nvme.c revision 1.58 1 /* $NetBSD: nvme.c,v 1.58 2021/08/07 16:19:12 thorpej Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.58 2021/08/07 16:19:12 thorpej Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44 #include "locators.h"
45
46 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
47
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50
51 static int nvme_print(void *, const char *);
52
53 static int nvme_ready(struct nvme_softc *, uint32_t);
54 static int nvme_enable(struct nvme_softc *, u_int);
55 static int nvme_disable(struct nvme_softc *);
56 static int nvme_shutdown(struct nvme_softc *);
57
58 #ifdef NVME_DEBUG
59 static void nvme_dumpregs(struct nvme_softc *);
60 #endif
61 static int nvme_identify(struct nvme_softc *, u_int);
62 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
63 void *);
64
65 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
66 static void nvme_ccbs_free(struct nvme_queue *);
67
68 static struct nvme_ccb *
69 nvme_ccb_get(struct nvme_queue *, bool);
70 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
71
72 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
73 struct nvme_ccb *, void (*)(struct nvme_queue *,
74 struct nvme_ccb *, void *), int);
75 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
76 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
77 struct nvme_cqe *);
78 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
79 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
80 struct nvme_cqe *);
81
82 static struct nvme_queue *
83 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
84 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
85 static void nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
86 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
87 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
88 struct nvme_ccb *, void (*)(struct nvme_queue *,
89 struct nvme_ccb *, void *));
90 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
91 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
92 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
93 bool (*)(void *), void *);
94
95 static struct nvme_dmamem *
96 nvme_dmamem_alloc(struct nvme_softc *, size_t);
97 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
98 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
99 int);
100
101 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
102 void *);
103 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
106 void *);
107 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
108 struct nvme_cqe *);
109 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
110 void *);
111 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
112 struct nvme_cqe *);
113
114 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
115 void *);
116 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
117 struct nvme_cqe *);
118 static int nvme_command_passthrough(struct nvme_softc *,
119 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
120
121 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
122 u_int *);
123
124 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
125 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
126 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
127 #define NVME_TIMO_SY 60 /* sync cache timeout */
128
129 #define nvme_read4(_s, _r) \
130 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
131 #define nvme_write4(_s, _r, _v) \
132 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
133 /*
134 * Some controllers, at least Apple NVMe, always require split
135 * transfers, so don't use bus_space_{read,write}_8() on LP64.
136 */
137 static inline uint64_t
138 nvme_read8(struct nvme_softc *sc, bus_size_t r)
139 {
140 uint64_t v;
141 uint32_t *a = (uint32_t *)&v;
142
143 #if _BYTE_ORDER == _LITTLE_ENDIAN
144 a[0] = nvme_read4(sc, r);
145 a[1] = nvme_read4(sc, r + 4);
146 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
147 a[1] = nvme_read4(sc, r);
148 a[0] = nvme_read4(sc, r + 4);
149 #endif
150
151 return v;
152 }
153
154 static inline void
155 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
156 {
157 uint32_t *a = (uint32_t *)&v;
158
159 #if _BYTE_ORDER == _LITTLE_ENDIAN
160 nvme_write4(sc, r, a[0]);
161 nvme_write4(sc, r + 4, a[1]);
162 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
163 nvme_write4(sc, r, a[1]);
164 nvme_write4(sc, r + 4, a[0]);
165 #endif
166 }
167 #define nvme_barrier(_s, _r, _l, _f) \
168 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
169
170 #ifdef NVME_DEBUG
171 static __used void
172 nvme_dumpregs(struct nvme_softc *sc)
173 {
174 uint64_t r8;
175 uint32_t r4;
176
177 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
178 r8 = nvme_read8(sc, NVME_CAP);
179 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
180 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
181 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
182 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
183 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
184 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
185 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
186 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
187 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
188 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
189 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
190 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
191
192 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
193
194 r4 = nvme_read4(sc, NVME_CC);
195 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
196 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
197 (1 << NVME_CC_IOCQES_R(r4)));
198 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
199 (1 << NVME_CC_IOSQES_R(r4)));
200 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
201 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
202 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
203 (1 << NVME_CC_MPS_R(r4)));
204 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
205 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
206
207 r4 = nvme_read4(sc, NVME_CSTS);
208 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
209 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
210 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
211 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
212
213 r4 = nvme_read4(sc, NVME_AQA);
214 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
215 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
216 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
217
218 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
219 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
220 #undef DEVNAME
221 }
222 #endif /* NVME_DEBUG */
223
224 static int
225 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
226 {
227 u_int i = 0;
228
229 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
230 if (i++ > sc->sc_rdy_to)
231 return ENXIO;
232
233 delay(1000);
234 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
235 }
236
237 return 0;
238 }
239
240 static int
241 nvme_enable(struct nvme_softc *sc, u_int mps)
242 {
243 uint32_t cc, csts;
244 int error;
245
246 cc = nvme_read4(sc, NVME_CC);
247 csts = nvme_read4(sc, NVME_CSTS);
248
249 /*
250 * See note in nvme_disable. Short circuit if we're already enabled.
251 */
252 if (ISSET(cc, NVME_CC_EN)) {
253 if (ISSET(csts, NVME_CSTS_RDY))
254 return 0;
255
256 goto waitready;
257 } else {
258 /* EN == 0 already wait for RDY == 0 or fail */
259 error = nvme_ready(sc, 0);
260 if (error)
261 return error;
262 }
263
264 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266 delay(5000);
267 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
268 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
269 delay(5000);
270
271 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
272 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
273 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
274 delay(5000);
275
276 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
277 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
278 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
279 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
280 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
281 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
282 SET(cc, NVME_CC_MPS(mps));
283 SET(cc, NVME_CC_EN);
284
285 nvme_write4(sc, NVME_CC, cc);
286 nvme_barrier(sc, 0, sc->sc_ios,
287 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
288
289 waitready:
290 return nvme_ready(sc, NVME_CSTS_RDY);
291 }
292
293 static int
294 nvme_disable(struct nvme_softc *sc)
295 {
296 uint32_t cc, csts;
297 int error;
298
299 cc = nvme_read4(sc, NVME_CC);
300 csts = nvme_read4(sc, NVME_CSTS);
301
302 /*
303 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
304 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
305 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
306 * isn't the desired value. Short circuit if we're already disabled.
307 */
308 if (ISSET(cc, NVME_CC_EN)) {
309 if (!ISSET(csts, NVME_CSTS_RDY)) {
310 /* EN == 1, wait for RDY == 1 or fail */
311 error = nvme_ready(sc, NVME_CSTS_RDY);
312 if (error)
313 return error;
314 }
315 } else {
316 /* EN == 0 already wait for RDY == 0 */
317 if (!ISSET(csts, NVME_CSTS_RDY))
318 return 0;
319
320 goto waitready;
321 }
322
323 CLR(cc, NVME_CC_EN);
324 nvme_write4(sc, NVME_CC, cc);
325 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
326
327 /*
328 * Some drives have issues with accessing the mmio after we disable,
329 * so delay for a bit after we write the bit to cope with these issues.
