Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.6
      1 /*	$NetBSD: nvme.c,v 1.6 2016/09/16 11:41:40 jdolecek Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.6 2016/09/16 11:41:40 jdolecek Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 128;
     44 int nvme_ioq_size = 128;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 static void	nvme_version(struct nvme_softc *, uint32_t);
     54 #ifdef NVME_DEBUG
     55 static void	nvme_dumpregs(struct nvme_softc *);
     56 #endif
     57 static int	nvme_identify(struct nvme_softc *, u_int);
     58 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     59 		    void *);
     60 
     61 static int	nvme_ccbs_alloc(struct nvme_queue *, u_int);
     62 static void	nvme_ccbs_free(struct nvme_queue *);
     63 
     64 static struct nvme_ccb *
     65 		nvme_ccb_get(struct nvme_queue *);
     66 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     67 
     68 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     69 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     70 		    struct nvme_ccb *, void *));
     71 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     72 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     73 		    struct nvme_cqe *);
     74 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 
     78 static struct nvme_queue *
     79 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     80 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     81 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     82 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     83 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     84 		    struct nvme_ccb *, void *));
     85 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     86 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     87 
     88 static struct nvme_dmamem *
     89 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     90 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     91 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     92 		    int);
     93 
     94 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     95 		    void *);
     96 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     97 		    struct nvme_cqe *);
     98 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     99 		    void *);
    100 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    101 		    struct nvme_cqe *);
    102 
    103 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    104 		    void *);
    105 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    106 		    struct nvme_cqe *);
    107 static int	nvme_command_passthrough(struct nvme_softc *,
    108 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    109 
    110 #define nvme_read4(_s, _r) \
    111 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    112 #define nvme_write4(_s, _r, _v) \
    113 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    114 #ifdef __LP64__
    115 #define nvme_read8(_s, _r) \
    116 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
    117 #define nvme_write8(_s, _r, _v) \
    118 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    119 #else /* __LP64__ */
    120 static inline uint64_t
    121 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    122 {
    123 	uint64_t v;
    124 	uint32_t *a = (uint32_t *)&v;
    125 
    126 #if _BYTE_ORDER == _LITTLE_ENDIAN
    127 	a[0] = nvme_read4(sc, r);
    128 	a[1] = nvme_read4(sc, r + 4);
    129 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    130 	a[1] = nvme_read4(sc, r);
    131 	a[0] = nvme_read4(sc, r + 4);
    132 #endif
    133 
    134 	return v;
    135 }
    136 
    137 static inline void
    138 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    139 {
    140 	uint32_t *a = (uint32_t *)&v;
    141 
    142 #if _BYTE_ORDER == _LITTLE_ENDIAN
    143 	nvme_write4(sc, r, a[0]);
    144 	nvme_write4(sc, r + 4, a[1]);
    145 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    146 	nvme_write4(sc, r, a[1]);
    147 	nvme_write4(sc, r + 4, a[0]);
    148 #endif
    149 }
    150 #endif /* __LP64__ */
    151 #define nvme_barrier(_s, _r, _l, _f) \
    152 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    153 
    154 pool_cache_t nvme_ns_ctx_cache;
    155 ONCE_DECL(nvme_init_once);
    156 
    157 static int
    158 nvme_init(void)
    159 {
    160 	nvme_ns_ctx_cache = pool_cache_init(sizeof(struct nvme_ns_context),
    161 	    0, 0, 0, "nvme_ns_ctx", NULL, IPL_BIO, NULL, NULL, NULL);
    162 	KASSERT(nvme_ns_ctx_cache != NULL);
    163 	return 0;
    164 }
    165 
    166 static void
    167 nvme_version(struct nvme_softc *sc, uint32_t ver)
    168 {
    169 	const char *v = NULL;
    170 
    171 	switch (ver) {
    172 	case NVME_VS_1_0:
    173 		v = "1.0";
    174 		break;
    175 	case NVME_VS_1_1:
    176 		v = "1.1";
    177 		break;
    178 	case NVME_VS_1_2:
    179 		v = "1.2";
    180 		break;
    181 	default:
    182 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
    183 		return;
    184 	}
    185 
    186 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
    187 }
    188 
    189 #ifdef NVME_DEBUG
    190 static __used void
    191 nvme_dumpregs(struct nvme_softc *sc)
    192 {
    193 	uint64_t r8;
    194 	uint32_t r4;
    195 
    196 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    197 	r8 = nvme_read8(sc, NVME_CAP);
    198 	printf("%s: cap  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    199 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    200 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    201 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    202 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    203 	printf("%s:  css %llu\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    204 	printf("%s:  nssrs %llu\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    205 	printf("%s:  dstrd %llu\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    206 	printf("%s:  to %llu msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    207 	printf("%s:  ams %llu\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    208 	printf("%s:  cqr %llu\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    209 	printf("%s:  mqes %llu\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    210 
