nvme.c revision 1.53 1 /* $NetBSD: nvme.c,v 1.53 2020/12/04 23:03:11 kardel Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.53 2020/12/04 23:03:11 kardel Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44
45 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
46
47 int nvme_adminq_size = 32;
48 int nvme_ioq_size = 1024;
49
50 static int nvme_print(void *, const char *);
51
52 static int nvme_ready(struct nvme_softc *, uint32_t);
53 static int nvme_enable(struct nvme_softc *, u_int);
54 static int nvme_disable(struct nvme_softc *);
55 static int nvme_shutdown(struct nvme_softc *);
56
57 #ifdef NVME_DEBUG
58 static void nvme_dumpregs(struct nvme_softc *);
59 #endif
60 static int nvme_identify(struct nvme_softc *, u_int);
61 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
62 void *);
63
64 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
65 static void nvme_ccbs_free(struct nvme_queue *);
66
67 static struct nvme_ccb *
68 nvme_ccb_get(struct nvme_queue *, bool);
69 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
70
71 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
72 struct nvme_ccb *, void (*)(struct nvme_queue *,
73 struct nvme_ccb *, void *), int);
74 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
78 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
79 struct nvme_cqe *);
80
81 static struct nvme_queue *
82 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
83 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
84 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
86 struct nvme_ccb *, void (*)(struct nvme_queue *,
87 struct nvme_ccb *, void *));
88 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
89 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
90 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
91 bool (*)(void *), void *);
92
93 static struct nvme_dmamem *
94 nvme_dmamem_alloc(struct nvme_softc *, size_t);
95 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
96 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
97 int);
98
99 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
100 void *);
101 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
102 struct nvme_cqe *);
103 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
108 void *);
109 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
110 struct nvme_cqe *);
111
112 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
113 void *);
114 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
115 struct nvme_cqe *);
116 static int nvme_command_passthrough(struct nvme_softc *,
117 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
118
119 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
120 u_int *);
121
122 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
123 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
124 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
125 #define NVME_TIMO_SY 60 /* sync cache timeout */
126
127 #define nvme_read4(_s, _r) \
128 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
129 #define nvme_write4(_s, _r, _v) \
130 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
131 /*
132 * Some controllers, at least Apple NVMe, always require split
133 * transfers, so don't use bus_space_{read,write}_8() on LP64.
134 */
135 static inline uint64_t
136 nvme_read8(struct nvme_softc *sc, bus_size_t r)
137 {
138 uint64_t v;
139 uint32_t *a = (uint32_t *)&v;
140
141 #if _BYTE_ORDER == _LITTLE_ENDIAN
142 a[0] = nvme_read4(sc, r);
143 a[1] = nvme_read4(sc, r + 4);
144 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
145 a[1] = nvme_read4(sc, r);
146 a[0] = nvme_read4(sc, r + 4);
147 #endif
148
149 return v;
150 }
151
152 static inline void
153 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
154 {
155 uint32_t *a = (uint32_t *)&v;
156
157 #if _BYTE_ORDER == _LITTLE_ENDIAN
158 nvme_write4(sc, r, a[0]);
159 nvme_write4(sc, r + 4, a[1]);
160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
161 nvme_write4(sc, r, a[1]);
162 nvme_write4(sc, r + 4, a[0]);
163 #endif
164 }
165 #define nvme_barrier(_s, _r, _l, _f) \
166 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
167
168 #ifdef NVME_DEBUG
169 static __used void
170 nvme_dumpregs(struct nvme_softc *sc)
171 {
172 uint64_t r8;
173 uint32_t r4;
174
175 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
176 r8 = nvme_read8(sc, NVME_CAP);
177 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
178 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
179 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
180 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
181 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
182 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
183 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
184 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
185 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
186 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
187 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
188 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
189
190 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
191
192 r4 = nvme_read4(sc, NVME_CC);
193 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
194 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
195 (1 << NVME_CC_IOCQES_R(r4)));
196 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
197 (1 << NVME_CC_IOSQES_R(r4)));
198 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
199 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
200 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
201 (1 << NVME_CC_MPS_R(r4)));
202 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
203 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
204
205 r4 = nvme_read4(sc, NVME_CSTS);
206 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
207 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
208 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
209 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
210
211 r4 = nvme_read4(sc, NVME_AQA);
212 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
213 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
214 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
215
216 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
217 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
218 #undef DEVNAME
219 }
220 #endif /* NVME_DEBUG */
221
222 static int
223 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
224 {
225 u_int i = 0;
226
227 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
228 if (i++ > sc->sc_rdy_to)
229 return ENXIO;
230
231 delay(1000);
232 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
233 }
234
235 return 0;
236 }
237
238 static int
239 nvme_enable(struct nvme_softc *sc, u_int mps)
240 {
241 uint32_t cc, csts;
242 int error;
243
244 cc = nvme_read4(sc, NVME_CC);
245 csts = nvme_read4(sc, NVME_CSTS);
246
247 /*
248 * See note in nvme_disable. Short circuit if we're already enabled.
249 */
250 if (ISSET(cc, NVME_CC_EN)) {
251 if (ISSET(csts, NVME_CSTS_RDY))
252 return 0;
253
254 goto waitready;
255 } else {
256 /* EN == 0 already wait for RDY == 0 or fail */
257 error = nvme_ready(sc, 0);
258 if (error)
259 return error;
260 }
261
262 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
263 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
264 delay(5000);
265 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
266 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
267 delay(5000);
268
269 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
270 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
271 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
272 delay(5000);
273
274 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
275 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
276 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
277 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
278 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
279 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
280 SET(cc, NVME_CC_MPS(mps));
281 SET(cc, NVME_CC_EN);
282
283 nvme_write4(sc, NVME_CC, cc);
284 nvme_barrier(sc, 0, sc->sc_ios,
285 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
286
287 waitready:
288 return nvme_ready(sc, NVME_CSTS_RDY);
289 }
290
291 static int
292 nvme_disable(struct nvme_softc *sc)
293 {
294 uint32_t cc, csts;
295 int error;
296
297 cc = nvme_read4(sc, NVME_CC);
298 csts = nvme_read4(sc, NVME_CSTS);
299
300 /*
301 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
302 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
303 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
304 * isn't the desired value. Short circuit if we're already disabled.
305 */
306 if (ISSET(cc, NVME_CC_EN)) {
307 if (!ISSET(csts, NVME_CSTS_RDY)) {
308 /* EN == 1, wait for RDY == 1 or fail */
309 error = nvme_ready(sc, NVME_CSTS_RDY);
310 if (error)
311 return error;
312 }
313 } else {
314 /* EN == 0 already wait for RDY == 0 */
315 if (!ISSET(csts, NVME_CSTS_RDY))
316 return 0;
317
318 goto waitready;
319 }
320
321 CLR(cc, NVME_CC_EN);
322 nvme_write4(sc, NVME_CC, cc);
323 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
324
325 /*
326 * Some drives have issues with accessing the mmio after we disable,
327 * so delay for a bit after we write the bit to cope with these issues.