330 */
331 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
332 delay(B4_CHK_RDY_DELAY_MS);
333
334 waitready:
335 return nvme_ready(sc, 0);
336 }
337
338 int
339 nvme_attach(struct nvme_softc *sc)
340 {
341 uint64_t cap;
342 uint32_t reg;
343 u_int mps = PAGE_SHIFT;
344 u_int ncq, nsq;
345 uint16_t adminq_entries = nvme_adminq_size;
346 uint16_t ioq_entries = nvme_ioq_size;
347 int i;
348
349 reg = nvme_read4(sc, NVME_VS);
350 if (reg == 0xffffffff) {
351 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
352 return 1;
353 }
354
355 if (NVME_VS_TER(reg) == 0)
356 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
357 NVME_VS_MNR(reg));
358 else
359 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
360 NVME_VS_MNR(reg), NVME_VS_TER(reg));
361
362 cap = nvme_read8(sc, NVME_CAP);
363 sc->sc_dstrd = NVME_CAP_DSTRD(cap);
364 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
365 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
366 "is greater than CPU page size %u\n",
367 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
368 return 1;
369 }
370 if (NVME_CAP_MPSMAX(cap) < mps)
371 mps = NVME_CAP_MPSMAX(cap);
372 if (ioq_entries > NVME_CAP_MQES(cap))
373 ioq_entries = NVME_CAP_MQES(cap);
374
375 /* set initial values to be used for admin queue during probe */
376 sc->sc_rdy_to = NVME_CAP_TO(cap);
377 sc->sc_mps = 1 << mps;
378 sc->sc_mdts = MAXPHYS;
379 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
380
381 if (nvme_disable(sc) != 0) {
382 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
383 return 1;
384 }
385
386 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
387 sc->sc_dstrd);
388 if (sc->sc_admin_q == NULL) {
389 aprint_error_dev(sc->sc_dev,
390 "unable to allocate admin queue\n");
391 return 1;
392 }
393 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
394 goto free_admin_q;
395
396 if (nvme_enable(sc, mps) != 0) {
397 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
398 goto disestablish_admin_q;
399 }
400
401 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
402 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
403 goto disable;
404 }
405 if (sc->sc_nn == 0) {
406 aprint_error_dev(sc->sc_dev, "namespace not found\n");
407 goto disable;
408 }
409
410 /* we know how big things are now */
411 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
412
413 /* reallocate ccbs of admin queue with new max sgl. */
414 nvme_ccbs_free(sc->sc_admin_q);
415 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
416
417 if (sc->sc_use_mq) {
418 /* Limit the number of queues to the number allocated in HW */
419 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
420 aprint_error_dev(sc->sc_dev,
421 "unable to get number of queues\n");
422 goto disable;
423 }
424 if (sc->sc_nq > ncq)
425 sc->sc_nq = ncq;
426 if (sc->sc_nq > nsq)
427 sc->sc_nq = nsq;
428 }
429
430 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
431 for (i = 0; i < sc->sc_nq; i++) {
432 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
433 sc->sc_dstrd);
434 if (sc->sc_q[i] == NULL) {
435 aprint_error_dev(sc->sc_dev,
436 "unable to allocate io queue\n");
437 goto free_q;
438 }
439 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
440 aprint_error_dev(sc->sc_dev,
441 "unable to create io queue\n");
442 nvme_q_free(sc, sc->sc_q[i]);
443 goto free_q;
444 }
445 }
446
447 if (!sc->sc_use_mq)
448 nvme_write4(sc, NVME_INTMC, 1);
449
450 /* probe subdevices */
451 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
452 KM_SLEEP);
453 nvme_rescan(sc->sc_dev, NULL, NULL);
454
455 return 0;
456
457 free_q:
458 while (--i >= 0) {
459 nvme_q_delete(sc, sc->sc_q[i]);
460 nvme_q_free(sc, sc->sc_q[i]);
461 }
462 disable:
463 nvme_disable(sc);
464 disestablish_admin_q:
465 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
466 free_admin_q:
467 nvme_q_free(sc, sc->sc_admin_q);
468
469 return 1;
470 }
471
472 int
473 nvme_rescan(device_t self, const char *ifattr, const int *locs)
474 {
475 struct nvme_softc *sc = device_private(self);
476 struct nvme_attach_args naa;
477 struct nvm_namespace_format *f;
478 struct nvme_namespace *ns;
479 uint64_t cap;
480 int ioq_entries = nvme_ioq_size;
481 int i, mlocs[NVMECF_NLOCS];
482 int error;
483
484 cap = nvme_read8(sc, NVME_CAP);
485 if (ioq_entries > NVME_CAP_MQES(cap))
486 ioq_entries = NVME_CAP_MQES(cap);
487
488 for (i = 1; i <= sc->sc_nn; i++) {
489 if (sc->sc_namespaces[i - 1].dev)
490 continue;
491
492 /* identify to check for availability */
493 error = nvme_ns_identify(sc, i);
494 if (error) {
495 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
496 continue;
497 }
498
499 ns = nvme_ns_get(sc, i);
500 KASSERT(ns);
501
502 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
503
504 /*
505 * NVME1.0e 6.11 Identify command
506 *
507 * LBADS values smaller than 9 are not supported, a value
508 * of zero means that the format is not used.