    211 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    212 
    213 	r4 = nvme_read4(sc, NVME_CC);
    214 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    215 	printf("%s:  iocqes %u\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4));
    216 	printf("%s:  iosqes %u\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4));
    217 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    218 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    219 	printf("%s:  mps %u\n", DEVNAME(sc), NVME_CC_MPS_R(r4));
    220 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    221 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    222 
    223 	printf("%s: csts 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_CSTS));
    224 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_AQA));
    225 	printf("%s: asq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    226 	printf("%s: acq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    227 #undef	DEVNAME
    228 }
    229 #endif	/* NVME_DEBUG */
    230 
    231 static int
    232 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    233 {
    234 	u_int i = 0;
    235 
    236 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    237 		if (i++ > sc->sc_rdy_to)
    238 			return 1;
    239 
    240 		delay(1000);
    241 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    242 	}
    243 
    244 	return 0;
    245 }
    246 
    247 static int
    248 nvme_enable(struct nvme_softc *sc, u_int mps)
    249 {
    250 	uint32_t cc;
    251 
    252 	cc = nvme_read4(sc, NVME_CC);
    253 	if (ISSET(cc, NVME_CC_EN))
    254 		return nvme_ready(sc, NVME_CSTS_RDY);
    255 
    256 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    257 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    258 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    259 
    260 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    261 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    262 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    263 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    264 
    265 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    266 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    267 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    268 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    269 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    270 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    271 	SET(cc, NVME_CC_MPS(mps));
    272 	SET(cc, NVME_CC_EN);
    273 
    274 	nvme_write4(sc, NVME_CC, cc);
    275 	nvme_barrier(sc, 0, sc->sc_ios,
    276 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    277 
    278 	return nvme_ready(sc, NVME_CSTS_RDY);
    279 }
    280 
    281 static int
    282 nvme_disable(struct nvme_softc *sc)
    283 {
    284 	uint32_t cc, csts;
    285 
    286 	cc = nvme_read4(sc, NVME_CC);
    287 	if (ISSET(cc, NVME_CC_EN)) {
    288 		csts = nvme_read4(sc, NVME_CSTS);
    289 		if (!ISSET(csts, NVME_CSTS_CFS) &&
    290 		    nvme_ready(sc, NVME_CSTS_RDY) != 0)
    291 			return 1;
    292 	}
    293 
    294 	CLR(cc, NVME_CC_EN);
    295 
    296 	nvme_write4(sc, NVME_CC, cc);
    297 	nvme_barrier(sc, 0, sc->sc_ios,
    298 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    299 
    300 	return nvme_ready(sc, 0);
    301 }
    302 
    303 int
    304 nvme_attach(struct nvme_softc *sc)
    305 {
    306 	struct nvme_attach_args naa;
    307 	uint64_t cap;
    308 	uint32_t reg;
    309 	u_int dstrd;
    310 	u_int mps = PAGE_SHIFT;
    311 	int adminq_entries = nvme_adminq_size;
    312 	int ioq_entries = nvme_ioq_size;
    313 	int i;
    314 
    315 	RUN_ONCE(&nvme_init_once, nvme_init);
    316 
    317 	reg = nvme_read4(sc, NVME_VS);
    318 	if (reg == 0xffffffff) {
    319 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    320 		return 1;
    321 	}
    322 
    323 	nvme_version(sc, reg);
    324 
    325 	cap = nvme_read8(sc, NVME_CAP);
    326 	dstrd = NVME_CAP_DSTRD(cap);
    327 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    328 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    329 		    "is greater than CPU page size %u\n",
    330 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    331 		return 1;
    332 	}
    333 	if (NVME_CAP_MPSMAX(cap) < mps)
    334 		mps = NVME_CAP_MPSMAX(cap);
    335 
    336 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    337 	sc->sc_mps = 1 << mps;
    338 	sc->sc_mdts = MAXPHYS;
    339 	sc->sc_max_sgl = 2;
    340 
    341 	if (nvme_disable(sc) != 0) {
    342 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    343 		return 1;
    344 	}
    345 
    346 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    347 	if (sc->sc_admin_q == NULL) {
    348 		aprint_error_dev(sc->sc_dev,
    349 		    "unable to allocate admin queue\n");
    350 		return 1;
    351 	}
    352 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    353 		goto free_admin_q;
    354 
    355 	if (nvme_enable(sc, mps) != 0) {
    356 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    357 		goto disestablish_admin_q;
    358 	}
    359 
    360 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    361 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    362 		goto disable;
    363 	}
    364 
    365 	/* we know how big things are now */
    366 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    367 
    368 	/* reallocate ccbs of admin queue with new max sgl. */
    369 	nvme_ccbs_free(sc->sc_admin_q);
    370 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    371 
    372 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    373 	if (sc->sc_q == NULL) {
    374 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    375 		goto disable;
