nvme.c revision 1.55 1 /* $NetBSD: nvme.c,v 1.55 2021/04/24 23:36:55 thorpej Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.55 2021/04/24 23:36:55 thorpej Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44 #include "locators.h"
45
46 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
47
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50
51 static int nvme_print(void *, const char *);
52
53 static int nvme_ready(struct nvme_softc *, uint32_t);
54 static int nvme_enable(struct nvme_softc *, u_int);
55 static int nvme_disable(struct nvme_softc *);
56 static int nvme_shutdown(struct nvme_softc *);
57
58 #ifdef NVME_DEBUG
59 static void nvme_dumpregs(struct nvme_softc *);
60 #endif
61 static int nvme_identify(struct nvme_softc *, u_int);
62 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
63 void *);
64
65 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
66 static void nvme_ccbs_free(struct nvme_queue *);
67
68 static struct nvme_ccb *
69 nvme_ccb_get(struct nvme_queue *, bool);
70 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
71
72 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
73 struct nvme_ccb *, void (*)(struct nvme_queue *,
74 struct nvme_ccb *, void *), int);
75 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
76 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
77 struct nvme_cqe *);
78 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
79 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
80 struct nvme_cqe *);
81
82 static struct nvme_queue *
83 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
84 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
85 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
86 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
87 struct nvme_ccb *, void (*)(struct nvme_queue *,
88 struct nvme_ccb *, void *));
89 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
90 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
91 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
92 bool (*)(void *), void *);
93
94 static struct nvme_dmamem *
95 nvme_dmamem_alloc(struct nvme_softc *, size_t);
96 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
97 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
98 int);
99
100 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
101 void *);
102 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
103 struct nvme_cqe *);
104 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
105 void *);
106 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
107 struct nvme_cqe *);
108 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
109 void *);
110 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
111 struct nvme_cqe *);
112
113 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
114 void *);
115 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
116 struct nvme_cqe *);
117 static int nvme_command_passthrough(struct nvme_softc *,
118 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
119
120 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
121 u_int *);
122
123 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
124 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
125 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
126 #define NVME_TIMO_SY 60 /* sync cache timeout */
127
128 #define nvme_read4(_s, _r) \
129 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
130 #define nvme_write4(_s, _r, _v) \
131 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
132 /*
133 * Some controllers, at least Apple NVMe, always require split
134 * transfers, so don't use bus_space_{read,write}_8() on LP64.
135 */
136 static inline uint64_t
137 nvme_read8(struct nvme_softc *sc, bus_size_t r)
138 {
139 uint64_t v;
140 uint32_t *a = (uint32_t *)&v;
141
142 #if _BYTE_ORDER == _LITTLE_ENDIAN
143 a[0] = nvme_read4(sc, r);
144 a[1] = nvme_read4(sc, r + 4);
145 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
146 a[1] = nvme_read4(sc, r);
147 a[0] = nvme_read4(sc, r + 4);
148 #endif
149
150 return v;
151 }
152
153 static inline void
154 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
155 {
156 uint32_t *a = (uint32_t *)&v;
157
158 #if _BYTE_ORDER == _LITTLE_ENDIAN
159 nvme_write4(sc, r, a[0]);
160 nvme_write4(sc, r + 4, a[1]);
161 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
162 nvme_write4(sc, r, a[1]);
163 nvme_write4(sc, r + 4, a[0]);
164 #endif
165 }
166 #define nvme_barrier(_s, _r, _l, _f) \
167 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
168
169 #ifdef NVME_DEBUG
170 static __used void
171 nvme_dumpregs(struct nvme_softc *sc)
172 {
173 uint64_t r8;
174 uint32_t r4;
175
176 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
177 r8 = nvme_read8(sc, NVME_CAP);
178 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
179 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
180 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
181 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
182 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
183 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
184 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
185 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
186 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
187 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
188 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
189 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
190
191 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
192
193 r4 = nvme_read4(sc, NVME_CC);
194 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
195 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
196 (1 << NVME_CC_IOCQES_R(r4)));
197 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
198 (1 << NVME_CC_IOSQES_R(r4)));
199 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
200 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
201 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
202 (1 << NVME_CC_MPS_R(r4)));
203 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
204 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
205
206 r4 = nvme_read4(sc, NVME_CSTS);
207 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
208 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
209 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
210 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
211
212 r4 = nvme_read4(sc, NVME_AQA);
213 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
214 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
215 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
216
217 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
218 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
219 #undef DEVNAME
220 }
221 #endif /* NVME_DEBUG */
222
223 static int
224 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
225 {
226 u_int i = 0;
227
228 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
229 if (i++ > sc->sc_rdy_to)
230 return ENXIO;
231
232 delay(1000);
233 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
234 }
235
236 return 0;
237 }
238
239 static int
240 nvme_enable(struct nvme_softc *sc, u_int mps)
241 {
242 uint32_t cc, csts;
243 int error;
244
245 cc = nvme_read4(sc, NVME_CC);
246 csts = nvme_read4(sc, NVME_CSTS);
247
248 /*
249 * See note in nvme_disable. Short circuit if we're already enabled.
250 */
251 if (ISSET(cc, NVME_CC_EN)) {
252 if (ISSET(csts, NVME_CSTS_RDY))
253 return 0;
254
255 goto waitready;
256 } else {
257 /* EN == 0 already wait for RDY == 0 or fail */
258 error = nvme_ready(sc, 0);
259 if (error)
260 return error;
261 }
262
263 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
264 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
265 delay(5000);
266 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
267 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
268 delay(5000);
269
270 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
271 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
272 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
273 delay(5000);
274
275 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
276 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
277 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
278 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
279 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
280 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
281 SET(cc, NVME_CC_MPS(mps));
282 SET(cc, NVME_CC_EN);
283
284 nvme_write4(sc, NVME_CC, cc);
285 nvme_barrier(sc, 0, sc->sc_ios,
286 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
287
288 waitready:
289 return nvme_ready(sc, NVME_CSTS_RDY);
290 }
291
292 static int
293 nvme_disable(struct nvme_softc *sc)
294 {
295 uint32_t cc, csts;
296 int error;
297
298 cc = nvme_read4(sc, NVME_CC);
299 csts = nvme_read4(sc, NVME_CSTS);
300
301 /*
302 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
303 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
304 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
305 * isn't the desired value. Short circuit if we're already disabled.
