605 nvme_childdet(device_t self, device_t child)
606 {
607 struct nvme_softc *sc = device_private(self);
608 int i;
609
610 for (i = 0; i < sc->sc_nn; i++) {
611 if (sc->sc_namespaces[i].dev == child) {
612 /* Already freed ns->ident. */
613 sc->sc_namespaces[i].dev = NULL;
614 break;
615 }
616 }
617 }
618
619 int
620 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
621 {
622 struct nvme_sqe sqe;
623 struct nvm_identify_namespace *identify;
624 struct nvme_dmamem *mem;
625 struct nvme_ccb *ccb;
626 struct nvme_namespace *ns;
627 int rv;
628
629 KASSERT(nsid > 0);
630
631 ccb = nvme_ccb_get(sc->sc_admin_q, false);
632 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
633
634 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
635 if (mem == NULL) {
636 nvme_ccb_put(sc->sc_admin_q, ccb);
637 return ENOMEM;
638 }
639
640 memset(&sqe, 0, sizeof(sqe));
641 sqe.opcode = NVM_ADMIN_IDENTIFY;
642 htolem32(&sqe.nsid, nsid);
643 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
644 htolem32(&sqe.cdw10, 0);
645
646 ccb->ccb_done = nvme_empty_done;
647 ccb->ccb_cookie = &sqe;
648
649 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
650 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
651 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
652
653 nvme_ccb_put(sc->sc_admin_q, ccb);
654
655 if (rv != 0) {
656 rv = EIO;
657 goto done;
658 }
659
660 /* commit */
661
662 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
663 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
664
665 /* Convert data to host endian */
666 nvme_identify_namespace_swapbytes(identify);
667
668 ns = nvme_ns_get(sc, nsid);
669 KASSERT(ns);
670 KASSERT(ns->ident == NULL);
671 ns->ident = identify;
672
673 done:
674 nvme_dmamem_free(sc, mem);
675
676 return rv;
677 }
678
679 int
680 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
681 struct buf *bp, void *data, size_t datasize,
682 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
683 {
684 struct nvme_queue *q = nvme_get_q(sc, bp, false);
685 struct nvme_ccb *ccb;
686 bus_dmamap_t dmap;
687 int i, error;
688
689 ccb = nvme_ccb_get(q, false);
690 if (ccb == NULL)
691 return EAGAIN;
692
693 ccb->ccb_done = nvme_ns_io_done;
694 ccb->ccb_cookie = cookie;
695
696 /* namespace context */
697 ccb->nnc_nsid = nsid;
698 ccb->nnc_flags = flags;
699 ccb->nnc_buf = bp;
700 ccb->nnc_datasize = datasize;
701 ccb->nnc_secsize = secsize;
702 ccb->nnc_blkno = blkno;
703 ccb->nnc_done = nnc_done;
704
705 dmap = ccb->ccb_dmamap;
706 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
707 datasize, NULL,
708 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
709 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
710 (ISSET(flags, NVME_NS_CTX_F_READ) ?
711 BUS_DMA_READ : BUS_DMA_WRITE));
712 if (error) {
713 nvme_ccb_put(q, ccb);
714 return error;
715 }
716
717 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
718 ISSET(flags, NVME_NS_CTX_F_READ) ?
719 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
720
721 if (dmap->dm_nsegs > 2) {
722 for (i = 1; i < dmap->dm_nsegs; i++) {
723 htolem64(&ccb->ccb_prpl[i - 1],
724 dmap->dm_segs[i].ds_addr);
725 }
726 bus_dmamap_sync(sc->sc_dmat,
727 NVME_DMA_MAP(q->q_ccb_prpls),
728 ccb->ccb_prpl_off,
729 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
730 BUS_DMASYNC_PREWRITE);
731 }
732
733 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
734 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
735 return EIO;
736 return 0;
737 }
738
739 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
740 return 0;
741 }
742
743 static void
744 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
745 {
746 struct nvme_sqe_io *sqe = slot;
747 bus_dmamap_t dmap = ccb->ccb_dmamap;
748
749 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
750 NVM_CMD_READ : NVM_CMD_WRITE;
751 htolem32(&sqe->nsid, ccb->nnc_nsid);
752
753 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
754 switch (dmap->dm_nsegs) {
755 case 1:
756 break;
757 case 2:
758 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
759 break;
760 default:
761 /* the prp list is already set up and synced */
762 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
763 break;
764 }
765
766 htolem64(&sqe->slba, ccb->nnc_blkno);
767
768 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
769 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
770
771 /* guaranteed by upper layers, but check just in case */
772 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
773 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
774 }
775
776 static void
777 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
778 struct nvme_cqe *cqe)
779 {
780 struct nvme_softc *sc = q->q_sc;
781 bus_dmamap_t dmap = ccb->ccb_dmamap;
782 void *nnc_cookie = ccb->ccb_cookie;
783 nvme_nnc_done nnc_done = ccb->nnc_done;
784 struct buf *bp = ccb->nnc_buf;
785
786 if (dmap->dm_nsegs > 2) {
787 bus_dmamap_sync(sc->sc_dmat,
788 NVME_DMA_MAP(q->q_ccb_prpls),
789 ccb->ccb_prpl_off,
790 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
791 BUS_DMASYNC_POSTWRITE);
792 }
793
794 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
795 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
796 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
797
798 bus_dmamap_unload(sc->sc_dmat, dmap);
799 nvme_ccb_put(q, ccb);
800
801 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
802 }
803
804 /*
805 * If there is no volatile write cache, it makes no sense to issue
806 * flush commands or query for the status.