509 */
510 if (f->lbads < 9) {
511 if (f->lbads > 0)
512 aprint_error_dev(self,
513 "unsupported logical data size %u\n", f->lbads);
514 continue;
515 }
516
517 mlocs[NVMECF_NSID] = i;
518
519 memset(&naa, 0, sizeof(naa));
520 naa.naa_nsid = i;
521 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
522 naa.naa_maxphys = sc->sc_mdts;
523 naa.naa_typename = sc->sc_modelname;
524 sc->sc_namespaces[i - 1].dev =
525 config_found(sc->sc_dev, &naa, nvme_print,
526 CFARGS(.submatch = config_stdsubmatch,
527 .locators = mlocs));
528 }
529 return 0;
530 }
531
532 static int
533 nvme_print(void *aux, const char *pnp)
534 {
535 struct nvme_attach_args *naa = aux;
536
537 if (pnp)
538 aprint_normal("ld at %s", pnp);
539
540 if (naa->naa_nsid > 0)
541 aprint_normal(" nsid %d", naa->naa_nsid);
542
543 return UNCONF;
544 }
545
546 int
547 nvme_detach(struct nvme_softc *sc, int flags)
548 {
549 int i, error;
550
551 error = config_detach_children(sc->sc_dev, flags);
552 if (error)
553 return error;
554
555 error = nvme_shutdown(sc);
556 if (error)
557 return error;
558
559 /* from now on we are committed to detach, following will never fail */
560 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
561 for (i = 0; i < sc->sc_nq; i++)
562 nvme_q_free(sc, sc->sc_q[i]);
563 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
564 nvme_q_free(sc, sc->sc_admin_q);
565
566 return 0;
567 }
568
569 int
570 nvme_suspend(struct nvme_softc *sc)
571 {
572
573 return nvme_shutdown(sc);
574 }
575
576 int
577 nvme_resume(struct nvme_softc *sc)
578 {
579 int ioq_entries = nvme_ioq_size;
580 uint64_t cap;
581 int i, error;
582
583 error = nvme_disable(sc);
584 if (error) {
585 device_printf(sc->sc_dev, "unable to disable controller\n");
586 return error;
587 }
588
589 nvme_q_reset(sc, sc->sc_admin_q);
590
591 error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
592 if (error) {
593 device_printf(sc->sc_dev, "unable to enable controller\n");
594 return error;
595 }
596
597 for (i = 0; i < sc->sc_nq; i++) {
598 cap = nvme_read8(sc, NVME_CAP);
599 if (ioq_entries > NVME_CAP_MQES(cap))
600 ioq_entries = NVME_CAP_MQES(cap);
601 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
602 sc->sc_dstrd);
603 if (sc->sc_q[i] == NULL) {
604 error = ENOMEM;
605 device_printf(sc->sc_dev, "unable to allocate io q %d"
606 "\n", i);
607 goto disable;
608 }
609 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
610 error = EIO;
611 device_printf(sc->sc_dev, "unable to create io q %d"
612 "\n", i);
613 nvme_q_free(sc, sc->sc_q[i]);
614 goto free_q;
615 }
616 }
617
618 nvme_write4(sc, NVME_INTMC, 1);
619
620 return 0;
621
622 free_q:
623 while (i --> 0)
624 nvme_q_free(sc, sc->sc_q[i]);
625 disable:
626 (void)nvme_disable(sc);
627
628 return error;
629 }
630
631 static int
632 nvme_shutdown(struct nvme_softc *sc)
633 {
634 uint32_t cc, csts;
635 bool disabled = false;
636 int i;
637
638 if (!sc->sc_use_mq)
639 nvme_write4(sc, NVME_INTMS, 1);
640
641 for (i = 0; i < sc->sc_nq; i++) {
642 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
643 aprint_error_dev(sc->sc_dev,
644 "unable to delete io queue %d, disabling\n", i + 1);
645 disabled = true;
646 }
647 }
648 if (disabled)
649 goto disable;
650
651 cc = nvme_read4(sc, NVME_CC);
652 CLR(cc, NVME_CC_SHN_MASK);
653 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
654 nvme_write4(sc, NVME_CC, cc);
655
656 for (i = 0; i < 4000; i++) {
657 nvme_barrier(sc, 0, sc->sc_ios,
658 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
659 csts = nvme_read4(sc, NVME_CSTS);
660 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
661 return 0;
662
663 delay(1000);
664 }
665
666 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
667
668 disable:
669 nvme_disable(sc);
670 return 0;
671 }
672
673 void
674 nvme_childdet(device_t self, device_t child)
675 {
676 struct nvme_softc *sc = device_private(self);
677 int i;
678
679 for (i = 0; i < sc->sc_nn; i++) {
680 if (sc->sc_namespaces[i].dev == child) {
681 /* Already freed ns->ident. */
682 sc->sc_namespaces[i].dev = NULL;
683 break;
684 }
685 }
686 }
687
688 int
689 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
690 {
691 struct nvme_sqe sqe;
692 struct nvm_identify_namespace *identify;
693 struct nvme_dmamem *mem;
694 struct nvme_ccb *ccb;
695 struct nvme_namespace *ns;
696 int rv;
697
698 KASSERT(nsid > 0);
699
700 ns = nvme_ns_get(sc, nsid);
701 KASSERT(ns);
702
703 if (ns->ident != NULL)
704 return 0;
705
706 ccb = nvme_ccb_get(sc->sc_admin_q, false);
707 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
708
709 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
710 if (mem == NULL) {
711 nvme_ccb_put(sc->sc_admin_q, ccb);
712 return ENOMEM;
713 }
714
715 memset(&sqe, 0, sizeof(sqe));
716 sqe.opcode = NVM_ADMIN_IDENTIFY;
717 htolem32(&sqe.nsid, nsid);
718 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
719 htolem32(&sqe.cdw10, 0);
720
721 ccb->ccb_done = nvme_empty_done;
722 ccb->ccb_cookie = &sqe;
723
724 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
725 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
726 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
727
728 nvme_ccb_put(sc->sc_admin_q, ccb);
729
730 if (rv != 0) {
731 rv = EIO;
732 goto done;
733 }
734
735 /* commit */
736
737 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
738 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
739
740 /* Convert data to host endian */
741 nvme_identify_namespace_swapbytes(identify);
742
743 ns->ident = identify;
744
745 done:
746 nvme_dmamem_free(sc, mem);
747
748 return rv;
749 }
750
751 int
752 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
753 struct buf *bp, void *data, size_t datasize,
754 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
755 {
756 struct nvme_queue *q = nvme_get_q(sc, bp, false);
757 struct nvme_ccb *ccb;
758 bus_dmamap_t dmap;
759 int i, error;
760
761 ccb = nvme_ccb_get(q, false);
762 if (ccb == NULL)
763 return EAGAIN;
764
765 ccb->ccb_done = nvme_ns_io_done;
766 ccb->ccb_cookie = cookie;
767
768 /* namespace context */
769 ccb->nnc_nsid = nsid;
770 ccb->nnc_flags = flags;
771 ccb->nnc_buf = bp;
772 ccb->nnc_datasize = datasize;
773 ccb->nnc_secsize = secsize;
774 ccb->nnc_blkno = blkno;
775 ccb->nnc_done = nnc_done;
776
777 dmap = ccb->ccb_dmamap;
778 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
779 datasize, NULL,
780 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
781 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
782 (ISSET(flags, NVME_NS_CTX_F_READ) ?
783 BUS_DMA_READ : BUS_DMA_WRITE));
784 if (error) {
785 nvme_ccb_put(q, ccb);
786 return error;
