nvme.c revision 1.55.2.1 1 /* $NetBSD: nvme.c,v 1.55.2.1 2021/06/17 04:46:28 thorpej Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.55.2.1 2021/06/17 04:46:28 thorpej Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44 #include "locators.h"
45
46 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
47
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50
51 static int nvme_print(void *, const char *);
52
53 static int nvme_ready(struct nvme_softc *, uint32_t);
54 static int nvme_enable(struct nvme_softc *, u_int);
55 static int nvme_disable(struct nvme_softc *);
56 static int nvme_shutdown(struct nvme_softc *);
57
58 #ifdef NVME_DEBUG
59 static void nvme_dumpregs(struct nvme_softc *);
60 #endif
61 static int nvme_identify(struct nvme_softc *, u_int);
62 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
63 void *);
64
65 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
66 static void nvme_ccbs_free(struct nvme_queue *);
67
68 static struct nvme_ccb *
69 nvme_ccb_get(struct nvme_queue *, bool);
70 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
71
72 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
73 struct nvme_ccb *, void (*)(struct nvme_queue *,
74 struct nvme_ccb *, void *), int);
75 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
76 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
77 struct nvme_cqe *);
78 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
79 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
80 struct nvme_cqe *);
81
82 static struct nvme_queue *
83 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
84 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
86 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
87 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
88 struct nvme_ccb *, void (*)(struct nvme_queue *,
89 struct nvme_ccb *, void *));
90 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
91 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
92 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
93 bool (*)(void *), void *);
94
95 static struct nvme_dmamem *
96 nvme_dmamem_alloc(struct nvme_softc *, size_t);
97 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
98 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
99 int);
100
101 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
102 void *);
103 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
106 void *);
107 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
108 struct nvme_cqe *);
109 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
110 void *);
111 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
112 struct nvme_cqe *);
113
114 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
115 void *);
116 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
117 struct nvme_cqe *);
118 static int nvme_command_passthrough(struct nvme_softc *,
119 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
120
121 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
122 u_int *);
123
124 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
125 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
126 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
127 #define NVME_TIMO_SY 60 /* sync cache timeout */
128
129 #define nvme_read4(_s, _r) \
130 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
131 #define nvme_write4(_s, _r, _v) \
132 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
133 /*
134 * Some controllers, at least Apple NVMe, always require split
135 * transfers, so don't use bus_space_{read,write}_8() on LP64.
136 */
137 static inline uint64_t
138 nvme_read8(struct nvme_softc *sc, bus_size_t r)
139 {
140 uint64_t v;
141 uint32_t *a = (uint32_t *)&v;
142
143 #if _BYTE_ORDER == _LITTLE_ENDIAN
144 a[0] = nvme_read4(sc, r);
145 a[1] = nvme_read4(sc, r + 4);
146 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
147 a[1] = nvme_read4(sc, r);
148 a[0] = nvme_read4(sc, r + 4);
149 #endif
150
151 return v;
152 }
153
154 static inline void
155 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
156 {
157 uint32_t *a = (uint32_t *)&v;
158
159 #if _BYTE_ORDER == _LITTLE_ENDIAN
160 nvme_write4(sc, r, a[0]);
161 nvme_write4(sc, r + 4, a[1]);
162 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
163 nvme_write4(sc, r, a[1]);
164 nvme_write4(sc, r + 4, a[0]);
165 #endif
166 }
167 #define nvme_barrier(_s, _r, _l, _f) \
168 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
169
170 #ifdef NVME_DEBUG
171 static __used void
172 nvme_dumpregs(struct nvme_softc *sc)
173 {
174 uint64_t r8;
175 uint32_t r4;
176
177 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
178 r8 = nvme_read8(sc, NVME_CAP);
179 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
180 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
181 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
182 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
183 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
184 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
185 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
186 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
187 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
188 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
189 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
190 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
191
192 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
193
194 r4 = nvme_read4(sc, NVME_CC);
195 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
196 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
197 (1 << NVME_CC_IOCQES_R(r4)));
198 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
199 (1 << NVME_CC_IOSQES_R(r4)));
200 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
201 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
202 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
203 (1 << NVME_CC_MPS_R(r4)));
204 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
205 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
206
207 r4 = nvme_read4(sc, NVME_CSTS);
208 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
209 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
210 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
211 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
212
213 r4 = nvme_read4(sc, NVME_AQA);
214 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
215 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
216 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
217
218 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
219 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
220 #undef DEVNAME
221 }
222 #endif /* NVME_DEBUG */
223
224 static int
225 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
226 {
227 u_int i = 0;
228
229 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
230 if (i++ > sc->sc_rdy_to)
231 return ENXIO;
232
233 delay(1000);
234 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
235 }
236
237 return 0;
238 }
239
240 static int
241 nvme_enable(struct nvme_softc *sc, u_int mps)
242 {
243 uint32_t cc, csts;
244 int error;
245
246 cc = nvme_read4(sc, NVME_CC);
247 csts = nvme_read4(sc, NVME_CSTS);
248
249 /*
250 * See note in nvme_disable. Short circuit if we're already enabled.
251 */
252 if (ISSET(cc, NVME_CC_EN)) {
253 if (ISSET(csts, NVME_CSTS_RDY))
254 return 0;
255
256 goto waitready;
257 } else {
258 /* EN == 0 already wait for RDY == 0 or fail */
259 error = nvme_ready(sc, 0);
260 if (error)
261 return error;
262 }
263
264 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
268 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
269 delay(5000);
270
271 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
272 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
273 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
274 delay(5000);
275
276 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
277 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
278 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
279 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
280 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
281 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
282 SET(cc, NVME_CC_MPS(mps));
283 SET(cc, NVME_CC_EN);
284
285 nvme_write4(sc, NVME_CC, cc);
286 nvme_barrier(sc, 0, sc->sc_ios,
287 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
288
289 waitready:
290 return nvme_ready(sc, NVME_CSTS_RDY);
291 }
292
293 static int
294 nvme_disable(struct nvme_softc *sc)
295 {
296 uint32_t cc, csts;
297 int error;
298
299 cc = nvme_read4(sc, NVME_CC);
300 csts = nvme_read4(sc, NVME_CSTS);
301
302 /*
303 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
304 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
305 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
306 * isn't the desired value. Short circuit if we're already disabled.
307 */
308 if (ISSET(cc, NVME_CC_EN)) {
309 if (!ISSET(csts, NVME_CSTS_RDY)) {
310 /* EN == 1, wait for RDY == 1 or fail */
311 error = nvme_ready(sc, NVME_CSTS_RDY);
312 if (error)
313 return error;
314 }
315 } else {
316 /* EN == 0 already wait for RDY == 0 */
317 if (!ISSET(csts, NVME_CSTS_RDY))
318 return 0;
319
320 goto waitready;
321 }
322
323 CLR(cc, NVME_CC_EN);
324 nvme_write4(sc, NVME_CC, cc);
325 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
326
327 /*
328 * Some drives have issues with accessing the mmio after we disable,
329 * so delay for a bit after we write the bit to cope with these issues.