306 */
307 if (ISSET(cc, NVME_CC_EN)) {
308 if (!ISSET(csts, NVME_CSTS_RDY)) {
309 /* EN == 1, wait for RDY == 1 or fail */
310 error = nvme_ready(sc, NVME_CSTS_RDY);
311 if (error)
312 return error;
313 }
314 } else {
315 /* EN == 0 already wait for RDY == 0 */
316 if (!ISSET(csts, NVME_CSTS_RDY))
317 return 0;
318
319 goto waitready;
320 }
321
322 CLR(cc, NVME_CC_EN);
323 nvme_write4(sc, NVME_CC, cc);
324 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
325
326 /*
327 * Some drives have issues with accessing the mmio after we disable,
328 * so delay for a bit after we write the bit to cope with these issues.
329 */
330 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
331 delay(B4_CHK_RDY_DELAY_MS);
332
333 waitready:
334 return nvme_ready(sc, 0);
335 }
336
337 int
338 nvme_attach(struct nvme_softc *sc)
339 {
340 uint64_t cap;
341 uint32_t reg;
342 u_int dstrd;
343 u_int mps = PAGE_SHIFT;
344 u_int ncq, nsq;
345 uint16_t adminq_entries = nvme_adminq_size;
346 uint16_t ioq_entries = nvme_ioq_size;
347 int i;
348
349 reg = nvme_read4(sc, NVME_VS);
350 if (reg == 0xffffffff) {
351 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
352 return 1;
353 }
354
355 if (NVME_VS_TER(reg) == 0)
356 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
357 NVME_VS_MNR(reg));
358 else
359 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
360 NVME_VS_MNR(reg), NVME_VS_TER(reg));
361
362 cap = nvme_read8(sc, NVME_CAP);
363 dstrd = NVME_CAP_DSTRD(cap);
364 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
365 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
366 "is greater than CPU page size %u\n",
367 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
368 return 1;
369 }
370 if (NVME_CAP_MPSMAX(cap) < mps)
371 mps = NVME_CAP_MPSMAX(cap);
372 if (ioq_entries > NVME_CAP_MQES(cap))
373 ioq_entries = NVME_CAP_MQES(cap);
374
375 /* set initial values to be used for admin queue during probe */
376 sc->sc_rdy_to = NVME_CAP_TO(cap);
377 sc->sc_mps = 1 << mps;
378 sc->sc_mdts = MAXPHYS;
379 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
380
381 if (nvme_disable(sc) != 0) {
382 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
383 return 1;
384 }
385
386 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
387 if (sc->sc_admin_q == NULL) {
388 aprint_error_dev(sc->sc_dev,
389 "unable to allocate admin queue\n");
390 return 1;
391 }
392 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
393 goto free_admin_q;
394
395 if (nvme_enable(sc, mps) != 0) {
396 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
397 goto disestablish_admin_q;
398 }
399
400 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
401 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
402 goto disable;
403 }
404 if (sc->sc_nn == 0) {
405 aprint_error_dev(sc->sc_dev, "namespace not found\n");
406 goto disable;
407 }
408
409 /* we know how big things are now */
410 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
411
412 /* reallocate ccbs of admin queue with new max sgl. */
413 nvme_ccbs_free(sc->sc_admin_q);
414 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
415
416 if (sc->sc_use_mq) {
417 /* Limit the number of queues to the number allocated in HW */
418 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
419 aprint_error_dev(sc->sc_dev,
420 "unable to get number of queues\n");
421 goto disable;
422 }
423 if (sc->sc_nq > ncq)
424 sc->sc_nq = ncq;
425 if (sc->sc_nq > nsq)
426 sc->sc_nq = nsq;
427 }
428
429 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
430 for (i = 0; i < sc->sc_nq; i++) {
431 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
432 if (sc->sc_q[i] == NULL) {
433 aprint_error_dev(sc->sc_dev,
434 "unable to allocate io queue\n");
435 goto free_q;
436 }
437 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
438 aprint_error_dev(sc->sc_dev,
439 "unable to create io queue\n");
440 nvme_q_free(sc, sc->sc_q[i]);
441 goto free_q;
442 }
443 }
444
445 if (!sc->sc_use_mq)
446 nvme_write4(sc, NVME_INTMC, 1);
447
448 /* probe subdevices */
449 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
450 KM_SLEEP);
451 nvme_rescan(sc->sc_dev, NULL, NULL);
452
453 return 0;
454
455 free_q:
456 while (--i >= 0) {
457 nvme_q_delete(sc, sc->sc_q[i]);
458 nvme_q_free(sc, sc->sc_q[i]);
459 }
460 disable:
461 nvme_disable(sc);
462 disestablish_admin_q:
463 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
464 free_admin_q:
465 nvme_q_free(sc, sc->sc_admin_q);
466
467 return 1;
468 }
469
470 int
471 nvme_rescan(device_t self, const char *ifattr, const int *locs)
472 {
473 struct nvme_softc *sc = device_private(self);
474 struct nvme_attach_args naa;
475 struct nvm_namespace_format *f;
476 struct nvme_namespace *ns;
477 uint64_t cap;
478 int ioq_entries = nvme_ioq_size;
479 int i, mlocs[NVMECF_NLOCS];
480 int error;
481
482 cap = nvme_read8(sc, NVME_CAP);
483 if (ioq_entries > NVME_CAP_MQES(cap))
484 ioq_entries = NVME_CAP_MQES(cap);
485
486 for (i = 1; i <= sc->sc_nn; i++) {
487 if (sc->sc_namespaces[i - 1].dev)
488 continue;
489
490 /* identify to check for availability */
491 error = nvme_ns_identify(sc, i);
492 if (error) {
493 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
494 continue;
495 }
496
497 ns = nvme_ns_get(sc, i);
498 KASSERT(ns);
499
500 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
501
502 /*
503 * NVME1.0e 6.11 Identify command
504 *
505 * LBADS values smaller than 9 are not supported, a value
506 * of zero means that the format is not used.
