Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.55.2.1
      1 /*	$NetBSD: nvme.c,v 1.55.2.1 2021/06/17 04:46:28 thorpej Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.55.2.1 2021/06/17 04:46:28 thorpej Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 #include "ioconf.h"
     44 #include "locators.h"
     45 
     46 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
     47 
     48 int nvme_adminq_size = 32;
     49 int nvme_ioq_size = 1024;
     50 
     51 static int	nvme_print(void *, const char *);
     52 
     53 static int	nvme_ready(struct nvme_softc *, uint32_t);
     54 static int	nvme_enable(struct nvme_softc *, u_int);
     55 static int	nvme_disable(struct nvme_softc *);
     56 static int	nvme_shutdown(struct nvme_softc *);
     57 
     58 #ifdef NVME_DEBUG
     59 static void	nvme_dumpregs(struct nvme_softc *);
     60 #endif
     61 static int	nvme_identify(struct nvme_softc *, u_int);
     62 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     63 		    void *);
     64 
     65 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     66 static void	nvme_ccbs_free(struct nvme_queue *);
     67 
     68 static struct nvme_ccb *
     69 		nvme_ccb_get(struct nvme_queue *, bool);
     70 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     71 
     72 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     73 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     74 		    struct nvme_ccb *, void *), int);
     75 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     76 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     77 		    struct nvme_cqe *);
     78 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     79 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     80 		    struct nvme_cqe *);
     81 
     82 static struct nvme_queue *
     83 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     84 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     85 static void	nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
     86 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     87 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     88 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     89 		    struct nvme_ccb *, void *));
     90 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     91 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     92 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
     93 		    bool (*)(void *), void *);
     94 
     95 static struct nvme_dmamem *
     96 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     97 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     98 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     99 		    int);
    100 
    101 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
    102 		    void *);
    103 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
    104 		    struct nvme_cqe *);
    105 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
    106 		    void *);
    107 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    108 		    struct nvme_cqe *);
    109 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    110 		    void *);
    111 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    112 		    struct nvme_cqe *);
    113 
    114 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    115 		    void *);
    116 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    117 		    struct nvme_cqe *);
    118 static int	nvme_command_passthrough(struct nvme_softc *,
    119 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    120 
    121 static int	nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
    122 		    u_int *);
    123 
    124 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    125 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    126 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    127 #define NVME_TIMO_SY		60	/* sync cache timeout */
    128 
    129 #define nvme_read4(_s, _r) \
    130 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    131 #define nvme_write4(_s, _r, _v) \
    132 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    133 /*
    134  * Some controllers, at least Apple NVMe, always require split
    135  * transfers, so don't use bus_space_{read,write}_8() on LP64.
    136  */
    137 static inline uint64_t
    138 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    139 {
    140 	uint64_t v;
    141 	uint32_t *a = (uint32_t *)&v;
    142 
    143 #if _BYTE_ORDER == _LITTLE_ENDIAN
    144 	a[0] = nvme_read4(sc, r);
    145 	a[1] = nvme_read4(sc, r + 4);
    146 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    147 	a[1] = nvme_read4(sc, r);
    148 	a[0] = nvme_read4(sc, r + 4);
    149 #endif
    150 
    151 	return v;
    152 }
    153 
    154 static inline void
    155 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    156 {
    157 	uint32_t *a = (uint32_t *)&v;
    158 
    159 #if _BYTE_ORDER == _LITTLE_ENDIAN
    160 	nvme_write4(sc, r, a[0]);
    161 	nvme_write4(sc, r + 4, a[1]);
    162 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    163 	nvme_write4(sc, r, a[1]);
    164 	nvme_write4(sc, r + 4, a[0]);
    165 #endif
    166 }
    167 #define nvme_barrier(_s, _r, _l, _f) \
    168 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    169 
    170 #ifdef NVME_DEBUG
    171 static __used void
    172 nvme_dumpregs(struct nvme_softc *sc)
    173 {
    174 	uint64_t r8;
    175 	uint32_t r4;
    176 
    177 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    178 	r8 = nvme_read8(sc, NVME_CAP);
    179 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    180 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    181 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    182 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    183 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    184 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    185 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    186 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    187 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    188 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    189 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    190 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    191 
    192 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    193 
    194 	r4 = nvme_read4(sc, NVME_CC);
    195 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    196 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    197 	    (1 << NVME_CC_IOCQES_R(r4)));
    198 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    199 	    (1 << NVME_CC_IOSQES_R(r4)));
    200 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    201 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    202 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    203 	    (1 << NVME_CC_MPS_R(r4)));
    204 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    205 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    206 
    207 	r4 = nvme_read4(sc, NVME_CSTS);
    208 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    209 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    210 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    211 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    212 
    213 	r4 = nvme_read4(sc, NVME_AQA);
    214 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    215 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    216 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    217 
    218 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    219 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    220 #undef	DEVNAME
    221 }
    222 #endif	/* NVME_DEBUG */
    223 
    224 static int
    225 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    226 {
    227 	u_int i = 0;
    228 
    229 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    230 		if (i++ > sc->sc_rdy_to)
    231 			return ENXIO;
    232 
    233 		delay(1000);
    234 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 static int
    241 nvme_enable(struct nvme_softc *sc, u_int mps)
    242 {
    243 	uint32_t cc, csts;
    244 	int error;
    245 
    246 	cc = nvme_read4(sc, NVME_CC);
    247 	csts = nvme_read4(sc, NVME_CSTS);
    248 
    249 	/*
    250 	 * See note in nvme_disable. Short circuit if we're already enabled.
    251 	 */
    252 	if (ISSET(cc, NVME_CC_EN)) {
    253 		if (ISSET(csts, NVME_CSTS_RDY))
    254 			return 0;
    255 
    256 		goto waitready;
    257 	} else {
    258 		/* EN == 0 already wait for RDY == 0 or fail */
    259 		error = nvme_ready(sc, 0);
    260 		if (error)
    261 			return error;
    262 	}
    263 
    264 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    265 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    266 	delay(5000);
    267 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    268 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    269 	delay(5000);
    270 
    271 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    272 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    273 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    274 	delay(5000);
    275 
    276 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    277 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    278 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    279 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    280 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    281 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    282 	SET(cc, NVME_CC_MPS(mps));
    283 	SET(cc, NVME_CC_EN);
    284 
    285 	nvme_write4(sc, NVME_CC, cc);
    286 	nvme_barrier(sc, 0, sc->sc_ios,
    287 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    288 
    289     waitready:
    290 	return nvme_ready(sc, NVME_CSTS_RDY);
    291 }
    292 
    293 static int
    294 nvme_disable(struct nvme_softc *sc)
    295 {
    296 	uint32_t cc, csts;
    297 	int error;
    298 
    299 	cc = nvme_read4(sc, NVME_CC);
    300 	csts = nvme_read4(sc, NVME_CSTS);
    301 
    302 	/*
    303 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
    304 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
    305 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
    306 	 * isn't the desired value. Short circuit if we're already disabled.
    307 	 */
    308 	if (ISSET(cc, NVME_CC_EN)) {
    309 		if (!ISSET(csts, NVME_CSTS_RDY)) {
    310 			/* EN == 1, wait for RDY == 1 or fail */
    311 			error = nvme_ready(sc, NVME_CSTS_RDY);
    312 			if (error)
    313 				return error;
    314 		}
    315 	} else {
    316 		/* EN == 0 already wait for RDY == 0 */
    317 		if (!ISSET(csts, NVME_CSTS_RDY))
    318 			return 0;
    319 
    320 		goto waitready;
    321 	}
    322 
    323 	CLR(cc, NVME_CC_EN);
    324 	nvme_write4(sc, NVME_CC, cc);
    325 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    326 
    327 	/*
    328 	 * Some drives have issues with accessing the mmio after we disable,
    329 	 * so delay for a bit after we write the bit to cope with these issues.