330 */
331 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
332 delay(B4_CHK_RDY_DELAY_MS);
333
334 waitready:
335 return nvme_ready(sc, 0);
336 }
337
338 int
339 nvme_attach(struct nvme_softc *sc)
340 {
341 uint64_t cap;
342 uint32_t reg;
343 u_int mps = PAGE_SHIFT;
344 u_int ncq, nsq;
345 uint16_t adminq_entries = nvme_adminq_size;
346 uint16_t ioq_entries = nvme_ioq_size;
347 int i;
348
349 reg = nvme_read4(sc, NVME_VS);
350 if (reg == 0xffffffff) {
351 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
352 return 1;
353 }
354
355 if (NVME_VS_TER(reg) == 0)
356 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
357 NVME_VS_MNR(reg));
358 else
359 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
360 NVME_VS_MNR(reg), NVME_VS_TER(reg));
361
362 cap = nvme_read8(sc, NVME_CAP);
363 sc->sc_dstrd = NVME_CAP_DSTRD(cap);
364 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
365 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
366 "is greater than CPU page size %u\n",
367 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
368 return 1;
369 }
370 if (NVME_CAP_MPSMAX(cap) < mps)
371 mps = NVME_CAP_MPSMAX(cap);
372 if (ioq_entries > NVME_CAP_MQES(cap))
373 ioq_entries = NVME_CAP_MQES(cap);
374
375 /* set initial values to be used for admin queue during probe */
376 sc->sc_rdy_to = NVME_CAP_TO(cap);
377 sc->sc_mps = 1 << mps;
378 sc->sc_mdts = MAXPHYS;
379 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
380
381 if (nvme_disable(sc) != 0) {
382 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
383 return 1;
384 }
385
386 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
387 sc->sc_dstrd);
388 if (sc->sc_admin_q == NULL) {
389 aprint_error_dev(sc->sc_dev,
390 "unable to allocate admin queue\n");
391 return 1;
392 }
393 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
394 goto free_admin_q;
395
396 if (nvme_enable(sc, mps) != 0) {
397 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
398 goto disestablish_admin_q;
399 }
400
401 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
402 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
403 goto disable;
404 }
405 if (sc->sc_nn == 0) {
406 aprint_error_dev(sc->sc_dev, "namespace not found\n");
407 goto disable;
408 }
409
410 /* we know how big things are now */
411 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
412
413 /* reallocate ccbs of admin queue with new max sgl. */
414 nvme_ccbs_free(sc->sc_admin_q);
415 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
416
417 if (sc->sc_use_mq) {
418 /* Limit the number of queues to the number allocated in HW */
419 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
420 aprint_error_dev(sc->sc_dev,
421 "unable to get number of queues\n");
422 goto disable;
423 }
424 if (sc->sc_nq > ncq)
425 sc->sc_nq = ncq;
426 if (sc->sc_nq > nsq)
427 sc->sc_nq = nsq;
428 }
429
430 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
431 for (i = 0; i < sc->sc_nq; i++) {
432 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
433 sc->sc_dstrd);
434 if (sc->sc_q[i] == NULL) {
435 aprint_error_dev(sc->sc_dev,
436 "unable to allocate io queue\n");
437 goto free_q;
438 }
439 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
440 aprint_error_dev(sc->sc_dev,
441 "unable to create io queue\n");
442 nvme_q_free(sc, sc->sc_q[i]);
443 goto free_q;
444 }
445 }
446
447 if (!sc->sc_use_mq)
448 nvme_write4(sc, NVME_INTMC, 1);
449
450 /* probe subdevices */
451 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
452 KM_SLEEP);
453 nvme_rescan(sc->sc_dev, NULL, NULL);
454
455 return 0;
456
457 free_q:
458 while (--i >= 0) {
459 nvme_q_delete(sc, sc->sc_q[i]);
460 nvme_q_free(sc, sc->sc_q[i]);
461 }
462 disable:
463 nvme_disable(sc);
464 disestablish_admin_q:
465 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
466 free_admin_q:
467 nvme_q_free(sc, sc->sc_admin_q);
468
469 return 1;
470 }
471
472 int
473 nvme_rescan(device_t self, const char *ifattr, const int *locs)
474 {
475 struct nvme_softc *sc = device_private(self);
476 struct nvme_attach_args naa;
477 struct nvm_namespace_format *f;
478 struct nvme_namespace *ns;
479 uint64_t cap;
480 int ioq_entries = nvme_ioq_size;
481 int i, mlocs[NVMECF_NLOCS];
482 int error;
483
484 cap = nvme_read8(sc, NVME_CAP);
485 if (ioq_entries > NVME_CAP_MQES(cap))
486 ioq_entries = NVME_CAP_MQES(cap);
487
488 for (i = 1; i <= sc->sc_nn; i++) {
489 if (sc->sc_namespaces[i - 1].dev)
490 continue;
491
492 /* identify to check for availability */
493 error = nvme_ns_identify(sc, i);
494 if (error) {
495 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
496 continue;
497 }
498
499 ns = nvme_ns_get(sc, i);
500 KASSERT(ns);
501
502 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
503
504 /*
505 * NVME1.0e 6.11 Identify command
506 *
507 * LBADS values smaller than 9 are not supported, a value
508 * of zero means that the format is not used.