807 */
808 static bool
809 nvme_has_volatile_write_cache(struct nvme_softc *sc)
810 {
811 /* sc_identify is filled during attachment */
812 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
813 }
814
815 static bool
816 nvme_ns_sync_finished(void *cookie)
817 {
818 int *result = cookie;
819
820 return (*result != 0);
821 }
822
823 int
824 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
825 {
826 struct nvme_queue *q = nvme_get_q(sc, NULL, true);
827 struct nvme_ccb *ccb;
828 int result = 0;
829
830 if (!nvme_has_volatile_write_cache(sc)) {
831 /* cache not present, no value in trying to flush it */
832 return 0;
833 }
834
835 ccb = nvme_ccb_get(q, true);
836 KASSERT(ccb != NULL);
837
838 ccb->ccb_done = nvme_ns_sync_done;
839 ccb->ccb_cookie = &result;
840
841 /* namespace context */
842 ccb->nnc_nsid = nsid;
843 ccb->nnc_flags = flags;
844 ccb->nnc_done = NULL;
845
846 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
847 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
848 return EIO;
849 return 0;
850 }
851
852 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
853
854 /* wait for completion */
855 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
856 KASSERT(result != 0);
857
858 return (result > 0) ? 0 : EIO;
859 }
860
861 static void
862 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
863 {
864 struct nvme_sqe *sqe = slot;
865
866 sqe->opcode = NVM_CMD_FLUSH;
867 htolem32(&sqe->nsid, ccb->nnc_nsid);
868 }
869
870 static void
871 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
872 struct nvme_cqe *cqe)
873 {
874 int *result = ccb->ccb_cookie;
875 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
876
877 if (status == NVME_CQE_SC_SUCCESS)
878 *result = 1;
879 else
880 *result = -1;
881
882 nvme_ccb_put(q, ccb);
883 }
884
885 static bool
886 nvme_getcache_finished(void *xc)
887 {
888 int *addr = xc;
889
890 return (*addr != 0);
891 }
892
893 /*
894 * Get status of volatile write cache. Always asynchronous.
895 */
896 int
897 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
898 {
899 struct nvme_ccb *ccb;
900 struct nvme_queue *q = sc->sc_admin_q;
901 int result = 0, error;
902
903 if (!nvme_has_volatile_write_cache(sc)) {
904 /* cache simply not present */
905 *addr = 0;
906 return 0;
907 }
908
909 ccb = nvme_ccb_get(q, true);
910 KASSERT(ccb != NULL);
911
912 ccb->ccb_done = nvme_getcache_done;
913 ccb->ccb_cookie = &result;
914
915 /* namespace context */
916 ccb->nnc_flags = 0;
917 ccb->nnc_done = NULL;
918
919 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
920
921 /* wait for completion */
922 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
923 KASSERT(result != 0);
924
925 if (result > 0) {
926 *addr = result;
927 error = 0;
928 } else
929 error = EINVAL;
930
931 return error;
932 }
933
934 static void
935 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
936 {
937 struct nvme_sqe *sqe = slot;
938
939 sqe->opcode = NVM_ADMIN_GET_FEATURES;
940 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
941 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
942 }
943
944 static void
945 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
946 struct nvme_cqe *cqe)
947 {
948 int *addr = ccb->ccb_cookie;
949 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
950 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
951 int result;
952
953 if (status == NVME_CQE_SC_SUCCESS) {
954 result = 0;
955
956 /*
957 * DPO not supported, Dataset Management (DSM) field doesn't
958 * specify the same semantics. FUA is always supported.
959 */
960 result = DKCACHE_FUA;
961
962 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
963 result |= DKCACHE_WRITE;
964
965 /*
966 * If volatile write cache is present, the flag shall also be
967 * settable.
968 */
969 result |= DKCACHE_WCHANGE;
970
971 /*
972 * ONCS field indicates whether the optional SAVE is also
973 * supported for Set Features. According to spec v1.3,
974 * Volatile Write Cache however doesn't support persistency
975 * across power cycle/reset.