507 */
508 if (f->lbads < 9) {
509 if (f->lbads > 0)
510 aprint_error_dev(self,
511 "unsupported logical data size %u\n", f->lbads);
512 continue;
513 }
514
515 mlocs[NVMECF_NSID] = i;
516
517 memset(&naa, 0, sizeof(naa));
518 naa.naa_nsid = i;
519 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
520 naa.naa_maxphys = sc->sc_mdts;
521 naa.naa_typename = sc->sc_modelname;
522 sc->sc_namespaces[i - 1].dev =
523 config_found(sc->sc_dev, &naa, nvme_print,
524 CFARG_SUBMATCH, config_stdsubmatch,
525 CFARG_LOCATORS, mlocs,
526 CFARG_EOL);
527 }
528 return 0;
529 }
530
531 static int
532 nvme_print(void *aux, const char *pnp)
533 {
534 struct nvme_attach_args *naa = aux;
535
536 if (pnp)
537 aprint_normal("ld at %s", pnp);
538
539 if (naa->naa_nsid > 0)
540 aprint_normal(" nsid %d", naa->naa_nsid);
541
542 return UNCONF;
543 }
544
545 int
546 nvme_detach(struct nvme_softc *sc, int flags)
547 {
548 int i, error;
549
550 error = config_detach_children(sc->sc_dev, flags);
551 if (error)
552 return error;
553
554 error = nvme_shutdown(sc);
555 if (error)
556 return error;
557
558 /* from now on we are committed to detach, following will never fail */
559 for (i = 0; i < sc->sc_nq; i++)
560 nvme_q_free(sc, sc->sc_q[i]);
561 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
562 nvme_q_free(sc, sc->sc_admin_q);
563
564 return 0;
565 }
566
567 static int
568 nvme_shutdown(struct nvme_softc *sc)
569 {
570 uint32_t cc, csts;
571 bool disabled = false;
572 int i;
573
574 if (!sc->sc_use_mq)
575 nvme_write4(sc, NVME_INTMS, 1);
576
577 for (i = 0; i < sc->sc_nq; i++) {
578 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
579 aprint_error_dev(sc->sc_dev,
580 "unable to delete io queue %d, disabling\n", i + 1);
581 disabled = true;
582 }
583 }
584 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
585 if (disabled)
586 goto disable;
587
588 cc = nvme_read4(sc, NVME_CC);
589 CLR(cc, NVME_CC_SHN_MASK);
590 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
591 nvme_write4(sc, NVME_CC, cc);
592
593 for (i = 0; i < 4000; i++) {
594 nvme_barrier(sc, 0, sc->sc_ios,
595 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
596 csts = nvme_read4(sc, NVME_CSTS);
597 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
598 return 0;
599
600 delay(1000);
601 }
602
603 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
604
605 disable:
606 nvme_disable(sc);
607 return 0;
608 }
609
610 void
611 nvme_childdet(device_t self, device_t child)
612 {
613 struct nvme_softc *sc = device_private(self);
614 int i;
615
616 for (i = 0; i < sc->sc_nn; i++) {
617 if (sc->sc_namespaces[i].dev == child) {
618 /* Already freed ns->ident. */
619 sc->sc_namespaces[i].dev = NULL;
620 break;
621 }
622 }
623 }
624
625 int
626 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
627 {
628 struct nvme_sqe sqe;
629 struct nvm_identify_namespace *identify;
630 struct nvme_dmamem *mem;
631 struct nvme_ccb *ccb;
632 struct nvme_namespace *ns;
633 int rv;
634
635 KASSERT(nsid > 0);
636
637 ns = nvme_ns_get(sc, nsid);
638 KASSERT(ns);
639
640 if (ns->ident != NULL)
641 return 0;
642
643 ccb = nvme_ccb_get(sc->sc_admin_q, false);
644 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
645
646 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
647 if (mem == NULL) {
648 nvme_ccb_put(sc->sc_admin_q, ccb);
649 return ENOMEM;
650 }
651
652 memset(&sqe, 0, sizeof(sqe));
653 sqe.opcode = NVM_ADMIN_IDENTIFY;
654 htolem32(&sqe.nsid, nsid);
655 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
656 htolem32(&sqe.cdw10, 0);
657
658 ccb->ccb_done = nvme_empty_done;
659 ccb->ccb_cookie = &sqe;
660
661 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
662 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
663 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
664
665 nvme_ccb_put(sc->sc_admin_q, ccb);
666
667 if (rv != 0) {
668 rv = EIO;
669 goto done;
670 }
671
672 /* commit */
673
674 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
675 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
676
677 /* Convert data to host endian */
678 nvme_identify_namespace_swapbytes(identify);
679
680 ns->ident = identify;
681
682 done:
683 nvme_dmamem_free(sc, mem);
684
685 return rv;
686 }
687
688 int
689 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
690 struct buf *bp, void *data, size_t datasize,
691 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
692 {
693 struct nvme_queue *q = nvme_get_q(sc, bp, false);
694 struct nvme_ccb *ccb;
695 bus_dmamap_t dmap;
696 int i, error;
697
698 ccb = nvme_ccb_get(q, false);
699 if (ccb == NULL)
700 return EAGAIN;
701
702 ccb->ccb_done = nvme_ns_io_done;
703 ccb->ccb_cookie = cookie;
704
705 /* namespace context */
706 ccb->nnc_nsid = nsid;
707 ccb->nnc_flags = flags;
708 ccb->nnc_buf = bp;
709 ccb->nnc_datasize = datasize;
710 ccb->nnc_secsize = secsize;
711 ccb->nnc_blkno = blkno;
712 ccb->nnc_done = nnc_done;
713
714 dmap = ccb->ccb_dmamap;
715 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
716 datasize, NULL,
717 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
718 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
719 (ISSET(flags, NVME_NS_CTX_F_READ) ?
720 BUS_DMA_READ : BUS_DMA_WRITE));
721 if (error) {
722 nvme_ccb_put(q, ccb);
723 return error;
724 }
725
726 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
727 ISSET(flags, NVME_NS_CTX_F_READ) ?
728 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
729
730 if (dmap->dm_nsegs > 2) {
731 for (i = 1; i < dmap->dm_nsegs; i++) {
732 htolem64(&ccb->ccb_prpl[i - 1],
733 dmap->dm_segs[i].ds_addr);
734 }
735 bus_dmamap_sync(sc->sc_dmat,
736 NVME_DMA_MAP(q->q_ccb_prpls),
737 ccb->ccb_prpl_off,
738 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
739 BUS_DMASYNC_PREWRITE);
740 }
741
742 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
743 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
744 return EIO;
745 return 0;
746 }
747
748 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
749 return 0;
750 }
751
752 static void
753 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
754 {
755 struct nvme_sqe_io *sqe = slot;
756 bus_dmamap_t dmap = ccb->ccb_dmamap;
757
758 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
759 NVM_CMD_READ : NVM_CMD_WRITE;
760 htolem32(&sqe->nsid, ccb->nnc_nsid);
761
762 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
763 switch (dmap->dm_nsegs) {
764 case 1:
765 break;
766 case 2:
767 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
768 break;
769 default:
770 /* the prp list is already set up and synced */
771 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
772 break;
773 }
774
775 htolem64(&sqe->slba, ccb->nnc_blkno);
776
777 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
778 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
779
780 /* guaranteed by upper layers, but check just in case */
781 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
782 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
783 }
784
785 static void
786 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
787 struct nvme_cqe *cqe)
788 {
789 struct nvme_softc *sc = q->q_sc;
790 bus_dmamap_t dmap = ccb->ccb_dmamap;
791 void *nnc_cookie = ccb->ccb_cookie;
792 nvme_nnc_done nnc_done = ccb->nnc_done;
793 struct buf *bp = ccb->nnc_buf;
794
795 if (dmap->dm_nsegs > 2) {
796 bus_dmamap_sync(sc->sc_dmat,
797 NVME_DMA_MAP(q->q_ccb_prpls),
798 ccb->ccb_prpl_off,
799 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
800 BUS_DMASYNC_POSTWRITE);
801 }
802
803 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
804 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
805 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
806
807 bus_dmamap_unload(sc->sc_dmat, dmap);
808 nvme_ccb_put(q, ccb);
809
810 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
811 }
812
813 /*
814 * If there is no volatile write cache, it makes no sense to issue
815 * flush commands or query for the status.