787 }
788
789 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
790 ISSET(flags, NVME_NS_CTX_F_READ) ?
791 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
792
793 if (dmap->dm_nsegs > 2) {
794 for (i = 1; i < dmap->dm_nsegs; i++) {
795 htolem64(&ccb->ccb_prpl[i - 1],
796 dmap->dm_segs[i].ds_addr);
797 }
798 bus_dmamap_sync(sc->sc_dmat,
799 NVME_DMA_MAP(q->q_ccb_prpls),
800 ccb->ccb_prpl_off,
801 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
802 BUS_DMASYNC_PREWRITE);
803 }
804
805 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
806 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
807 return EIO;
808 return 0;
809 }
810
811 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
812 return 0;
813 }
814
815 static void
816 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
817 {
818 struct nvme_sqe_io *sqe = slot;
819 bus_dmamap_t dmap = ccb->ccb_dmamap;
820
821 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
822 NVM_CMD_READ : NVM_CMD_WRITE;
823 htolem32(&sqe->nsid, ccb->nnc_nsid);
824
825 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
826 switch (dmap->dm_nsegs) {
827 case 1:
828 break;
829 case 2:
830 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
831 break;
832 default:
833 /* the prp list is already set up and synced */
834 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
835 break;
836 }
837
838 htolem64(&sqe->slba, ccb->nnc_blkno);
839
840 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
841 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
842
843 /* guaranteed by upper layers, but check just in case */
844 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
845 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
846 }
847
848 static void
849 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
850 struct nvme_cqe *cqe)
851 {
852 struct nvme_softc *sc = q->q_sc;
853 bus_dmamap_t dmap = ccb->ccb_dmamap;
854 void *nnc_cookie = ccb->ccb_cookie;
855 nvme_nnc_done nnc_done = ccb->nnc_done;
856 struct buf *bp = ccb->nnc_buf;
857
858 if (dmap->dm_nsegs > 2) {
859 bus_dmamap_sync(sc->sc_dmat,
860 NVME_DMA_MAP(q->q_ccb_prpls),
861 ccb->ccb_prpl_off,
862 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
863 BUS_DMASYNC_POSTWRITE);
864 }
865
866 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
867 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
868 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
869
870 bus_dmamap_unload(sc->sc_dmat, dmap);
871 nvme_ccb_put(q, ccb);
872
873 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
874 }
875
876 /*
877 * If there is no volatile write cache, it makes no sense to issue
878 * flush commands or query for the status.
879 */
880 static bool
881 nvme_has_volatile_write_cache(struct nvme_softc *sc)
882 {
883 /* sc_identify is filled during attachment */
884 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
885 }
886
887 static bool
888 nvme_ns_sync_finished(void *cookie)
889 {
890 int *result = cookie;
891
892 return (*result != 0);
893 }
894
895 int
896 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
897 {
898 struct nvme_queue *q = nvme_get_q(sc, NULL, true);
899 struct nvme_ccb *ccb;
900 int result = 0;
901
902 if (!nvme_has_volatile_write_cache(sc)) {
903 /* cache not present, no value in trying to flush it */
904 return 0;
905 }
906
907 ccb = nvme_ccb_get(q, true);
908 KASSERT(ccb != NULL);
909
910 ccb->ccb_done = nvme_ns_sync_done;
911 ccb->ccb_cookie = &result;
912
913 /* namespace context */
914 ccb->nnc_nsid = nsid;
915 ccb->nnc_flags = flags;
916 ccb->nnc_done = NULL;
917
918 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
919 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
920 return EIO;
921 return 0;
922 }
923
924 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
925
926 /* wait for completion */
927 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
928 KASSERT(result != 0);
929
930 return (result > 0) ? 0 : EIO;
931 }
932
933 static void
934 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
935 {
936 struct nvme_sqe *sqe = slot;
937
938 sqe->opcode = NVM_CMD_FLUSH;
939 htolem32(&sqe->nsid, ccb->nnc_nsid);
940 }
941
942 static void
943 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
944 struct nvme_cqe *cqe)
945 {
946 int *result = ccb->ccb_cookie;
947 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
948
949 if (status == NVME_CQE_SC_SUCCESS)
950 *result = 1;
951 else
952 *result = -1;
953
954 nvme_ccb_put(q, ccb);
955 }
956
957 static bool
958 nvme_getcache_finished(void *xc)
959 {
960 int *addr = xc;
961
962 return (*addr != 0);
963 }
964
965 /*
966 * Get status of volatile write cache. Always asynchronous.
967 */
968 int
969 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
970 {
971 struct nvme_ccb *ccb;
972 struct nvme_queue *q = sc->sc_admin_q;
973 int result = 0, error;
974
975 if (!nvme_has_volatile_write_cache(sc)) {
976 /* cache simply not present */
977 *addr = 0;
978 return 0;
979 }
980
981 ccb = nvme_ccb_get(q, true);
982 KASSERT(ccb != NULL);
983
984 ccb->ccb_done = nvme_getcache_done;
985 ccb->ccb_cookie = &result;
986
987 /* namespace context */
988 ccb->nnc_flags = 0;
989 ccb->nnc_done = NULL;
990
991 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
992
993 /* wait for completion */
994 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
995 KASSERT(result != 0);
996
997 if (result > 0) {
998 *addr = result;
999 error = 0;
1000 } else
1001 error = EINVAL;
1002
1003 return error;
1004 }
1005
1006 static void
1007 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1008 {
1009 struct nvme_sqe *sqe = slot;
1010
1011 sqe->opcode = NVM_ADMIN_GET_FEATURES;
1012 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1013 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1014 }
1015
1016 static void
1017 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1018 struct nvme_cqe *cqe)
1019 {
1020 int *addr = ccb->ccb_cookie;
1021 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1022 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
1023 int result;
1024
1025 if (status == NVME_CQE_SC_SUCCESS) {
1026 result = 0;
1027
1028 /*
1029 * DPO not supported, Dataset Management (DSM) field doesn't
1030 * specify the same semantics. FUA is always supported.
1031 */
1032 result = DKCACHE_FUA;
1033
1034 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
1035 result |= DKCACHE_WRITE;
1036
1037 /*
1038 * If volatile write cache is present, the flag shall also be
1039 * settable.
1040 */
1041 result |= DKCACHE_WCHANGE;
1042
1043 /*
1044 * ONCS field indicates whether the optional SAVE is also
1045 * supported for Set Features. According to spec v1.3,
1046 * Volatile Write Cache however doesn't support persistency
1047 * across power cycle/reset.
1048 */
1049
1050 } else {
1051 result = -1;
1052 }
1053
1054 *addr = result;
1055
1056 nvme_ccb_put(q, ccb);
1057 }
1058
1059 struct nvme_setcache_state {
1060 int dkcache;
1061 int result;
1062 };
1063
1064 static bool
1065 nvme_setcache_finished(void *xc)
1066 {
1067 struct nvme_setcache_state *st = xc;
1068
1069 return (st->result != 0);
1070 }
1071
1072 static void
1073 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1074 {
1075 struct nvme_sqe *sqe = slot;
1076 struct nvme_setcache_state *st = ccb->ccb_cookie;
1077
1078 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1079 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1080 if (st->dkcache & DKCACHE_WRITE)
1081 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1082 }
1083
1084 static void
1085 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1086 struct nvme_cqe *cqe)
1087 {
1088 struct nvme_setcache_state *st = ccb->ccb_cookie;
1089 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1090
1091 if (status == NVME_CQE_SC_SUCCESS) {
1092 st->result = 1;
1093 } else {
1094 st->result = -1;
1095 }
1096
1097 nvme_ccb_put(q, ccb);
1098 }
1099
1100 /*
1101 * Set status of volatile write cache. Always asynchronous.