    376 	}
    377 	for (i = 0; i < sc->sc_nq; i++) {
    378 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    379 		if (sc->sc_q[i] == NULL) {
    380 			aprint_error_dev(sc->sc_dev,
    381 			    "unable to allocate io queue\n");
    382 			goto free_q;
    383 		}
    384 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    385 			aprint_error_dev(sc->sc_dev,
    386 			    "unable to create io queue\n");
    387 			nvme_q_free(sc, sc->sc_q[i]);
    388 			goto free_q;
    389 		}
    390 	}
    391 
    392 	if (!sc->sc_use_mq)
    393 		nvme_write4(sc, NVME_INTMC, 1);
    394 
    395 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    396 	    KM_SLEEP);
    397 	for (i = 0; i < sc->sc_nn; i++) {
    398 		memset(&naa, 0, sizeof(naa));
    399 		naa.naa_nsid = i + 1;
    400 		naa.naa_qentries = ioq_entries;
    401 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    402 		    nvme_print);
    403 	}
    404 
    405 	return 0;
    406 
    407 free_q:
    408 	while (--i >= 0) {
    409 		nvme_q_delete(sc, sc->sc_q[i]);
    410 		nvme_q_free(sc, sc->sc_q[i]);
    411 	}
    412 disable:
    413 	nvme_disable(sc);
    414 disestablish_admin_q:
    415 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    416 free_admin_q:
    417 	nvme_q_free(sc, sc->sc_admin_q);
    418 
    419 	return 1;
    420 }
    421 
    422 static int
    423 nvme_print(void *aux, const char *pnp)
    424 {
    425 	struct nvme_attach_args *naa = aux;
    426 
    427 	if (pnp)
    428 		aprint_normal("at %s", pnp);
    429 
    430 	if (naa->naa_nsid > 0)
    431 		aprint_normal(" nsid %d", naa->naa_nsid);
    432 
    433 	return UNCONF;
    434 }
    435 
    436 int
    437 nvme_detach(struct nvme_softc *sc, int flags)
    438 {
    439 	int i, error;
    440 
    441 	error = config_detach_children(sc->sc_dev, flags);
    442 	if (error)
    443 		return error;
    444 
    445 	error = nvme_shutdown(sc);
    446 	if (error)
    447 		return error;
    448 
    449 	for (i = 0; i < sc->sc_nq; i++)
    450 		nvme_q_free(sc, sc->sc_q[i]);
    451 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    452 	nvme_q_free(sc, sc->sc_admin_q);
    453 
    454 	return 0;
    455 }
    456 
    457 static int
    458 nvme_shutdown(struct nvme_softc *sc)
    459 {
    460 	uint32_t cc, csts;
    461 	bool disabled = false;
    462 	int i;
    463 
    464 	if (!sc->sc_use_mq)
    465 		nvme_write4(sc, NVME_INTMS, 1);
    466 
    467 	for (i = 0; i < sc->sc_nq; i++) {
    468 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    469 			aprint_error_dev(sc->sc_dev,
    470 			    "unable to delete io queue %d, disabling\n", i + 1);
    471 			disabled = true;
    472 		}
    473 	}
    474 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    475 	if (disabled)
    476 		goto disable;
    477 
    478 	cc = nvme_read4(sc, NVME_CC);
    479 	CLR(cc, NVME_CC_SHN_MASK);
    480 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    481 	nvme_write4(sc, NVME_CC, cc);
    482 
    483 	for (i = 0; i < 4000; i++) {
    484 		nvme_barrier(sc, 0, sc->sc_ios,
    485 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    486 		csts = nvme_read4(sc, NVME_CSTS);
    487 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    488 			return 0;
    489 
    490 		delay(1000);
    491 	}
    492 
    493 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    494 
    495 disable:
    496 	nvme_disable(sc);
    497 	return 0;
    498 }
    499 
    500 void
    501 nvme_childdet(device_t self, device_t child)
    502 {
    503 	struct nvme_softc *sc = device_private(self);
    504 	int i;
    505 
    506 	for (i = 0; i < sc->sc_nn; i++) {
    507 		if (sc->sc_namespaces[i].dev == child) {
    508 			/* Already freed ns->ident. */
    509 			sc->sc_namespaces[i].dev = NULL;
    510 			break;
    511 		}
    512 	}
    513 }
    514 
    515 int
    516 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    517 {
    518 	struct nvme_sqe sqe;
    519 	struct nvm_identify_namespace *identify;
    520 	struct nvme_dmamem *mem;
    521 	struct nvme_ccb *ccb;
    522 	struct nvme_namespace *ns;
    523 	int rv;
    524 
    525 	KASSERT(nsid > 0);
    526 
    527 	ccb = nvme_ccb_get(sc->sc_admin_q);
    528 	KASSERT(ccb != NULL);
    529 
    530 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    531 	if (mem == NULL)
    532 		return ENOMEM;
    533 
    534 	memset(&sqe, 0, sizeof(sqe));
    535 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    536 	htolem32(&sqe.nsid, nsid);
    537 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    538 	htolem32(&sqe.cdw10, 0);
    539 
    540 	ccb->ccb_done = nvme_empty_done;
    541 	ccb->ccb_cookie = &sqe;
    542 
    543 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    544 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
    545 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    546 
    547 	nvme_ccb_put(sc->sc_admin_q, ccb);
    548 
    549 	if (rv != 0) {
    550 		rv = EIO;
    551 		goto done;
    552 	}
    553 
    554 	/* commit */
    555 
    556 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    557 	memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    558 
    559 	ns = nvme_ns_get(sc, nsid);
    560 	KASSERT(ns);
    561 	ns->ident = identify;
    562 
    563 done:
    564 	nvme_dmamem_free(sc, mem);
    565 
    566 	return rv;
    567 }
    568 
    569 int
    570 nvme_ns_dobio(struct nvme_softc *sc, struct nvme_ns_context *ctx)
    571 {
    572 	struct nvme_queue *q = nvme_get_q(sc);
    573 	struct nvme_ccb *ccb;
    574 	bus_dmamap_t dmap;
    575 	int i, error;
    576 
    577 	ccb = nvme_ccb_get(q);
    578 	if (ccb == NULL)
    579 		return EAGAIN;
    580 
    581 	ccb->ccb_done = nvme_ns_io_done;
    582 	ccb->ccb_cookie = ctx;
    583 
    584 	dmap = ccb->ccb_dmamap;
    585 	error = bus_dmamap_load(sc->sc_dmat, dmap, ctx->nnc_data,
    586 	    ctx->nnc_datasize, NULL,
    587 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL) ?