    330 	 */
    331 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
    332 		delay(B4_CHK_RDY_DELAY_MS);
    333 
    334     waitready:
    335 	return nvme_ready(sc, 0);
    336 }
    337 
    338 int
    339 nvme_attach(struct nvme_softc *sc)
    340 {
    341 	uint64_t cap;
    342 	uint32_t reg;
    343 	u_int mps = PAGE_SHIFT;
    344 	u_int ncq, nsq;
    345 	uint16_t adminq_entries = nvme_adminq_size;
    346 	uint16_t ioq_entries = nvme_ioq_size;
    347 	int i;
    348 
    349 	reg = nvme_read4(sc, NVME_VS);
    350 	if (reg == 0xffffffff) {
    351 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    352 		return 1;
    353 	}
    354 
    355 	if (NVME_VS_TER(reg) == 0)
    356 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    357 		    NVME_VS_MNR(reg));
    358 	else
    359 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    360 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    361 
    362 	cap = nvme_read8(sc, NVME_CAP);
    363 	sc->sc_dstrd = NVME_CAP_DSTRD(cap);
    364 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    365 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    366 		    "is greater than CPU page size %u\n",
    367 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    368 		return 1;
    369 	}
    370 	if (NVME_CAP_MPSMAX(cap) < mps)
    371 		mps = NVME_CAP_MPSMAX(cap);
    372 	if (ioq_entries > NVME_CAP_MQES(cap))
    373 		ioq_entries = NVME_CAP_MQES(cap);
    374 
    375 	/* set initial values to be used for admin queue during probe */
    376 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    377 	sc->sc_mps = 1 << mps;
    378 	sc->sc_mdts = MAXPHYS;
    379 	sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
    380 
    381 	if (nvme_disable(sc) != 0) {
    382 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    383 		return 1;
    384 	}
    385 
    386 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
    387 	    sc->sc_dstrd);
    388 	if (sc->sc_admin_q == NULL) {
    389 		aprint_error_dev(sc->sc_dev,
    390 		    "unable to allocate admin queue\n");
    391 		return 1;
    392 	}
    393 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    394 		goto free_admin_q;
    395 
    396 	if (nvme_enable(sc, mps) != 0) {
    397 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    398 		goto disestablish_admin_q;
    399 	}
    400 
    401 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    402 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    403 		goto disable;
    404 	}
    405 	if (sc->sc_nn == 0) {
    406 		aprint_error_dev(sc->sc_dev, "namespace not found\n");
    407 		goto disable;
    408 	}
    409 
    410 	/* we know how big things are now */
    411 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    412 
    413 	/* reallocate ccbs of admin queue with new max sgl. */
    414 	nvme_ccbs_free(sc->sc_admin_q);
    415 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    416 
    417 	if (sc->sc_use_mq) {
    418 		/* Limit the number of queues to the number allocated in HW */
    419 		if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
    420 			aprint_error_dev(sc->sc_dev,
    421 			    "unable to get number of queues\n");
    422 			goto disable;
    423 		}
    424 		if (sc->sc_nq > ncq)
    425 			sc->sc_nq = ncq;
    426 		if (sc->sc_nq > nsq)
    427 			sc->sc_nq = nsq;
    428 	}
    429 
    430 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    431 	for (i = 0; i < sc->sc_nq; i++) {
    432 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
    433 		    sc->sc_dstrd);
    434 		if (sc->sc_q[i] == NULL) {
    435 			aprint_error_dev(sc->sc_dev,
    436 			    "unable to allocate io queue\n");
    437 			goto free_q;
    438 		}
    439 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    440 			aprint_error_dev(sc->sc_dev,
    441 			    "unable to create io queue\n");
    442 			nvme_q_free(sc, sc->sc_q[i]);
    443 			goto free_q;
    444 		}
    445 	}
    446 
    447 	if (!sc->sc_use_mq)
    448 		nvme_write4(sc, NVME_INTMC, 1);
    449 
    450 	/* probe subdevices */
    451 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    452 	    KM_SLEEP);
    453 	nvme_rescan(sc->sc_dev, NULL, NULL);
    454 
    455 	return 0;
    456 
    457 free_q:
    458 	while (--i >= 0) {
    459 		nvme_q_delete(sc, sc->sc_q[i]);
    460 		nvme_q_free(sc, sc->sc_q[i]);
    461 	}
    462 disable:
    463 	nvme_disable(sc);
    464 disestablish_admin_q:
    465 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    466 free_admin_q:
    467 	nvme_q_free(sc, sc->sc_admin_q);
    468 
    469 	return 1;
    470 }
    471 
    472 int
    473 nvme_rescan(device_t self, const char *ifattr, const int *locs)
    474 {
    475 	struct nvme_softc *sc = device_private(self);
    476 	struct nvme_attach_args naa;
    477 	struct nvm_namespace_format *f;
    478 	struct nvme_namespace *ns;
    479 	uint64_t cap;
    480 	int ioq_entries = nvme_ioq_size;
    481 	int i, mlocs[NVMECF_NLOCS];
    482 	int error;
    483 
    484 	cap = nvme_read8(sc, NVME_CAP);
    485 	if (ioq_entries > NVME_CAP_MQES(cap))
    486 		ioq_entries = NVME_CAP_MQES(cap);
    487 
    488 	for (i = 1; i <= sc->sc_nn; i++) {
    489 		if (sc->sc_namespaces[i - 1].dev)
    490 			continue;
    491 
    492 		/* identify to check for availability */
    493 		error = nvme_ns_identify(sc, i);
    494 		if (error) {
    495 			aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
    496 			continue;
    497 		}
    498 
    499 		ns = nvme_ns_get(sc, i);
    500 		KASSERT(ns);
    501 
    502 		f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
    503 
    504 		/*
    505 		 * NVME1.0e 6.11 Identify command
    506 		 *
    507 		 * LBADS values smaller than 9 are not supported, a value
    508 		 * of zero means that the format is not used.