1102 */
1103 int
1104 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1105 {
1106 struct nvme_ccb *ccb;
1107 struct nvme_queue *q = sc->sc_admin_q;
1108 int error;
1109 struct nvme_setcache_state st;
1110
1111 if (!nvme_has_volatile_write_cache(sc)) {
1112 /* cache simply not present */
1113 return EOPNOTSUPP;
1114 }
1115
1116 if (dkcache & ~(DKCACHE_WRITE)) {
1117 /* unsupported parameters */
1118 return EOPNOTSUPP;
1119 }
1120
1121 ccb = nvme_ccb_get(q, true);
1122 KASSERT(ccb != NULL);
1123
1124 memset(&st, 0, sizeof(st));
1125 st.dkcache = dkcache;
1126
1127 ccb->ccb_done = nvme_setcache_done;
1128 ccb->ccb_cookie = &st;
1129
1130 /* namespace context */
1131 ccb->nnc_flags = 0;
1132 ccb->nnc_done = NULL;
1133
1134 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1135
1136 /* wait for completion */
1137 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1138 KASSERT(st.result != 0);
1139
1140 if (st.result > 0)
1141 error = 0;
1142 else
1143 error = EINVAL;
1144
1145 return error;
1146 }
1147
1148 void
1149 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1150 {
1151 struct nvme_namespace *ns;
1152 struct nvm_identify_namespace *identify;
1153
1154 ns = nvme_ns_get(sc, nsid);
1155 KASSERT(ns);
1156
1157 identify = ns->ident;
1158 ns->ident = NULL;
1159 if (identify != NULL)
1160 kmem_free(identify, sizeof(*identify));
1161 }
1162
1163 struct nvme_pt_state {
1164 struct nvme_pt_command *pt;
1165 bool finished;
1166 };
1167
1168 static void
1169 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1170 {
1171 struct nvme_softc *sc = q->q_sc;
1172 struct nvme_sqe *sqe = slot;
1173 struct nvme_pt_state *state = ccb->ccb_cookie;
1174 struct nvme_pt_command *pt = state->pt;
1175 bus_dmamap_t dmap = ccb->ccb_dmamap;
1176 int i;
1177
1178 sqe->opcode = pt->cmd.opcode;
1179 htolem32(&sqe->nsid, pt->cmd.nsid);
1180
1181 if (pt->buf != NULL && pt->len > 0) {
1182 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1183 switch (dmap->dm_nsegs) {
1184 case 1:
1185 break;
1186 case 2:
1187 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1188 break;
1189 default:
1190 for (i = 1; i < dmap->dm_nsegs; i++) {
1191 htolem64(&ccb->ccb_prpl[i - 1],
1192 dmap->dm_segs[i].ds_addr);
1193 }
1194 bus_dmamap_sync(sc->sc_dmat,
1195 NVME_DMA_MAP(q->q_ccb_prpls),
1196 ccb->ccb_prpl_off,
1197 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1198 BUS_DMASYNC_PREWRITE);
1199 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1200 break;
1201 }
1202 }
1203
1204 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1205 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1206 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1207 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1208 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1209 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1210 }
1211
1212 static void
1213 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1214 {
1215 struct nvme_softc *sc = q->q_sc;
1216 struct nvme_pt_state *state = ccb->ccb_cookie;
1217 struct nvme_pt_command *pt = state->pt;
1218 bus_dmamap_t dmap = ccb->ccb_dmamap;
1219
1220 if (pt->buf != NULL && pt->len > 0) {
1221 if (dmap->dm_nsegs > 2) {
1222 bus_dmamap_sync(sc->sc_dmat,
1223 NVME_DMA_MAP(q->q_ccb_prpls),
1224 ccb->ccb_prpl_off,
1225 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1226 BUS_DMASYNC_POSTWRITE);
1227 }
1228
1229 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1230 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1231 bus_dmamap_unload(sc->sc_dmat, dmap);
1232 }
1233
1234 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1235 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1236
1237 state->finished = true;
1238
1239 nvme_ccb_put(q, ccb);
1240 }
1241
1242 static bool
1243 nvme_pt_finished(void *cookie)
1244 {
1245 struct nvme_pt_state *state = cookie;
1246
1247 return state->finished;
1248 }
1249
1250 static int
1251 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1252 uint16_t nsid, struct lwp *l, bool is_adminq)
1253 {
1254 struct nvme_queue *q;
1255 struct nvme_ccb *ccb;
1256 void *buf = NULL;
1257 struct nvme_pt_state state;
1258 int error;
1259
1260 /* limit command size to maximum data transfer size */
1261 if ((pt->buf == NULL && pt->len > 0) ||
1262 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1263 return EINVAL;
1264
1265 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1266 ccb = nvme_ccb_get(q, true);
1267 KASSERT(ccb != NULL);
1268
1269 if (pt->buf != NULL) {
1270 KASSERT(pt->len > 0);
1271 buf = kmem_alloc(pt->len, KM_SLEEP);
1272 if (!pt->is_read) {
1273 error = copyin(pt->buf, buf, pt->len);
1274 if (error)
1275 goto kmem_free;
1276 }
1277 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1278 pt->len, NULL,
1279 BUS_DMA_WAITOK |
1280 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1281 if (error)
1282 goto kmem_free;
1283 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1284 0, ccb->ccb_dmamap->dm_mapsize,
1285 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1286 }
1287
1288 memset(&state, 0, sizeof(state));
1289 state.pt = pt;
1290 state.finished = false;
1291
1292 ccb->ccb_done = nvme_pt_done;
1293 ccb->ccb_cookie = &state;
1294
1295 pt->cmd.nsid = nsid;
1296
1297 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1298
1299 /* wait for completion */
1300 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1301 KASSERT(state.finished);
1302
1303 error = 0;
1304
1305 if (buf != NULL) {
1306 if (error == 0 && pt->is_read)
1307 error = copyout(buf, pt->buf, pt->len);
1308 kmem_free:
1309 kmem_free(buf, pt->len);
1310 }
1311
1312 return error;
1313 }
1314
1315 static void
1316 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1317 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1318 {
1319 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1320 uint32_t tail;
1321
1322 mutex_enter(&q->q_sq_mtx);
1323 tail = q->q_sq_tail;
1324 if (++q->q_sq_tail >= q->q_entries)
1325 q->q_sq_tail = 0;
1326
1327 sqe += tail;
1328
1329 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1330 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1331 memset(sqe, 0, sizeof(*sqe));
1332 (*fill)(q, ccb, sqe);
1333 htolem16(&sqe->cid, ccb->ccb_id);
1334 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1335 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1336
1337 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1338 mutex_exit(&q->q_sq_mtx);
1339 }
1340
1341 struct nvme_poll_state {
1342 struct nvme_sqe s;
1343 struct nvme_cqe c;
1344 void *cookie;
1345 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1346 };
1347
1348 static int
1349 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1350 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1351 {
1352 struct nvme_poll_state state;
1353 uint16_t flags;
1354 int step = 10;
1355 int maxloop = timo_sec * 1000000 / step;
1356 int error = 0;
1357
1358 memset(&state, 0, sizeof(state));
1359 (*fill)(q, ccb, &state.s);
1360
1361 state.done = ccb->ccb_done;
1362 state.cookie = ccb->ccb_cookie;
1363
1364 ccb->ccb_done = nvme_poll_done;
1365 ccb->ccb_cookie = &state;
1366
1367 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1368 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1369 if (nvme_q_complete(sc, q) == 0)
1370 delay(step);
1371
1372 if (timo_sec >= 0 && --maxloop <= 0) {
1373 error = ETIMEDOUT;
1374 break;
1375 }
1376 }
1377
1378 if (error == 0) {
1379 flags = lemtoh16(&state.c.flags);
1380 return flags & ~NVME_CQE_PHASE;
1381 } else {
1382 /*
1383 * If it succeds later, it would hit ccb which will have been
1384 * already reused for something else. Not good. Cross
1385 * fingers and hope for best. XXX do controller reset?