    588 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    589 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    590 	      BUS_DMA_READ : BUS_DMA_WRITE));
    591 	if (error) {
    592 		nvme_ccb_put(q, ccb);
    593 		return error;
    594 	}
    595 
    596 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    597 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    598 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    599 
    600 	if (dmap->dm_nsegs > 2) {
    601 		for (i = 1; i < dmap->dm_nsegs; i++) {
    602 			htolem64(&ccb->ccb_prpl[i - 1],
    603 			    dmap->dm_segs[i].ds_addr);
    604 		}
    605 		bus_dmamap_sync(sc->sc_dmat,
    606 		    NVME_DMA_MAP(q->q_ccb_prpls),
    607 		    ccb->ccb_prpl_off,
    608 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    609 		    BUS_DMASYNC_PREWRITE);
    610 	}
    611 
    612 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
    613 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill) != 0)
    614 			return EIO;
    615 		return 0;
    616 	}
    617 
    618 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    619 	return 0;
    620 }
    621 
    622 static void
    623 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    624 {
    625 	struct nvme_sqe_io *sqe = slot;
    626 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    627 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    628 
    629 	sqe->opcode = ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    630 	    NVM_CMD_READ : NVM_CMD_WRITE;
    631 	htolem32(&sqe->nsid, ctx->nnc_nsid);
    632 
    633 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    634 	switch (dmap->dm_nsegs) {
    635 	case 1:
    636 		break;
    637 	case 2:
    638 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    639 		break;
    640 	default:
    641 		/* the prp list is already set up and synced */
    642 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    643 		break;
    644 	}
    645 
    646 	htolem64(&sqe->slba, ctx->nnc_blkno);
    647 	htolem16(&sqe->nlb, (ctx->nnc_datasize / ctx->nnc_secsize) - 1);
    648 }
    649 
    650 static void
    651 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    652     struct nvme_cqe *cqe)
    653 {
    654 	struct nvme_softc *sc = q->q_sc;
    655 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    656 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    657 	uint16_t flags;
    658 
    659 	if (dmap->dm_nsegs > 2) {
    660 		bus_dmamap_sync(sc->sc_dmat,
    661 		    NVME_DMA_MAP(q->q_ccb_prpls),
    662 		    ccb->ccb_prpl_off,
    663 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    664 		    BUS_DMASYNC_POSTWRITE);
    665 	}
    666 
    667 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    668 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    669 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    670 
    671 	bus_dmamap_unload(sc->sc_dmat, dmap);
    672 	nvme_ccb_put(q, ccb);
    673 
    674 	flags = lemtoh16(&cqe->flags);
    675 
    676 	ctx->nnc_status = flags;
    677 	(*ctx->nnc_done)(ctx);
    678 }
    679 
    680 int
    681 nvme_ns_sync(struct nvme_softc *sc, struct nvme_ns_context *ctx)
    682 {
    683 	struct nvme_queue *q = nvme_get_q(sc);
    684 	struct nvme_ccb *ccb;
    685 
    686 	ccb = nvme_ccb_get(q);
    687 	if (ccb == NULL)
    688 		return EAGAIN;
    689 
    690 	ccb->ccb_done = nvme_ns_sync_done;
    691 	ccb->ccb_cookie = ctx;
    692 
    693 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
    694 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill) != 0)
    695 			return EIO;
    696 		return 0;
    697 	}
    698 
    699 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    700 	return 0;
    701 }
    702 
    703 static void
    704 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    705 {
    706 	struct nvme_sqe *sqe = slot;
    707 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    708 
    709 	sqe->opcode = NVM_CMD_FLUSH;
    710 	htolem32(&sqe->nsid, ctx->nnc_nsid);
    711 }
    712 
    713 static void
    714 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    715     struct nvme_cqe *cqe)
    716 {
    717 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    718 	uint16_t flags;
    719 
    720 	nvme_ccb_put(q, ccb);
    721 
    722 	flags = lemtoh16(&cqe->flags);
    723 
    724 	ctx->nnc_status = flags;
    725 	(*ctx->nnc_done)(ctx);
    726 }
    727 
    728 void
    729 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    730 {
    731 	struct nvme_namespace *ns;
    732 	struct nvm_identify_namespace *identify;
    733 
    734 	ns = nvme_ns_get(sc, nsid);
    735 	KASSERT(ns);
    736 
    737 	identify = ns->ident;
    738 	ns->ident = NULL;
    739 	if (identify != NULL)
    740 		kmem_free(identify, sizeof(*identify));
    741 }
    742 
    743 static void
    744 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    745 {
    746 	struct nvme_softc *sc = q->q_sc;
    747 	struct nvme_sqe *sqe = slot;
    748 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    749 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    750 	int i;
    751 
    752 	sqe->opcode = pt->cmd.opcode;
    753 	htolem32(&sqe->nsid, pt->cmd.nsid);
    754 
    755 	if (pt->buf != NULL && pt->len > 0) {
    756 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    757 		switch (dmap->dm_nsegs) {
    758 		case 1:
    759 			break;
    760 		case 2:
    761 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    762 			break;
    763 		default:
    764 			for (i = 1; i < dmap->dm_nsegs; i++) {
    765 				htolem64(&ccb->ccb_prpl[i - 1],
    766 				    dmap->dm_segs[i].ds_addr);
    767 			}
    768 			bus_dmamap_sync(sc->sc_dmat,