    509 		 */
    510 		if (f->lbads < 9) {
    511 			if (f->lbads > 0)
    512 				aprint_error_dev(self,
    513 						 "unsupported logical data size %u\n", f->lbads);
    514 			continue;
    515 		}
    516 
    517 		mlocs[NVMECF_NSID] = i;
    518 
    519 		memset(&naa, 0, sizeof(naa));
    520 		naa.naa_nsid = i;
    521 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    522 		naa.naa_maxphys = sc->sc_mdts;
    523 		naa.naa_typename = sc->sc_modelname;
    524 		sc->sc_namespaces[i - 1].dev =
    525 		    config_found(sc->sc_dev, &naa, nvme_print,
    526 				 CFARG_SUBMATCH, config_stdsubmatch,
    527 				 CFARG_LOCATORS, mlocs,
    528 				 CFARG_EOL);
    529 	}
    530 	return 0;
    531 }
    532 
    533 static int
    534 nvme_print(void *aux, const char *pnp)
    535 {
    536 	struct nvme_attach_args *naa = aux;
    537 
    538 	if (pnp)
    539 		aprint_normal("ld at %s", pnp);
    540 
    541 	if (naa->naa_nsid > 0)
    542 		aprint_normal(" nsid %d", naa->naa_nsid);
    543 
    544 	return UNCONF;
    545 }
    546 
    547 int
    548 nvme_detach(struct nvme_softc *sc, int flags)
    549 {
    550 	int i, error;
    551 
    552 	error = config_detach_children(sc->sc_dev, flags);
    553 	if (error)
    554 		return error;
    555 
    556 	error = nvme_shutdown(sc);
    557 	if (error)
    558 		return error;
    559 
    560 	/* from now on we are committed to detach, following will never fail */
    561 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    562 	for (i = 0; i < sc->sc_nq; i++)
    563 		nvme_q_free(sc, sc->sc_q[i]);
    564 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    565 	nvme_q_free(sc, sc->sc_admin_q);
    566 
    567 	return 0;
    568 }
    569 
    570 int
    571 nvme_suspend(struct nvme_softc *sc)
    572 {
    573 
    574 	return nvme_shutdown(sc);
    575 }
    576 
    577 int
    578 nvme_resume(struct nvme_softc *sc)
    579 {
    580 	int ioq_entries = nvme_ioq_size;
    581 	uint64_t cap;
    582 	int i, error;
    583 
    584 	error = nvme_disable(sc);
    585 	if (error) {
    586 		device_printf(sc->sc_dev, "unable to disable controller\n");
    587 		return error;
    588 	}
    589 
    590 	nvme_q_reset(sc, sc->sc_admin_q);
    591 
    592 	error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
    593 	if (error) {
    594 		device_printf(sc->sc_dev, "unable to enable controller\n");
    595 		return error;
    596 	}
    597 
    598 	for (i = 0; i < sc->sc_nq; i++) {
    599 		cap = nvme_read8(sc, NVME_CAP);
    600 		if (ioq_entries > NVME_CAP_MQES(cap))
    601 			ioq_entries = NVME_CAP_MQES(cap);
    602 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
    603 		    sc->sc_dstrd);
    604 		if (sc->sc_q[i] == NULL) {
    605 			error = ENOMEM;
    606 			device_printf(sc->sc_dev, "unable to allocate io q %d"
    607 			    "\n", i);
    608 			goto disable;
    609 		}
    610 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    611 			error = EIO;
    612 			device_printf(sc->sc_dev, "unable to create io q %d"
    613 			    "\n", i);
    614 			nvme_q_free(sc, sc->sc_q[i]);
    615 			goto free_q;
    616 		}
    617 	}
    618 
    619 	nvme_write4(sc, NVME_INTMC, 1);
    620 
    621 	return 0;
    622 
    623 free_q:
    624 	while (i --> 0)
    625 		nvme_q_free(sc, sc->sc_q[i]);
    626 disable:
    627 	(void)nvme_disable(sc);
    628 
    629 	return error;
    630 }
    631 
    632 static int
    633 nvme_shutdown(struct nvme_softc *sc)
    634 {
    635 	uint32_t cc, csts;
    636 	bool disabled = false;
    637 	int i;
    638 
    639 	if (!sc->sc_use_mq)
    640 		nvme_write4(sc, NVME_INTMS, 1);
    641 
    642 	for (i = 0; i < sc->sc_nq; i++) {
    643 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    644 			aprint_error_dev(sc->sc_dev,
    645 			    "unable to delete io queue %d, disabling\n", i + 1);
    646 			disabled = true;
    647 		}
    648 	}
    649 	if (disabled)
    650 		goto disable;
    651 
    652 	cc = nvme_read4(sc, NVME_CC);
    653 	CLR(cc, NVME_CC_SHN_MASK);
    654 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    655 	nvme_write4(sc, NVME_CC, cc);
    656 
    657 	for (i = 0; i < 4000; i++) {
    658 		nvme_barrier(sc, 0, sc->sc_ios,
    659 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    660 		csts = nvme_read4(sc, NVME_CSTS);
    661 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    662 			return 0;
    663 
    664 		delay(1000);
    665 	}
    666 
    667 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    668 
    669 disable:
    670 	nvme_disable(sc);
    671 	return 0;
    672 }
    673 
    674 void
    675 nvme_childdet(device_t self, device_t child)
    676 {
    677 	struct nvme_softc *sc = device_private(self);
    678 	int i;
    679 
    680 	for (i = 0; i < sc->sc_nn; i++) {
    681 		if (sc->sc_namespaces[i].dev == child) {
    682 			/* Already freed ns->ident. */
    683 			sc->sc_namespaces[i].dev = NULL;
    684 			break;
    685 		}
    686 	}
    687 }
    688 
    689 int
    690 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    691 {
    692 	struct nvme_sqe sqe;
    693 	struct nvm_identify_namespace *identify;
    694 	struct nvme_dmamem *mem;
    695 	struct nvme_ccb *ccb;
    696 	struct nvme_namespace *ns;
    697 	int rv;
    698 
    699 	KASSERT(nsid > 0);
    700 
    701 	ns = nvme_ns_get(sc, nsid);
    702 	KASSERT(ns);
    703 
    704 	if (ns->ident != NULL)
    705 		return 0;
    706 
    707 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
    708 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    709 
    710 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    711 	if (mem == NULL) {
    712 		nvme_ccb_put(sc->sc_admin_q, ccb);
    713 		return ENOMEM;
    714 	}
    715 
    716 	memset(&sqe, 0, sizeof(sqe));
    717 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    718 	htolem32(&sqe.nsid, nsid);
    719 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    720 	htolem32(&sqe.cdw10, 0);
    721 
    722 	ccb->ccb_done = nvme_empty_done;
    723 	ccb->ccb_cookie = &sqe;
    724 
    725 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    726 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    727 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    728 
    729 	nvme_ccb_put(sc->sc_admin_q, ccb);
    730 
    731 	if (rv != 0) {
    732 		rv = EIO;
    733 		goto done;
    734 	}
    735 
    736 	/* commit */
    737 
    738 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    739 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    740 
    741 	/* Convert data to host endian */
    742 	nvme_identify_namespace_swapbytes(identify);
    743 
    744 	ns->ident = identify;
    745 
    746 done:
    747 	nvme_dmamem_free(sc, mem);
    748 
    749 	return rv;
    750 }
    751 
    752 int
    753 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    754     struct buf *bp, void *data, size_t datasize,
    755     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    756 {
    757 	struct nvme_queue *q = nvme_get_q(sc, bp, false);
    758 	struct nvme_ccb *ccb;
    759 	bus_dmamap_t dmap;
    760 	int i, error;
    761 
    762 	ccb = nvme_ccb_get(q, false);
    763 	if (ccb == NULL)
    764 		return EAGAIN;
    765 
    766 	ccb->ccb_done = nvme_ns_io_done;
    767 	ccb->ccb_cookie = cookie;
    768 
    769 	/* namespace context */
    770 	ccb->nnc_nsid = nsid;
    771 	ccb->nnc_flags = flags;
    772 	ccb->nnc_buf = bp;
    773 	ccb->nnc_datasize = datasize;
    774 	ccb->nnc_secsize = secsize;
    775 	ccb->nnc_blkno = blkno;
    776 	ccb->nnc_done = nnc_done;
    777 
    778 	dmap = ccb->ccb_dmamap;
    779 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    780 	    datasize, NULL,
    781 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    782 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    783 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    784 	      BUS_DMA_READ : BUS_DMA_WRITE));
    785 	if (error) {
    786 		nvme_ccb_put(q, ccb);
    787 		return error;
    788 	}
    789 
    790 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    791 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    792 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    793 
    794 	if (dmap->dm_nsegs > 2) {
    795 		for (i = 1; i < dmap->dm_nsegs; i++) {
    796 			htolem64(&ccb->ccb_prpl[i - 1],
    797 			    dmap->dm_segs[i].ds_addr);
    798 		}
    799 		bus_dmamap_sync(sc->sc_dmat,
    800 		    NVME_DMA_MAP(q->q_ccb_prpls),
    801 		    ccb->ccb_prpl_off,
    802 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    803 		    BUS_DMASYNC_PREWRITE);
    804 	}
    805 
    806 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    807 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    808 			return EIO;
    809 		return 0;
    810 	}
    811 
    812 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    813 	return 0;
    814 }
    815 
    816 static void
    817 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    818 {
    819 	struct nvme_sqe_io *sqe = slot;
    820 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    821 
    822 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    823 	    NVM_CMD_READ : NVM_CMD_WRITE;
    824 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    825 
    826 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    827 	switch (dmap->dm_nsegs) {
    828 	case 1:
    829 		break;
    830 	case 2:
    831 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    832 		break;
    833 	default:
    834 		/* the prp list is already set up and synced */
    835 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    836 		break;
    837 	}
    838 
    839 	htolem64(&sqe->slba, ccb->nnc_blkno);
    840 
    841 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    842 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    843 
    844 	/* guaranteed by upper layers, but check just in case */
    845 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    846 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    847 }
    848 
    849 static void
    850 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    851     struct nvme_cqe *cqe)
    852 {
    853 	struct nvme_softc *sc = q->q_sc;
    854 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    855 	void *nnc_cookie = ccb->ccb_cookie;
    856 	nvme_nnc_done nnc_done = ccb->nnc_done;
    857 	struct buf *bp = ccb->nnc_buf;
    858 
    859 	if (dmap->dm_nsegs > 2) {
    860 		bus_dmamap_sync(sc->sc_dmat,
    861 		    NVME_DMA_MAP(q->q_ccb_prpls),
    862 		    ccb->ccb_prpl_off,
    863 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    864 		    BUS_DMASYNC_POSTWRITE);
    865 	}
    866 
    867 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    868 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    869 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    870 
    871 	bus_dmamap_unload(sc->sc_dmat, dmap);
    872 	nvme_ccb_put(q, ccb);
    873 
    874 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    875 }
    876 
    877 /*
    878  * If there is no volatile write cache, it makes no sense to issue
    879  * flush commands or query for the status.