328 */
329 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
330 delay(B4_CHK_RDY_DELAY_MS);
331
332 waitready:
333 return nvme_ready(sc, 0);
334 }
335
336 int
337 nvme_attach(struct nvme_softc *sc)
338 {
339 uint64_t cap;
340 uint32_t reg;
341 u_int dstrd;
342 u_int mps = PAGE_SHIFT;
343 u_int ncq, nsq;
344 uint16_t adminq_entries = nvme_adminq_size;
345 uint16_t ioq_entries = nvme_ioq_size;
346 int i;
347
348 reg = nvme_read4(sc, NVME_VS);
349 if (reg == 0xffffffff) {
350 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
351 return 1;
352 }
353
354 if (NVME_VS_TER(reg) == 0)
355 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
356 NVME_VS_MNR(reg));
357 else
358 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
359 NVME_VS_MNR(reg), NVME_VS_TER(reg));
360
361 cap = nvme_read8(sc, NVME_CAP);
362 dstrd = NVME_CAP_DSTRD(cap);
363 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
364 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
365 "is greater than CPU page size %u\n",
366 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
367 return 1;
368 }
369 if (NVME_CAP_MPSMAX(cap) < mps)
370 mps = NVME_CAP_MPSMAX(cap);
371 if (ioq_entries > NVME_CAP_MQES(cap))
372 ioq_entries = NVME_CAP_MQES(cap);
373
374 /* set initial values to be used for admin queue during probe */
375 sc->sc_rdy_to = NVME_CAP_TO(cap);
376 sc->sc_mps = 1 << mps;
377 sc->sc_mdts = MAXPHYS;
378 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
379
380 if (nvme_disable(sc) != 0) {
381 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
382 return 1;
383 }
384
385 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
386 if (sc->sc_admin_q == NULL) {
387 aprint_error_dev(sc->sc_dev,
388 "unable to allocate admin queue\n");
389 return 1;
390 }
391 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
392 goto free_admin_q;
393
394 if (nvme_enable(sc, mps) != 0) {
395 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
396 goto disestablish_admin_q;
397 }
398
399 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
400 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
401 goto disable;
402 }
403 if (sc->sc_nn == 0) {
404 aprint_error_dev(sc->sc_dev, "namespace not found\n");
405 goto disable;
406 }
407
408 /* we know how big things are now */
409 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
410
411 /* reallocate ccbs of admin queue with new max sgl. */
412 nvme_ccbs_free(sc->sc_admin_q);
413 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
414
415 if (sc->sc_use_mq) {
416 /* Limit the number of queues to the number allocated in HW */
417 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
418 aprint_error_dev(sc->sc_dev,
419 "unable to get number of queues\n");
420 goto disable;
421 }
422 if (sc->sc_nq > ncq)
423 sc->sc_nq = ncq;
424 if (sc->sc_nq > nsq)
425 sc->sc_nq = nsq;
426 }
427
428 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
429 for (i = 0; i < sc->sc_nq; i++) {
430 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
431 if (sc->sc_q[i] == NULL) {
432 aprint_error_dev(sc->sc_dev,
433 "unable to allocate io queue\n");
434 goto free_q;
435 }
436 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
437 aprint_error_dev(sc->sc_dev,
438 "unable to create io queue\n");
439 nvme_q_free(sc, sc->sc_q[i]);
440 goto free_q;
441 }
442 }
443
444 if (!sc->sc_use_mq)
445 nvme_write4(sc, NVME_INTMC, 1);
446
447 /* probe subdevices */
448 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
449 KM_SLEEP);
450 nvme_rescan(sc->sc_dev, "nvme", &i);
451
452 return 0;
453
454 free_q:
455 while (--i >= 0) {
456 nvme_q_delete(sc, sc->sc_q[i]);
457 nvme_q_free(sc, sc->sc_q[i]);
458 }
459 disable:
460 nvme_disable(sc);
461 disestablish_admin_q:
462 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
463 free_admin_q:
464 nvme_q_free(sc, sc->sc_admin_q);
465
466 return 1;
467 }
468
469 int
470 nvme_rescan(device_t self, const char *attr, const int *flags)
471 {
472 struct nvme_softc *sc = device_private(self);
473 struct nvme_attach_args naa;
474 struct nvm_namespace_format *f;
475 struct nvme_namespace *ns;
476 uint64_t cap;
477 int ioq_entries = nvme_ioq_size;
478 int i;
479 int error;
480
481 cap = nvme_read8(sc, NVME_CAP);
482 if (ioq_entries > NVME_CAP_MQES(cap))
483 ioq_entries = NVME_CAP_MQES(cap);
484
485 for (i = 1; i <= sc->sc_nn; i++) {
486 if (sc->sc_namespaces[i - 1].dev)
487 continue;
488
489 /* identify to check for availability */
490 error = nvme_ns_identify(sc, i);
491 if (error) {
492 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
493 continue;
494 }
495
496 ns = nvme_ns_get(sc, i);
497 KASSERT(ns);
498
499 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
500
501 /*
502 * NVME1.0e 6.11 Identify command
503 *
504 * LBADS values smaller than 9 are not supported, a value
505 * of zero means that the format is not used.