    769 			    NVME_DMA_MAP(q->q_ccb_prpls),
    770 			    ccb->ccb_prpl_off,
    771 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    772 			    BUS_DMASYNC_PREWRITE);
    773 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    774 			break;
    775 		}
    776 	}
    777 
    778 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    779 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    780 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    781 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    782 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    783 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    784 }
    785 
    786 static void
    787 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    788 {
    789 	struct nvme_softc *sc = q->q_sc;
    790 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    791 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    792 
    793 	if (pt->buf != NULL && pt->len > 0) {
    794 		if (dmap->dm_nsegs > 2) {
    795 			bus_dmamap_sync(sc->sc_dmat,
    796 			    NVME_DMA_MAP(q->q_ccb_prpls),
    797 			    ccb->ccb_prpl_off,
    798 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    799 			    BUS_DMASYNC_POSTWRITE);
    800 		}
    801 
    802 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    803 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    804 		bus_dmamap_unload(sc->sc_dmat, dmap);
    805 	}
    806 
    807 	pt->cpl.cdw0 = cqe->cdw0;
    808 	pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
    809 }
    810 
    811 static int
    812 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    813     uint16_t nsid, struct lwp *l, bool is_adminq)
    814 {
    815 	struct nvme_queue *q;
    816 	struct nvme_ccb *ccb;
    817 	void *buf = NULL;
    818 	int error;
    819 
    820 	if ((pt->buf == NULL && pt->len > 0) ||
    821 	    (pt->buf != NULL && pt->len == 0))
    822 		return EINVAL;
    823 
    824 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    825 	ccb = nvme_ccb_get(q);
    826 	if (ccb == NULL)
    827 		return EBUSY;
    828 
    829 	if (pt->buf != NULL && pt->len > 0) {
    830 		buf = kmem_alloc(pt->len, KM_SLEEP);
    831 		if (buf == NULL) {
    832 			error = ENOMEM;
    833 			goto ccb_put;
    834 		}
    835 		if (!pt->is_read) {
    836 			error = copyin(pt->buf, buf, pt->len);
    837 			if (error)
    838 				goto kmem_free;
    839 		}
    840 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    841 		    pt->len, NULL,
    842 		    BUS_DMA_WAITOK |
    843 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    844 		if (error)
    845 			goto kmem_free;
    846 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    847 		    0, ccb->ccb_dmamap->dm_mapsize,
    848 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    849 	}
    850 
    851 	ccb->ccb_done = nvme_pt_done;
    852 	ccb->ccb_cookie = pt;
    853 
    854 	pt->cmd.nsid = nsid;
    855 	if (nvme_poll(sc, q, ccb, nvme_pt_fill)) {
    856 		error = EIO;
    857 		goto out;
    858 	}
    859 
    860 	error = 0;
    861 out:
    862 	if (buf != NULL) {
    863 		if (error == 0 && pt->is_read)
    864 			error = copyout(buf, pt->buf, pt->len);
    865 kmem_free:
    866 		kmem_free(buf, pt->len);
    867 	}
    868 ccb_put:
    869 	nvme_ccb_put(q, ccb);
    870 	return error;
    871 }
    872 
    873 static void
    874 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    875     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    876 {
    877 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    878 	uint32_t tail;
    879 
    880 	mutex_enter(&q->q_sq_mtx);
    881 	tail = q->q_sq_tail;
    882 	if (++q->q_sq_tail >= q->q_entries)
    883 		q->q_sq_tail = 0;
    884 
    885 	sqe += tail;
    886 
    887 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    888 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
    889 	memset(sqe, 0, sizeof(*sqe));
    890 	(*fill)(q, ccb, sqe);
    891 	sqe->cid = ccb->ccb_id;
    892 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    893 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
    894 
    895 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
    896 	mutex_exit(&q->q_sq_mtx);
    897 }
    898 
    899 struct nvme_poll_state {
    900 	struct nvme_sqe s;
    901 	struct nvme_cqe c;
    902 };
    903 
    904 static int
    905 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    906     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    907 {
    908 	struct nvme_poll_state state;
    909 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
    910 	void *cookie;
    911 	uint16_t flags;
    912 
    913 	memset(&state, 0, sizeof(state));
    914 	(*fill)(q, ccb, &state.s);
    915 
    916 	done = ccb->ccb_done;
    917 	cookie = ccb->ccb_cookie;
    918 
    919 	ccb->ccb_done = nvme_poll_done;
    920 	ccb->ccb_cookie = &state;
    921 
    922 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
    923 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
    924 		if (nvme_q_complete(sc, q) == 0)
    925 			delay(10);
    926 
    927 		/* XXX no timeout? */
    928 	}
    929 
    930 	ccb->ccb_cookie = cookie;
    931 	done(q, ccb, &state.c);
    932 
    933 	flags = lemtoh16(&state.c.flags);
    934 
    935 	return flags & ~NVME_CQE_PHASE;
    936 }
    937 
    938 static void
    939 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    940 {
    941 	struct nvme_sqe *sqe = slot;
    942 	struct nvme_poll_state *state = ccb->ccb_cookie;
    943 
    944 	*sqe = state->s;
    945 }
    946 
    947 static void
    948 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    949     struct nvme_cqe *cqe)
    950 {
    951 	struct nvme_poll_state *state = ccb->ccb_cookie;