1386 */
1387 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1388
1389 /* Invoke the callback to clean state anyway */
1390 struct nvme_cqe cqe;
1391 memset(&cqe, 0, sizeof(cqe));
1392 ccb->ccb_done(q, ccb, &cqe);
1393
1394 return 1;
1395 }
1396 }
1397
1398 static void
1399 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1400 {
1401 struct nvme_sqe *sqe = slot;
1402 struct nvme_poll_state *state = ccb->ccb_cookie;
1403
1404 *sqe = state->s;
1405 }
1406
1407 static void
1408 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1409 struct nvme_cqe *cqe)
1410 {
1411 struct nvme_poll_state *state = ccb->ccb_cookie;
1412
1413 state->c = *cqe;
1414 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1415
1416 ccb->ccb_cookie = state->cookie;
1417 state->done(q, ccb, &state->c);
1418 }
1419
1420 static void
1421 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1422 {
1423 struct nvme_sqe *src = ccb->ccb_cookie;
1424 struct nvme_sqe *dst = slot;
1425
1426 *dst = *src;
1427 }
1428
1429 static void
1430 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1431 struct nvme_cqe *cqe)
1432 {
1433 }
1434
1435 static int
1436 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1437 {
1438 struct nvme_ccb *ccb;
1439 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1440 uint16_t flags;
1441 int rv = 0;
1442
1443 mutex_enter(&q->q_cq_mtx);
1444
1445 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1446 for (;;) {
1447 cqe = &ring[q->q_cq_head];
1448 flags = lemtoh16(&cqe->flags);
1449 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1450 break;
1451
1452 ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1453
1454 if (++q->q_cq_head >= q->q_entries) {
1455 q->q_cq_head = 0;
1456 q->q_cq_phase ^= NVME_CQE_PHASE;
1457 }
1458
1459 #ifdef DEBUG
1460 /*
1461 * If we get spurious completion notification, something
1462 * is seriously hosed up. Very likely DMA to some random
1463 * memory place happened, so just bail out.
1464 */
1465 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1466 panic("%s: invalid ccb detected",
1467 device_xname(sc->sc_dev));
1468 /* NOTREACHED */
1469 }
1470 #endif
1471
1472 rv++;
1473
1474 /*
1475 * Unlock the mutex before calling the ccb_done callback
1476 * and re-lock afterwards. The callback triggers lddone()
1477 * which schedules another i/o, and also calls nvme_ccb_put().
1478 * Unlock/relock avoids possibility of deadlock.
1479 */
1480 mutex_exit(&q->q_cq_mtx);
1481 ccb->ccb_done(q, ccb, cqe);
1482 mutex_enter(&q->q_cq_mtx);
1483 }
1484 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1485
1486 if (rv)
1487 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1488
1489 mutex_exit(&q->q_cq_mtx);
1490
1491 return rv;
1492 }
1493
1494 static void
1495 nvme_q_wait_complete(struct nvme_softc *sc,
1496 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1497 {
1498 mutex_enter(&q->q_ccb_mtx);
1499 if (finished(cookie))
1500 goto out;
1501
1502 for(;;) {
1503 q->q_ccb_waiting = true;
1504 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1505
1506 if (finished(cookie))
1507 break;
1508 }
1509
1510 out:
1511 mutex_exit(&q->q_ccb_mtx);
1512 }
1513
1514 static int
1515 nvme_identify(struct nvme_softc *sc, u_int mps)
1516 {
1517 char sn[41], mn[81], fr[17];
1518 struct nvm_identify_controller *identify;
1519 struct nvme_dmamem *mem;
1520 struct nvme_ccb *ccb;
1521 u_int mdts;
1522 int rv = 1;
1523
1524 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1525 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1526
1527 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1528 if (mem == NULL)
1529 return 1;
1530
1531 ccb->ccb_done = nvme_empty_done;
1532 ccb->ccb_cookie = mem;
1533
1534 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1535 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1536 NVME_TIMO_IDENT);
1537 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1538
1539 nvme_ccb_put(sc->sc_admin_q, ccb);
1540
1541 if (rv != 0)
1542 goto done;
1543
1544 identify = NVME_DMA_KVA(mem);
1545 sc->sc_identify = *identify;
1546 identify = NULL;
1547
1548 /* Convert data to host endian */
1549 nvme_identify_controller_swapbytes(&sc->sc_identify);
1550
1551 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1552 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1553 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1554 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1555 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1556 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1557 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1558 sn);
1559
1560 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1561
1562 if (sc->sc_identify.mdts > 0) {
1563 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1564 if (mdts < sc->sc_mdts)
1565 sc->sc_mdts = mdts;
1566 }
1567
1568 sc->sc_nn = sc->sc_identify.nn;
1569
1570 done:
1571 nvme_dmamem_free(sc, mem);
1572
1573 return rv;
1574 }
1575
1576 static int
1577 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1578 {
1579 struct nvme_sqe_q sqe;
1580 struct nvme_ccb *ccb;
1581 int rv;
1582
1583 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1584 return 1;
1585
1586 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1587 KASSERT(ccb != NULL);
1588
1589 ccb->ccb_done = nvme_empty_done;
1590 ccb->ccb_cookie = &sqe;
1591
1592 memset(&sqe, 0, sizeof(sqe));
1593 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1594 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1595 htolem16(&sqe.qsize, q->q_entries - 1);
1596 htolem16(&sqe.qid, q->q_id);
1597 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1598 if (sc->sc_use_mq)
1599 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1600
1601 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1602 if (rv != 0)
1603 goto fail;
1604
1605 ccb->ccb_done = nvme_empty_done;
1606 ccb->ccb_cookie = &sqe;
1607
1608 memset(&sqe, 0, sizeof(sqe));
1609 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1610 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1611 htolem16(&sqe.qsize, q->q_entries - 1);
1612 htolem16(&sqe.qid, q->q_id);
1613 htolem16(&sqe.cqid, q->q_id);
1614 sqe.qflags = NVM_SQE_Q_PC;
1615
1616 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1617 if (rv != 0)
1618 goto fail;
1619
1620 nvme_ccb_put(sc->sc_admin_q, ccb);
1621 return 0;
1622
1623 fail:
1624 if (sc->sc_use_mq)
1625 sc->sc_intr_disestablish(sc, q->q_id);
1626
1627 nvme_ccb_put(sc->sc_admin_q, ccb);
1628 return rv;
1629 }
1630
1631 static int
1632 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1633 {
1634 struct nvme_sqe_q sqe;
1635 struct nvme_ccb *ccb;
1636 int rv;
1637
1638 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1639 KASSERT(ccb != NULL);