506 */
507 if (f->lbads < 9) {
508 if (f->lbads > 0)
509 aprint_error_dev(self,
510 "unsupported logical data size %u\n", f->lbads);
511 continue;
512 }
513
514 memset(&naa, 0, sizeof(naa));
515 naa.naa_nsid = i;
516 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
517 naa.naa_maxphys = sc->sc_mdts;
518 naa.naa_typename = sc->sc_modelname;
519 sc->sc_namespaces[i - 1].dev = config_found(sc->sc_dev, &naa,
520 nvme_print);
521 }
522 return 0;
523 }
524
525 static int
526 nvme_print(void *aux, const char *pnp)
527 {
528 struct nvme_attach_args *naa = aux;
529
530 if (pnp)
531 aprint_normal("ld at %s", pnp);
532
533 if (naa->naa_nsid > 0)
534 aprint_normal(" nsid %d", naa->naa_nsid);
535
536 return UNCONF;
537 }
538
539 int
540 nvme_detach(struct nvme_softc *sc, int flags)
541 {
542 int i, error;
543
544 error = config_detach_children(sc->sc_dev, flags);
545 if (error)
546 return error;
547
548 error = nvme_shutdown(sc);
549 if (error)
550 return error;
551
552 /* from now on we are committed to detach, following will never fail */
553 for (i = 0; i < sc->sc_nq; i++)
554 nvme_q_free(sc, sc->sc_q[i]);
555 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
556 nvme_q_free(sc, sc->sc_admin_q);
557
558 return 0;
559 }
560
561 static int
562 nvme_shutdown(struct nvme_softc *sc)
563 {
564 uint32_t cc, csts;
565 bool disabled = false;
566 int i;
567
568 if (!sc->sc_use_mq)
569 nvme_write4(sc, NVME_INTMS, 1);
570
571 for (i = 0; i < sc->sc_nq; i++) {
572 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
573 aprint_error_dev(sc->sc_dev,
574 "unable to delete io queue %d, disabling\n", i + 1);
575 disabled = true;
576 }
577 }
578 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
579 if (disabled)
580 goto disable;
581
582 cc = nvme_read4(sc, NVME_CC);
583 CLR(cc, NVME_CC_SHN_MASK);
584 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
585 nvme_write4(sc, NVME_CC, cc);
586
587 for (i = 0; i < 4000; i++) {
588 nvme_barrier(sc, 0, sc->sc_ios,
589 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
590 csts = nvme_read4(sc, NVME_CSTS);
591 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
592 return 0;
593
594 delay(1000);
595 }
596
597 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
598
599 disable:
600 nvme_disable(sc);
601 return 0;
602 }
603
604 void
605 nvme_childdet(device_t self, device_t child)
606 {
607 struct nvme_softc *sc = device_private(self);
608 int i;
609
610 for (i = 0; i < sc->sc_nn; i++) {
611 if (sc->sc_namespaces[i].dev == child) {
612 /* Already freed ns->ident. */
613 sc->sc_namespaces[i].dev = NULL;
614 break;
615 }
616 }
617 }
618
619 int
620 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
621 {
622 struct nvme_sqe sqe;
623 struct nvm_identify_namespace *identify;
624 struct nvme_dmamem *mem;
625 struct nvme_ccb *ccb;
626 struct nvme_namespace *ns;
627 int rv;
628
629 KASSERT(nsid > 0);
630
631 ns = nvme_ns_get(sc, nsid);
632 KASSERT(ns);
633
634 if (ns->ident != NULL)
635 return 0;
636
637 ccb = nvme_ccb_get(sc->sc_admin_q, false);
638 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
639
640 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
641 if (mem == NULL) {
642 nvme_ccb_put(sc->sc_admin_q, ccb);
643 return ENOMEM;
644 }
645
646 memset(&sqe, 0, sizeof(sqe));
647 sqe.opcode = NVM_ADMIN_IDENTIFY;
648 htolem32(&sqe.nsid, nsid);
649 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
650 htolem32(&sqe.cdw10, 0);
651
652 ccb->ccb_done = nvme_empty_done;
653 ccb->ccb_cookie = &sqe;
654
655 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
656 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
657 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
658
659 nvme_ccb_put(sc->sc_admin_q, ccb);
660
661 if (rv != 0) {
662 rv = EIO;
663 goto done;
664 }
665
666 /* commit */
667
668 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
669 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
670
671 /* Convert data to host endian */
672 nvme_identify_namespace_swapbytes(identify);
673
674 ns->ident = identify;
675
676 done:
677 nvme_dmamem_free(sc, mem);
678
679 return rv;
680 }
681
682 int
683 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
684 struct buf *bp, void *data, size_t datasize,
685 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
686 {
687 struct nvme_queue *q = nvme_get_q(sc, bp, false);
688 struct nvme_ccb *ccb;
689 bus_dmamap_t dmap;
690 int i, error;
691
692 ccb = nvme_ccb_get(q, false);
693 if (ccb == NULL)
694 return EAGAIN;
695
696 ccb->ccb_done = nvme_ns_io_done;
697 ccb->ccb_cookie = cookie;
698
699 /* namespace context */
700 ccb->nnc_nsid = nsid;
701 ccb->nnc_flags = flags;
702 ccb->nnc_buf = bp;
703 ccb->nnc_datasize = datasize;
704 ccb->nnc_secsize = secsize;
705 ccb->nnc_blkno = blkno;
706 ccb->nnc_done = nnc_done;
707
708 dmap = ccb->ccb_dmamap;
709 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
710 datasize, NULL,
711 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
712 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
713 (ISSET(flags, NVME_NS_CTX_F_READ) ?
714 BUS_DMA_READ : BUS_DMA_WRITE));
715 if (error) {
716 nvme_ccb_put(q, ccb);
717 return error;
718 }
719
720 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
721 ISSET(flags, NVME_NS_CTX_F_READ) ?
722 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
723
724 if (dmap->dm_nsegs > 2) {
725 for (i = 1; i < dmap->dm_nsegs; i++) {
726 htolem64(&ccb->ccb_prpl[i - 1],
727 dmap->dm_segs[i].ds_addr);
728 }
729 bus_dmamap_sync(sc->sc_dmat,
730 NVME_DMA_MAP(q->q_ccb_prpls),
731 ccb->ccb_prpl_off,
732 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
733 BUS_DMASYNC_PREWRITE);
734 }
735
736 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
737 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
738 return EIO;
739 return 0;
740 }
741
742 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
743 return 0;
744 }
745
746 static void
747 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
748 {
749 struct nvme_sqe_io *sqe = slot;
750 bus_dmamap_t dmap = ccb->ccb_dmamap;
751
752 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
753 NVM_CMD_READ : NVM_CMD_WRITE;
754 htolem32(&sqe->nsid, ccb->nnc_nsid);
755
756 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
757 switch (dmap->dm_nsegs) {
758 case 1:
759 break;
760 case 2:
761 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
762 break;
763 default:
764 /* the prp list is already set up and synced */
765 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
766 break;
767 }
768
769 htolem64(&sqe->slba, ccb->nnc_blkno);
770
771 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
772 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
773
774 /* guaranteed by upper layers, but check just in case */
775 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
776 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
777 }
778
779 static void
780 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
781 struct nvme_cqe *cqe)
782 {
783 struct nvme_softc *sc = q->q_sc;
784 bus_dmamap_t dmap = ccb->ccb_dmamap;
785 void *nnc_cookie = ccb->ccb_cookie;
786 nvme_nnc_done nnc_done = ccb->nnc_done;
787 struct buf *bp = ccb->nnc_buf;
788
789 if (dmap->dm_nsegs > 2) {
790 bus_dmamap_sync(sc->sc_dmat,
791 NVME_DMA_MAP(q->q_ccb_prpls),
792 ccb->ccb_prpl_off,
793 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
794 BUS_DMASYNC_POSTWRITE);
795 }
796
797 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
798 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
799 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
800
801 bus_dmamap_unload(sc->sc_dmat, dmap);
802 nvme_ccb_put(q, ccb);
803
804 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
805 }
806
807 /*
808 * If there is no volatile write cache, it makes no sense to issue
809 * flush commands or query for the status.