976 */
977
978 } else {
979 result = -1;
980 }
981
982 *addr = result;
983
984 nvme_ccb_put(q, ccb);
985 }
986
987 struct nvme_setcache_state {
988 int dkcache;
989 int result;
990 };
991
992 static bool
993 nvme_setcache_finished(void *xc)
994 {
995 struct nvme_setcache_state *st = xc;
996
997 return (st->result != 0);
998 }
999
1000 static void
1001 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1002 {
1003 struct nvme_sqe *sqe = slot;
1004 struct nvme_setcache_state *st = ccb->ccb_cookie;
1005
1006 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1007 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1008 if (st->dkcache & DKCACHE_WRITE)
1009 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1010 }
1011
1012 static void
1013 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1014 struct nvme_cqe *cqe)
1015 {
1016 struct nvme_setcache_state *st = ccb->ccb_cookie;
1017 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1018
1019 if (status == NVME_CQE_SC_SUCCESS) {
1020 st->result = 1;
1021 } else {
1022 st->result = -1;
1023 }
1024
1025 nvme_ccb_put(q, ccb);
1026 }
1027
1028 /*
1029 * Set status of volatile write cache. Always asynchronous.
1030 */
1031 int
1032 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1033 {
1034 struct nvme_ccb *ccb;
1035 struct nvme_queue *q = sc->sc_admin_q;
1036 int error;
1037 struct nvme_setcache_state st;
1038
1039 if (!nvme_has_volatile_write_cache(sc)) {
1040 /* cache simply not present */
1041 return EOPNOTSUPP;
1042 }
1043
1044 if (dkcache & ~(DKCACHE_WRITE)) {
1045 /* unsupported parameters */
1046 return EOPNOTSUPP;
1047 }
1048
1049 ccb = nvme_ccb_get(q, true);
1050 KASSERT(ccb != NULL);
1051
1052 memset(&st, 0, sizeof(st));
1053 st.dkcache = dkcache;
1054
1055 ccb->ccb_done = nvme_setcache_done;
1056 ccb->ccb_cookie = &st;
1057
1058 /* namespace context */
1059 ccb->nnc_flags = 0;
1060 ccb->nnc_done = NULL;
1061
1062 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1063
1064 /* wait for completion */
1065 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1066 KASSERT(st.result != 0);
1067
1068 if (st.result > 0)
1069 error = 0;
1070 else
1071 error = EINVAL;
1072
1073 return error;
1074 }
1075
1076 void
1077 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1078 {
1079 struct nvme_namespace *ns;
1080 struct nvm_identify_namespace *identify;
1081
1082 ns = nvme_ns_get(sc, nsid);
1083 KASSERT(ns);
1084
1085 identify = ns->ident;
1086 ns->ident = NULL;
1087 if (identify != NULL)
1088 kmem_free(identify, sizeof(*identify));
1089 }
1090
1091 struct nvme_pt_state {
1092 struct nvme_pt_command *pt;
1093 bool finished;
1094 };
1095
1096 static void
1097 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1098 {
1099 struct nvme_softc *sc = q->q_sc;
1100 struct nvme_sqe *sqe = slot;
1101 struct nvme_pt_state *state = ccb->ccb_cookie;
1102 struct nvme_pt_command *pt = state->pt;
1103 bus_dmamap_t dmap = ccb->ccb_dmamap;
1104 int i;
1105
1106 sqe->opcode = pt->cmd.opcode;
1107 htolem32(&sqe->nsid, pt->cmd.nsid);
1108
1109 if (pt->buf != NULL && pt->len > 0) {
1110 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1111 switch (dmap->dm_nsegs) {
1112 case 1:
1113 break;
1114 case 2:
1115 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1116 break;
1117 default:
1118 for (i = 1; i < dmap->dm_nsegs; i++) {
1119 htolem64(&ccb->ccb_prpl[i - 1],
1120 dmap->dm_segs[i].ds_addr);
1121 }
1122 bus_dmamap_sync(sc->sc_dmat,
1123 NVME_DMA_MAP(q->q_ccb_prpls),
1124 ccb->ccb_prpl_off,
1125 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1126 BUS_DMASYNC_PREWRITE);
1127 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1128 break;
1129 }
1130 }
1131
1132 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1133 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1134 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1135 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1136 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1137 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1138 }
1139
1140 static void
1141 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1142 {
1143 struct nvme_softc *sc = q->q_sc;
1144 struct nvme_pt_state *state = ccb->ccb_cookie;
1145 struct nvme_pt_command *pt = state->pt;
1146 bus_dmamap_t dmap = ccb->ccb_dmamap;
1147
1148 if (pt->buf != NULL && pt->len > 0) {
1149 if (dmap->dm_nsegs > 2) {
1150 bus_dmamap_sync(sc->sc_dmat,
1151 NVME_DMA_MAP(q->q_ccb_prpls),