1640
1641 ccb->ccb_done = nvme_empty_done;
1642 ccb->ccb_cookie = &sqe;
1643
1644 memset(&sqe, 0, sizeof(sqe));
1645 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1646 htolem16(&sqe.qid, q->q_id);
1647
1648 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1649 if (rv != 0)
1650 goto fail;
1651
1652 ccb->ccb_done = nvme_empty_done;
1653 ccb->ccb_cookie = &sqe;
1654
1655 memset(&sqe, 0, sizeof(sqe));
1656 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1657 htolem16(&sqe.qid, q->q_id);
1658
1659 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1660 if (rv != 0)
1661 goto fail;
1662
1663 fail:
1664 nvme_ccb_put(sc->sc_admin_q, ccb);
1665
1666 if (rv == 0 && sc->sc_use_mq) {
1667 if (sc->sc_intr_disestablish(sc, q->q_id))
1668 rv = 1;
1669 }
1670
1671 return rv;
1672 }
1673
1674 static void
1675 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1676 {
1677 struct nvme_sqe *sqe = slot;
1678 struct nvme_dmamem *mem = ccb->ccb_cookie;
1679
1680 sqe->opcode = NVM_ADMIN_IDENTIFY;
1681 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1682 htolem32(&sqe->cdw10, 1);
1683 }
1684
1685 static int
1686 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1687 u_int *nsqa)
1688 {
1689 struct nvme_pt_state state;
1690 struct nvme_pt_command pt;
1691 struct nvme_ccb *ccb;
1692 int rv;
1693
1694 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1695 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1696
1697 memset(&pt, 0, sizeof(pt));
1698 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1699 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1700 pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1701
1702 memset(&state, 0, sizeof(state));
1703 state.pt = &pt;
1704 state.finished = false;
1705
1706 ccb->ccb_done = nvme_pt_done;
1707 ccb->ccb_cookie = &state;
1708
1709 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1710
1711 if (rv != 0) {
1712 *ncqa = *nsqa = 0;
1713 return EIO;
1714 }
1715
1716 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1717 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1718
1719 return 0;
1720 }
1721
1722 static int
1723 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1724 {
1725 struct nvme_softc *sc = q->q_sc;
1726 struct nvme_ccb *ccb;
1727 bus_addr_t off;
1728 uint64_t *prpl;
1729 u_int i;
1730
1731 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1732 cv_init(&q->q_ccb_wait, "nvmeqw");
1733 q->q_ccb_waiting = false;
1734 SIMPLEQ_INIT(&q->q_ccb_list);
1735
1736 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1737
1738 q->q_nccbs = nccbs;
1739 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1740 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1741
1742 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1743 off = 0;
1744
1745 for (i = 0; i < nccbs; i++) {
1746 ccb = &q->q_ccbs[i];
1747
1748 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1749 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1750 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1751 &ccb->ccb_dmamap) != 0)
1752 goto free_maps;
1753
1754 ccb->ccb_id = i;
1755 ccb->ccb_prpl = prpl;
1756 ccb->ccb_prpl_off = off;
1757 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1758
1759 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1760
1761 prpl += sc->sc_max_sgl;
1762 off += sizeof(*prpl) * sc->sc_max_sgl;
1763 }
1764
1765 return 0;
1766
1767 free_maps:
1768 nvme_ccbs_free(q);
1769 return 1;
1770 }
1771
1772 static struct nvme_ccb *
1773 nvme_ccb_get(struct nvme_queue *q, bool wait)
1774 {
1775 struct nvme_ccb *ccb = NULL;
1776
1777 mutex_enter(&q->q_ccb_mtx);
1778 again:
1779 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1780 if (ccb != NULL) {
1781 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1782 #ifdef DEBUG
1783 ccb->ccb_cookie = NULL;
1784 #endif
1785 } else {
1786 if (__predict_false(wait)) {
1787 q->q_ccb_waiting = true;
1788 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1789 goto again;
1790 }
1791 }
1792 mutex_exit(&q->q_ccb_mtx);
1793
1794 return ccb;
1795 }
1796
1797 static void
1798 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1799 {
1800
1801 mutex_enter(&q->q_ccb_mtx);
1802 #ifdef DEBUG
1803 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1804 #endif
1805 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1806
1807 /* It's unlikely there are any waiters, it's not used for regular I/O */
1808 if (__predict_false(q->q_ccb_waiting)) {
1809 q->q_ccb_waiting = false;
1810 cv_broadcast(&q->q_ccb_wait);
1811 }
1812
1813 mutex_exit(&q->q_ccb_mtx);
1814 }
1815
1816 static void
1817 nvme_ccbs_free(struct nvme_queue *q)
1818 {
1819 struct nvme_softc *sc = q->q_sc;
1820 struct nvme_ccb *ccb;
1821
1822 mutex_enter(&q->q_ccb_mtx);
1823 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1824 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1825 /*
1826 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1827 * internally. don't hold spin mutex
1828 */
1829 mutex_exit(&q->q_ccb_mtx);
1830 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1831 mutex_enter(&q->q_ccb_mtx);
1832 }
1833 mutex_exit(&q->q_ccb_mtx);
1834
1835 nvme_dmamem_free(sc, q->q_ccb_prpls);
1836 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1837 q->q_ccbs = NULL;
1838 cv_destroy(&q->q_ccb_wait);
1839 mutex_destroy(&q->q_ccb_mtx);
1840 }
1841
1842 static struct nvme_queue *
1843 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1844 {
1845 struct nvme_queue *q;
1846
1847 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1848 q->q_sc = sc;
1849 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1850 sizeof(struct nvme_sqe) * entries);
1851 if (q->q_sq_dmamem == NULL)
1852 goto free;
1853
1854 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1855 sizeof(struct nvme_cqe) * entries);
1856 if (q->q_cq_dmamem == NULL)
1857 goto free_sq;
1858
1859 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1860 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1861
1862 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1863 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1864 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1865 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1866 q->q_id = id;
1867 q->q_entries = entries;
1868 q->q_sq_tail = 0;
1869 q->q_cq_head = 0;
1870 q->q_cq_phase = NVME_CQE_PHASE;
1871
1872 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1873 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1874
1875 /*
1876 * Due to definition of full and empty queue (queue is empty
1877 * when head == tail, full when tail is one less then head),
1878 * we can actually only have (entries - 1) in-flight commands.