816 */
817 static bool
818 nvme_has_volatile_write_cache(struct nvme_softc *sc)
819 {
820 /* sc_identify is filled during attachment */
821 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
822 }
823
824 static bool
825 nvme_ns_sync_finished(void *cookie)
826 {
827 int *result = cookie;
828
829 return (*result != 0);
830 }
831
832 int
833 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
834 {
835 struct nvme_queue *q = nvme_get_q(sc, NULL, true);
836 struct nvme_ccb *ccb;
837 int result = 0;
838
839 if (!nvme_has_volatile_write_cache(sc)) {
840 /* cache not present, no value in trying to flush it */
841 return 0;
842 }
843
844 ccb = nvme_ccb_get(q, true);
845 KASSERT(ccb != NULL);
846
847 ccb->ccb_done = nvme_ns_sync_done;
848 ccb->ccb_cookie = &result;
849
850 /* namespace context */
851 ccb->nnc_nsid = nsid;
852 ccb->nnc_flags = flags;
853 ccb->nnc_done = NULL;
854
855 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
856 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
857 return EIO;
858 return 0;
859 }
860
861 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
862
863 /* wait for completion */
864 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
865 KASSERT(result != 0);
866
867 return (result > 0) ? 0 : EIO;
868 }
869
870 static void
871 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
872 {
873 struct nvme_sqe *sqe = slot;
874
875 sqe->opcode = NVM_CMD_FLUSH;
876 htolem32(&sqe->nsid, ccb->nnc_nsid);
877 }
878
879 static void
880 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
881 struct nvme_cqe *cqe)
882 {
883 int *result = ccb->ccb_cookie;
884 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
885
886 if (status == NVME_CQE_SC_SUCCESS)
887 *result = 1;
888 else
889 *result = -1;
890
891 nvme_ccb_put(q, ccb);
892 }
893
894 static bool
895 nvme_getcache_finished(void *xc)
896 {
897 int *addr = xc;
898
899 return (*addr != 0);
900 }
901
902 /*
903 * Get status of volatile write cache. Always asynchronous.
904 */
905 int
906 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
907 {
908 struct nvme_ccb *ccb;
909 struct nvme_queue *q = sc->sc_admin_q;
910 int result = 0, error;
911
912 if (!nvme_has_volatile_write_cache(sc)) {
913 /* cache simply not present */
914 *addr = 0;
915 return 0;
916 }
917
918 ccb = nvme_ccb_get(q, true);
919 KASSERT(ccb != NULL);
920
921 ccb->ccb_done = nvme_getcache_done;
922 ccb->ccb_cookie = &result;
923
924 /* namespace context */
925 ccb->nnc_flags = 0;
926 ccb->nnc_done = NULL;
927
928 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
929
930 /* wait for completion */
931 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
932 KASSERT(result != 0);
933
934 if (result > 0) {
935 *addr = result;
936 error = 0;
937 } else
938 error = EINVAL;
939
940 return error;
941 }
942
943 static void
944 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
945 {
946 struct nvme_sqe *sqe = slot;
947
948 sqe->opcode = NVM_ADMIN_GET_FEATURES;
949 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
950 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
951 }
952
953 static void
954 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
955 struct nvme_cqe *cqe)
956 {
957 int *addr = ccb->ccb_cookie;
958 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
959 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
960 int result;
961
962 if (status == NVME_CQE_SC_SUCCESS) {
963 result = 0;
964
965 /*
966 * DPO not supported, Dataset Management (DSM) field doesn't
967 * specify the same semantics. FUA is always supported.
968 */
969 result = DKCACHE_FUA;
970
971 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
972 result |= DKCACHE_WRITE;
973
974 /*
975 * If volatile write cache is present, the flag shall also be
976 * settable.
977 */
978 result |= DKCACHE_WCHANGE;
979
980 /*
981 * ONCS field indicates whether the optional SAVE is also
982 * supported for Set Features. According to spec v1.3,
983 * Volatile Write Cache however doesn't support persistency
984 * across power cycle/reset.
985 */
986
987 } else {
988 result = -1;
989 }
990
991 *addr = result;
992
993 nvme_ccb_put(q, ccb);
994 }
995
996 struct nvme_setcache_state {
997 int dkcache;
998 int result;
999 };
1000
1001 static bool
1002 nvme_setcache_finished(void *xc)
1003 {
1004 struct nvme_setcache_state *st = xc;
1005
1006 return (st->result != 0);
1007 }
1008
1009 static void
1010 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1011 {
1012 struct nvme_sqe *sqe = slot;
1013 struct nvme_setcache_state *st = ccb->ccb_cookie;
1014
1015 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1016 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1017 if (st->dkcache & DKCACHE_WRITE)
1018 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1019 }
1020
1021 static void
1022 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1023 struct nvme_cqe *cqe)
1024 {
1025 struct nvme_setcache_state *st = ccb->ccb_cookie;
1026 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1027
1028 if (status == NVME_CQE_SC_SUCCESS) {
1029 st->result = 1;
1030 } else {
1031 st->result = -1;
1032 }
1033
1034 nvme_ccb_put(q, ccb);
1035 }
1036
1037 /*
1038 * Set status of volatile write cache. Always asynchronous.