810 */
811 static bool
812 nvme_has_volatile_write_cache(struct nvme_softc *sc)
813 {
814 /* sc_identify is filled during attachment */
815 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
816 }
817
818 static bool
819 nvme_ns_sync_finished(void *cookie)
820 {
821 int *result = cookie;
822
823 return (*result != 0);
824 }
825
826 int
827 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
828 {
829 struct nvme_queue *q = nvme_get_q(sc, NULL, true);
830 struct nvme_ccb *ccb;
831 int result = 0;
832
833 if (!nvme_has_volatile_write_cache(sc)) {
834 /* cache not present, no value in trying to flush it */
835 return 0;
836 }
837
838 ccb = nvme_ccb_get(q, true);
839 KASSERT(ccb != NULL);
840
841 ccb->ccb_done = nvme_ns_sync_done;
842 ccb->ccb_cookie = &result;
843
844 /* namespace context */
845 ccb->nnc_nsid = nsid;
846 ccb->nnc_flags = flags;
847 ccb->nnc_done = NULL;
848
849 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
850 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
851 return EIO;
852 return 0;
853 }
854
855 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
856
857 /* wait for completion */
858 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
859 KASSERT(result != 0);
860
861 return (result > 0) ? 0 : EIO;
862 }
863
864 static void
865 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
866 {
867 struct nvme_sqe *sqe = slot;
868
869 sqe->opcode = NVM_CMD_FLUSH;
870 htolem32(&sqe->nsid, ccb->nnc_nsid);
871 }
872
873 static void
874 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
875 struct nvme_cqe *cqe)
876 {
877 int *result = ccb->ccb_cookie;
878 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
879
880 if (status == NVME_CQE_SC_SUCCESS)
881 *result = 1;
882 else
883 *result = -1;
884
885 nvme_ccb_put(q, ccb);
886 }
887
888 static bool
889 nvme_getcache_finished(void *xc)
890 {
891 int *addr = xc;
892
893 return (*addr != 0);
894 }
895
896 /*
897 * Get status of volatile write cache. Always asynchronous.
898 */
899 int
900 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
901 {
902 struct nvme_ccb *ccb;
903 struct nvme_queue *q = sc->sc_admin_q;
904 int result = 0, error;
905
906 if (!nvme_has_volatile_write_cache(sc)) {
907 /* cache simply not present */
908 *addr = 0;
909 return 0;
910 }
911
912 ccb = nvme_ccb_get(q, true);
913 KASSERT(ccb != NULL);
914
915 ccb->ccb_done = nvme_getcache_done;
916 ccb->ccb_cookie = &result;
917
918 /* namespace context */
919 ccb->nnc_flags = 0;
920 ccb->nnc_done = NULL;
921
922 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
923
924 /* wait for completion */
925 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
926 KASSERT(result != 0);
927
928 if (result > 0) {
929 *addr = result;
930 error = 0;
931 } else
932 error = EINVAL;
933
934 return error;
935 }
936
937 static void
938 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
939 {
940 struct nvme_sqe *sqe = slot;
941
942 sqe->opcode = NVM_ADMIN_GET_FEATURES;
943 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
944 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
945 }
946
947 static void
948 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
949 struct nvme_cqe *cqe)
950 {
951 int *addr = ccb->ccb_cookie;
952 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
953 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
954 int result;
955
956 if (status == NVME_CQE_SC_SUCCESS) {
957 result = 0;
958
959 /*
960 * DPO not supported, Dataset Management (DSM) field doesn't
961 * specify the same semantics. FUA is always supported.
962 */
963 result = DKCACHE_FUA;
964
965 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
966 result |= DKCACHE_WRITE;
967
968 /*
969 * If volatile write cache is present, the flag shall also be
970 * settable.
971 */
972 result |= DKCACHE_WCHANGE;
973
974 /*
975 * ONCS field indicates whether the optional SAVE is also
976 * supported for Set Features. According to spec v1.3,
977 * Volatile Write Cache however doesn't support persistency
978 * across power cycle/reset.
979 */
980
981 } else {
982 result = -1;
983 }
984
985 *addr = result;
986
987 nvme_ccb_put(q, ccb);
988 }
989
990 struct nvme_setcache_state {
991 int dkcache;
992 int result;
993 };
994
995 static bool
996 nvme_setcache_finished(void *xc)
997 {
998 struct nvme_setcache_state *st = xc;
999
1000 return (st->result != 0);
1001 }
1002
1003 static void
1004 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1005 {
1006 struct nvme_sqe *sqe = slot;
1007 struct nvme_setcache_state *st = ccb->ccb_cookie;
1008
1009 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1010 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1011 if (st->dkcache & DKCACHE_WRITE)
1012 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1013 }
1014
1015 static void
1016 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1017 struct nvme_cqe *cqe)
1018 {
1019 struct nvme_setcache_state *st = ccb->ccb_cookie;
1020 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1021
1022 if (status == NVME_CQE_SC_SUCCESS) {
1023 st->result = 1;
1024 } else {
1025 st->result = -1;
1026 }
1027
1028 nvme_ccb_put(q, ccb);
1029 }
1030
1031 /*
1032 * Set status of volatile write cache. Always asynchronous.