    880  */
    881 static bool
    882 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    883 {
    884 	/* sc_identify is filled during attachment */
    885 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    886 }
    887 
    888 static bool
    889 nvme_ns_sync_finished(void *cookie)
    890 {
    891 	int *result = cookie;
    892 
    893 	return (*result != 0);
    894 }
    895 
    896 int
    897 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
    898 {
    899 	struct nvme_queue *q = nvme_get_q(sc, NULL, true);
    900 	struct nvme_ccb *ccb;
    901 	int result = 0;
    902 
    903 	if (!nvme_has_volatile_write_cache(sc)) {
    904 		/* cache not present, no value in trying to flush it */
    905 		return 0;
    906 	}
    907 
    908 	ccb = nvme_ccb_get(q, true);
    909 	KASSERT(ccb != NULL);
    910 
    911 	ccb->ccb_done = nvme_ns_sync_done;
    912 	ccb->ccb_cookie = &result;
    913 
    914 	/* namespace context */
    915 	ccb->nnc_nsid = nsid;
    916 	ccb->nnc_flags = flags;
    917 	ccb->nnc_done = NULL;
    918 
    919 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    920 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    921 			return EIO;
    922 		return 0;
    923 	}
    924 
    925 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    926 
    927 	/* wait for completion */
    928 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
    929 	KASSERT(result != 0);
    930 
    931 	return (result > 0) ? 0 : EIO;
    932 }
    933 
    934 static void
    935 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    936 {
    937 	struct nvme_sqe *sqe = slot;
    938 
    939 	sqe->opcode = NVM_CMD_FLUSH;
    940 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    941 }
    942 
    943 static void
    944 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    945     struct nvme_cqe *cqe)
    946 {
    947 	int *result = ccb->ccb_cookie;
    948 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    949 
    950 	if (status == NVME_CQE_SC_SUCCESS)
    951 		*result = 1;
    952 	else
    953 		*result = -1;
    954 
    955 	nvme_ccb_put(q, ccb);
    956 }
    957 
    958 static bool
    959 nvme_getcache_finished(void *xc)
    960 {
    961 	int *addr = xc;
    962 
    963 	return (*addr != 0);
    964 }
    965 
    966 /*
    967  * Get status of volatile write cache. Always asynchronous.
    968  */
    969 int
    970 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
    971 {
    972 	struct nvme_ccb *ccb;
    973 	struct nvme_queue *q = sc->sc_admin_q;
    974 	int result = 0, error;
    975 
    976 	if (!nvme_has_volatile_write_cache(sc)) {
    977 		/* cache simply not present */
    978 		*addr = 0;
    979 		return 0;
    980 	}
    981 
    982 	ccb = nvme_ccb_get(q, true);
    983 	KASSERT(ccb != NULL);
    984 
    985 	ccb->ccb_done = nvme_getcache_done;
    986 	ccb->ccb_cookie = &result;
    987 
    988 	/* namespace context */
    989 	ccb->nnc_flags = 0;
    990 	ccb->nnc_done = NULL;
    991 
    992 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
    993 
    994 	/* wait for completion */
    995 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
    996 	KASSERT(result != 0);
    997 
    998 	if (result > 0) {
    999 		*addr = result;
   1000 		error = 0;
   1001 	} else
   1002 		error = EINVAL;
   1003 
   1004 	return error;
   1005 }
   1006 
   1007 static void
   1008 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1009 {
   1010 	struct nvme_sqe *sqe = slot;
   1011 
   1012 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
   1013 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
   1014 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
   1015 }
   1016 
   1017 static void
   1018 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1019     struct nvme_cqe *cqe)
   1020 {
   1021 	int *addr = ccb->ccb_cookie;
   1022 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
   1023 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
   1024 	int result;
   1025 
   1026 	if (status == NVME_CQE_SC_SUCCESS) {
   1027 		result = 0;
   1028 
   1029 		/*
   1030 		 * DPO not supported, Dataset Management (DSM) field doesn't
   1031 		 * specify the same semantics. FUA is always supported.
   1032 		 */
   1033 		result = DKCACHE_FUA;
   1034 
   1035 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
   1036 			result |= DKCACHE_WRITE;
   1037 
   1038 		/*
   1039 		 * If volatile write cache is present, the flag shall also be
   1040 		 * settable.
   1041 		 */
   1042 		result |= DKCACHE_WCHANGE;
   1043 
   1044 		/*
   1045 		 * ONCS field indicates whether the optional SAVE is also
   1046 		 * supported for Set Features. According to spec v1.3,
   1047 		 * Volatile Write Cache however doesn't support persistency
   1048 		 * across power cycle/reset.
   1049 		 */
   1050 
   1051 	} else {
   1052 		result = -1;
   1053 	}
   1054 
   1055 	*addr = result;
   1056 
   1057 	nvme_ccb_put(q, ccb);
   1058 }
   1059 
   1060 struct nvme_setcache_state {
   1061 	int dkcache;
   1062 	int result;
   1063 };
   1064 
   1065 static bool
   1066 nvme_setcache_finished(void *xc)
   1067 {
   1068 	struct nvme_setcache_state *st = xc;
   1069 
   1070 	return (st->result != 0);
   1071 }
   1072 
   1073 static void
   1074 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1075 {
   1076 	struct nvme_sqe *sqe = slot;
   1077 	struct nvme_setcache_state *st = ccb->ccb_cookie;
   1078 
   1079 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
   1080 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
   1081 	if (st->dkcache & DKCACHE_WRITE)
   1082 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
   1083 }
   1084 
   1085 static void
   1086 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1087     struct nvme_cqe *cqe)
   1088 {
   1089 	struct nvme_setcache_state *st = ccb->ccb_cookie;
   1090 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
   1091 
   1092 	if (status == NVME_CQE_SC_SUCCESS) {
   1093 		st->result = 1;
   1094 	} else {
   1095 		st->result = -1;
   1096 	}
   1097 
   1098 	nvme_ccb_put(q, ccb);
   1099 }
   1100 
   1101 /*
   1102  * Set status of volatile write cache. Always asynchronous.