1039 */
1040 int
1041 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1042 {
1043 struct nvme_ccb *ccb;
1044 struct nvme_queue *q = sc->sc_admin_q;
1045 int error;
1046 struct nvme_setcache_state st;
1047
1048 if (!nvme_has_volatile_write_cache(sc)) {
1049 /* cache simply not present */
1050 return EOPNOTSUPP;
1051 }
1052
1053 if (dkcache & ~(DKCACHE_WRITE)) {
1054 /* unsupported parameters */
1055 return EOPNOTSUPP;
1056 }
1057
1058 ccb = nvme_ccb_get(q, true);
1059 KASSERT(ccb != NULL);
1060
1061 memset(&st, 0, sizeof(st));
1062 st.dkcache = dkcache;
1063
1064 ccb->ccb_done = nvme_setcache_done;
1065 ccb->ccb_cookie = &st;
1066
1067 /* namespace context */
1068 ccb->nnc_flags = 0;
1069 ccb->nnc_done = NULL;
1070
1071 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1072
1073 /* wait for completion */
1074 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1075 KASSERT(st.result != 0);
1076
1077 if (st.result > 0)
1078 error = 0;
1079 else
1080 error = EINVAL;
1081
1082 return error;
1083 }
1084
1085 void
1086 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1087 {
1088 struct nvme_namespace *ns;
1089 struct nvm_identify_namespace *identify;
1090
1091 ns = nvme_ns_get(sc, nsid);
1092 KASSERT(ns);
1093
1094 identify = ns->ident;
1095 ns->ident = NULL;
1096 if (identify != NULL)
1097 kmem_free(identify, sizeof(*identify));
1098 }
1099
1100 struct nvme_pt_state {
1101 struct nvme_pt_command *pt;
1102 bool finished;
1103 };
1104
1105 static void
1106 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1107 {
1108 struct nvme_softc *sc = q->q_sc;
1109 struct nvme_sqe *sqe = slot;
1110 struct nvme_pt_state *state = ccb->ccb_cookie;
1111 struct nvme_pt_command *pt = state->pt;
1112 bus_dmamap_t dmap = ccb->ccb_dmamap;
1113 int i;
1114
1115 sqe->opcode = pt->cmd.opcode;
1116 htolem32(&sqe->nsid, pt->cmd.nsid);
1117
1118 if (pt->buf != NULL && pt->len > 0) {
1119 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1120 switch (dmap->dm_nsegs) {
1121 case 1:
1122 break;
1123 case 2:
1124 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1125 break;
1126 default:
1127 for (i = 1; i < dmap->dm_nsegs; i++) {
1128 htolem64(&ccb->ccb_prpl[i - 1],
1129 dmap->dm_segs[i].ds_addr);
1130 }
1131 bus_dmamap_sync(sc->sc_dmat,
1132 NVME_DMA_MAP(q->q_ccb_prpls),
1133 ccb->ccb_prpl_off,
1134 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1135 BUS_DMASYNC_PREWRITE);
1136 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1137 break;
1138 }
1139 }
1140
1141 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1142 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1143 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1144 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1145 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1146 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1147 }
1148
1149 static void
1150 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1151 {
1152 struct nvme_softc *sc = q->q_sc;
1153 struct nvme_pt_state *state = ccb->ccb_cookie;
1154 struct nvme_pt_command *pt = state->pt;
1155 bus_dmamap_t dmap = ccb->ccb_dmamap;
1156
1157 if (pt->buf != NULL && pt->len > 0) {
1158 if (dmap->dm_nsegs > 2) {
1159 bus_dmamap_sync(sc->sc_dmat,
1160 NVME_DMA_MAP(q->q_ccb_prpls),
1161 ccb->ccb_prpl_off,
1162 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1163 BUS_DMASYNC_POSTWRITE);
1164 }
1165
1166 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1167 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1168 bus_dmamap_unload(sc->sc_dmat, dmap);
1169 }
1170
1171 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1172 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1173
1174 state->finished = true;
1175
1176 nvme_ccb_put(q, ccb);
1177 }
1178
1179 static bool
1180 nvme_pt_finished(void *cookie)
1181 {
1182 struct nvme_pt_state *state = cookie;
1183
1184 return state->finished;
1185 }
1186
1187 static int
1188 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1189 uint16_t nsid, struct lwp *l, bool is_adminq)
1190 {
1191 struct nvme_queue *q;
1192 struct nvme_ccb *ccb;
1193 void *buf = NULL;
1194 struct nvme_pt_state state;
1195 int error;
1196
1197 /* limit command size to maximum data transfer size */
1198 if ((pt->buf == NULL && pt->len > 0) ||
1199 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1200 return EINVAL;
1201
1202 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1203 ccb = nvme_ccb_get(q, true);
1204 KASSERT(ccb != NULL);
1205
1206 if (pt->buf != NULL) {
1207 KASSERT(pt->len > 0);
1208 buf = kmem_alloc(pt->len, KM_SLEEP);
1209 if (!pt->is_read) {
1210 error = copyin(pt->buf, buf, pt->len);
1211 if (error)
1212 goto kmem_free;
1213 }
1214 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1215 pt->len, NULL,
1216 BUS_DMA_WAITOK |
1217 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1218 if (error)
1219 goto kmem_free;
1220 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1221 0, ccb->ccb_dmamap->dm_mapsize,
1222 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1223 }
1224
1225 memset(&state, 0, sizeof(state));
1226 state.pt = pt;
1227 state.finished = false;
1228
1229 ccb->ccb_done = nvme_pt_done;
1230 ccb->ccb_cookie = &state;
1231
1232 pt->cmd.nsid = nsid;
1233
1234 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1235
1236 /* wait for completion */
1237 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1238 KASSERT(state.finished);
1239
1240 error = 0;
1241
1242 if (buf != NULL) {
1243 if (error == 0 && pt->is_read)
1244 error = copyout(buf, pt->buf, pt->len);
1245 kmem_free:
1246 kmem_free(buf, pt->len);
1247 }
1248
1249 return error;
1250 }
1251
1252 static void
1253 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1254 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1255 {
1256 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1257 uint32_t tail;
1258
1259 mutex_enter(&q->q_sq_mtx);
1260 tail = q->q_sq_tail;
1261 if (++q->q_sq_tail >= q->q_entries)
1262 q->q_sq_tail = 0;
1263
1264 sqe += tail;
1265
1266 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1267 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1268 memset(sqe, 0, sizeof(*sqe));
1269 (*fill)(q, ccb, sqe);
1270 htolem16(&sqe->cid, ccb->ccb_id);
1271 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1272 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1273
1274 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1275 mutex_exit(&q->q_sq_mtx);
1276 }
1277
1278 struct nvme_poll_state {
1279 struct nvme_sqe s;
1280 struct nvme_cqe c;
1281 void *cookie;
1282 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1283 };
1284
1285 static int
1286 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1287 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1288 {
1289 struct nvme_poll_state state;
1290 uint16_t flags;
1291 int step = 10;
1292 int maxloop = timo_sec * 1000000 / step;
1293 int error = 0;
1294
1295 memset(&state, 0, sizeof(state));
1296 (*fill)(q, ccb, &state.s);
1297
1298 state.done = ccb->ccb_done;
1299 state.cookie = ccb->ccb_cookie;
1300
1301 ccb->ccb_done = nvme_poll_done;
1302 ccb->ccb_cookie = &state;
1303
1304 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1305 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1306 if (nvme_q_complete(sc, q) == 0)
1307 delay(step);
1308
1309 if (timo_sec >= 0 && --maxloop <= 0) {
1310 error = ETIMEDOUT;
1311 break;
1312 }
1313 }
1314
1315 if (error == 0) {
1316 flags = lemtoh16(&state.c.flags);
1317 return flags & ~NVME_CQE_PHASE;
1318 } else {
1319 /*
1320 * If it succeds later, it would hit ccb which will have been
1321 * already reused for something else. Not good. Cross
1322 * fingers and hope for best. XXX do controller reset?