    952 
    953 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
    954 	state->c = *cqe;
    955 }
    956 
    957 static void
    958 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    959 {
    960 	struct nvme_sqe *src = ccb->ccb_cookie;
    961 	struct nvme_sqe *dst = slot;
    962 
    963 	*dst = *src;
    964 }
    965 
    966 static void
    967 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    968     struct nvme_cqe *cqe)
    969 {
    970 }
    971 
    972 static int
    973 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
    974 {
    975 	struct nvme_ccb *ccb;
    976 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
    977 	uint32_t head;
    978 	uint16_t flags;
    979 	int rv = 0;
    980 
    981 	if (!mutex_tryenter(&q->q_cq_mtx))
    982 		return -1;
    983 
    984 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
    985 	head = q->q_cq_head;
    986 	for (;;) {
    987 		cqe = &ring[head];
    988 		flags = lemtoh16(&cqe->flags);
    989 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
    990 			break;
    991 
    992 		ccb = &q->q_ccbs[cqe->cid];
    993 		ccb->ccb_done(q, ccb, cqe);
    994 
    995 		if (++head >= q->q_entries) {
    996 			head = 0;
    997 			q->q_cq_phase ^= NVME_CQE_PHASE;
    998 		}
    999 
   1000 		rv = 1;
   1001 	}
   1002 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1003 
   1004 	if (rv)
   1005 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head = head);
   1006 	mutex_exit(&q->q_cq_mtx);
   1007 
   1008 	return rv;
   1009 }
   1010 
   1011 static int
   1012 nvme_identify(struct nvme_softc *sc, u_int mps)
   1013 {
   1014 	char sn[41], mn[81], fr[17];
   1015 	struct nvm_identify_controller *identify;
   1016 	struct nvme_dmamem *mem;
   1017 	struct nvme_ccb *ccb;
   1018 	u_int mdts;
   1019 	int rv = 1;
   1020 
   1021 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1022 	if (ccb == NULL)
   1023 		panic("%s: nvme_ccb_get returned NULL", __func__);
   1024 
   1025 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1026 	if (mem == NULL)
   1027 		return 1;
   1028 
   1029 	ccb->ccb_done = nvme_empty_done;
   1030 	ccb->ccb_cookie = mem;
   1031 
   1032 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1033 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify);
   1034 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1035 
   1036 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1037 
   1038 	if (rv != 0)
   1039 		goto done;
   1040 
   1041 	identify = NVME_DMA_KVA(mem);
   1042 
   1043 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1044 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1045 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1046 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1047 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1048 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1049 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1050 	    sn);
   1051 
   1052 	if (identify->mdts > 0) {
   1053 		mdts = (1 << identify->mdts) * (1 << mps);
   1054 		if (mdts < sc->sc_mdts)
   1055 			sc->sc_mdts = mdts;
   1056 	}
   1057 
   1058 	sc->sc_nn = lemtoh32(&identify->nn);
   1059 
   1060 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1061 
   1062 done:
   1063 	nvme_dmamem_free(sc, mem);
   1064 
   1065 	return rv;
   1066 }
   1067 
   1068 static int
   1069 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1070 {
   1071 	struct nvme_sqe_q sqe;
   1072 	struct nvme_ccb *ccb;
   1073 	int rv;
   1074 
   1075 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q))
   1076 		return 1;
   1077 
   1078 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1079 	KASSERT(ccb != NULL);
   1080 
   1081 	ccb->ccb_done = nvme_empty_done;
   1082 	ccb->ccb_cookie = &sqe;
   1083 
   1084 	memset(&sqe, 0, sizeof(sqe));
   1085 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1086 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1087 	htolem16(&sqe.qsize, q->q_entries - 1);
   1088 	htolem16(&sqe.qid, q->q_id);
   1089 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1090 	if (sc->sc_use_mq)
   1091 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1092 
   1093 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
   1094 	if (rv != 0)
   1095 		goto fail;
   1096 
   1097 	ccb->ccb_done = nvme_empty_done;
   1098 	ccb->ccb_cookie = &sqe;
   1099 
   1100 	memset(&sqe, 0, sizeof(sqe));
   1101 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1102 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1103 	htolem16(&sqe.qsize, q->q_entries - 1);
   1104 	htolem16(&sqe.qid, q->q_id);
   1105 	htolem16(&sqe.cqid, q->q_id);
   1106 	sqe.qflags = NVM_SQE_Q_PC;
   1107 
   1108 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
   1109 	if (rv != 0)
   1110 		goto fail;
   1111 
   1112 fail:
   1113 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1114 	return rv;
   1115 }
   1116 
   1117 static int
   1118 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1119 {
   1120 	struct nvme_sqe_q sqe;
   1121 	struct nvme_ccb *ccb;
   1122 	int rv;
   1123 
   1124 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1125 	KASSERT(ccb != NULL);
   1126 
   1127 	ccb->ccb_done = nvme_empty_done;
   1128 	ccb->ccb_cookie = &sqe;
   1129 
   1130 	memset(&sqe, 0, sizeof(sqe));
   1131 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1132 	htolem16(&sqe.qid, q->q_id);
   1133 
   1134 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
   1135 	if (rv != 0)
   1136 		goto fail;
   1137 
   1138 	ccb->ccb_done = nvme_empty_done;
   1139 	ccb->ccb_cookie = &sqe;
   1140 
   1141 	memset(&sqe, 0, sizeof(sqe));