1033 */
1034 int
1035 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1036 {
1037 struct nvme_ccb *ccb;
1038 struct nvme_queue *q = sc->sc_admin_q;
1039 int error;
1040 struct nvme_setcache_state st;
1041
1042 if (!nvme_has_volatile_write_cache(sc)) {
1043 /* cache simply not present */
1044 return EOPNOTSUPP;
1045 }
1046
1047 if (dkcache & ~(DKCACHE_WRITE)) {
1048 /* unsupported parameters */
1049 return EOPNOTSUPP;
1050 }
1051
1052 ccb = nvme_ccb_get(q, true);
1053 KASSERT(ccb != NULL);
1054
1055 memset(&st, 0, sizeof(st));
1056 st.dkcache = dkcache;
1057
1058 ccb->ccb_done = nvme_setcache_done;
1059 ccb->ccb_cookie = &st;
1060
1061 /* namespace context */
1062 ccb->nnc_flags = 0;
1063 ccb->nnc_done = NULL;
1064
1065 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1066
1067 /* wait for completion */
1068 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1069 KASSERT(st.result != 0);
1070
1071 if (st.result > 0)
1072 error = 0;
1073 else
1074 error = EINVAL;
1075
1076 return error;
1077 }
1078
1079 void
1080 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1081 {
1082 struct nvme_namespace *ns;
1083 struct nvm_identify_namespace *identify;
1084
1085 ns = nvme_ns_get(sc, nsid);
1086 KASSERT(ns);
1087
1088 identify = ns->ident;
1089 ns->ident = NULL;
1090 if (identify != NULL)
1091 kmem_free(identify, sizeof(*identify));
1092 }
1093
1094 struct nvme_pt_state {
1095 struct nvme_pt_command *pt;
1096 bool finished;
1097 };
1098
1099 static void
1100 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1101 {
1102 struct nvme_softc *sc = q->q_sc;
1103 struct nvme_sqe *sqe = slot;
1104 struct nvme_pt_state *state = ccb->ccb_cookie;
1105 struct nvme_pt_command *pt = state->pt;
1106 bus_dmamap_t dmap = ccb->ccb_dmamap;
1107 int i;
1108
1109 sqe->opcode = pt->cmd.opcode;
1110 htolem32(&sqe->nsid, pt->cmd.nsid);
1111
1112 if (pt->buf != NULL && pt->len > 0) {
1113 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1114 switch (dmap->dm_nsegs) {
1115 case 1:
1116 break;
1117 case 2:
1118 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1119 break;
1120 default:
1121 for (i = 1; i < dmap->dm_nsegs; i++) {
1122 htolem64(&ccb->ccb_prpl[i - 1],
1123 dmap->dm_segs[i].ds_addr);
1124 }
1125 bus_dmamap_sync(sc->sc_dmat,
1126 NVME_DMA_MAP(q->q_ccb_prpls),
1127 ccb->ccb_prpl_off,
1128 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1129 BUS_DMASYNC_PREWRITE);
1130 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1131 break;
1132 }
1133 }
1134
1135 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1136 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1137 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1138 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1139 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1140 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1141 }
1142
1143 static void
1144 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1145 {
1146 struct nvme_softc *sc = q->q_sc;
1147 struct nvme_pt_state *state = ccb->ccb_cookie;
1148 struct nvme_pt_command *pt = state->pt;
1149 bus_dmamap_t dmap = ccb->ccb_dmamap;
1150
1151 if (pt->buf != NULL && pt->len > 0) {
1152 if (dmap->dm_nsegs > 2) {
1153 bus_dmamap_sync(sc->sc_dmat,
1154 NVME_DMA_MAP(q->q_ccb_prpls),
1155 ccb->ccb_prpl_off,
1156 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1157 BUS_DMASYNC_POSTWRITE);
1158 }
1159
1160 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1161 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1162 bus_dmamap_unload(sc->sc_dmat, dmap);
1163 }
1164
1165 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1166 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1167
1168 state->finished = true;
1169
1170 nvme_ccb_put(q, ccb);
1171 }
1172
1173 static bool
1174 nvme_pt_finished(void *cookie)
1175 {
1176 struct nvme_pt_state *state = cookie;
1177
1178 return state->finished;
1179 }
1180
1181 static int
1182 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1183 uint16_t nsid, struct lwp *l, bool is_adminq)
1184 {
1185 struct nvme_queue *q;
1186 struct nvme_ccb *ccb;
1187 void *buf = NULL;
1188 struct nvme_pt_state state;
1189 int error;
1190
1191 /* limit command size to maximum data transfer size */
1192 if ((pt->buf == NULL && pt->len > 0) ||
1193 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1194 return EINVAL;
1195
1196 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1197 ccb = nvme_ccb_get(q, true);
1198 KASSERT(ccb != NULL);
1199
1200 if (pt->buf != NULL) {
1201 KASSERT(pt->len > 0);
1202 buf = kmem_alloc(pt->len, KM_SLEEP);
1203 if (!pt->is_read) {
1204 error = copyin(pt->buf, buf, pt->len);
1205 if (error)
1206 goto kmem_free;
1207 }
1208 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1209 pt->len, NULL,
1210 BUS_DMA_WAITOK |
1211 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1212 if (error)
1213 goto kmem_free;
1214 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1215 0, ccb->ccb_dmamap->dm_mapsize,
1216 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1217 }
1218
1219 memset(&state, 0, sizeof(state));
1220 state.pt = pt;
1221 state.finished = false;
1222
1223 ccb->ccb_done = nvme_pt_done;
1224 ccb->ccb_cookie = &state;
1225
1226 pt->cmd.nsid = nsid;
1227
1228 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1229
1230 /* wait for completion */
1231 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1232 KASSERT(state.finished);
1233
1234 error = 0;
1235
1236 if (buf != NULL) {
1237 if (error == 0 && pt->is_read)
1238 error = copyout(buf, pt->buf, pt->len);
1239 kmem_free:
1240 kmem_free(buf, pt->len);
1241 }
1242
1243 return error;
1244 }
1245
1246 static void
1247 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1248 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1249 {
1250 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1251 uint32_t tail;
1252
1253 mutex_enter(&q->q_sq_mtx);
1254 tail = q->q_sq_tail;
1255 if (++q->q_sq_tail >= q->q_entries)
1256 q->q_sq_tail = 0;
1257
1258 sqe += tail;
1259
1260 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1261 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1262 memset(sqe, 0, sizeof(*sqe));
1263 (*fill)(q, ccb, sqe);
1264 htolem16(&sqe->cid, ccb->ccb_id);
1265 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1266 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1267
1268 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1269 mutex_exit(&q->q_sq_mtx);
1270 }
1271
1272 struct nvme_poll_state {
1273 struct nvme_sqe s;
1274 struct nvme_cqe c;
1275 void *cookie;
1276 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1277 };
1278
1279 static int
1280 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1281 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1282 {
1283 struct nvme_poll_state state;
1284 uint16_t flags;
1285 int step = 10;
1286 int maxloop = timo_sec * 1000000 / step;
1287 int error = 0;
1288
1289 memset(&state, 0, sizeof(state));
1290 (*fill)(q, ccb, &state.s);
1291
1292 state.done = ccb->ccb_done;
1293 state.cookie = ccb->ccb_cookie;
1294
1295 ccb->ccb_done = nvme_poll_done;
1296 ccb->ccb_cookie = &state;
1297
1298 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1299 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1300 if (nvme_q_complete(sc, q) == 0)
1301 delay(step);
1302
1303 if (timo_sec >= 0 && --maxloop <= 0) {
1304 error = ETIMEDOUT;
1305 break;
1306 }
1307 }
1308
1309 if (error == 0) {
1310 flags = lemtoh16(&state.c.flags);
1311 return flags & ~NVME_CQE_PHASE;
1312 } else {
1313 /*
1314 * If it succeds later, it would hit ccb which will have been
1315 * already reused for something else. Not good. Cross
1316 * fingers and hope for best. XXX do controller reset?