1152 ccb->ccb_prpl_off,
1153 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1154 BUS_DMASYNC_POSTWRITE);
1155 }
1156
1157 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1158 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1159 bus_dmamap_unload(sc->sc_dmat, dmap);
1160 }
1161
1162 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1163 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1164
1165 state->finished = true;
1166
1167 nvme_ccb_put(q, ccb);
1168 }
1169
1170 static bool
1171 nvme_pt_finished(void *cookie)
1172 {
1173 struct nvme_pt_state *state = cookie;
1174
1175 return state->finished;
1176 }
1177
1178 static int
1179 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1180 uint16_t nsid, struct lwp *l, bool is_adminq)
1181 {
1182 struct nvme_queue *q;
1183 struct nvme_ccb *ccb;
1184 void *buf = NULL;
1185 struct nvme_pt_state state;
1186 int error;
1187
1188 /* limit command size to maximum data transfer size */
1189 if ((pt->buf == NULL && pt->len > 0) ||
1190 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1191 return EINVAL;
1192
1193 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1194 ccb = nvme_ccb_get(q, true);
1195 KASSERT(ccb != NULL);
1196
1197 if (pt->buf != NULL) {
1198 KASSERT(pt->len > 0);
1199 buf = kmem_alloc(pt->len, KM_SLEEP);
1200 if (!pt->is_read) {
1201 error = copyin(pt->buf, buf, pt->len);
1202 if (error)
1203 goto kmem_free;
1204 }
1205 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1206 pt->len, NULL,
1207 BUS_DMA_WAITOK |
1208 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1209 if (error)
1210 goto kmem_free;
1211 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1212 0, ccb->ccb_dmamap->dm_mapsize,
1213 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1214 }
1215
1216 memset(&state, 0, sizeof(state));
1217 state.pt = pt;
1218 state.finished = false;
1219
1220 ccb->ccb_done = nvme_pt_done;
1221 ccb->ccb_cookie = &state;
1222
1223 pt->cmd.nsid = nsid;
1224
1225 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1226
1227 /* wait for completion */
1228 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1229 KASSERT(state.finished);
1230
1231 error = 0;
1232
1233 if (buf != NULL) {
1234 if (error == 0 && pt->is_read)
1235 error = copyout(buf, pt->buf, pt->len);
1236 kmem_free:
1237 kmem_free(buf, pt->len);
1238 }
1239
1240 return error;
1241 }
1242
1243 static void
1244 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1245 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1246 {
1247 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1248 uint32_t tail;
1249
1250 mutex_enter(&q->q_sq_mtx);
1251 tail = q->q_sq_tail;
1252 if (++q->q_sq_tail >= q->q_entries)
1253 q->q_sq_tail = 0;
1254
1255 sqe += tail;
1256
1257 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1258 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1259 memset(sqe, 0, sizeof(*sqe));
1260 (*fill)(q, ccb, sqe);
1261 htolem16(&sqe->cid, ccb->ccb_id);
1262 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1263 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1264
1265 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1266 mutex_exit(&q->q_sq_mtx);
1267 }
1268
1269 struct nvme_poll_state {
1270 struct nvme_sqe s;
1271 struct nvme_cqe c;
1272 void *cookie;
1273 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1274 };
1275
1276 static int
1277 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1278 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1279 {
1280 struct nvme_poll_state state;
1281 uint16_t flags;
1282 int step = 10;
1283 int maxloop = timo_sec * 1000000 / step;
1284 int error = 0;
1285
1286 memset(&state, 0, sizeof(state));
1287 (*fill)(q, ccb, &state.s);
1288
1289 state.done = ccb->ccb_done;
1290 state.cookie = ccb->ccb_cookie;
1291
1292 ccb->ccb_done = nvme_poll_done;
1293 ccb->ccb_cookie = &state;
1294
1295 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1296 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1297 if (nvme_q_complete(sc, q) == 0)
1298 delay(step);
1299
1300 if (timo_sec >= 0 && --maxloop <= 0) {
1301 error = ETIMEDOUT;
1302 break;
1303 }
1304 }
1305
1306 if (error == 0) {
1307 flags = lemtoh16(&state.c.flags);
1308 return flags & ~NVME_CQE_PHASE;
1309 } else {
1310 /*
1311 * If it succeds later, it would hit ccb which will have been
1312 * already reused for something else. Not good. Cross
1313 * fingers and hope for best. XXX do controller reset?