1323 */
1324 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1325
1326 /* Invoke the callback to clean state anyway */
1327 struct nvme_cqe cqe;
1328 memset(&cqe, 0, sizeof(cqe));
1329 ccb->ccb_done(q, ccb, &cqe);
1330
1331 return 1;
1332 }
1333 }
1334
1335 static void
1336 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1337 {
1338 struct nvme_sqe *sqe = slot;
1339 struct nvme_poll_state *state = ccb->ccb_cookie;
1340
1341 *sqe = state->s;
1342 }
1343
1344 static void
1345 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1346 struct nvme_cqe *cqe)
1347 {
1348 struct nvme_poll_state *state = ccb->ccb_cookie;
1349
1350 state->c = *cqe;
1351 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1352
1353 ccb->ccb_cookie = state->cookie;
1354 state->done(q, ccb, &state->c);
1355 }
1356
1357 static void
1358 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1359 {
1360 struct nvme_sqe *src = ccb->ccb_cookie;
1361 struct nvme_sqe *dst = slot;
1362
1363 *dst = *src;
1364 }
1365
1366 static void
1367 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1368 struct nvme_cqe *cqe)
1369 {
1370 }
1371
1372 static int
1373 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1374 {
1375 struct nvme_ccb *ccb;
1376 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1377 uint16_t flags;
1378 int rv = 0;
1379
1380 mutex_enter(&q->q_cq_mtx);
1381
1382 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1383 for (;;) {
1384 cqe = &ring[q->q_cq_head];
1385 flags = lemtoh16(&cqe->flags);
1386 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1387 break;
1388
1389 ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1390
1391 if (++q->q_cq_head >= q->q_entries) {
1392 q->q_cq_head = 0;
1393 q->q_cq_phase ^= NVME_CQE_PHASE;
1394 }
1395
1396 #ifdef DEBUG
1397 /*
1398 * If we get spurious completion notification, something
1399 * is seriously hosed up. Very likely DMA to some random
1400 * memory place happened, so just bail out.
1401 */
1402 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1403 panic("%s: invalid ccb detected",
1404 device_xname(sc->sc_dev));
1405 /* NOTREACHED */
1406 }
1407 #endif
1408
1409 rv++;
1410
1411 /*
1412 * Unlock the mutex before calling the ccb_done callback
1413 * and re-lock afterwards. The callback triggers lddone()
1414 * which schedules another i/o, and also calls nvme_ccb_put().
1415 * Unlock/relock avoids possibility of deadlock.
1416 */
1417 mutex_exit(&q->q_cq_mtx);
1418 ccb->ccb_done(q, ccb, cqe);
1419 mutex_enter(&q->q_cq_mtx);
1420 }
1421 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1422
1423 if (rv)
1424 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1425
1426 mutex_exit(&q->q_cq_mtx);
1427
1428 return rv;
1429 }
1430
1431 static void
1432 nvme_q_wait_complete(struct nvme_softc *sc,
1433 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1434 {
1435 mutex_enter(&q->q_ccb_mtx);
1436 if (finished(cookie))
1437 goto out;
1438
1439 for(;;) {
1440 q->q_ccb_waiting = true;
1441 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1442
1443 if (finished(cookie))
1444 break;
1445 }
1446
1447 out:
1448 mutex_exit(&q->q_ccb_mtx);
1449 }
1450
1451 static int
1452 nvme_identify(struct nvme_softc *sc, u_int mps)
1453 {
1454 char sn[41], mn[81], fr[17];
1455 struct nvm_identify_controller *identify;
1456 struct nvme_dmamem *mem;
1457 struct nvme_ccb *ccb;
1458 u_int mdts;
1459 int rv = 1;
1460
1461 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1462 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1463
1464 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1465 if (mem == NULL)
1466 return 1;
1467
1468 ccb->ccb_done = nvme_empty_done;
1469 ccb->ccb_cookie = mem;
1470
1471 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1472 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1473 NVME_TIMO_IDENT);
1474 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1475
1476 nvme_ccb_put(sc->sc_admin_q, ccb);
1477
1478 if (rv != 0)
1479 goto done;
1480
1481 identify = NVME_DMA_KVA(mem);
1482 sc->sc_identify = *identify;
1483 identify = NULL;
1484
1485 /* Convert data to host endian */
1486 nvme_identify_controller_swapbytes(&sc->sc_identify);
1487
1488 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1489 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1490 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1491 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1492 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1493 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1494 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1495 sn);
1496
1497 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1498
1499 if (sc->sc_identify.mdts > 0) {
1500 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1501 if (mdts < sc->sc_mdts)
1502 sc->sc_mdts = mdts;
1503 }
1504
1505 sc->sc_nn = sc->sc_identify.nn;
1506
1507 done:
1508 nvme_dmamem_free(sc, mem);
1509
1510 return rv;
1511 }
1512
1513 static int
1514 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1515 {
1516 struct nvme_sqe_q sqe;
1517 struct nvme_ccb *ccb;
1518 int rv;
1519
1520 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1521 return 1;
1522
1523 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1524 KASSERT(ccb != NULL);
1525
1526 ccb->ccb_done = nvme_empty_done;
1527 ccb->ccb_cookie = &sqe;
1528
1529 memset(&sqe, 0, sizeof(sqe));
1530 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1531 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1532 htolem16(&sqe.qsize, q->q_entries - 1);
1533 htolem16(&sqe.qid, q->q_id);
1534 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1535 if (sc->sc_use_mq)
1536 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1537
1538 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1539 if (rv != 0)
1540 goto fail;
1541
1542 ccb->ccb_done = nvme_empty_done;
1543 ccb->ccb_cookie = &sqe;
1544
1545 memset(&sqe, 0, sizeof(sqe));
1546 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1547 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1548 htolem16(&sqe.qsize, q->q_entries - 1);
1549 htolem16(&sqe.qid, q->q_id);
1550 htolem16(&sqe.cqid, q->q_id);
1551 sqe.qflags = NVM_SQE_Q_PC;
1552
1553 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1554 if (rv != 0)
1555 goto fail;
1556
1557 nvme_ccb_put(sc->sc_admin_q, ccb);
1558 return 0;
1559
1560 fail:
1561 if (sc->sc_use_mq)
1562 sc->sc_intr_disestablish(sc, q->q_id);
1563
1564 nvme_ccb_put(sc->sc_admin_q, ccb);
1565 return rv;
1566 }
1567
1568 static int
1569 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1570 {
1571 struct nvme_sqe_q sqe;
1572 struct nvme_ccb *ccb;
1573 int rv;
1574
1575 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1576 KASSERT(ccb != NULL);