1317 */
1318 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1319
1320 /* Invoke the callback to clean state anyway */
1321 struct nvme_cqe cqe;
1322 memset(&cqe, 0, sizeof(cqe));
1323 ccb->ccb_done(q, ccb, &cqe);
1324
1325 return 1;
1326 }
1327 }
1328
1329 static void
1330 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1331 {
1332 struct nvme_sqe *sqe = slot;
1333 struct nvme_poll_state *state = ccb->ccb_cookie;
1334
1335 *sqe = state->s;
1336 }
1337
1338 static void
1339 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1340 struct nvme_cqe *cqe)
1341 {
1342 struct nvme_poll_state *state = ccb->ccb_cookie;
1343
1344 state->c = *cqe;
1345 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1346
1347 ccb->ccb_cookie = state->cookie;
1348 state->done(q, ccb, &state->c);
1349 }
1350
1351 static void
1352 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1353 {
1354 struct nvme_sqe *src = ccb->ccb_cookie;
1355 struct nvme_sqe *dst = slot;
1356
1357 *dst = *src;
1358 }
1359
1360 static void
1361 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1362 struct nvme_cqe *cqe)
1363 {
1364 }
1365
1366 static int
1367 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1368 {
1369 struct nvme_ccb *ccb;
1370 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1371 uint16_t flags;
1372 int rv = 0;
1373
1374 mutex_enter(&q->q_cq_mtx);
1375
1376 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1377 for (;;) {
1378 cqe = &ring[q->q_cq_head];
1379 flags = lemtoh16(&cqe->flags);
1380 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1381 break;
1382
1383 ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1384
1385 if (++q->q_cq_head >= q->q_entries) {
1386 q->q_cq_head = 0;
1387 q->q_cq_phase ^= NVME_CQE_PHASE;
1388 }
1389
1390 #ifdef DEBUG
1391 /*
1392 * If we get spurious completion notification, something
1393 * is seriously hosed up. Very likely DMA to some random
1394 * memory place happened, so just bail out.
1395 */
1396 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1397 panic("%s: invalid ccb detected",
1398 device_xname(sc->sc_dev));
1399 /* NOTREACHED */
1400 }
1401 #endif
1402
1403 rv++;
1404
1405 /*
1406 * Unlock the mutex before calling the ccb_done callback
1407 * and re-lock afterwards. The callback triggers lddone()
1408 * which schedules another i/o, and also calls nvme_ccb_put().
1409 * Unlock/relock avoids possibility of deadlock.
1410 */
1411 mutex_exit(&q->q_cq_mtx);
1412 ccb->ccb_done(q, ccb, cqe);
1413 mutex_enter(&q->q_cq_mtx);
1414 }
1415 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1416
1417 if (rv)
1418 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1419
1420 mutex_exit(&q->q_cq_mtx);
1421
1422 return rv;
1423 }
1424
1425 static void
1426 nvme_q_wait_complete(struct nvme_softc *sc,
1427 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1428 {
1429 mutex_enter(&q->q_ccb_mtx);
1430 if (finished(cookie))
1431 goto out;
1432
1433 for(;;) {
1434 q->q_ccb_waiting = true;
1435 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1436
1437 if (finished(cookie))
1438 break;
1439 }
1440
1441 out:
1442 mutex_exit(&q->q_ccb_mtx);
1443 }
1444
1445 static int
1446 nvme_identify(struct nvme_softc *sc, u_int mps)
1447 {
1448 char sn[41], mn[81], fr[17];
1449 struct nvm_identify_controller *identify;
1450 struct nvme_dmamem *mem;
1451 struct nvme_ccb *ccb;
1452 u_int mdts;
1453 int rv = 1;
1454
1455 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1456 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1457
1458 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1459 if (mem == NULL)
1460 return 1;
1461
1462 ccb->ccb_done = nvme_empty_done;
1463 ccb->ccb_cookie = mem;
1464
1465 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1466 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1467 NVME_TIMO_IDENT);
1468 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1469
1470 nvme_ccb_put(sc->sc_admin_q, ccb);
1471
1472 if (rv != 0)
1473 goto done;
1474
1475 identify = NVME_DMA_KVA(mem);
1476 sc->sc_identify = *identify;
1477 identify = NULL;
1478
1479 /* Convert data to host endian */
1480 nvme_identify_controller_swapbytes(&sc->sc_identify);
1481
1482 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1483 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1484 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1485 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1486 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1487 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1488 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1489 sn);
1490
1491 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1492
1493 if (sc->sc_identify.mdts > 0) {
1494 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1495 if (mdts < sc->sc_mdts)
1496 sc->sc_mdts = mdts;
1497 }
1498
1499 sc->sc_nn = sc->sc_identify.nn;
1500
1501 done:
1502 nvme_dmamem_free(sc, mem);
1503
1504 return rv;
1505 }
1506
1507 static int
1508 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1509 {
1510 struct nvme_sqe_q sqe;
1511 struct nvme_ccb *ccb;
1512 int rv;
1513
1514 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1515 return 1;
1516
1517 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1518 KASSERT(ccb != NULL);
1519
1520 ccb->ccb_done = nvme_empty_done;
1521 ccb->ccb_cookie = &sqe;
1522
1523 memset(&sqe, 0, sizeof(sqe));
1524 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1525 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1526 htolem16(&sqe.qsize, q->q_entries - 1);
1527 htolem16(&sqe.qid, q->q_id);
1528 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1529 if (sc->sc_use_mq)
1530 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1531
1532 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1533 if (rv != 0)
1534 goto fail;
1535
1536 ccb->ccb_done = nvme_empty_done;
1537 ccb->ccb_cookie = &sqe;
1538
1539 memset(&sqe, 0, sizeof(sqe));
1540 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1541 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1542 htolem16(&sqe.qsize, q->q_entries - 1);
1543 htolem16(&sqe.qid, q->q_id);
1544 htolem16(&sqe.cqid, q->q_id);
1545 sqe.qflags = NVM_SQE_Q_PC;
1546
1547 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1548 if (rv != 0)
1549 goto fail;
1550
1551 nvme_ccb_put(sc->sc_admin_q, ccb);
1552 return 0;
1553
1554 fail:
1555 if (sc->sc_use_mq)
1556 sc->sc_intr_disestablish(sc, q->q_id);
1557
1558 nvme_ccb_put(sc->sc_admin_q, ccb);
1559 return rv;
1560 }
1561
1562 static int
1563 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1564 {
1565 struct nvme_sqe_q sqe;
1566 struct nvme_ccb *ccb;
1567 int rv;
1568
1569 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1570 KASSERT(ccb != NULL);