1314 */
1315 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1316
1317 /* Invoke the callback to clean state anyway */
1318 struct nvme_cqe cqe;
1319 memset(&cqe, 0, sizeof(cqe));
1320 ccb->ccb_done(q, ccb, &cqe);
1321
1322 return 1;
1323 }
1324 }
1325
1326 static void
1327 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1328 {
1329 struct nvme_sqe *sqe = slot;
1330 struct nvme_poll_state *state = ccb->ccb_cookie;
1331
1332 *sqe = state->s;
1333 }
1334
1335 static void
1336 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1337 struct nvme_cqe *cqe)
1338 {
1339 struct nvme_poll_state *state = ccb->ccb_cookie;
1340
1341 state->c = *cqe;
1342 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1343
1344 ccb->ccb_cookie = state->cookie;
1345 state->done(q, ccb, &state->c);
1346 }
1347
1348 static void
1349 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1350 {
1351 struct nvme_sqe *src = ccb->ccb_cookie;
1352 struct nvme_sqe *dst = slot;
1353
1354 *dst = *src;
1355 }
1356
1357 static void
1358 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1359 struct nvme_cqe *cqe)
1360 {
1361 }
1362
1363 static int
1364 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1365 {
1366 struct nvme_ccb *ccb;
1367 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1368 uint16_t flags;
1369 int rv = 0;
1370
1371 mutex_enter(&q->q_cq_mtx);
1372
1373 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1374 for (;;) {
1375 cqe = &ring[q->q_cq_head];
1376 flags = lemtoh16(&cqe->flags);
1377 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1378 break;
1379
1380 ccb = &q->q_ccbs[cqe->cid];
1381
1382 if (++q->q_cq_head >= q->q_entries) {
1383 q->q_cq_head = 0;
1384 q->q_cq_phase ^= NVME_CQE_PHASE;
1385 }
1386
1387 #ifdef DEBUG
1388 /*
1389 * If we get spurious completion notification, something
1390 * is seriously hosed up. Very likely DMA to some random
1391 * memory place happened, so just bail out.
1392 */
1393 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1394 panic("%s: invalid ccb detected",
1395 device_xname(sc->sc_dev));
1396 /* NOTREACHED */
1397 }
1398 #endif
1399
1400 rv++;
1401
1402 /*
1403 * Unlock the mutex before calling the ccb_done callback
1404 * and re-lock afterwards. The callback triggers lddone()
1405 * which schedules another i/o, and also calls nvme_ccb_put().
1406 * Unlock/relock avoids possibility of deadlock.
1407 */
1408 mutex_exit(&q->q_cq_mtx);
1409 ccb->ccb_done(q, ccb, cqe);
1410 mutex_enter(&q->q_cq_mtx);
1411 }
1412 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1413
1414 if (rv)
1415 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1416
1417 mutex_exit(&q->q_cq_mtx);
1418
1419 return rv;
1420 }
1421
1422 static void
1423 nvme_q_wait_complete(struct nvme_softc *sc,
1424 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1425 {
1426 mutex_enter(&q->q_ccb_mtx);
1427 if (finished(cookie))
1428 goto out;
1429
1430 for(;;) {
1431 q->q_ccb_waiting = true;
1432 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1433
1434 if (finished(cookie))
1435 break;
1436 }
1437
1438 out:
1439 mutex_exit(&q->q_ccb_mtx);
1440 }
1441
1442 static int
1443 nvme_identify(struct nvme_softc *sc, u_int mps)
1444 {
1445 char sn[41], mn[81], fr[17];
1446 struct nvm_identify_controller *identify;
1447 struct nvme_dmamem *mem;
1448 struct nvme_ccb *ccb;
1449 u_int mdts;
1450 int rv = 1;
1451
1452 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1453 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1454
1455 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1456 if (mem == NULL)
1457 return 1;
1458
1459 ccb->ccb_done = nvme_empty_done;
1460 ccb->ccb_cookie = mem;
1461
1462 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1463 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1464 NVME_TIMO_IDENT);
1465 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1466
1467 nvme_ccb_put(sc->sc_admin_q, ccb);
1468
1469 if (rv != 0)
1470 goto done;
1471
1472 identify = NVME_DMA_KVA(mem);
1473 sc->sc_identify = *identify;
1474 identify = NULL;
1475
1476 /* Convert data to host endian */
1477 nvme_identify_controller_swapbytes(&sc->sc_identify);
1478
1479 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1480 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1481 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1482 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1483 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1484 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1485 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1486 sn);
1487
1488 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1489
1490 if (sc->sc_identify.mdts > 0) {
1491 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1492 if (mdts < sc->sc_mdts)
1493 sc->sc_mdts = mdts;
1494 }
1495
1496 sc->sc_nn = sc->sc_identify.nn;
1497
1498 done:
1499 nvme_dmamem_free(sc, mem);
1500
1501 return rv;
1502 }
1503
1504 static int
1505 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1506 {
1507 struct nvme_sqe_q sqe;
1508 struct nvme_ccb *ccb;