509 */
510 if (f->lbads < 9) {
511 if (f->lbads > 0)
512 aprint_error_dev(self,
513 "unsupported logical data size %u\n", f->lbads);
514 continue;
515 }
516
517 mlocs[NVMECF_NSID] = i;
518
519 memset(&naa, 0, sizeof(naa));
520 naa.naa_nsid = i;
521 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
522 naa.naa_maxphys = sc->sc_mdts;
523 naa.naa_typename = sc->sc_modelname;
524 sc->sc_namespaces[i - 1].dev =
525 config_found(sc->sc_dev, &naa, nvme_print,
526 CFARG_SUBMATCH, config_stdsubmatch,
527 CFARG_LOCATORS, mlocs,
528 CFARG_EOL);
529 }
530 return 0;
531 }
532
533 static int
534 nvme_print(void *aux, const char *pnp)
535 {
536 struct nvme_attach_args *naa = aux;
537
538 if (pnp)
539 aprint_normal("ld at %s", pnp);
540
541 if (naa->naa_nsid > 0)
542 aprint_normal(" nsid %d", naa->naa_nsid);
543
544 return UNCONF;
545 }
546
547 int
548 nvme_detach(struct nvme_softc *sc, int flags)
549 {
550 int i, error;
551
552 error = config_detach_children(sc->sc_dev, flags);
553 if (error)
554 return error;
555
556 error = nvme_shutdown(sc);
557 if (error)
558 return error;
559
560 /* from now on we are committed to detach, following will never fail */
561 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
562 for (i = 0; i < sc->sc_nq; i++)
563 nvme_q_free(sc, sc->sc_q[i]);
564 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
565 nvme_q_free(sc, sc->sc_admin_q);
566
567 return 0;
568 }
569
570 int
571 nvme_suspend(struct nvme_softc *sc)
572 {
573
574 return nvme_shutdown(sc);
575 }
576
577 int
578 nvme_resume(struct nvme_softc *sc)
579 {
580 int ioq_entries = nvme_ioq_size;
581 uint64_t cap;
582 int i, error;
583
584 error = nvme_disable(sc);
585 if (error) {
586 device_printf(sc->sc_dev, "unable to disable controller\n");
587 return error;
588 }
589
590 nvme_q_reset(sc, sc->sc_admin_q);
591
592 error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
593 if (error) {
594 device_printf(sc->sc_dev, "unable to enable controller\n");
595 return error;
596 }
597
598 for (i = 0; i < sc->sc_nq; i++) {
599 cap = nvme_read8(sc, NVME_CAP);
600 if (ioq_entries > NVME_CAP_MQES(cap))
601 ioq_entries = NVME_CAP_MQES(cap);
602 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
603 sc->sc_dstrd);
604 if (sc->sc_q[i] == NULL) {
605 error = ENOMEM;
606 device_printf(sc->sc_dev, "unable to allocate io q %d"
607 "\n", i);
608 goto disable;
609 }
610 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
611 error = EIO;
612 device_printf(sc->sc_dev, "unable to create io q %d"
613 "\n", i);
614 nvme_q_free(sc, sc->sc_q[i]);
615 goto free_q;
616 }
617 }
618
619 nvme_write4(sc, NVME_INTMC, 1);
620
621 return 0;
622
623 free_q:
624 while (i --> 0)
625 nvme_q_free(sc, sc->sc_q[i]);
626 disable:
627 (void)nvme_disable(sc);
628
629 return error;
630 }
631
632 static int
633 nvme_shutdown(struct nvme_softc *sc)
634 {
635 uint32_t cc, csts;
636 bool disabled = false;
637 int i;
638
639 if (!sc->sc_use_mq)
640 nvme_write4(sc, NVME_INTMS, 1);
641
642 for (i = 0; i < sc->sc_nq; i++) {
643 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
644 aprint_error_dev(sc->sc_dev,
645 "unable to delete io queue %d, disabling\n", i + 1);
646 disabled = true;
647 }
648 }
649 if (disabled)
650 goto disable;
651
652 cc = nvme_read4(sc, NVME_CC);
653 CLR(cc, NVME_CC_SHN_MASK);
654 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
655 nvme_write4(sc, NVME_CC, cc);
656
657 for (i = 0; i < 4000; i++) {
658 nvme_barrier(sc, 0, sc->sc_ios,
659 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
660 csts = nvme_read4(sc, NVME_CSTS);
661 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
662 return 0;
663
664 delay(1000);
665 }
666
667 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
668
669 disable:
670 nvme_disable(sc);
671 return 0;
672 }
673
674 void
675 nvme_childdet(device_t self, device_t child)
676 {
677 struct nvme_softc *sc = device_private(self);
678 int i;
679
680 for (i = 0; i < sc->sc_nn; i++) {
681 if (sc->sc_namespaces[i].dev == child) {
682 /* Already freed ns->ident. */
683 sc->sc_namespaces[i].dev = NULL;
684 break;
685 }
686 }
687 }
688
689 int
690 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
691 {
692 struct nvme_sqe sqe;
693 struct nvm_identify_namespace *identify;
694 struct nvme_dmamem *mem;
695 struct nvme_ccb *ccb;
696 struct nvme_namespace *ns;
697 int rv;
698
699 KASSERT(nsid > 0);
700
701 ns = nvme_ns_get(sc, nsid);
702 KASSERT(ns);
703
704 if (ns->ident != NULL)
705 return 0;
706
707 ccb = nvme_ccb_get(sc->sc_admin_q, false);
708 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
709
710 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
711 if (mem == NULL) {
712 nvme_ccb_put(sc->sc_admin_q, ccb);
713 return ENOMEM;
714 }
715
716 memset(&sqe, 0, sizeof(sqe));
717 sqe.opcode = NVM_ADMIN_IDENTIFY;
718 htolem32(&sqe.nsid, nsid);
719 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
720 htolem32(&sqe.cdw10, 0);
721
722 ccb->ccb_done = nvme_empty_done;
723 ccb->ccb_cookie = &sqe;
724
725 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
726 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
727 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
728
729 nvme_ccb_put(sc->sc_admin_q, ccb);
730
731 if (rv != 0) {
732 rv = EIO;
733 goto done;
734 }
735
736 /* commit */
737
738 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
739 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
740
741 /* Convert data to host endian */
742 nvme_identify_namespace_swapbytes(identify);
743
744 ns->ident = identify;
745
746 done:
747 nvme_dmamem_free(sc, mem);
748
749 return rv;
750 }
751
752 int
753 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
754 struct buf *bp, void *data, size_t datasize,
755 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
756 {
757 struct nvme_queue *q = nvme_get_q(sc, bp, false);
758 struct nvme_ccb *ccb;
759 bus_dmamap_t dmap;
760 int i, error;
761
762 ccb = nvme_ccb_get(q, false);
763 if (ccb == NULL)
764 return EAGAIN;
765
766 ccb->ccb_done = nvme_ns_io_done;
767 ccb->ccb_cookie = cookie;
768
769 /* namespace context */
770 ccb->nnc_nsid = nsid;
771 ccb->nnc_flags = flags;
772 ccb->nnc_buf = bp;
773 ccb->nnc_datasize = datasize;
774 ccb->nnc_secsize = secsize;
775 ccb->nnc_blkno = blkno;
776 ccb->nnc_done = nnc_done;
777
778 dmap = ccb->ccb_dmamap;
779 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
780 datasize, NULL,
781 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
782 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
783 (ISSET(flags, NVME_NS_CTX_F_READ) ?
784 BUS_DMA_READ : BUS_DMA_WRITE));
785 if (error) {
786 nvme_ccb_put(q, ccb);
787 return error;