1571
1572 ccb->ccb_done = nvme_empty_done;
1573 ccb->ccb_cookie = &sqe;
1574
1575 memset(&sqe, 0, sizeof(sqe));
1576 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1577 htolem16(&sqe.qid, q->q_id);
1578
1579 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1580 if (rv != 0)
1581 goto fail;
1582
1583 ccb->ccb_done = nvme_empty_done;
1584 ccb->ccb_cookie = &sqe;
1585
1586 memset(&sqe, 0, sizeof(sqe));
1587 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1588 htolem16(&sqe.qid, q->q_id);
1589
1590 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1591 if (rv != 0)
1592 goto fail;
1593
1594 fail:
1595 nvme_ccb_put(sc->sc_admin_q, ccb);
1596
1597 if (rv == 0 && sc->sc_use_mq) {
1598 if (sc->sc_intr_disestablish(sc, q->q_id))
1599 rv = 1;
1600 }
1601
1602 return rv;
1603 }
1604
1605 static void
1606 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1607 {
1608 struct nvme_sqe *sqe = slot;
1609 struct nvme_dmamem *mem = ccb->ccb_cookie;
1610
1611 sqe->opcode = NVM_ADMIN_IDENTIFY;
1612 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1613 htolem32(&sqe->cdw10, 1);
1614 }
1615
1616 static int
1617 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1618 u_int *nsqa)
1619 {
1620 struct nvme_pt_state state;
1621 struct nvme_pt_command pt;
1622 struct nvme_ccb *ccb;
1623 int rv;
1624
1625 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1626 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1627
1628 memset(&pt, 0, sizeof(pt));
1629 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1630 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1631 pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1632
1633 memset(&state, 0, sizeof(state));
1634 state.pt = &pt;
1635 state.finished = false;
1636
1637 ccb->ccb_done = nvme_pt_done;
1638 ccb->ccb_cookie = &state;
1639
1640 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1641
1642 if (rv != 0) {
1643 *ncqa = *nsqa = 0;
1644 return EIO;
1645 }
1646
1647 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1648 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1649
1650 return 0;
1651 }
1652
1653 static int
1654 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1655 {
1656 struct nvme_softc *sc = q->q_sc;
1657 struct nvme_ccb *ccb;
1658 bus_addr_t off;
1659 uint64_t *prpl;
1660 u_int i;
1661
1662 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1663 cv_init(&q->q_ccb_wait, "nvmeqw");
1664 q->q_ccb_waiting = false;
1665 SIMPLEQ_INIT(&q->q_ccb_list);
1666
1667 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1668
1669 q->q_nccbs = nccbs;
1670 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1671 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1672
1673 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1674 off = 0;
1675
1676 for (i = 0; i < nccbs; i++) {
1677 ccb = &q->q_ccbs[i];
1678
1679 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1680 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1681 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1682 &ccb->ccb_dmamap) != 0)
1683 goto free_maps;
1684
1685 ccb->ccb_id = i;
1686 ccb->ccb_prpl = prpl;
1687 ccb->ccb_prpl_off = off;
1688 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1689
1690 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1691
1692 prpl += sc->sc_max_sgl;
1693 off += sizeof(*prpl) * sc->sc_max_sgl;
1694 }
1695
1696 return 0;
1697
1698 free_maps:
1699 nvme_ccbs_free(q);
1700 return 1;
1701 }
1702
1703 static struct nvme_ccb *
1704 nvme_ccb_get(struct nvme_queue *q, bool wait)
1705 {
1706 struct nvme_ccb *ccb = NULL;
1707
1708 mutex_enter(&q->q_ccb_mtx);
1709 again:
1710 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1711 if (ccb != NULL) {
1712 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1713 #ifdef DEBUG
1714 ccb->ccb_cookie = NULL;
1715 #endif
1716 } else {
1717 if (__predict_false(wait)) {
1718 q->q_ccb_waiting = true;
1719 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1720 goto again;
1721 }
1722 }
1723 mutex_exit(&q->q_ccb_mtx);
1724
1725 return ccb;
1726 }
1727
1728 static void
1729 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1730 {
1731
1732 mutex_enter(&q->q_ccb_mtx);
1733 #ifdef DEBUG
1734 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1735 #endif
1736 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1737
1738 /* It's unlikely there are any waiters, it's not used for regular I/O */
1739 if (__predict_false(q->q_ccb_waiting)) {
1740 q->q_ccb_waiting = false;
1741 cv_broadcast(&q->q_ccb_wait);
1742 }
1743
1744 mutex_exit(&q->q_ccb_mtx);
1745 }
1746
1747 static void
1748 nvme_ccbs_free(struct nvme_queue *q)
1749 {
1750 struct nvme_softc *sc = q->q_sc;
1751 struct nvme_ccb *ccb;
1752
1753 mutex_enter(&q->q_ccb_mtx);
1754 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1755 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1756 /*
1757 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1758 * internally. don't hold spin mutex
1759 */
1760 mutex_exit(&q->q_ccb_mtx);
1761 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1762 mutex_enter(&q->q_ccb_mtx);
1763 }
1764 mutex_exit(&q->q_ccb_mtx);
1765
1766 nvme_dmamem_free(sc, q->q_ccb_prpls);
1767 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1768 q->q_ccbs = NULL;
1769 cv_destroy(&q->q_ccb_wait);
1770 mutex_destroy(&q->q_ccb_mtx);
1771 }
1772
1773 static struct nvme_queue *
1774 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1775 {
1776 struct nvme_queue *q;
1777
1778 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1779 q->q_sc = sc;
1780 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1781 sizeof(struct nvme_sqe) * entries);
1782 if (q->q_sq_dmamem == NULL)
1783 goto free;
1784
1785 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1786 sizeof(struct nvme_cqe) * entries);
1787 if (q->q_cq_dmamem == NULL)
1788 goto free_sq;
1789
1790 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1791 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1792
1793 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1794 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1795 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1796 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1797 q->q_id = id;
1798 q->q_entries = entries;
1799 q->q_sq_tail = 0;
1800 q->q_cq_head = 0;
1801 q->q_cq_phase = NVME_CQE_PHASE;
1802
1803 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1804 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1805
1806 /*
1807 * Due to definition of full and empty queue (queue is empty
1808 * when head == tail, full when tail is one less then head),
1809 * we can actually only have (entries - 1) in-flight commands.