1509 int rv;
1510
1511 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1512 return 1;
1513
1514 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1515 KASSERT(ccb != NULL);
1516
1517 ccb->ccb_done = nvme_empty_done;
1518 ccb->ccb_cookie = &sqe;
1519
1520 memset(&sqe, 0, sizeof(sqe));
1521 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1522 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1523 htolem16(&sqe.qsize, q->q_entries - 1);
1524 htolem16(&sqe.qid, q->q_id);
1525 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1526 if (sc->sc_use_mq)
1527 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1528
1529 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1530 if (rv != 0)
1531 goto fail;
1532
1533 ccb->ccb_done = nvme_empty_done;
1534 ccb->ccb_cookie = &sqe;
1535
1536 memset(&sqe, 0, sizeof(sqe));
1537 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1538 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1539 htolem16(&sqe.qsize, q->q_entries - 1);
1540 htolem16(&sqe.qid, q->q_id);
1541 htolem16(&sqe.cqid, q->q_id);
1542 sqe.qflags = NVM_SQE_Q_PC;
1543
1544 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1545 if (rv != 0)
1546 goto fail;
1547
1548 nvme_ccb_put(sc->sc_admin_q, ccb);
1549 return 0;
1550
1551 fail:
1552 if (sc->sc_use_mq)
1553 sc->sc_intr_disestablish(sc, q->q_id);
1554
1555 nvme_ccb_put(sc->sc_admin_q, ccb);
1556 return rv;
1557 }
1558
1559 static int
1560 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1561 {
1562 struct nvme_sqe_q sqe;
1563 struct nvme_ccb *ccb;
1564 int rv;
1565
1566 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1567 KASSERT(ccb != NULL);
1568
1569 ccb->ccb_done = nvme_empty_done;
1570 ccb->ccb_cookie = &sqe;
1571
1572 memset(&sqe, 0, sizeof(sqe));
1573 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1574 htolem16(&sqe.qid, q->q_id);
1575
1576 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1577 if (rv != 0)
1578 goto fail;
1579
1580 ccb->ccb_done = nvme_empty_done;
1581 ccb->ccb_cookie = &sqe;
1582
1583 memset(&sqe, 0, sizeof(sqe));
1584 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1585 htolem16(&sqe.qid, q->q_id);
1586
1587 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1588 if (rv != 0)
1589 goto fail;
1590
1591 fail:
1592 nvme_ccb_put(sc->sc_admin_q, ccb);
1593
1594 if (rv == 0 && sc->sc_use_mq) {
1595 if (sc->sc_intr_disestablish(sc, q->q_id))
1596 rv = 1;
1597 }
1598
1599 return rv;
1600 }
1601
1602 static void
1603 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1604 {
1605 struct nvme_sqe *sqe = slot;
1606 struct nvme_dmamem *mem = ccb->ccb_cookie;
1607
1608 sqe->opcode = NVM_ADMIN_IDENTIFY;
1609 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1610 htolem32(&sqe->cdw10, 1);
1611 }
1612
1613 static int
1614 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1615 u_int *nsqa)
1616 {
1617 struct nvme_pt_state state;
1618 struct nvme_pt_command pt;
1619 struct nvme_ccb *ccb;
1620 int rv;
1621
1622 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1623 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1624
1625 memset(&pt, 0, sizeof(pt));
1626 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1627 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1628 pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1629
1630 memset(&state, 0, sizeof(state));
1631 state.pt = &pt;
1632 state.finished = false;
1633
1634 ccb->ccb_done = nvme_pt_done;
1635 ccb->ccb_cookie = &state;
1636
1637 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1638
1639 if (rv != 0) {
1640 *ncqa = *nsqa = 0;
1641 return EIO;
1642 }
1643
1644 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1645 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1646
1647 return 0;
1648 }
1649
1650 static int
1651 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1652 {
1653 struct nvme_softc *sc = q->q_sc;
1654 struct nvme_ccb *ccb;
1655 bus_addr_t off;
1656 uint64_t *prpl;
1657 u_int i;
1658
1659 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1660 cv_init(&q->q_ccb_wait, "nvmeqw");
1661 q->q_ccb_waiting = false;
1662 SIMPLEQ_INIT(&q->q_ccb_list);
1663
1664 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1665
1666 q->q_nccbs = nccbs;
1667 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1668 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1669
1670 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1671 off = 0;
1672
1673 for (i = 0; i < nccbs; i++) {
1674 ccb = &q->q_ccbs[i];
1675
1676 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1677 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1678 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1679 &ccb->ccb_dmamap) != 0)
1680 goto free_maps;
1681
1682 ccb->ccb_id = i;
1683 ccb->ccb_prpl = prpl;
1684 ccb->ccb_prpl_off = off;
1685 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1686
1687 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1688
1689 prpl += sc->sc_max_sgl;
1690 off += sizeof(*prpl) * sc->sc_max_sgl;
1691 }
1692
1693 return 0;
1694
1695 free_maps:
1696 nvme_ccbs_free(q);
1697 return 1;
1698 }
1699
1700 static struct nvme_ccb *
1701 nvme_ccb_get(struct nvme_queue *q, bool wait)
1702 {
1703 struct nvme_ccb *ccb = NULL;
1704
1705 mutex_enter(&q->q_ccb_mtx);
1706 again:
1707 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1708 if (ccb != NULL) {
1709 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1710 #ifdef DEBUG
1711 ccb->ccb_cookie = NULL;
1712 #endif
1713 } else {
1714 if (__predict_false(wait)) {
1715 q->q_ccb_waiting = true;
1716 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1717 goto again;
1718 }
1719 }
1720 mutex_exit(&q->q_ccb_mtx);
1721
1722 return ccb;
1723 }
1724
1725 static void
1726 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1727 {
1728
1729 mutex_enter(&q->q_ccb_mtx);
1730 #ifdef DEBUG
1731 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1732 #endif
1733 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1734
1735 /* It's unlikely there are any waiters, it's not used for regular I/O */
1736 if (__predict_false(q->q_ccb_waiting)) {
1737 q->q_ccb_waiting = false;
1738 cv_broadcast(&q->q_ccb_wait);
1739 }
1740
1741 mutex_exit(&q->q_ccb_mtx);
1742 }
1743
1744 static void
1745 nvme_ccbs_free(struct nvme_queue *q)
1746 {
1747 struct nvme_softc *sc = q->q_sc;
1748 struct nvme_ccb *ccb;
1749
1750 mutex_enter(&q->q_ccb_mtx);
1751 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1752 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1753 /*
1754 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1755 * internally. don't hold spin mutex
1756 */
1757 mutex_exit(&q->q_ccb_mtx);
1758 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1759 mutex_enter(&q->q_ccb_mtx);
1760 }
1761 mutex_exit(&q->q_ccb_mtx);
1762
1763 nvme_dmamem_free(sc, q->q_ccb_prpls);
1764 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1765 q->q_ccbs = NULL;
1766 cv_destroy(&q->q_ccb_wait);
1767 mutex_destroy(&q->q_ccb_mtx);
1768 }
1769
1770 static struct nvme_queue *
1771 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1772 {
1773 struct nvme_queue *q;
1774
1775 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1776 q->q_sc = sc;
1777 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1778 sizeof(struct nvme_sqe) * entries);
1779 if (q->q_sq_dmamem == NULL)
1780 goto free;
1781
1782 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1783 sizeof(struct nvme_cqe) * entries);
1784 if (q->q_cq_dmamem == NULL)
1785 goto free_sq;
1786
1787 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1788 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1789
1790 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1791 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1792 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1793 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1794 q->q_id = id;
1795 q->q_entries = entries;
1796 q->q_sq_tail = 0;
1797 q->q_cq_head = 0;
1798 q->q_cq_phase = NVME_CQE_PHASE;
1799
1800 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1801 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1802
1803 /*
1804 * Due to definition of full and empty queue (queue is empty
1805 * when head == tail, full when tail is one less then head),
1806 * we can actually only have (entries - 1) in-flight commands.
1807 */
1808 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1809 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1810 goto free_cq;
1811 }
1812
1813 return q;
1814
1815 free_cq:
1816 nvme_dmamem_free(sc, q->q_cq_dmamem);
1817 free_sq:
1818 nvme_dmamem_free(sc, q->q_sq_dmamem);
1819 free:
1820 kmem_free(q, sizeof(*q));
1821
1822 return NULL;
1823 }
1824
1825 static void
1826 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1827 {
1828 nvme_ccbs_free(q);
1829 mutex_destroy(&q->q_sq_mtx);
1830 mutex_destroy(&q->q_cq_mtx);
1831 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1832 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1833 nvme_dmamem_free(sc, q->q_cq_dmamem);
1834 nvme_dmamem_free(sc, q->q_sq_dmamem);
1835 kmem_free(q, sizeof(*q));
1836 }
1837
1838 int
1839 nvme_intr(void *xsc)
1840 {
1841 struct nvme_softc *sc = xsc;
1842
1843 /*
1844 * INTx is level triggered, controller deasserts the interrupt only
1845 * when we advance command queue head via write to the doorbell.
1846 * Tell the controller to block the interrupts while we process
1847 * the queue(s).
1848 */
1849 nvme_write4(sc, NVME_INTMS, 1);
1850
1851 softint_schedule(sc->sc_softih[0]);
1852
1853 /* don't know, might not have been for us */
1854 return 1;
1855 }
1856
1857 void
1858 nvme_softintr_intx(void *xq)
1859 {
1860 struct nvme_queue *q = xq;
1861 struct nvme_softc *sc = q->q_sc;
1862
1863 nvme_q_complete(sc, sc->sc_admin_q);
1864 if (sc->sc_q != NULL)
1865 nvme_q_complete(sc, sc->sc_q[0]);
1866
1867 /*
1868 * Processing done, tell controller to issue interrupts again. There
1869 * is no race, as NVMe spec requires the controller to maintain state,
1870 * and assert the interrupt whenever there are unacknowledged
1871 * completion queue entries.