788 }
789
790 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
791 ISSET(flags, NVME_NS_CTX_F_READ) ?
792 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
793
794 if (dmap->dm_nsegs > 2) {
795 for (i = 1; i < dmap->dm_nsegs; i++) {
796 htolem64(&ccb->ccb_prpl[i - 1],
797 dmap->dm_segs[i].ds_addr);
798 }
799 bus_dmamap_sync(sc->sc_dmat,
800 NVME_DMA_MAP(q->q_ccb_prpls),
801 ccb->ccb_prpl_off,
802 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
803 BUS_DMASYNC_PREWRITE);
804 }
805
806 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
807 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
808 return EIO;
809 return 0;
810 }
811
812 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
813 return 0;
814 }
815
816 static void
817 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
818 {
819 struct nvme_sqe_io *sqe = slot;
820 bus_dmamap_t dmap = ccb->ccb_dmamap;
821
822 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
823 NVM_CMD_READ : NVM_CMD_WRITE;
824 htolem32(&sqe->nsid, ccb->nnc_nsid);
825
826 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
827 switch (dmap->dm_nsegs) {
828 case 1:
829 break;
830 case 2:
831 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
832 break;
833 default:
834 /* the prp list is already set up and synced */
835 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
836 break;
837 }
838
839 htolem64(&sqe->slba, ccb->nnc_blkno);
840
841 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
842 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
843
844 /* guaranteed by upper layers, but check just in case */
845 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
846 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
847 }
848
849 static void
850 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
851 struct nvme_cqe *cqe)
852 {
853 struct nvme_softc *sc = q->q_sc;
854 bus_dmamap_t dmap = ccb->ccb_dmamap;
855 void *nnc_cookie = ccb->ccb_cookie;
856 nvme_nnc_done nnc_done = ccb->nnc_done;
857 struct buf *bp = ccb->nnc_buf;
858
859 if (dmap->dm_nsegs > 2) {
860 bus_dmamap_sync(sc->sc_dmat,
861 NVME_DMA_MAP(q->q_ccb_prpls),
862 ccb->ccb_prpl_off,
863 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
864 BUS_DMASYNC_POSTWRITE);
865 }
866
867 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
868 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
869 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
870
871 bus_dmamap_unload(sc->sc_dmat, dmap);
872 nvme_ccb_put(q, ccb);
873
874 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
875 }
876
877 /*
878 * If there is no volatile write cache, it makes no sense to issue
879 * flush commands or query for the status.
880 */
881 static bool
882 nvme_has_volatile_write_cache(struct nvme_softc *sc)
883 {
884 /* sc_identify is filled during attachment */
885 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
886 }
887
888 static bool
889 nvme_ns_sync_finished(void *cookie)
890 {
891 int *result = cookie;
892
893 return (*result != 0);
894 }
895
896 int
897 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
898 {
899 struct nvme_queue *q = nvme_get_q(sc, NULL, true);
900 struct nvme_ccb *ccb;
901 int result = 0;
902
903 if (!nvme_has_volatile_write_cache(sc)) {
904 /* cache not present, no value in trying to flush it */
905 return 0;
906 }
907
908 ccb = nvme_ccb_get(q, true);
909 KASSERT(ccb != NULL);
910
911 ccb->ccb_done = nvme_ns_sync_done;
912 ccb->ccb_cookie = &result;
913
914 /* namespace context */
915 ccb->nnc_nsid = nsid;
916 ccb->nnc_flags = flags;
917 ccb->nnc_done = NULL;
918
919 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
920 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
921 return EIO;
922 return 0;
923 }
924
925 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
926
927 /* wait for completion */
928 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
929 KASSERT(result != 0);
930
931 return (result > 0) ? 0 : EIO;
932 }
933
934 static void
935 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
936 {
937 struct nvme_sqe *sqe = slot;
938
939 sqe->opcode = NVM_CMD_FLUSH;
940 htolem32(&sqe->nsid, ccb->nnc_nsid);
941 }
942
943 static void
944 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
945 struct nvme_cqe *cqe)
946 {
947 int *result = ccb->ccb_cookie;
948 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
949
950 if (status == NVME_CQE_SC_SUCCESS)
951 *result = 1;
952 else
953 *result = -1;
954
955 nvme_ccb_put(q, ccb);
956 }
957
958 static bool
959 nvme_getcache_finished(void *xc)
960 {
961 int *addr = xc;
962
963 return (*addr != 0);
964 }
965
966 /*
967 * Get status of volatile write cache. Always asynchronous.
968 */
969 int
970 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
971 {
972 struct nvme_ccb *ccb;
973 struct nvme_queue *q = sc->sc_admin_q;
974 int result = 0, error;
975
976 if (!nvme_has_volatile_write_cache(sc)) {
977 /* cache simply not present */
978 *addr = 0;
979 return 0;
980 }
981
982 ccb = nvme_ccb_get(q, true);
983 KASSERT(ccb != NULL);
984
985 ccb->ccb_done = nvme_getcache_done;
986 ccb->ccb_cookie = &result;
987
988 /* namespace context */
989 ccb->nnc_flags = 0;
990 ccb->nnc_done = NULL;
991
992 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
993
994 /* wait for completion */
995 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
996 KASSERT(result != 0);
997
998 if (result > 0) {
999 *addr = result;
1000 error = 0;
1001 } else
1002 error = EINVAL;
1003
1004 return error;
1005 }
1006
1007 static void
1008 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1009 {
1010 struct nvme_sqe *sqe = slot;
1011
1012 sqe->opcode = NVM_ADMIN_GET_FEATURES;
1013 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1014 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1015 }
1016
1017 static void
1018 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1019 struct nvme_cqe *cqe)
1020 {
1021 int *addr = ccb->ccb_cookie;
1022 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1023 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
1024 int result;
1025
1026 if (status == NVME_CQE_SC_SUCCESS) {
1027 result = 0;
1028
1029 /*
1030 * DPO not supported, Dataset Management (DSM) field doesn't
1031 * specify the same semantics. FUA is always supported.
1032 */
1033 result = DKCACHE_FUA;
1034
1035 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
1036 result |= DKCACHE_WRITE;
1037
1038 /*
1039 * If volatile write cache is present, the flag shall also be
1040 * settable.
1041 */
1042 result |= DKCACHE_WCHANGE;
1043
1044 /*
1045 * ONCS field indicates whether the optional SAVE is also
1046 * supported for Set Features. According to spec v1.3,
1047 * Volatile Write Cache however doesn't support persistency
1048 * across power cycle/reset.
1049 */
1050
1051 } else {
1052 result = -1;
1053 }
1054
1055 *addr = result;
1056
1057 nvme_ccb_put(q, ccb);
1058 }
1059
1060 struct nvme_setcache_state {
1061 int dkcache;
1062 int result;
1063 };
1064
1065 static bool
1066 nvme_setcache_finished(void *xc)
1067 {
1068 struct nvme_setcache_state *st = xc;
1069
1070 return (st->result != 0);
1071 }
1072
1073 static void
1074 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1075 {
1076 struct nvme_sqe *sqe = slot;
1077 struct nvme_setcache_state *st = ccb->ccb_cookie;
1078
1079 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1080 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1081 if (st->dkcache & DKCACHE_WRITE)
1082 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1083 }
1084
1085 static void
1086 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1087 struct nvme_cqe *cqe)
1088 {
1089 struct nvme_setcache_state *st = ccb->ccb_cookie;
1090 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1091
1092 if (status == NVME_CQE_SC_SUCCESS) {
1093 st->result = 1;
1094 } else {
1095 st->result = -1;
1096 }
1097
1098 nvme_ccb_put(q, ccb);
1099 }
1100
1101 /*
1102 * Set status of volatile write cache. Always asynchronous.