   1103  */
   1104 int
   1105 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
   1106 {
   1107 	struct nvme_ccb *ccb;
   1108 	struct nvme_queue *q = sc->sc_admin_q;
   1109 	int error;
   1110 	struct nvme_setcache_state st;
   1111 
   1112 	if (!nvme_has_volatile_write_cache(sc)) {
   1113 		/* cache simply not present */
   1114 		return EOPNOTSUPP;
   1115 	}
   1116 
   1117 	if (dkcache & ~(DKCACHE_WRITE)) {
   1118 		/* unsupported parameters */
   1119 		return EOPNOTSUPP;
   1120 	}
   1121 
   1122 	ccb = nvme_ccb_get(q, true);
   1123 	KASSERT(ccb != NULL);
   1124 
   1125 	memset(&st, 0, sizeof(st));
   1126 	st.dkcache = dkcache;
   1127 
   1128 	ccb->ccb_done = nvme_setcache_done;
   1129 	ccb->ccb_cookie = &st;
   1130 
   1131 	/* namespace context */
   1132 	ccb->nnc_flags = 0;
   1133 	ccb->nnc_done = NULL;
   1134 
   1135 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
   1136 
   1137 	/* wait for completion */
   1138 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
   1139 	KASSERT(st.result != 0);
   1140 
   1141 	if (st.result > 0)
   1142 		error = 0;
   1143 	else
   1144 		error = EINVAL;
   1145 
   1146 	return error;
   1147 }
   1148 
   1149 void
   1150 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
   1151 {
   1152 	struct nvme_namespace *ns;
   1153 	struct nvm_identify_namespace *identify;
   1154 
   1155 	ns = nvme_ns_get(sc, nsid);
   1156 	KASSERT(ns);
   1157 
   1158 	identify = ns->ident;
   1159 	ns->ident = NULL;
   1160 	if (identify != NULL)
   1161 		kmem_free(identify, sizeof(*identify));
   1162 }
   1163 
   1164 struct nvme_pt_state {
   1165 	struct nvme_pt_command *pt;
   1166 	bool finished;
   1167 };
   1168 
   1169 static void
   1170 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1171 {
   1172 	struct nvme_softc *sc = q->q_sc;
   1173 	struct nvme_sqe *sqe = slot;
   1174 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1175 	struct nvme_pt_command *pt = state->pt;
   1176 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1177 	int i;
   1178 
   1179 	sqe->opcode = pt->cmd.opcode;
   1180 	htolem32(&sqe->nsid, pt->cmd.nsid);
   1181 
   1182 	if (pt->buf != NULL && pt->len > 0) {
   1183 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
   1184 		switch (dmap->dm_nsegs) {
   1185 		case 1:
   1186 			break;
   1187 		case 2:
   1188 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
   1189 			break;
   1190 		default:
   1191 			for (i = 1; i < dmap->dm_nsegs; i++) {
   1192 				htolem64(&ccb->ccb_prpl[i - 1],
   1193 				    dmap->dm_segs[i].ds_addr);
   1194 			}
   1195 			bus_dmamap_sync(sc->sc_dmat,
   1196 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1197 			    ccb->ccb_prpl_off,
   1198 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1199 			    BUS_DMASYNC_PREWRITE);
   1200 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
   1201 			break;
   1202 		}
   1203 	}
   1204 
   1205 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
   1206 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
   1207 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
   1208 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
   1209 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
   1210 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
   1211 }
   1212 
   1213 static void
   1214 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
   1215 {
   1216 	struct nvme_softc *sc = q->q_sc;
   1217 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1218 	struct nvme_pt_command *pt = state->pt;
   1219 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1220 
   1221 	if (pt->buf != NULL && pt->len > 0) {
   1222 		if (dmap->dm_nsegs > 2) {
   1223 			bus_dmamap_sync(sc->sc_dmat,
   1224 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1225 			    ccb->ccb_prpl_off,
   1226 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1227 			    BUS_DMASYNC_POSTWRITE);
   1228 		}
   1229 
   1230 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
   1231 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1232 		bus_dmamap_unload(sc->sc_dmat, dmap);
   1233 	}
   1234 
   1235 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
   1236 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
   1237 
   1238 	state->finished = true;
   1239 
   1240 	nvme_ccb_put(q, ccb);
   1241 }
   1242 
   1243 static bool
   1244 nvme_pt_finished(void *cookie)
   1245 {
   1246 	struct nvme_pt_state *state = cookie;
   1247 
   1248 	return state->finished;
   1249 }
   1250 
   1251 static int
   1252 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
   1253     uint16_t nsid, struct lwp *l, bool is_adminq)
   1254 {
   1255 	struct nvme_queue *q;
   1256 	struct nvme_ccb *ccb;
   1257 	void *buf = NULL;
   1258 	struct nvme_pt_state state;
   1259 	int error;
   1260 
   1261 	/* limit command size to maximum data transfer size */
   1262 	if ((pt->buf == NULL && pt->len > 0) ||
   1263 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
   1264 		return EINVAL;
   1265 
   1266 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
   1267 	ccb = nvme_ccb_get(q, true);
   1268 	KASSERT(ccb != NULL);
   1269 
   1270 	if (pt->buf != NULL) {
   1271 		KASSERT(pt->len > 0);
   1272 		buf = kmem_alloc(pt->len, KM_SLEEP);
   1273 		if (!pt->is_read) {
   1274 			error = copyin(pt->buf, buf, pt->len);
   1275 			if (error)
   1276 				goto kmem_free;
   1277 		}
   1278 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
   1279 		    pt->len, NULL,
   1280 		    BUS_DMA_WAITOK |
   1281 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
   1282 		if (error)
   1283 			goto kmem_free;
   1284 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
   1285 		    0, ccb->ccb_dmamap->dm_mapsize,
   1286 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
   1287 	}
   1288 
   1289 	memset(&state, 0, sizeof(state));
   1290 	state.pt = pt;
   1291 	state.finished = false;
   1292 
   1293 	ccb->ccb_done = nvme_pt_done;
   1294 	ccb->ccb_cookie = &state;
   1295 
   1296 	pt->cmd.nsid = nsid;
   1297 
   1298 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
   1299 
   1300 	/* wait for completion */
   1301 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
   1302 	KASSERT(state.finished);
   1303 
   1304 	error = 0;
   1305 
   1306 	if (buf != NULL) {
   1307 		if (error == 0 && pt->is_read)
   1308 			error = copyout(buf, pt->buf, pt->len);
   1309 kmem_free:
   1310 		kmem_free(buf, pt->len);
   1311 	}
   1312 
   1313 	return error;
   1314 }
   1315 
   1316 static void
   1317 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1318     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
   1319 {
   1320 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
   1321 	uint32_t tail;
   1322 
   1323 	mutex_enter(&q->q_sq_mtx);
   1324 	tail = q->q_sq_tail;
   1325 	if (++q->q_sq_tail >= q->q_entries)
   1326 		q->q_sq_tail = 0;
   1327 
   1328 	sqe += tail;
   1329 
   1330 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1331 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
   1332 	memset(sqe, 0, sizeof(*sqe));
   1333 	(*fill)(q, ccb, sqe);
   1334 	htolem16(&sqe->cid, ccb->ccb_id);
   1335 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1336 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1337 
   1338 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
   1339 	mutex_exit(&q->q_sq_mtx);
   1340 }
   1341 
   1342 struct nvme_poll_state {
   1343 	struct nvme_sqe s;
   1344 	struct nvme_cqe c;
   1345 	void *cookie;
   1346 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1347 };
   1348 
   1349 static int
   1350 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1351     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1352 {
   1353 	struct nvme_poll_state state;
   1354 	uint16_t flags;
   1355 	int step = 10;
   1356 	int maxloop = timo_sec * 1000000 / step;
   1357 	int error = 0;
   1358 
   1359 	memset(&state, 0, sizeof(state));
   1360 	(*fill)(q, ccb, &state.s);
   1361 
   1362 	state.done = ccb->ccb_done;
   1363 	state.cookie = ccb->ccb_cookie;
   1364 
   1365 	ccb->ccb_done = nvme_poll_done;
   1366 	ccb->ccb_cookie = &state;
   1367 
   1368 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1369 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1370 		if (nvme_q_complete(sc, q) == 0)
   1371 			delay(step);
   1372 
   1373 		if (timo_sec >= 0 && --maxloop <= 0) {
   1374 			error = ETIMEDOUT;
   1375 			break;
   1376 		}
   1377 	}
   1378 
   1379 	if (error == 0) {
   1380 		flags = lemtoh16(&state.c.flags);
   1381 		return flags & ~NVME_CQE_PHASE;
   1382 	} else {
   1383 		/*
   1384 		 * If it succeds later, it would hit ccb which will have been
   1385 		 * already reused for something else. Not good. Cross
   1386 		 * fingers and hope for best. XXX do controller reset?