1879 */
1880 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1881 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1882 goto free_cq;
1883 }
1884
1885 return q;
1886
1887 free_cq:
1888 nvme_dmamem_free(sc, q->q_cq_dmamem);
1889 free_sq:
1890 nvme_dmamem_free(sc, q->q_sq_dmamem);
1891 free:
1892 kmem_free(q, sizeof(*q));
1893
1894 return NULL;
1895 }
1896
1897 static void
1898 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
1899 {
1900
1901 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1902 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1903
1904 q->q_sqtdbl = NVME_SQTDBL(q->q_id, sc->sc_dstrd);
1905 q->q_cqhdbl = NVME_CQHDBL(q->q_id, sc->sc_dstrd);
1906
1907 q->q_sq_tail = 0;
1908 q->q_cq_head = 0;
1909 q->q_cq_phase = NVME_CQE_PHASE;
1910
1911 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1912 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1913 }
1914
1915 static void
1916 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1917 {
1918 nvme_ccbs_free(q);
1919 mutex_destroy(&q->q_sq_mtx);
1920 mutex_destroy(&q->q_cq_mtx);
1921 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1922 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1923 nvme_dmamem_free(sc, q->q_cq_dmamem);
1924 nvme_dmamem_free(sc, q->q_sq_dmamem);
1925 kmem_free(q, sizeof(*q));
1926 }
1927
1928 int
1929 nvme_intr(void *xsc)
1930 {
1931 struct nvme_softc *sc = xsc;
1932
1933 /*
1934 * INTx is level triggered, controller deasserts the interrupt only
1935 * when we advance command queue head via write to the doorbell.
1936 * Tell the controller to block the interrupts while we process
1937 * the queue(s).
1938 */
1939 nvme_write4(sc, NVME_INTMS, 1);
1940
1941 softint_schedule(sc->sc_softih[0]);
1942
1943 /* don't know, might not have been for us */
1944 return 1;
1945 }
1946
1947 void
1948 nvme_softintr_intx(void *xq)
1949 {
1950 struct nvme_queue *q = xq;
1951 struct nvme_softc *sc = q->q_sc;
1952
1953 nvme_q_complete(sc, sc->sc_admin_q);
1954 if (sc->sc_q != NULL)
1955 nvme_q_complete(sc, sc->sc_q[0]);
1956
1957 /*
1958 * Processing done, tell controller to issue interrupts again. There
1959 * is no race, as NVMe spec requires the controller to maintain state,
1960 * and assert the interrupt whenever there are unacknowledged
1961 * completion queue entries.
1962 */
1963 nvme_write4(sc, NVME_INTMC, 1);
1964 }
1965
1966 int
1967 nvme_intr_msi(void *xq)
1968 {
1969 struct nvme_queue *q = xq;
1970
1971 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1972 && q->q_sc->sc_softih[q->q_id]);
1973
1974 /*
1975 * MSI/MSI-X are edge triggered, so can handover processing to softint
1976 * without masking the interrupt.
1977 */
1978 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1979
1980 return 1;
1981 }
1982
1983 void
1984 nvme_softintr_msi(void *xq)
1985 {
1986 struct nvme_queue *q = xq;
1987 struct nvme_softc *sc = q->q_sc;
1988
1989 nvme_q_complete(sc, q);
1990 }
1991
1992 static struct nvme_dmamem *
1993 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1994 {
1995 struct nvme_dmamem *ndm;
1996 int nsegs;
1997
1998 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1999 if (ndm == NULL)
2000 return NULL;
2001
2002 ndm->ndm_size = size;
2003
2004 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
2005 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
2006 goto ndmfree;
2007
2008 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
2009 1, &nsegs, BUS_DMA_WAITOK) != 0)
2010 goto destroy;
2011
2012 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
2013 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
2014 goto free;
2015
2016 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
2017 NULL, BUS_DMA_WAITOK) != 0)
2018 goto unmap;
2019
2020 memset(ndm->ndm_kva, 0, size);
2021 bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
2022
2023 return ndm;
2024
2025 unmap:
2026 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
2027 free:
2028 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2029 destroy:
2030 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2031 ndmfree:
2032 kmem_free(ndm, sizeof(*ndm));
2033 return NULL;
2034 }
2035
2036 static void
2037 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
2038 {
2039 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
2040 0, NVME_DMA_LEN(mem), ops);
2041 }
2042
2043 void
2044 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
2045 {
2046 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
2047 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
2048 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2049 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2050 kmem_free(ndm, sizeof(*ndm));
2051 }
2052
2053 /*
2054 * ioctl
2055 */
2056
2057 dev_type_open(nvmeopen);
2058 dev_type_close(nvmeclose);
2059 dev_type_ioctl(nvmeioctl);
2060
2061 const struct cdevsw nvme_cdevsw = {
2062 .d_open = nvmeopen,
2063 .d_close = nvmeclose,
2064 .d_read = noread,
2065 .d_write = nowrite,
2066 .d_ioctl = nvmeioctl,
2067 .d_stop = nostop,
2068 .d_tty = notty,
2069 .d_poll = nopoll,
2070 .d_mmap = nommap,
2071 .d_kqfilter = nokqfilter,
2072 .d_discard = nodiscard,
2073 .d_flag = D_OTHER,
2074 };
2075
2076 /*
2077 * Accept an open operation on the control device.
2078 */
2079 int
2080 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2081 {
2082 struct nvme_softc *sc;
2083 int unit = minor(dev) / 0x10000;
2084 int nsid = minor(dev) & 0xffff;
2085 int nsidx;
2086
2087 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2088 return ENXIO;
2089 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2090 return ENXIO;
2091
2092 if (nsid == 0) {
2093 /* controller */
2094 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2095 return EBUSY;
2096 SET(sc->sc_flags, NVME_F_OPEN);
2097 } else {
2098 /* namespace */
2099 nsidx = nsid - 1;
2100 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2101 return ENXIO;
2102 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2103 return EBUSY;
2104 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2105 }
2106 return 0;
2107 }
2108
2109 /*
2110 * Accept the last close on the control device.
2111 */
2112 int
2113 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2114 {
2115 struct nvme_softc *sc;
2116 int unit = minor(dev) / 0x10000;
2117 int nsid = minor(dev) & 0xffff;
2118 int nsidx;
2119
2120 sc = device_lookup_private(&nvme_cd, unit);
2121 if (sc == NULL)
2122 return ENXIO;
2123
2124 if (nsid == 0) {
2125 /* controller */
2126 CLR(sc->sc_flags, NVME_F_OPEN);
2127 } else {
2128 /* namespace */
2129 nsidx = nsid - 1;
2130 if (nsidx >= sc->sc_nn)
2131 return ENXIO;
2132 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2133 }
2134
2135 return 0;
2136 }
2137
2138 /*
2139 * Handle control operations.
2140 */
2141 int
2142 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2143 {
2144 struct nvme_softc *sc;
2145 int unit = minor(dev) / 0x10000;
2146 int nsid = minor(dev) & 0xffff;
2147 struct nvme_pt_command *pt;
2148
2149 sc = device_lookup_private(&nvme_cd, unit);
2150 if (sc == NULL)
2151 return ENXIO;
2152
2153 switch (cmd) {
2154 case NVME_PASSTHROUGH_CMD:
2155 pt = data;
2156 return nvme_command_passthrough(sc, data,
2157 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2158 }
2159
2160 return ENOTTY;
2161 }
2162