1872 */
1873 nvme_write4(sc, NVME_INTMC, 1);
1874 }
1875
1876 int
1877 nvme_intr_msi(void *xq)
1878 {
1879 struct nvme_queue *q = xq;
1880
1881 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1882 && q->q_sc->sc_softih[q->q_id]);
1883
1884 /*
1885 * MSI/MSI-X are edge triggered, so can handover processing to softint
1886 * without masking the interrupt.
1887 */
1888 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1889
1890 return 1;
1891 }
1892
1893 void
1894 nvme_softintr_msi(void *xq)
1895 {
1896 struct nvme_queue *q = xq;
1897 struct nvme_softc *sc = q->q_sc;
1898
1899 nvme_q_complete(sc, q);
1900 }
1901
1902 static struct nvme_dmamem *
1903 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1904 {
1905 struct nvme_dmamem *ndm;
1906 int nsegs;
1907
1908 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1909 if (ndm == NULL)
1910 return NULL;
1911
1912 ndm->ndm_size = size;
1913
1914 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
1915 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1916 goto ndmfree;
1917
1918 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1919 1, &nsegs, BUS_DMA_WAITOK) != 0)
1920 goto destroy;
1921
1922 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1923 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1924 goto free;
1925 memset(ndm->ndm_kva, 0, size);
1926
1927 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1928 NULL, BUS_DMA_WAITOK) != 0)
1929 goto unmap;
1930
1931 return ndm;
1932
1933 unmap:
1934 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1935 free:
1936 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1937 destroy:
1938 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1939 ndmfree:
1940 kmem_free(ndm, sizeof(*ndm));
1941 return NULL;
1942 }
1943
1944 static void
1945 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1946 {
1947 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1948 0, NVME_DMA_LEN(mem), ops);
1949 }
1950
1951 void
1952 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1953 {
1954 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1955 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1956 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1957 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1958 kmem_free(ndm, sizeof(*ndm));
1959 }
1960
1961 /*
1962 * ioctl
1963 */
1964
1965 dev_type_open(nvmeopen);
1966 dev_type_close(nvmeclose);
1967 dev_type_ioctl(nvmeioctl);
1968
1969 const struct cdevsw nvme_cdevsw = {
1970 .d_open = nvmeopen,
1971 .d_close = nvmeclose,
1972 .d_read = noread,
1973 .d_write = nowrite,
1974 .d_ioctl = nvmeioctl,
1975 .d_stop = nostop,
1976 .d_tty = notty,
1977 .d_poll = nopoll,
1978 .d_mmap = nommap,
1979 .d_kqfilter = nokqfilter,
1980 .d_discard = nodiscard,
1981 .d_flag = D_OTHER,
1982 };
1983
1984 /*
1985 * Accept an open operation on the control device.
1986 */
1987 int
1988 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1989 {
1990 struct nvme_softc *sc;
1991 int unit = minor(dev) / 0x10000;
1992 int nsid = minor(dev) & 0xffff;
1993 int nsidx;
1994
1995 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1996 return ENXIO;
1997 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1998 return ENXIO;
1999
2000 if (nsid == 0) {
2001 /* controller */
2002 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2003 return EBUSY;
2004 SET(sc->sc_flags, NVME_F_OPEN);
2005 } else {
2006 /* namespace */
2007 nsidx = nsid - 1;
2008 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2009 return ENXIO;
2010 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2011 return EBUSY;
2012 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2013 }
2014 return 0;
2015 }
2016
2017 /*
2018 * Accept the last close on the control device.
2019 */
2020 int
2021 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2022 {
2023 struct nvme_softc *sc;
2024 int unit = minor(dev) / 0x10000;
2025 int nsid = minor(dev) & 0xffff;
2026 int nsidx;
2027
2028 sc = device_lookup_private(&nvme_cd, unit);
2029 if (sc == NULL)
2030 return ENXIO;
2031
2032 if (nsid == 0) {
2033 /* controller */
2034 CLR(sc->sc_flags, NVME_F_OPEN);
2035 } else {
2036 /* namespace */
2037 nsidx = nsid - 1;
2038 if (nsidx >= sc->sc_nn)
2039 return ENXIO;
2040 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2041 }
2042
2043 return 0;
2044 }
2045
2046 /*
2047 * Handle control operations.
2048 */
2049 int
2050 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2051 {
2052 struct nvme_softc *sc;
2053 int unit = minor(dev) / 0x10000;
2054 int nsid = minor(dev) & 0xffff;
2055 struct nvme_pt_command *pt;
2056
2057 sc = device_lookup_private(&nvme_cd, unit);
2058 if (sc == NULL)
2059 return ENXIO;
2060
2061 switch (cmd) {
2062 case NVME_PASSTHROUGH_CMD:
2063 pt = data;
2064 return nvme_command_passthrough(sc, data,
2065 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2066 }
2067
2068 return ENOTTY;
2069 }
2070