1577
1578 ccb->ccb_done = nvme_empty_done;
1579 ccb->ccb_cookie = &sqe;
1580
1581 memset(&sqe, 0, sizeof(sqe));
1582 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1583 htolem16(&sqe.qid, q->q_id);
1584
1585 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1586 if (rv != 0)
1587 goto fail;
1588
1589 ccb->ccb_done = nvme_empty_done;
1590 ccb->ccb_cookie = &sqe;
1591
1592 memset(&sqe, 0, sizeof(sqe));
1593 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1594 htolem16(&sqe.qid, q->q_id);
1595
1596 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1597 if (rv != 0)
1598 goto fail;
1599
1600 fail:
1601 nvme_ccb_put(sc->sc_admin_q, ccb);
1602
1603 if (rv == 0 && sc->sc_use_mq) {
1604 if (sc->sc_intr_disestablish(sc, q->q_id))
1605 rv = 1;
1606 }
1607
1608 return rv;
1609 }
1610
1611 static void
1612 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1613 {
1614 struct nvme_sqe *sqe = slot;
1615 struct nvme_dmamem *mem = ccb->ccb_cookie;
1616
1617 sqe->opcode = NVM_ADMIN_IDENTIFY;
1618 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1619 htolem32(&sqe->cdw10, 1);
1620 }
1621
1622 static int
1623 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1624 u_int *nsqa)
1625 {
1626 struct nvme_pt_state state;
1627 struct nvme_pt_command pt;
1628 struct nvme_ccb *ccb;
1629 int rv;
1630
1631 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1632 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1633
1634 memset(&pt, 0, sizeof(pt));
1635 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1636 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1637 pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1638
1639 memset(&state, 0, sizeof(state));
1640 state.pt = &pt;
1641 state.finished = false;
1642
1643 ccb->ccb_done = nvme_pt_done;
1644 ccb->ccb_cookie = &state;
1645
1646 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1647
1648 if (rv != 0) {
1649 *ncqa = *nsqa = 0;
1650 return EIO;
1651 }
1652
1653 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1654 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1655
1656 return 0;
1657 }
1658
1659 static int
1660 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1661 {
1662 struct nvme_softc *sc = q->q_sc;
1663 struct nvme_ccb *ccb;
1664 bus_addr_t off;
1665 uint64_t *prpl;
1666 u_int i;
1667
1668 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1669 cv_init(&q->q_ccb_wait, "nvmeqw");
1670 q->q_ccb_waiting = false;
1671 SIMPLEQ_INIT(&q->q_ccb_list);
1672
1673 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1674
1675 q->q_nccbs = nccbs;
1676 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1677 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1678
1679 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1680 off = 0;
1681
1682 for (i = 0; i < nccbs; i++) {
1683 ccb = &q->q_ccbs[i];
1684
1685 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1686 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1687 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1688 &ccb->ccb_dmamap) != 0)
1689 goto free_maps;
1690
1691 ccb->ccb_id = i;
1692 ccb->ccb_prpl = prpl;
1693 ccb->ccb_prpl_off = off;
1694 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1695
1696 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1697
1698 prpl += sc->sc_max_sgl;
1699 off += sizeof(*prpl) * sc->sc_max_sgl;
1700 }
1701
1702 return 0;
1703
1704 free_maps:
1705 nvme_ccbs_free(q);
1706 return 1;
1707 }
1708
1709 static struct nvme_ccb *
1710 nvme_ccb_get(struct nvme_queue *q, bool wait)
1711 {
1712 struct nvme_ccb *ccb = NULL;
1713
1714 mutex_enter(&q->q_ccb_mtx);
1715 again:
1716 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1717 if (ccb != NULL) {
1718 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1719 #ifdef DEBUG
1720 ccb->ccb_cookie = NULL;
1721 #endif
1722 } else {
1723 if (__predict_false(wait)) {
1724 q->q_ccb_waiting = true;
1725 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1726 goto again;
1727 }
1728 }
1729 mutex_exit(&q->q_ccb_mtx);
1730
1731 return ccb;
1732 }
1733
1734 static void
1735 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1736 {
1737
1738 mutex_enter(&q->q_ccb_mtx);
1739 #ifdef DEBUG
1740 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1741 #endif
1742 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1743
1744 /* It's unlikely there are any waiters, it's not used for regular I/O */
1745 if (__predict_false(q->q_ccb_waiting)) {
1746 q->q_ccb_waiting = false;
1747 cv_broadcast(&q->q_ccb_wait);
1748 }
1749
1750 mutex_exit(&q->q_ccb_mtx);
1751 }
1752
1753 static void
1754 nvme_ccbs_free(struct nvme_queue *q)
1755 {
1756 struct nvme_softc *sc = q->q_sc;
1757 struct nvme_ccb *ccb;
1758
1759 mutex_enter(&q->q_ccb_mtx);
1760 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1761 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1762 /*
1763 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1764 * internally. don't hold spin mutex
1765 */
1766 mutex_exit(&q->q_ccb_mtx);
1767 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1768 mutex_enter(&q->q_ccb_mtx);
1769 }
1770 mutex_exit(&q->q_ccb_mtx);
1771
1772 nvme_dmamem_free(sc, q->q_ccb_prpls);
1773 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1774 q->q_ccbs = NULL;
1775 cv_destroy(&q->q_ccb_wait);
1776 mutex_destroy(&q->q_ccb_mtx);
1777 }
1778
1779 static struct nvme_queue *
1780 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1781 {
1782 struct nvme_queue *q;
1783
1784 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1785 q->q_sc = sc;
1786 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1787 sizeof(struct nvme_sqe) * entries);
1788 if (q->q_sq_dmamem == NULL)
1789 goto free;
1790
1791 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1792 sizeof(struct nvme_cqe) * entries);
1793 if (q->q_cq_dmamem == NULL)
1794 goto free_sq;
1795
1796 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1797 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1798
1799 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1800 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1801 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1802 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1803 q->q_id = id;
1804 q->q_entries = entries;
1805 q->q_sq_tail = 0;
1806 q->q_cq_head = 0;
1807 q->q_cq_phase = NVME_CQE_PHASE;
1808
1809 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1810 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1811
1812 /*
1813 * Due to definition of full and empty queue (queue is empty
1814 * when head == tail, full when tail is one less then head),
1815 * we can actually only have (entries - 1) in-flight commands.