   1142 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1143 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1144 	htolem16(&sqe.qid, q->q_id);
   1145 
   1146 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
   1147 	if (rv != 0)
   1148 		goto fail;
   1149 
   1150 fail:
   1151 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1152 
   1153 	if (rv == 0 && sc->sc_use_mq) {
   1154 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1155 			rv = 1;
   1156 	}
   1157 
   1158 	return rv;
   1159 }
   1160 
   1161 static void
   1162 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1163 {
   1164 	struct nvme_sqe *sqe = slot;
   1165 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1166 
   1167 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1168 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1169 	htolem32(&sqe->cdw10, 1);
   1170 }
   1171 
   1172 static int
   1173 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
   1174 {
   1175 	struct nvme_softc *sc = q->q_sc;
   1176 	struct nvme_ccb *ccb;
   1177 	bus_addr_t off;
   1178 	uint64_t *prpl;
   1179 	u_int i;
   1180 
   1181 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1182 	SIMPLEQ_INIT(&q->q_ccb_list);
   1183 
   1184 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1185 	if (q->q_ccbs == NULL)
   1186 		return 1;
   1187 
   1188 	q->q_nccbs = nccbs;
   1189 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1190 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1191 
   1192 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1193 	off = 0;
   1194 
   1195 	for (i = 0; i < nccbs; i++) {
   1196 		ccb = &q->q_ccbs[i];
   1197 
   1198 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1199 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1200 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1201 		    &ccb->ccb_dmamap) != 0)
   1202 			goto free_maps;
   1203 
   1204 		ccb->ccb_id = i;
   1205 		ccb->ccb_prpl = prpl;
   1206 		ccb->ccb_prpl_off = off;
   1207 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1208 
   1209 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1210 
   1211 		prpl += sc->sc_max_sgl;
   1212 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1213 	}
   1214 
   1215 	return 0;
   1216 
   1217 free_maps:
   1218 	nvme_ccbs_free(q);
   1219 	return 1;
   1220 }
   1221 
   1222 static struct nvme_ccb *
   1223 nvme_ccb_get(struct nvme_queue *q)
   1224 {
   1225 	struct nvme_ccb *ccb;
   1226 
   1227 	mutex_enter(&q->q_ccb_mtx);
   1228 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1229 	if (ccb != NULL)
   1230 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1231 	mutex_exit(&q->q_ccb_mtx);
   1232 
   1233 	return ccb;
   1234 }
   1235 
   1236 static void
   1237 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1238 {
   1239 
   1240 	mutex_enter(&q->q_ccb_mtx);
   1241 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1242 	mutex_exit(&q->q_ccb_mtx);
   1243 }
   1244 
   1245 static void
   1246 nvme_ccbs_free(struct nvme_queue *q)
   1247 {
   1248 	struct nvme_softc *sc = q->q_sc;
   1249 	struct nvme_ccb *ccb;
   1250 
   1251 	mutex_enter(&q->q_ccb_mtx);
   1252 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1253 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1254 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1255 	}
   1256 	mutex_exit(&q->q_ccb_mtx);
   1257 
   1258 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1259 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1260 	q->q_ccbs = NULL;
   1261 	mutex_destroy(&q->q_ccb_mtx);
   1262 }
   1263 
   1264 static struct nvme_queue *
   1265 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1266 {
   1267 	struct nvme_queue *q;
   1268 
   1269 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1270 	if (q == NULL)
   1271 		return NULL;
   1272 
   1273 	q->q_sc = sc;
   1274 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1275 	    sizeof(struct nvme_sqe) * entries);
   1276 	if (q->q_sq_dmamem == NULL)
   1277 		goto free;
   1278 
   1279 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1280 	    sizeof(struct nvme_cqe) * entries);
   1281 	if (q->q_cq_dmamem == NULL)
   1282 		goto free_sq;
   1283 
   1284 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1285 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1286 
   1287 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1288 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1289 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1290 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1291 	q->q_id = id;
   1292 	q->q_entries = entries;
   1293 	q->q_sq_tail = 0;
   1294 	q->q_cq_head = 0;
   1295 	q->q_cq_phase = NVME_CQE_PHASE;
   1296 
   1297 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1298 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1299 
   1300 	if (nvme_ccbs_alloc(q, entries) != 0) {
   1301 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1302 		goto free_cq;
   1303 	}
   1304 
   1305 	return q;
   1306 
   1307 free_cq:
   1308 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1309 free_sq:
   1310 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1311 free:
   1312 	kmem_free(q, sizeof(*q));
   1313 
   1314 	return NULL;
   1315 }
   1316 
   1317 static void
   1318 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1319 {
   1320 	nvme_ccbs_free(q);
   1321 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1322 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1323 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1324 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1325 	kmem_free(q, sizeof(*q));
   1326 }
   1327 
   1328 int
   1329 nvme_intr(void *xsc)
   1330 {
   1331 	struct nvme_softc *sc = xsc;
   1332 	int rv = 0;
   1333 
   1334 	nvme_write4(sc, NVME_INTMS, 1);