1103 */
1104 int
1105 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1106 {
1107 struct nvme_ccb *ccb;
1108 struct nvme_queue *q = sc->sc_admin_q;
1109 int error;
1110 struct nvme_setcache_state st;
1111
1112 if (!nvme_has_volatile_write_cache(sc)) {
1113 /* cache simply not present */
1114 return EOPNOTSUPP;
1115 }
1116
1117 if (dkcache & ~(DKCACHE_WRITE)) {
1118 /* unsupported parameters */
1119 return EOPNOTSUPP;
1120 }
1121
1122 ccb = nvme_ccb_get(q, true);
1123 KASSERT(ccb != NULL);
1124
1125 memset(&st, 0, sizeof(st));
1126 st.dkcache = dkcache;
1127
1128 ccb->ccb_done = nvme_setcache_done;
1129 ccb->ccb_cookie = &st;
1130
1131 /* namespace context */
1132 ccb->nnc_flags = 0;
1133 ccb->nnc_done = NULL;
1134
1135 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1136
1137 /* wait for completion */
1138 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1139 KASSERT(st.result != 0);
1140
1141 if (st.result > 0)
1142 error = 0;
1143 else
1144 error = EINVAL;
1145
1146 return error;
1147 }
1148
1149 void
1150 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1151 {
1152 struct nvme_namespace *ns;
1153 struct nvm_identify_namespace *identify;
1154
1155 ns = nvme_ns_get(sc, nsid);
1156 KASSERT(ns);
1157
1158 identify = ns->ident;
1159 ns->ident = NULL;
1160 if (identify != NULL)
1161 kmem_free(identify, sizeof(*identify));
1162 }
1163
1164 struct nvme_pt_state {
1165 struct nvme_pt_command *pt;
1166 bool finished;
1167 };
1168
1169 static void
1170 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1171 {
1172 struct nvme_softc *sc = q->q_sc;
1173 struct nvme_sqe *sqe = slot;
1174 struct nvme_pt_state *state = ccb->ccb_cookie;
1175 struct nvme_pt_command *pt = state->pt;
1176 bus_dmamap_t dmap = ccb->ccb_dmamap;
1177 int i;
1178
1179 sqe->opcode = pt->cmd.opcode;
1180 htolem32(&sqe->nsid, pt->cmd.nsid);
1181
1182 if (pt->buf != NULL && pt->len > 0) {
1183 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1184 switch (dmap->dm_nsegs) {
1185 case 1:
1186 break;
1187 case 2:
1188 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1189 break;
1190 default:
1191 for (i = 1; i < dmap->dm_nsegs; i++) {
1192 htolem64(&ccb->ccb_prpl[i - 1],
1193 dmap->dm_segs[i].ds_addr);
1194 }
1195 bus_dmamap_sync(sc->sc_dmat,
1196 NVME_DMA_MAP(q->q_ccb_prpls),
1197 ccb->ccb_prpl_off,
1198 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1199 BUS_DMASYNC_PREWRITE);
1200 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1201 break;
1202 }
1203 }
1204
1205 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1206 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1207 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1208 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1209 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1210 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1211 }
1212
1213 static void
1214 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1215 {
1216 struct nvme_softc *sc = q->q_sc;
1217 struct nvme_pt_state *state = ccb->ccb_cookie;
1218 struct nvme_pt_command *pt = state->pt;
1219 bus_dmamap_t dmap = ccb->ccb_dmamap;
1220
1221 if (pt->buf != NULL && pt->len > 0) {
1222 if (dmap->dm_nsegs > 2) {
1223 bus_dmamap_sync(sc->sc_dmat,
1224 NVME_DMA_MAP(q->q_ccb_prpls),
1225 ccb->ccb_prpl_off,
1226 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1227 BUS_DMASYNC_POSTWRITE);
1228 }
1229
1230 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1231 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1232 bus_dmamap_unload(sc->sc_dmat, dmap);
1233 }
1234
1235 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1236 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1237
1238 state->finished = true;
1239
1240 nvme_ccb_put(q, ccb);
1241 }
1242
1243 static bool
1244 nvme_pt_finished(void *cookie)
1245 {
1246 struct nvme_pt_state *state = cookie;
1247
1248 return state->finished;
1249 }
1250
1251 static int
1252 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1253 uint16_t nsid, struct lwp *l, bool is_adminq)
1254 {
1255 struct nvme_queue *q;
1256 struct nvme_ccb *ccb;
1257 void *buf = NULL;
1258 struct nvme_pt_state state;
1259 int error;
1260
1261 /* limit command size to maximum data transfer size */
1262 if ((pt->buf == NULL && pt->len > 0) ||
1263 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1264 return EINVAL;
1265
1266 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1267 ccb = nvme_ccb_get(q, true);
1268 KASSERT(ccb != NULL);
1269
1270 if (pt->buf != NULL) {
1271 KASSERT(pt->len > 0);
1272 buf = kmem_alloc(pt->len, KM_SLEEP);
1273 if (!pt->is_read) {
1274 error = copyin(pt->buf, buf, pt->len);
1275 if (error)
1276 goto kmem_free;
1277 }
1278 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1279 pt->len, NULL,
1280 BUS_DMA_WAITOK |
1281 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1282 if (error)
1283 goto kmem_free;
1284 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1285 0, ccb->ccb_dmamap->dm_mapsize,
1286 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1287 }
1288
1289 memset(&state, 0, sizeof(state));
1290 state.pt = pt;
1291 state.finished = false;
1292
1293 ccb->ccb_done = nvme_pt_done;
1294 ccb->ccb_cookie = &state;
1295
1296 pt->cmd.nsid = nsid;
1297
1298 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1299
1300 /* wait for completion */
1301 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1302 KASSERT(state.finished);
1303
1304 error = 0;
1305
1306 if (buf != NULL) {
1307 if (error == 0 && pt->is_read)
1308 error = copyout(buf, pt->buf, pt->len);
1309 kmem_free:
1310 kmem_free(buf, pt->len);
1311 }
1312
1313 return error;
1314 }
1315
1316 static void
1317 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1318 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1319 {
1320 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1321 uint32_t tail;
1322
1323 mutex_enter(&q->q_sq_mtx);
1324 tail = q->q_sq_tail;
1325 if (++q->q_sq_tail >= q->q_entries)
1326 q->q_sq_tail = 0;
1327
1328 sqe += tail;
1329
1330 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1331 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1332 memset(sqe, 0, sizeof(*sqe));
1333 (*fill)(q, ccb, sqe);
1334 htolem16(&sqe->cid, ccb->ccb_id);
1335 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1336 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1337
1338 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1339 mutex_exit(&q->q_sq_mtx);
1340 }
1341
1342 struct nvme_poll_state {
1343 struct nvme_sqe s;
1344 struct nvme_cqe c;
1345 void *cookie;
1346 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1347 };
1348
1349 static int
1350 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1351 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1352 {
1353 struct nvme_poll_state state;
1354 uint16_t flags;
1355 int step = 10;
1356 int maxloop = timo_sec * 1000000 / step;
1357 int error = 0;
1358
1359 memset(&state, 0, sizeof(state));
1360 (*fill)(q, ccb, &state.s);
1361
1362 state.done = ccb->ccb_done;
1363 state.cookie = ccb->ccb_cookie;
1364
1365 ccb->ccb_done = nvme_poll_done;
1366 ccb->ccb_cookie = &state;
1367
1368 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1369 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1370 if (nvme_q_complete(sc, q) == 0)
1371 delay(step);
1372
1373 if (timo_sec >= 0 && --maxloop <= 0) {
1374 error = ETIMEDOUT;
1375 break;
1376 }
1377 }
1378
1379 if (error == 0) {
1380 flags = lemtoh16(&state.c.flags);
1381 return flags & ~NVME_CQE_PHASE;
1382 } else {
1383 /*
1384 * If it succeds later, it would hit ccb which will have been
1385 * already reused for something else. Not good. Cross
1386 * fingers and hope for best. XXX do controller reset?