1816 */
1817 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1818 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1819 goto free_cq;
1820 }
1821
1822 return q;
1823
1824 free_cq:
1825 nvme_dmamem_free(sc, q->q_cq_dmamem);
1826 free_sq:
1827 nvme_dmamem_free(sc, q->q_sq_dmamem);
1828 free:
1829 kmem_free(q, sizeof(*q));
1830
1831 return NULL;
1832 }
1833
1834 static void
1835 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1836 {
1837 nvme_ccbs_free(q);
1838 mutex_destroy(&q->q_sq_mtx);
1839 mutex_destroy(&q->q_cq_mtx);
1840 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1841 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1842 nvme_dmamem_free(sc, q->q_cq_dmamem);
1843 nvme_dmamem_free(sc, q->q_sq_dmamem);
1844 kmem_free(q, sizeof(*q));
1845 }
1846
1847 int
1848 nvme_intr(void *xsc)
1849 {
1850 struct nvme_softc *sc = xsc;
1851
1852 /*
1853 * INTx is level triggered, controller deasserts the interrupt only
1854 * when we advance command queue head via write to the doorbell.
1855 * Tell the controller to block the interrupts while we process
1856 * the queue(s).
1857 */
1858 nvme_write4(sc, NVME_INTMS, 1);
1859
1860 softint_schedule(sc->sc_softih[0]);
1861
1862 /* don't know, might not have been for us */
1863 return 1;
1864 }
1865
1866 void
1867 nvme_softintr_intx(void *xq)
1868 {
1869 struct nvme_queue *q = xq;
1870 struct nvme_softc *sc = q->q_sc;
1871
1872 nvme_q_complete(sc, sc->sc_admin_q);
1873 if (sc->sc_q != NULL)
1874 nvme_q_complete(sc, sc->sc_q[0]);
1875
1876 /*
1877 * Processing done, tell controller to issue interrupts again. There
1878 * is no race, as NVMe spec requires the controller to maintain state,
1879 * and assert the interrupt whenever there are unacknowledged
1880 * completion queue entries.
1881 */
1882 nvme_write4(sc, NVME_INTMC, 1);
1883 }
1884
1885 int
1886 nvme_intr_msi(void *xq)
1887 {
1888 struct nvme_queue *q = xq;
1889
1890 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1891 && q->q_sc->sc_softih[q->q_id]);
1892
1893 /*
1894 * MSI/MSI-X are edge triggered, so can handover processing to softint
1895 * without masking the interrupt.
1896 */
1897 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1898
1899 return 1;
1900 }
1901
1902 void
1903 nvme_softintr_msi(void *xq)
1904 {
1905 struct nvme_queue *q = xq;
1906 struct nvme_softc *sc = q->q_sc;
1907
1908 nvme_q_complete(sc, q);
1909 }
1910
1911 static struct nvme_dmamem *
1912 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1913 {
1914 struct nvme_dmamem *ndm;
1915 int nsegs;
1916
1917 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1918 if (ndm == NULL)
1919 return NULL;
1920
1921 ndm->ndm_size = size;
1922
1923 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
1924 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1925 goto ndmfree;
1926
1927 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1928 1, &nsegs, BUS_DMA_WAITOK) != 0)
1929 goto destroy;
1930
1931 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1932 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1933 goto free;
1934
1935 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1936 NULL, BUS_DMA_WAITOK) != 0)
1937 goto unmap;
1938
1939 memset(ndm->ndm_kva, 0, size);
1940 bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
1941
1942 return ndm;
1943
1944 unmap:
1945 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1946 free:
1947 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1948 destroy:
1949 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1950 ndmfree:
1951 kmem_free(ndm, sizeof(*ndm));
1952 return NULL;
1953 }
1954
1955 static void
1956 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1957 {
1958 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1959 0, NVME_DMA_LEN(mem), ops);
1960 }
1961
1962 void
1963 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1964 {
1965 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1966 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1967 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1968 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1969 kmem_free(ndm, sizeof(*ndm));
1970 }
1971
1972 /*
1973 * ioctl
1974 */
1975
1976 dev_type_open(nvmeopen);
1977 dev_type_close(nvmeclose);
1978 dev_type_ioctl(nvmeioctl);
1979
1980 const struct cdevsw nvme_cdevsw = {
1981 .d_open = nvmeopen,
1982 .d_close = nvmeclose,
1983 .d_read = noread,
1984 .d_write = nowrite,
1985 .d_ioctl = nvmeioctl,
1986 .d_stop = nostop,
1987 .d_tty = notty,
1988 .d_poll = nopoll,
1989 .d_mmap = nommap,
1990 .d_kqfilter = nokqfilter,
1991 .d_discard = nodiscard,
1992 .d_flag = D_OTHER,
1993 };
1994
1995 /*
1996 * Accept an open operation on the control device.
1997 */
1998 int
1999 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2000 {
2001 struct nvme_softc *sc;
2002 int unit = minor(dev) / 0x10000;
2003 int nsid = minor(dev) & 0xffff;
2004 int nsidx;
2005
2006 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2007 return ENXIO;
2008 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2009 return ENXIO;
2010
2011 if (nsid == 0) {
2012 /* controller */
2013 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2014 return EBUSY;
2015 SET(sc->sc_flags, NVME_F_OPEN);
2016 } else {
2017 /* namespace */
2018 nsidx = nsid - 1;
2019 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2020 return ENXIO;
2021 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2022 return EBUSY;
2023 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2024 }
2025 return 0;
2026 }
2027
2028 /*
2029 * Accept the last close on the control device.
2030 */
2031 int
2032 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2033 {
2034 struct nvme_softc *sc;
2035 int unit = minor(dev) / 0x10000;
2036 int nsid = minor(dev) & 0xffff;
2037 int nsidx;
2038
2039 sc = device_lookup_private(&nvme_cd, unit);
2040 if (sc == NULL)
2041 return ENXIO;
2042
2043 if (nsid == 0) {
2044 /* controller */
2045 CLR(sc->sc_flags, NVME_F_OPEN);
2046 } else {
2047 /* namespace */
2048 nsidx = nsid - 1;
2049 if (nsidx >= sc->sc_nn)
2050 return ENXIO;
2051 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2052 }
2053
2054 return 0;
2055 }
2056
2057 /*
2058 * Handle control operations.
2059 */
2060 int
2061 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2062 {
2063 struct nvme_softc *sc;
2064 int unit = minor(dev) / 0x10000;
2065 int nsid = minor(dev) & 0xffff;
2066 struct nvme_pt_command *pt;
2067
2068 sc = device_lookup_private(&nvme_cd, unit);
2069 if (sc == NULL)
2070 return ENXIO;
2071
2072 switch (cmd) {
2073 case NVME_PASSTHROUGH_CMD:
2074 pt = data;
2075 return nvme_command_passthrough(sc, data,
2076 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2077 }
2078
2079 return ENOTTY;
2080 }
2081