   1387 		 */
   1388 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
   1389 
   1390 		/* Invoke the callback to clean state anyway */
   1391 		struct nvme_cqe cqe;
   1392 		memset(&cqe, 0, sizeof(cqe));
   1393 		ccb->ccb_done(q, ccb, &cqe);
   1394 
   1395 		return 1;
   1396 	}
   1397 }
   1398 
   1399 static void
   1400 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1401 {
   1402 	struct nvme_sqe *sqe = slot;
   1403 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1404 
   1405 	*sqe = state->s;
   1406 }
   1407 
   1408 static void
   1409 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1410     struct nvme_cqe *cqe)
   1411 {
   1412 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1413 
   1414 	state->c = *cqe;
   1415 	SET(state->c.flags, htole16(NVME_CQE_PHASE));
   1416 
   1417 	ccb->ccb_cookie = state->cookie;
   1418 	state->done(q, ccb, &state->c);
   1419 }
   1420 
   1421 static void
   1422 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1423 {
   1424 	struct nvme_sqe *src = ccb->ccb_cookie;
   1425 	struct nvme_sqe *dst = slot;
   1426 
   1427 	*dst = *src;
   1428 }
   1429 
   1430 static void
   1431 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1432     struct nvme_cqe *cqe)
   1433 {
   1434 }
   1435 
   1436 static int
   1437 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1438 {
   1439 	struct nvme_ccb *ccb;
   1440 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1441 	uint16_t flags;
   1442 	int rv = 0;
   1443 
   1444 	mutex_enter(&q->q_cq_mtx);
   1445 
   1446 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1447 	for (;;) {
   1448 		cqe = &ring[q->q_cq_head];
   1449 		flags = lemtoh16(&cqe->flags);
   1450 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1451 			break;
   1452 
   1453 		ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
   1454 
   1455 		if (++q->q_cq_head >= q->q_entries) {
   1456 			q->q_cq_head = 0;
   1457 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1458 		}
   1459 
   1460 #ifdef DEBUG
   1461 		/*
   1462 		 * If we get spurious completion notification, something
   1463 		 * is seriously hosed up. Very likely DMA to some random
   1464 		 * memory place happened, so just bail out.
   1465 		 */
   1466 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1467 			panic("%s: invalid ccb detected",
   1468 			    device_xname(sc->sc_dev));
   1469 			/* NOTREACHED */
   1470 		}
   1471 #endif
   1472 
   1473 		rv++;
   1474 
   1475 		/*
   1476 		 * Unlock the mutex before calling the ccb_done callback
   1477 		 * and re-lock afterwards. The callback triggers lddone()
   1478 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1479 		 * Unlock/relock avoids possibility of deadlock.
   1480 		 */
   1481 		mutex_exit(&q->q_cq_mtx);
   1482 		ccb->ccb_done(q, ccb, cqe);
   1483 		mutex_enter(&q->q_cq_mtx);
   1484 	}
   1485 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1486 
   1487 	if (rv)
   1488 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1489 
   1490 	mutex_exit(&q->q_cq_mtx);
   1491 
   1492 	return rv;
   1493 }
   1494 
   1495 static void
   1496 nvme_q_wait_complete(struct nvme_softc *sc,
   1497     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
   1498 {
   1499 	mutex_enter(&q->q_ccb_mtx);
   1500 	if (finished(cookie))
   1501 		goto out;
   1502 
   1503 	for(;;) {
   1504 		q->q_ccb_waiting = true;
   1505 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1506 
   1507 		if (finished(cookie))
   1508 			break;
   1509 	}
   1510 
   1511 out:
   1512 	mutex_exit(&q->q_ccb_mtx);
   1513 }
   1514 
   1515 static int
   1516 nvme_identify(struct nvme_softc *sc, u_int mps)
   1517 {
   1518 	char sn[41], mn[81], fr[17];
   1519 	struct nvm_identify_controller *identify;
   1520 	struct nvme_dmamem *mem;
   1521 	struct nvme_ccb *ccb;
   1522 	u_int mdts;
   1523 	int rv = 1;
   1524 
   1525 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1526 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1527 
   1528 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1529 	if (mem == NULL)
   1530 		return 1;
   1531 
   1532 	ccb->ccb_done = nvme_empty_done;
   1533 	ccb->ccb_cookie = mem;
   1534 
   1535 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1536 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1537 	    NVME_TIMO_IDENT);
   1538 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1539 
   1540 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1541 
   1542 	if (rv != 0)
   1543 		goto done;
   1544 
   1545 	identify = NVME_DMA_KVA(mem);
   1546 	sc->sc_identify = *identify;
   1547 	identify = NULL;
   1548 
   1549 	/* Convert data to host endian */
   1550 	nvme_identify_controller_swapbytes(&sc->sc_identify);
   1551 
   1552 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
   1553 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1554 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
   1555 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1556 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
   1557 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1558 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1559 	    sn);
   1560 
   1561 	strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
   1562 
   1563 	if (sc->sc_identify.mdts > 0) {
   1564 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
   1565 		if (mdts < sc->sc_mdts)
   1566 			sc->sc_mdts = mdts;
   1567 	}
   1568 
   1569 	sc->sc_nn = sc->sc_identify.nn;
   1570 
   1571 done:
   1572 	nvme_dmamem_free(sc, mem);
   1573 
   1574 	return rv;
   1575 }
   1576 
   1577 static int
   1578 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1579 {
   1580 	struct nvme_sqe_q sqe;
   1581 	struct nvme_ccb *ccb;
   1582 	int rv;
   1583 
   1584 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1585 		return 1;
   1586 
   1587 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1588 	KASSERT(ccb != NULL);
   1589 
   1590 	ccb->ccb_done = nvme_empty_done;
   1591 	ccb->ccb_cookie = &sqe;
   1592 
   1593 	memset(&sqe, 0, sizeof(sqe));
   1594 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1595 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1596 	htolem16(&sqe.qsize, q->q_entries - 1);
   1597 	htolem16(&sqe.qid, q->q_id);
   1598 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1599 	if (sc->sc_use_mq)
   1600 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1601 
   1602 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1603 	if (rv != 0)
   1604 		goto fail;
   1605 
   1606 	ccb->ccb_done = nvme_empty_done;
   1607 	ccb->ccb_cookie = &sqe;
   1608 
   1609 	memset(&sqe, 0, sizeof(sqe));
   1610 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1611 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1612 	htolem16(&sqe.qsize, q->q_entries - 1);
   1613 	htolem16(&sqe.qid, q->q_id);
   1614 	htolem16(&sqe.cqid, q->q_id);
   1615 	sqe.qflags = NVM_SQE_Q_PC;
   1616 
   1617 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1618 	if (rv != 0)
   1619 		goto fail;
   1620 
   1621 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1622 	return 0;
   1623 
   1624 fail:
   1625 	if (sc->sc_use_mq)
   1626 		sc->sc_intr_disestablish(sc, q->q_id);
   1627 
   1628 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1629 	return rv;
   1630 }
   1631 
   1632 static int
   1633 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1634 {
   1635 	struct nvme_sqe_q sqe;
   1636 	struct nvme_ccb *ccb;
   1637 	int rv;
   1638 