1810 */
1811 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1812 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1813 goto free_cq;
1814 }
1815
1816 return q;
1817
1818 free_cq:
1819 nvme_dmamem_free(sc, q->q_cq_dmamem);
1820 free_sq:
1821 nvme_dmamem_free(sc, q->q_sq_dmamem);
1822 free:
1823 kmem_free(q, sizeof(*q));
1824
1825 return NULL;
1826 }
1827
1828 static void
1829 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1830 {
1831 nvme_ccbs_free(q);
1832 mutex_destroy(&q->q_sq_mtx);
1833 mutex_destroy(&q->q_cq_mtx);
1834 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1835 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1836 nvme_dmamem_free(sc, q->q_cq_dmamem);
1837 nvme_dmamem_free(sc, q->q_sq_dmamem);
1838 kmem_free(q, sizeof(*q));
1839 }
1840
1841 int
1842 nvme_intr(void *xsc)
1843 {
1844 struct nvme_softc *sc = xsc;
1845
1846 /*
1847 * INTx is level triggered, controller deasserts the interrupt only
1848 * when we advance command queue head via write to the doorbell.
1849 * Tell the controller to block the interrupts while we process
1850 * the queue(s).
1851 */
1852 nvme_write4(sc, NVME_INTMS, 1);
1853
1854 softint_schedule(sc->sc_softih[0]);
1855
1856 /* don't know, might not have been for us */
1857 return 1;
1858 }
1859
1860 void
1861 nvme_softintr_intx(void *xq)
1862 {
1863 struct nvme_queue *q = xq;
1864 struct nvme_softc *sc = q->q_sc;
1865
1866 nvme_q_complete(sc, sc->sc_admin_q);
1867 if (sc->sc_q != NULL)
1868 nvme_q_complete(sc, sc->sc_q[0]);
1869
1870 /*
1871 * Processing done, tell controller to issue interrupts again. There
1872 * is no race, as NVMe spec requires the controller to maintain state,
1873 * and assert the interrupt whenever there are unacknowledged
1874 * completion queue entries.
1875 */
1876 nvme_write4(sc, NVME_INTMC, 1);
1877 }
1878
1879 int
1880 nvme_intr_msi(void *xq)
1881 {
1882 struct nvme_queue *q = xq;
1883
1884 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1885 && q->q_sc->sc_softih[q->q_id]);
1886
1887 /*
1888 * MSI/MSI-X are edge triggered, so can handover processing to softint
1889 * without masking the interrupt.
1890 */
1891 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1892
1893 return 1;
1894 }
1895
1896 void
1897 nvme_softintr_msi(void *xq)
1898 {
1899 struct nvme_queue *q = xq;
1900 struct nvme_softc *sc = q->q_sc;
1901
1902 nvme_q_complete(sc, q);
1903 }
1904
1905 static struct nvme_dmamem *
1906 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1907 {
1908 struct nvme_dmamem *ndm;
1909 int nsegs;
1910
1911 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1912 if (ndm == NULL)
1913 return NULL;
1914
1915 ndm->ndm_size = size;
1916
1917 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
1918 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1919 goto ndmfree;
1920
1921 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1922 1, &nsegs, BUS_DMA_WAITOK) != 0)
1923 goto destroy;
1924
1925 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1926 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1927 goto free;
1928 memset(ndm->ndm_kva, 0, size);
1929
1930 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1931 NULL, BUS_DMA_WAITOK) != 0)
1932 goto unmap;
1933
1934 return ndm;
1935
1936 unmap:
1937 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1938 free:
1939 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1940 destroy:
1941 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1942 ndmfree:
1943 kmem_free(ndm, sizeof(*ndm));
1944 return NULL;
1945 }
1946
1947 static void
1948 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1949 {
1950 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1951 0, NVME_DMA_LEN(mem), ops);
1952 }
1953
1954 void
1955 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1956 {
1957 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1958 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1959 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1960 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1961 kmem_free(ndm, sizeof(*ndm));
1962 }
1963
1964 /*
1965 * ioctl
1966 */
1967
1968 dev_type_open(nvmeopen);
1969 dev_type_close(nvmeclose);
1970 dev_type_ioctl(nvmeioctl);
1971
1972 const struct cdevsw nvme_cdevsw = {
1973 .d_open = nvmeopen,
1974 .d_close = nvmeclose,
1975 .d_read = noread,
1976 .d_write = nowrite,
1977 .d_ioctl = nvmeioctl,
1978 .d_stop = nostop,
1979 .d_tty = notty,
1980 .d_poll = nopoll,
1981 .d_mmap = nommap,
1982 .d_kqfilter = nokqfilter,
1983 .d_discard = nodiscard,
1984 .d_flag = D_OTHER,
1985 };
1986
1987 /*
1988 * Accept an open operation on the control device.
1989 */
1990 int
1991 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1992 {
1993 struct nvme_softc *sc;
1994 int unit = minor(dev) / 0x10000;
1995 int nsid = minor(dev) & 0xffff;
1996 int nsidx;
1997
1998 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1999 return ENXIO;
2000 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2001 return ENXIO;
2002
2003 if (nsid == 0) {
2004 /* controller */
2005 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2006 return EBUSY;
2007 SET(sc->sc_flags, NVME_F_OPEN);
2008 } else {
2009 /* namespace */
2010 nsidx = nsid - 1;
2011 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2012 return ENXIO;
2013 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2014 return EBUSY;
2015 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2016 }
2017 return 0;
2018 }
2019
2020 /*
2021 * Accept the last close on the control device.
2022 */
2023 int
2024 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2025 {
2026 struct nvme_softc *sc;
2027 int unit = minor(dev) / 0x10000;
2028 int nsid = minor(dev) & 0xffff;
2029 int nsidx;
2030
2031 sc = device_lookup_private(&nvme_cd, unit);
2032 if (sc == NULL)
2033 return ENXIO;
2034
2035 if (nsid == 0) {
2036 /* controller */
2037 CLR(sc->sc_flags, NVME_F_OPEN);
2038 } else {
2039 /* namespace */
2040 nsidx = nsid - 1;
2041 if (nsidx >= sc->sc_nn)
2042 return ENXIO;
2043 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2044 }
2045
2046 return 0;
2047 }
2048
2049 /*
2050 * Handle control operations.
2051 */
2052 int
2053 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2054 {
2055 struct nvme_softc *sc;
2056 int unit = minor(dev) / 0x10000;
2057 int nsid = minor(dev) & 0xffff;
2058 struct nvme_pt_command *pt;
2059
2060 sc = device_lookup_private(&nvme_cd, unit);
2061 if (sc == NULL)
2062 return ENXIO;
2063
2064 switch (cmd) {
2065 case NVME_PASSTHROUGH_CMD:
2066 pt = data;
2067 return nvme_command_passthrough(sc, data,
2068 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2069 }
2070
2071 return ENOTTY;
2072 }
2073