   1335 
   1336 	if (nvme_q_complete(sc, sc->sc_admin_q))
   1337 		rv = 1;
   1338 	if (sc->sc_q != NULL)
   1339 		if (nvme_q_complete(sc, sc->sc_q[0]))
   1340 			rv = 1;
   1341 
   1342 	nvme_write4(sc, NVME_INTMC, 1);
   1343 
   1344 	return rv;
   1345 }
   1346 
   1347 int
   1348 nvme_mq_msi_intr(void *xq)
   1349 {
   1350 	struct nvme_queue *q = xq;
   1351 	struct nvme_softc *sc = q->q_sc;
   1352 	int rv = 0;
   1353 
   1354 	nvme_write4(sc, NVME_INTMS, 1U << q->q_id);
   1355 
   1356 	if (nvme_q_complete(sc, q))
   1357 		rv = 1;
   1358 
   1359 	nvme_write4(sc, NVME_INTMC, 1U << q->q_id);
   1360 
   1361 	return rv;
   1362 }
   1363 
   1364 int
   1365 nvme_mq_msix_intr(void *xq)
   1366 {
   1367 	struct nvme_queue *q = xq;
   1368 	int rv = 0;
   1369 
   1370 	if (nvme_q_complete(q->q_sc, q))
   1371 		rv = 1;
   1372 
   1373 	return rv;
   1374 }
   1375 
   1376 static struct nvme_dmamem *
   1377 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1378 {
   1379 	struct nvme_dmamem *ndm;
   1380 	int nsegs;
   1381 
   1382 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1383 	if (ndm == NULL)
   1384 		return NULL;
   1385 
   1386 	ndm->ndm_size = size;
   1387 
   1388 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1389 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1390 		goto ndmfree;
   1391 
   1392 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1393 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1394 		goto destroy;
   1395 
   1396 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1397 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1398 		goto free;
   1399 	memset(ndm->ndm_kva, 0, size);
   1400 
   1401 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1402 	    NULL, BUS_DMA_WAITOK) != 0)
   1403 		goto unmap;
   1404 
   1405 	return ndm;
   1406 
   1407 unmap:
   1408 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1409 free:
   1410 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1411 destroy:
   1412 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1413 ndmfree:
   1414 	kmem_free(ndm, sizeof(*ndm));
   1415 	return NULL;
   1416 }
   1417 
   1418 static void
   1419 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1420 {
   1421 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1422 	    0, NVME_DMA_LEN(mem), ops);
   1423 }
   1424 
   1425 void
   1426 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1427 {
   1428 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1429 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1430 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1431 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1432 	kmem_free(ndm, sizeof(*ndm));
   1433 }
   1434 
   1435 /*
   1436  * ioctl
   1437  */
   1438 
   1439 dev_type_open(nvmeopen);
   1440 dev_type_close(nvmeclose);
   1441 dev_type_ioctl(nvmeioctl);
   1442 
   1443 const struct cdevsw nvme_cdevsw = {
   1444 	.d_open = nvmeopen,
   1445 	.d_close = nvmeclose,
   1446 	.d_read = noread,
   1447 	.d_write = nowrite,
   1448 	.d_ioctl = nvmeioctl,
   1449 	.d_stop = nostop,
   1450 	.d_tty = notty,
   1451 	.d_poll = nopoll,
   1452 	.d_mmap = nommap,
   1453 	.d_kqfilter = nokqfilter,
   1454 	.d_discard = nodiscard,
   1455 	.d_flag = D_OTHER,
   1456 };
   1457 
   1458 extern struct cfdriver nvme_cd;
   1459 
   1460 /*
   1461  * Accept an open operation on the control device.
   1462  */
   1463 int
   1464 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1465 {
   1466 	struct nvme_softc *sc;
   1467 	int unit = minor(dev) / 0x10000;
   1468 	int nsid = minor(dev) & 0xffff;
   1469 	int nsidx;
   1470 
   1471 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1472 		return ENXIO;
   1473 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1474 		return ENXIO;
   1475 
   1476 	if (nsid == 0) {
   1477 		/* controller */
   1478 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1479 			return EBUSY;
   1480 		SET(sc->sc_flags, NVME_F_OPEN);
   1481 	} else {
   1482 		/* namespace */
   1483 		nsidx = nsid - 1;
   1484 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1485 			return ENXIO;
   1486 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1487 			return EBUSY;
   1488 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1489 	}
   1490 	return 0;
   1491 }
   1492 
   1493 /*
   1494  * Accept the last close on the control device.
   1495  */
   1496 int
   1497 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1498 {
   1499 	struct nvme_softc *sc;
   1500 	int unit = minor(dev) / 0x10000;
   1501 	int nsid = minor(dev) & 0xffff;
   1502 	int nsidx;
   1503 
   1504 	sc = device_lookup_private(&nvme_cd, unit);
   1505 	if (sc == NULL)
   1506 		return ENXIO;
   1507 
   1508 	if (nsid == 0) {
   1509 		/* controller */
   1510 		CLR(sc->sc_flags, NVME_F_OPEN);
   1511 	} else {
   1512 		/* namespace */
   1513 		nsidx = nsid - 1;
   1514 		if (nsidx >= sc->sc_nn)
   1515 			return ENXIO;
   1516 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1517 	}
   1518 
   1519 	return 0;
   1520 }
   1521 
   1522 /*
   1523  * Handle control operations.
   1524  */
   1525 int
   1526 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1527 {
   1528 	struct nvme_softc *sc;
   1529 	int unit = minor(dev) / 0x10000;
   1530 	int nsid = minor(dev) & 0xffff;
   1531 	struct nvme_pt_command *pt;
   1532 
   1533 	sc = device_lookup_private(&nvme_cd, unit);
   1534 	if (sc == NULL)
   1535 		return ENXIO;
   1536 
   1537 	switch (cmd) {
   1538 	case NVME_PASSTHROUGH_CMD:
   1539 		pt = data;
   1540 		return nvme_command_passthrough(sc, data,
   1541 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1542 	}
   1543 
   1544 	return ENOTTY;
   1545 }
   1546