   1639 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1640 	KASSERT(ccb != NULL);
   1641 
   1642 	ccb->ccb_done = nvme_empty_done;
   1643 	ccb->ccb_cookie = &sqe;
   1644 
   1645 	memset(&sqe, 0, sizeof(sqe));
   1646 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1647 	htolem16(&sqe.qid, q->q_id);
   1648 
   1649 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1650 	if (rv != 0)
   1651 		goto fail;
   1652 
   1653 	ccb->ccb_done = nvme_empty_done;
   1654 	ccb->ccb_cookie = &sqe;
   1655 
   1656 	memset(&sqe, 0, sizeof(sqe));
   1657 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1658 	htolem16(&sqe.qid, q->q_id);
   1659 
   1660 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1661 	if (rv != 0)
   1662 		goto fail;
   1663 
   1664 fail:
   1665 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1666 
   1667 	if (rv == 0 && sc->sc_use_mq) {
   1668 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1669 			rv = 1;
   1670 	}
   1671 
   1672 	return rv;
   1673 }
   1674 
   1675 static void
   1676 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1677 {
   1678 	struct nvme_sqe *sqe = slot;
   1679 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1680 
   1681 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1682 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1683 	htolem32(&sqe->cdw10, 1);
   1684 }
   1685 
   1686 static int
   1687 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
   1688     u_int *nsqa)
   1689 {
   1690 	struct nvme_pt_state state;
   1691 	struct nvme_pt_command pt;
   1692 	struct nvme_ccb *ccb;
   1693 	int rv;
   1694 
   1695 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1696 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1697 
   1698 	memset(&pt, 0, sizeof(pt));
   1699 	pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
   1700 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
   1701 	pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
   1702 
   1703 	memset(&state, 0, sizeof(state));
   1704 	state.pt = &pt;
   1705 	state.finished = false;
   1706 
   1707 	ccb->ccb_done = nvme_pt_done;
   1708 	ccb->ccb_cookie = &state;
   1709 
   1710 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1711 
   1712 	if (rv != 0) {
   1713 		*ncqa = *nsqa = 0;
   1714 		return EIO;
   1715 	}
   1716 
   1717 	*ncqa = (pt.cpl.cdw0 >> 16) + 1;
   1718 	*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
   1719 
   1720 	return 0;
   1721 }
   1722 
   1723 static int
   1724 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1725 {
   1726 	struct nvme_softc *sc = q->q_sc;
   1727 	struct nvme_ccb *ccb;
   1728 	bus_addr_t off;
   1729 	uint64_t *prpl;
   1730 	u_int i;
   1731 
   1732 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1733 	cv_init(&q->q_ccb_wait, "nvmeqw");
   1734 	q->q_ccb_waiting = false;
   1735 	SIMPLEQ_INIT(&q->q_ccb_list);
   1736 
   1737 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1738 
   1739 	q->q_nccbs = nccbs;
   1740 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1741 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1742 
   1743 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1744 	off = 0;
   1745 
   1746 	for (i = 0; i < nccbs; i++) {
   1747 		ccb = &q->q_ccbs[i];
   1748 
   1749 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1750 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1751 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1752 		    &ccb->ccb_dmamap) != 0)
   1753 			goto free_maps;
   1754 
   1755 		ccb->ccb_id = i;
   1756 		ccb->ccb_prpl = prpl;
   1757 		ccb->ccb_prpl_off = off;
   1758 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1759 
   1760 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1761 
   1762 		prpl += sc->sc_max_sgl;
   1763 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1764 	}
   1765 
   1766 	return 0;
   1767 
   1768 free_maps:
   1769 	nvme_ccbs_free(q);
   1770 	return 1;
   1771 }
   1772 
   1773 static struct nvme_ccb *
   1774 nvme_ccb_get(struct nvme_queue *q, bool wait)
   1775 {
   1776 	struct nvme_ccb *ccb = NULL;
   1777 
   1778 	mutex_enter(&q->q_ccb_mtx);
   1779 again:
   1780 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1781 	if (ccb != NULL) {
   1782 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1783 #ifdef DEBUG
   1784 		ccb->ccb_cookie = NULL;
   1785 #endif
   1786 	} else {
   1787 		if (__predict_false(wait)) {
   1788 			q->q_ccb_waiting = true;
   1789 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1790 			goto again;
   1791 		}
   1792 	}
   1793 	mutex_exit(&q->q_ccb_mtx);
   1794 
   1795 	return ccb;
   1796 }
   1797 
   1798 static void
   1799 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1800 {
   1801 
   1802 	mutex_enter(&q->q_ccb_mtx);
   1803 #ifdef DEBUG
   1804 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1805 #endif
   1806 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1807 
   1808 	/* It's unlikely there are any waiters, it's not used for regular I/O */
   1809 	if (__predict_false(q->q_ccb_waiting)) {
   1810 		q->q_ccb_waiting = false;
   1811 		cv_broadcast(&q->q_ccb_wait);
   1812 	}
   1813 
   1814 	mutex_exit(&q->q_ccb_mtx);
   1815 }
   1816 
   1817 static void
   1818 nvme_ccbs_free(struct nvme_queue *q)
   1819 {
   1820 	struct nvme_softc *sc = q->q_sc;
   1821 	struct nvme_ccb *ccb;
   1822 
   1823 	mutex_enter(&q->q_ccb_mtx);
   1824 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1825 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1826 		/*
   1827 		 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
   1828 		 * internally. don't hold spin mutex
   1829 		 */
   1830 		mutex_exit(&q->q_ccb_mtx);
   1831 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1832 		mutex_enter(&q->q_ccb_mtx);
   1833 	}
   1834 	mutex_exit(&q->q_ccb_mtx);
   1835 
   1836 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1837 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1838 	q->q_ccbs = NULL;
   1839 	cv_destroy(&q->q_ccb_wait);
   1840 	mutex_destroy(&q->q_ccb_mtx);
   1841 }
   1842 
   1843 static struct nvme_queue *
   1844 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1845 {
   1846 	struct nvme_queue *q;
   1847 
   1848 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1849 	q->q_sc = sc;
   1850 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1851 	    sizeof(struct nvme_sqe) * entries);
   1852 	if (q->q_sq_dmamem == NULL)
   1853 		goto free;
   1854 
   1855 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1856 	    sizeof(struct nvme_cqe) * entries);
   1857 	if (q->q_cq_dmamem == NULL)
   1858 		goto free_sq;
   1859 
   1860 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1861 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1862 
   1863 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1864 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1865 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1866 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1867 	q->q_id = id;
   1868 	q->q_entries = entries;
   1869 	q->q_sq_tail = 0;
   1870 	q->q_cq_head = 0;
   1871 	q->q_cq_phase = NVME_CQE_PHASE;
   1872 
   1873 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1874 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1875 
   1876 	/*
   1877 	 * Due to definition of full and empty queue (queue is empty
   1878 	 * when head == tail, full when tail is one less then head),
   1879 	 * we can actually only have (entries - 1) in-flight commands.