1387 */
1388 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1389
1390 /* Invoke the callback to clean state anyway */
1391 struct nvme_cqe cqe;
1392 memset(&cqe, 0, sizeof(cqe));
1393 ccb->ccb_done(q, ccb, &cqe);
1394
1395 return 1;
1396 }
1397 }
1398
1399 static void
1400 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1401 {
1402 struct nvme_sqe *sqe = slot;
1403 struct nvme_poll_state *state = ccb->ccb_cookie;
1404
1405 *sqe = state->s;
1406 }
1407
1408 static void
1409 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1410 struct nvme_cqe *cqe)
1411 {
1412 struct nvme_poll_state *state = ccb->ccb_cookie;
1413
1414 state->c = *cqe;
1415 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1416
1417 ccb->ccb_cookie = state->cookie;
1418 state->done(q, ccb, &state->c);
1419 }
1420
1421 static void
1422 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1423 {
1424 struct nvme_sqe *src = ccb->ccb_cookie;
1425 struct nvme_sqe *dst = slot;
1426
1427 *dst = *src;
1428 }
1429
1430 static void
1431 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1432 struct nvme_cqe *cqe)
1433 {
1434 }
1435
1436 static int
1437 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1438 {
1439 struct nvme_ccb *ccb;
1440 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1441 uint16_t flags;
1442 int rv = 0;
1443
1444 mutex_enter(&q->q_cq_mtx);
1445
1446 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1447 for (;;) {
1448 cqe = &ring[q->q_cq_head];
1449 flags = lemtoh16(&cqe->flags);
1450 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1451 break;
1452
1453 ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1454
1455 if (++q->q_cq_head >= q->q_entries) {
1456 q->q_cq_head = 0;
1457 q->q_cq_phase ^= NVME_CQE_PHASE;
1458 }
1459
1460 #ifdef DEBUG
1461 /*
1462 * If we get spurious completion notification, something
1463 * is seriously hosed up. Very likely DMA to some random
1464 * memory place happened, so just bail out.
1465 */
1466 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1467 panic("%s: invalid ccb detected",
1468 device_xname(sc->sc_dev));
1469 /* NOTREACHED */
1470 }
1471 #endif
1472
1473 rv++;
1474
1475 /*
1476 * Unlock the mutex before calling the ccb_done callback
1477 * and re-lock afterwards. The callback triggers lddone()
1478 * which schedules another i/o, and also calls nvme_ccb_put().
1479 * Unlock/relock avoids possibility of deadlock.
1480 */
1481 mutex_exit(&q->q_cq_mtx);
1482 ccb->ccb_done(q, ccb, cqe);
1483 mutex_enter(&q->q_cq_mtx);
1484 }
1485 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1486
1487 if (rv)
1488 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1489
1490 mutex_exit(&q->q_cq_mtx);
1491
1492 return rv;
1493 }
1494
1495 static void
1496 nvme_q_wait_complete(struct nvme_softc *sc,
1497 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1498 {
1499 mutex_enter(&q->q_ccb_mtx);
1500 if (finished(cookie))
1501 goto out;
1502
1503 for(;;) {
1504 q->q_ccb_waiting = true;
1505 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1506
1507 if (finished(cookie))
1508 break;
1509 }
1510
1511 out:
1512 mutex_exit(&q->q_ccb_mtx);
1513 }
1514
1515 static int
1516 nvme_identify(struct nvme_softc *sc, u_int mps)
1517 {
1518 char sn[41], mn[81], fr[17];
1519 struct nvm_identify_controller *identify;
1520 struct nvme_dmamem *mem;
1521 struct nvme_ccb *ccb;
1522 u_int mdts;
1523 int rv = 1;
1524
1525 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1526 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1527
1528 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1529 if (mem == NULL)
1530 return 1;
1531
1532 ccb->ccb_done = nvme_empty_done;
1533 ccb->ccb_cookie = mem;
1534
1535 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1536 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1537 NVME_TIMO_IDENT);
1538 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1539
1540 nvme_ccb_put(sc->sc_admin_q, ccb);
1541
1542 if (rv != 0)
1543 goto done;
1544
1545 identify = NVME_DMA_KVA(mem);
1546 sc->sc_identify = *identify;
1547 identify = NULL;
1548
1549 /* Convert data to host endian */
1550 nvme_identify_controller_swapbytes(&sc->sc_identify);
1551
1552 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1553 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1554 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1555 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1556 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1557 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1558 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1559 sn);
1560
1561 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1562
1563 if (sc->sc_identify.mdts > 0) {
1564 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1565 if (mdts < sc->sc_mdts)
1566 sc->sc_mdts = mdts;
1567 }
1568
1569 sc->sc_nn = sc->sc_identify.nn;
1570
1571 done:
1572 nvme_dmamem_free(sc, mem);
1573
1574 return rv;
1575 }
1576
1577 static int
1578 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1579 {
1580 struct nvme_sqe_q sqe;
1581 struct nvme_ccb *ccb;
1582 int rv;
1583
1584 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1585 return 1;
1586
1587 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1588 KASSERT(ccb != NULL);
1589
1590 ccb->ccb_done = nvme_empty_done;
1591 ccb->ccb_cookie = &sqe;
1592
1593 memset(&sqe, 0, sizeof(sqe));
1594 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1595 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1596 htolem16(&sqe.qsize, q->q_entries - 1);
1597 htolem16(&sqe.qid, q->q_id);
1598 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1599 if (sc->sc_use_mq)
1600 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1601
1602 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1603 if (rv != 0)
1604 goto fail;
1605
1606 ccb->ccb_done = nvme_empty_done;
1607 ccb->ccb_cookie = &sqe;
1608
1609 memset(&sqe, 0, sizeof(sqe));
1610 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1611 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1612 htolem16(&sqe.qsize, q->q_entries - 1);
1613 htolem16(&sqe.qid, q->q_id);
1614 htolem16(&sqe.cqid, q->q_id);
1615 sqe.qflags = NVM_SQE_Q_PC;
1616
1617 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1618 if (rv != 0)
1619 goto fail;
1620
1621 nvme_ccb_put(sc->sc_admin_q, ccb);
1622 return 0;
1623
1624 fail:
1625 if (sc->sc_use_mq)
1626 sc->sc_intr_disestablish(sc, q->q_id);
1627
1628 nvme_ccb_put(sc->sc_admin_q, ccb);
1629 return rv;
1630 }
1631
1632 static int
1633 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1634 {
1635 struct nvme_sqe_q sqe;
1636 struct nvme_ccb *ccb;
1637 int rv;
1638
1639 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1640 KASSERT(ccb != NULL);