   1880 	 */
   1881 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1882 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1883 		goto free_cq;
   1884 	}
   1885 
   1886 	return q;
   1887 
   1888 free_cq:
   1889 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1890 free_sq:
   1891 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1892 free:
   1893 	kmem_free(q, sizeof(*q));
   1894 
   1895 	return NULL;
   1896 }
   1897 
   1898 static void
   1899 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
   1900 {
   1901 
   1902 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1903 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1904 
   1905 	q->q_sqtdbl = NVME_SQTDBL(q->q_id, sc->sc_dstrd);
   1906 	q->q_cqhdbl = NVME_CQHDBL(q->q_id, sc->sc_dstrd);
   1907 
   1908 	q->q_sq_tail = 0;
   1909 	q->q_cq_head = 0;
   1910 	q->q_cq_phase = NVME_CQE_PHASE;
   1911 
   1912 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1913 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1914 }
   1915 
   1916 static void
   1917 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1918 {
   1919 	nvme_ccbs_free(q);
   1920 	mutex_destroy(&q->q_sq_mtx);
   1921 	mutex_destroy(&q->q_cq_mtx);
   1922 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1923 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1924 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1925 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1926 	kmem_free(q, sizeof(*q));
   1927 }
   1928 
   1929 int
   1930 nvme_intr(void *xsc)
   1931 {
   1932 	struct nvme_softc *sc = xsc;
   1933 
   1934 	/*
   1935 	 * INTx is level triggered, controller deasserts the interrupt only
   1936 	 * when we advance command queue head via write to the doorbell.
   1937 	 * Tell the controller to block the interrupts while we process
   1938 	 * the queue(s).
   1939 	 */
   1940 	nvme_write4(sc, NVME_INTMS, 1);
   1941 
   1942 	softint_schedule(sc->sc_softih[0]);
   1943 
   1944 	/* don't know, might not have been for us */
   1945 	return 1;
   1946 }
   1947 
   1948 void
   1949 nvme_softintr_intx(void *xq)
   1950 {
   1951 	struct nvme_queue *q = xq;
   1952 	struct nvme_softc *sc = q->q_sc;
   1953 
   1954 	nvme_q_complete(sc, sc->sc_admin_q);
   1955 	if (sc->sc_q != NULL)
   1956 	        nvme_q_complete(sc, sc->sc_q[0]);
   1957 
   1958 	/*
   1959 	 * Processing done, tell controller to issue interrupts again. There
   1960 	 * is no race, as NVMe spec requires the controller to maintain state,
   1961 	 * and assert the interrupt whenever there are unacknowledged
   1962 	 * completion queue entries.
   1963 	 */
   1964 	nvme_write4(sc, NVME_INTMC, 1);
   1965 }
   1966 
   1967 int
   1968 nvme_intr_msi(void *xq)
   1969 {
   1970 	struct nvme_queue *q = xq;
   1971 
   1972 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   1973 	    && q->q_sc->sc_softih[q->q_id]);
   1974 
   1975 	/*
   1976 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   1977 	 * without masking the interrupt.
   1978 	 */
   1979 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   1980 
   1981 	return 1;
   1982 }
   1983 
   1984 void
   1985 nvme_softintr_msi(void *xq)
   1986 {
   1987 	struct nvme_queue *q = xq;
   1988 	struct nvme_softc *sc = q->q_sc;
   1989 
   1990 	nvme_q_complete(sc, q);
   1991 }
   1992 
   1993 static struct nvme_dmamem *
   1994 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1995 {
   1996 	struct nvme_dmamem *ndm;
   1997 	int nsegs;
   1998 
   1999 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   2000 	if (ndm == NULL)
   2001 		return NULL;
   2002 
   2003 	ndm->ndm_size = size;
   2004 
   2005 	if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
   2006 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   2007 		goto ndmfree;
   2008 
   2009 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   2010 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   2011 		goto destroy;
   2012 
   2013 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   2014 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   2015 		goto free;
   2016 
   2017 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   2018 	    NULL, BUS_DMA_WAITOK) != 0)
   2019 		goto unmap;
   2020 
   2021 	memset(ndm->ndm_kva, 0, size);
   2022 	bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
   2023 
   2024 	return ndm;
   2025 
   2026 unmap:
   2027 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   2028 free:
   2029 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   2030 destroy:
   2031 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   2032 ndmfree:
   2033 	kmem_free(ndm, sizeof(*ndm));
   2034 	return NULL;
   2035 }
   2036 
   2037 static void
   2038 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   2039 {
   2040 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   2041 	    0, NVME_DMA_LEN(mem), ops);
   2042 }
   2043 
   2044 void
   2045 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   2046 {
   2047 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   2048 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   2049 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   2050 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   2051 	kmem_free(ndm, sizeof(*ndm));
   2052 }
   2053 
   2054 /*
   2055  * ioctl
   2056  */
   2057 
   2058 dev_type_open(nvmeopen);
   2059 dev_type_close(nvmeclose);
   2060 dev_type_ioctl(nvmeioctl);
   2061 
   2062 const struct cdevsw nvme_cdevsw = {
   2063 	.d_open = nvmeopen,
   2064 	.d_close = nvmeclose,
   2065 	.d_read = noread,
   2066 	.d_write = nowrite,
   2067 	.d_ioctl = nvmeioctl,
   2068 	.d_stop = nostop,
   2069 	.d_tty = notty,
   2070 	.d_poll = nopoll,
   2071 	.d_mmap = nommap,
   2072 	.d_kqfilter = nokqfilter,
   2073 	.d_discard = nodiscard,
   2074 	.d_flag = D_OTHER,
   2075 };
   2076 
   2077 /*
   2078  * Accept an open operation on the control device.
   2079  */
   2080 int
   2081 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   2082 {
   2083 	struct nvme_softc *sc;
   2084 	int unit = minor(dev) / 0x10000;
   2085 	int nsid = minor(dev) & 0xffff;
   2086 	int nsidx;
   2087 
   2088 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   2089 		return ENXIO;
   2090 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   2091 		return ENXIO;
   2092 
   2093 	if (nsid == 0) {
   2094 		/* controller */
   2095 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   2096 			return EBUSY;
   2097 		SET(sc->sc_flags, NVME_F_OPEN);
   2098 	} else {
   2099 		/* namespace */
   2100 		nsidx = nsid - 1;
   2101 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   2102 			return ENXIO;
   2103 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   2104 			return EBUSY;
   2105 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   2106 	}
   2107 	return 0;
   2108 }
   2109 
   2110 /*
   2111  * Accept the last close on the control device.
   2112  */
   2113 int
   2114 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   2115 {
   2116 	struct nvme_softc *sc;
   2117 	int unit = minor(dev) / 0x10000;
   2118 	int nsid = minor(dev) & 0xffff;
   2119 	int nsidx;
   2120 
   2121 	sc = device_lookup_private(&nvme_cd, unit);
   2122 	if (sc == NULL)
   2123 		return ENXIO;
   2124 
   2125 	if (nsid == 0) {
   2126 		/* controller */
   2127 		CLR(sc->sc_flags, NVME_F_OPEN);
   2128 	} else {
   2129 		/* namespace */
   2130 		nsidx = nsid - 1;
   2131 		if (nsidx >= sc->sc_nn)
   2132 			return ENXIO;
   2133 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   2134 	}
   2135 
   2136 	return 0;
   2137 }
   2138 
   2139 /*
   2140  * Handle control operations.
   2141  */
   2142 int
   2143 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   2144 {
   2145 	struct nvme_softc *sc;
   2146 	int unit = minor(dev) / 0x10000;
   2147 	int nsid = minor(dev) & 0xffff;
   2148 	struct nvme_pt_command *pt;
   2149 
   2150 	sc = device_lookup_private(&nvme_cd, unit);
   2151 	if (sc == NULL)
   2152 		return ENXIO;
   2153 
   2154 	switch (cmd) {
   2155 	case NVME_PASSTHROUGH_CMD:
   2156 		pt = data;
   2157 		return nvme_command_passthrough(sc, data,
   2158 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   2159 	}
   2160 
   2161 	return ENOTTY;
   2162 }
   2163