1641
1642 ccb->ccb_done = nvme_empty_done;
1643 ccb->ccb_cookie = &sqe;
1644
1645 memset(&sqe, 0, sizeof(sqe));
1646 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1647 htolem16(&sqe.qid, q->q_id);
1648
1649 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1650 if (rv != 0)
1651 goto fail;
1652
1653 ccb->ccb_done = nvme_empty_done;
1654 ccb->ccb_cookie = &sqe;
1655
1656 memset(&sqe, 0, sizeof(sqe));
1657 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1658 htolem16(&sqe.qid, q->q_id);
1659
1660 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1661 if (rv != 0)
1662 goto fail;
1663
1664 fail:
1665 nvme_ccb_put(sc->sc_admin_q, ccb);
1666
1667 if (rv == 0 && sc->sc_use_mq) {
1668 if (sc->sc_intr_disestablish(sc, q->q_id))
1669 rv = 1;
1670 }
1671
1672 return rv;
1673 }
1674
1675 static void
1676 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1677 {
1678 struct nvme_sqe *sqe = slot;
1679 struct nvme_dmamem *mem = ccb->ccb_cookie;
1680
1681 sqe->opcode = NVM_ADMIN_IDENTIFY;
1682 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1683 htolem32(&sqe->cdw10, 1);
1684 }
1685
1686 static int
1687 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1688 u_int *nsqa)
1689 {
1690 struct nvme_pt_state state;
1691 struct nvme_pt_command pt;
1692 struct nvme_ccb *ccb;
1693 int rv;
1694
1695 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1696 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1697
1698 memset(&pt, 0, sizeof(pt));
1699 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1700 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1701 pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1702
1703 memset(&state, 0, sizeof(state));
1704 state.pt = &pt;
1705 state.finished = false;
1706
1707 ccb->ccb_done = nvme_pt_done;
1708 ccb->ccb_cookie = &state;
1709
1710 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1711
1712 if (rv != 0) {
1713 *ncqa = *nsqa = 0;
1714 return EIO;
1715 }
1716
1717 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1718 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1719
1720 return 0;
1721 }
1722
1723 static int
1724 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1725 {
1726 struct nvme_softc *sc = q->q_sc;
1727 struct nvme_ccb *ccb;
1728 bus_addr_t off;
1729 uint64_t *prpl;
1730 u_int i;
1731
1732 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1733 cv_init(&q->q_ccb_wait, "nvmeqw");
1734 q->q_ccb_waiting = false;
1735 SIMPLEQ_INIT(&q->q_ccb_list);
1736
1737 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1738
1739 q->q_nccbs = nccbs;
1740 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1741 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1742
1743 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1744 off = 0;
1745
1746 for (i = 0; i < nccbs; i++) {
1747 ccb = &q->q_ccbs[i];
1748
1749 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1750 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1751 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1752 &ccb->ccb_dmamap) != 0)
1753 goto free_maps;
1754
1755 ccb->ccb_id = i;
1756 ccb->ccb_prpl = prpl;
1757 ccb->ccb_prpl_off = off;
1758 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1759
1760 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1761
1762 prpl += sc->sc_max_sgl;
1763 off += sizeof(*prpl) * sc->sc_max_sgl;
1764 }
1765
1766 return 0;
1767
1768 free_maps:
1769 nvme_ccbs_free(q);
1770 return 1;
1771 }
1772
1773 static struct nvme_ccb *
1774 nvme_ccb_get(struct nvme_queue *q, bool wait)
1775 {
1776 struct nvme_ccb *ccb = NULL;
1777
1778 mutex_enter(&q->q_ccb_mtx);
1779 again:
1780 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1781 if (ccb != NULL) {
1782 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1783 #ifdef DEBUG
1784 ccb->ccb_cookie = NULL;
1785 #endif
1786 } else {
1787 if (__predict_false(wait)) {
1788 q->q_ccb_waiting = true;
1789 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1790 goto again;
1791 }
1792 }
1793 mutex_exit(&q->q_ccb_mtx);
1794
1795 return ccb;
1796 }
1797
1798 static void
1799 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1800 {
1801
1802 mutex_enter(&q->q_ccb_mtx);
1803 #ifdef DEBUG
1804 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1805 #endif
1806 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1807
1808 /* It's unlikely there are any waiters, it's not used for regular I/O */
1809 if (__predict_false(q->q_ccb_waiting)) {
1810 q->q_ccb_waiting = false;
1811 cv_broadcast(&q->q_ccb_wait);
1812 }
1813
1814 mutex_exit(&q->q_ccb_mtx);
1815 }
1816
1817 static void
1818 nvme_ccbs_free(struct nvme_queue *q)
1819 {
1820 struct nvme_softc *sc = q->q_sc;
1821 struct nvme_ccb *ccb;
1822
1823 mutex_enter(&q->q_ccb_mtx);
1824 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1825 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1826 /*
1827 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1828 * internally. don't hold spin mutex
1829 */
1830 mutex_exit(&q->q_ccb_mtx);
1831 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1832 mutex_enter(&q->q_ccb_mtx);
1833 }
1834 mutex_exit(&q->q_ccb_mtx);
1835
1836 nvme_dmamem_free(sc, q->q_ccb_prpls);
1837 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1838 q->q_ccbs = NULL;
1839 cv_destroy(&q->q_ccb_wait);
1840 mutex_destroy(&q->q_ccb_mtx);
1841 }
1842
1843 static struct nvme_queue *
1844 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1845 {
1846 struct nvme_queue *q;
1847
1848 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1849 q->q_sc = sc;
1850 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1851 sizeof(struct nvme_sqe) * entries);
1852 if (q->q_sq_dmamem == NULL)
1853 goto free;
1854
1855 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1856 sizeof(struct nvme_cqe) * entries);
1857 if (q->q_cq_dmamem == NULL)
1858 goto free_sq;
1859
1860 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1861 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1862
1863 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1864 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1865 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1866 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1867 q->q_id = id;
1868 q->q_entries = entries;
1869 q->q_sq_tail = 0;
1870 q->q_cq_head = 0;
1871 q->q_cq_phase = NVME_CQE_PHASE;
1872
1873 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1874 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1875
1876 /*
1877 * Due to definition of full and empty queue (queue is empty
1878 * when head == tail, full when tail is one less then head),
1879 * we can actually only have (entries - 1) in-flight commands.
1880 */
1881 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1882 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1883 goto free_cq;
1884 }
1885
1886 return q;
1887
1888 free_cq:
1889 nvme_dmamem_free(sc, q->q_cq_dmamem);
1890 free_sq:
1891 nvme_dmamem_free(sc, q->q_sq_dmamem);
1892 free:
1893 kmem_free(q, sizeof(*q));
1894
1895 return NULL;
1896 }
1897
1898 static void
1899 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
1900 {
1901
1902 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1903 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1904
1905 q->q_sqtdbl = NVME_SQTDBL(q->q_id, sc->sc_dstrd);
1906 q->q_cqhdbl = NVME_CQHDBL(q->q_id, sc->sc_dstrd);
1907
1908 q->q_sq_tail = 0;
1909 q->q_cq_head = 0;
1910 q->q_cq_phase = NVME_CQE_PHASE;
1911
1912 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1913 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1914 }
1915
1916 static void
1917 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1918 {
1919 nvme_ccbs_free(q);
1920 mutex_destroy(&q->q_sq_mtx);
1921 mutex_destroy(&q->q_cq_mtx);
1922 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1923 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1924 nvme_dmamem_free(sc, q->q_cq_dmamem);
1925 nvme_dmamem_free(sc, q->q_sq_dmamem);
1926 kmem_free(q, sizeof(*q));
1927 }
1928
1929 int
1930 nvme_intr(void *xsc)
1931 {
1932 struct nvme_softc *sc = xsc;
1933
1934 /*
1935 * INTx is level triggered, controller deasserts the interrupt only
1936 * when we advance command queue head via write to the doorbell.
1937 * Tell the controller to block the interrupts while we process
1938 * the queue(s).
1939 */
1940 nvme_write4(sc, NVME_INTMS, 1);
1941
1942 softint_schedule(sc->sc_softih[0]);
1943
1944 /* don't know, might not have been for us */
1945 return 1;
1946 }
1947
1948 void
1949 nvme_softintr_intx(void *xq)
1950 {
1951 struct nvme_queue *q = xq;
1952 struct nvme_softc *sc = q->q_sc;
1953
1954 nvme_q_complete(sc, sc->sc_admin_q);
1955 if (sc->sc_q != NULL)
1956 nvme_q_complete(sc, sc->sc_q[0]);
1957
1958 /*
1959 * Processing done, tell controller to issue interrupts again. There
1960 * is no race, as NVMe spec requires the controller to maintain state,
1961 * and assert the interrupt whenever there are unacknowledged
1962 * completion queue entries.
1963 */
1964 nvme_write4(sc, NVME_INTMC, 1);
1965 }
1966
1967 int
1968 nvme_intr_msi(void *xq)
1969 {
1970 struct nvme_queue *q = xq;
1971
1972 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1973 && q->q_sc->sc_softih[q->q_id]);
1974
1975 /*
1976 * MSI/MSI-X are edge triggered, so can handover processing to softint
1977 * without masking the interrupt.
1978 */
1979 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1980
1981 return 1;
1982 }
1983
1984 void
1985 nvme_softintr_msi(void *xq)
1986 {
1987 struct nvme_queue *q = xq;
1988 struct nvme_softc *sc = q->q_sc;
1989
1990 nvme_q_complete(sc, q);
1991 }
1992
1993 static struct nvme_dmamem *
1994 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1995 {
1996 struct nvme_dmamem *ndm;
1997 int nsegs;
1998
1999 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
2000 if (ndm == NULL)
2001 return NULL;
2002
2003 ndm->ndm_size = size;
2004
2005 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
2006 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
2007 goto ndmfree;
2008
2009 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
2010 1, &nsegs, BUS_DMA_WAITOK) != 0)
2011 goto destroy;
2012
2013 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
2014 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
2015 goto free;
2016
2017 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
2018 NULL, BUS_DMA_WAITOK) != 0)
2019 goto unmap;
2020
2021 memset(ndm->ndm_kva, 0, size);
2022 bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
2023
2024 return ndm;
2025
2026 unmap:
2027 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
2028 free:
2029 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2030 destroy:
2031 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2032 ndmfree:
2033 kmem_free(ndm, sizeof(*ndm));
2034 return NULL;
2035 }
2036
2037 static void
2038 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
2039 {
2040 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
2041 0, NVME_DMA_LEN(mem), ops);
2042 }
2043
2044 void
2045 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
2046 {
2047 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
2048 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
2049 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2050 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2051 kmem_free(ndm, sizeof(*ndm));
2052 }
2053
2054 /*
2055 * ioctl
2056 */
2057
2058 dev_type_open(nvmeopen);
2059 dev_type_close(nvmeclose);
2060 dev_type_ioctl(nvmeioctl);
2061
2062 const struct cdevsw nvme_cdevsw = {
2063 .d_open = nvmeopen,
2064 .d_close = nvmeclose,
2065 .d_read = noread,
2066 .d_write = nowrite,
2067 .d_ioctl = nvmeioctl,
2068 .d_stop = nostop,
2069 .d_tty = notty,
2070 .d_poll = nopoll,
2071 .d_mmap = nommap,
2072 .d_kqfilter = nokqfilter,
2073 .d_discard = nodiscard,
2074 .d_flag = D_OTHER,
2075 };
2076
2077 /*
2078 * Accept an open operation on the control device.
2079 */
2080 int
2081 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2082 {
2083 struct nvme_softc *sc;
2084 int unit = minor(dev) / 0x10000;
2085 int nsid = minor(dev) & 0xffff;
2086 int nsidx;
2087
2088 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2089 return ENXIO;
2090 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2091 return ENXIO;
2092
2093 if (nsid == 0) {
2094 /* controller */
2095 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2096 return EBUSY;
2097 SET(sc->sc_flags, NVME_F_OPEN);
2098 } else {
2099 /* namespace */
2100 nsidx = nsid - 1;
2101 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2102 return ENXIO;
2103 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2104 return EBUSY;
2105 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2106 }
2107 return 0;
2108 }
2109
2110 /*
2111 * Accept the last close on the control device.
2112 */
2113 int
2114 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2115 {
2116 struct nvme_softc *sc;
2117 int unit = minor(dev) / 0x10000;
2118 int nsid = minor(dev) & 0xffff;
2119 int nsidx;
2120
2121 sc = device_lookup_private(&nvme_cd, unit);
2122 if (sc == NULL)
2123 return ENXIO;
2124
2125 if (nsid == 0) {
2126 /* controller */
2127 CLR(sc->sc_flags, NVME_F_OPEN);
2128 } else {
2129 /* namespace */
2130 nsidx = nsid - 1;
2131 if (nsidx >= sc->sc_nn)
2132 return ENXIO;
2133 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2134 }
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * Handle control operations.
2141 */
2142 int
2143 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2144 {
2145 struct nvme_softc *sc;
2146 int unit = minor(dev) / 0x10000;
2147 int nsid = minor(dev) & 0xffff;
2148 struct nvme_pt_command *pt;
2149
2150 sc = device_lookup_private(&nvme_cd, unit);
2151 if (sc == NULL)
2152 return ENXIO;
2153
2154 switch (cmd) {
2155 case NVME_PASSTHROUGH_CMD:
2156 pt = data;
2157 return nvme_command_passthrough(sc, data,
2158 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2159 }
2160
2161 return ENOTTY;
2162 }
2163