nvme.c revision 1.6 1 /* $NetBSD: nvme.c,v 1.6 2016/09/16 11:41:40 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.6 2016/09/16 11:41:40 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 128;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, u_int);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *));
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static struct nvme_dmamem *
89 nvme_dmamem_alloc(struct nvme_softc *, size_t);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
92 int);
93
94 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
95 void *);
96 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
97 struct nvme_cqe *);
98 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
99 void *);
100 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
101 struct nvme_cqe *);
102
103 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static int nvme_command_passthrough(struct nvme_softc *,
108 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
109
110 #define nvme_read4(_s, _r) \
111 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
112 #define nvme_write4(_s, _r, _v) \
113 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
114 #ifdef __LP64__
115 #define nvme_read8(_s, _r) \
116 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
117 #define nvme_write8(_s, _r, _v) \
118 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
119 #else /* __LP64__ */
120 static inline uint64_t
121 nvme_read8(struct nvme_softc *sc, bus_size_t r)
122 {
123 uint64_t v;
124 uint32_t *a = (uint32_t *)&v;
125
126 #if _BYTE_ORDER == _LITTLE_ENDIAN
127 a[0] = nvme_read4(sc, r);
128 a[1] = nvme_read4(sc, r + 4);
129 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
130 a[1] = nvme_read4(sc, r);
131 a[0] = nvme_read4(sc, r + 4);
132 #endif
133
134 return v;
135 }
136
137 static inline void
138 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
139 {
140 uint32_t *a = (uint32_t *)&v;
141
142 #if _BYTE_ORDER == _LITTLE_ENDIAN
143 nvme_write4(sc, r, a[0]);
144 nvme_write4(sc, r + 4, a[1]);
145 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
146 nvme_write4(sc, r, a[1]);
147 nvme_write4(sc, r + 4, a[0]);
148 #endif
149 }
150 #endif /* __LP64__ */
151 #define nvme_barrier(_s, _r, _l, _f) \
152 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
153
154 pool_cache_t nvme_ns_ctx_cache;
155 ONCE_DECL(nvme_init_once);
156
157 static int
158 nvme_init(void)
159 {
160 nvme_ns_ctx_cache = pool_cache_init(sizeof(struct nvme_ns_context),
161 0, 0, 0, "nvme_ns_ctx", NULL, IPL_BIO, NULL, NULL, NULL);
162 KASSERT(nvme_ns_ctx_cache != NULL);
163 return 0;
164 }
165
166 static void
167 nvme_version(struct nvme_softc *sc, uint32_t ver)
168 {
169 const char *v = NULL;
170
171 switch (ver) {
172 case NVME_VS_1_0:
173 v = "1.0";
174 break;
175 case NVME_VS_1_1:
176 v = "1.1";
177 break;
178 case NVME_VS_1_2:
179 v = "1.2";
180 break;
181 default:
182 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
183 return;
184 }
185
186 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
187 }
188
189 #ifdef NVME_DEBUG
190 static __used void
191 nvme_dumpregs(struct nvme_softc *sc)
192 {
193 uint64_t r8;
194 uint32_t r4;
195
196 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
197 r8 = nvme_read8(sc, NVME_CAP);
198 printf("%s: cap 0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
199 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
200 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
201 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
202 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
203 printf("%s: css %llu\n", DEVNAME(sc), NVME_CAP_CSS(r8));
204 printf("%s: nssrs %llu\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
205 printf("%s: dstrd %llu\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
206 printf("%s: to %llu msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
207 printf("%s: ams %llu\n", DEVNAME(sc), NVME_CAP_AMS(r8));
208 printf("%s: cqr %llu\n", DEVNAME(sc), NVME_CAP_CQR(r8));
209 printf("%s: mqes %llu\n", DEVNAME(sc), NVME_CAP_MQES(r8));
210
211 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
212
213 r4 = nvme_read4(sc, NVME_CC);
214 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
215 printf("%s: iocqes %u\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4));
216 printf("%s: iosqes %u\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4));
217 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
218 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
219 printf("%s: mps %u\n", DEVNAME(sc), NVME_CC_MPS_R(r4));
220 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
221 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
222
223 printf("%s: csts 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_CSTS));
224 printf("%s: aqa 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_AQA));
225 printf("%s: asq 0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
226 printf("%s: acq 0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
227 #undef DEVNAME
228 }
229 #endif /* NVME_DEBUG */
230
231 static int
232 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
233 {
234 u_int i = 0;
235
236 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
237 if (i++ > sc->sc_rdy_to)
238 return 1;
239
240 delay(1000);
241 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
242 }
243
244 return 0;
245 }
246
247 static int
248 nvme_enable(struct nvme_softc *sc, u_int mps)
249 {
250 uint32_t cc;
251
252 cc = nvme_read4(sc, NVME_CC);
253 if (ISSET(cc, NVME_CC_EN))
254 return nvme_ready(sc, NVME_CSTS_RDY);
255
256 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
257 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
258 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
259
260 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
261 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
262 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
263 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
264
265 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
266 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
267 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
268 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
269 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
270 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
271 SET(cc, NVME_CC_MPS(mps));
272 SET(cc, NVME_CC_EN);
273
274 nvme_write4(sc, NVME_CC, cc);
275 nvme_barrier(sc, 0, sc->sc_ios,
276 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
277
278 return nvme_ready(sc, NVME_CSTS_RDY);
279 }
280
281 static int
282 nvme_disable(struct nvme_softc *sc)
283 {
284 uint32_t cc, csts;
285
286 cc = nvme_read4(sc, NVME_CC);
287 if (ISSET(cc, NVME_CC_EN)) {
288 csts = nvme_read4(sc, NVME_CSTS);
289 if (!ISSET(csts, NVME_CSTS_CFS) &&
290 nvme_ready(sc, NVME_CSTS_RDY) != 0)
291 return 1;
292 }
293
294 CLR(cc, NVME_CC_EN);
295
296 nvme_write4(sc, NVME_CC, cc);
297 nvme_barrier(sc, 0, sc->sc_ios,
298 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
299
300 return nvme_ready(sc, 0);
301 }
302
303 int
304 nvme_attach(struct nvme_softc *sc)
305 {
306 struct nvme_attach_args naa;
307 uint64_t cap;
308 uint32_t reg;
309 u_int dstrd;
310 u_int mps = PAGE_SHIFT;
311 int adminq_entries = nvme_adminq_size;
312 int ioq_entries = nvme_ioq_size;
313 int i;
314
315 RUN_ONCE(&nvme_init_once, nvme_init);
316
317 reg = nvme_read4(sc, NVME_VS);
318 if (reg == 0xffffffff) {
319 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
320 return 1;
321 }
322
323 nvme_version(sc, reg);
324
325 cap = nvme_read8(sc, NVME_CAP);
326 dstrd = NVME_CAP_DSTRD(cap);
327 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
328 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
329 "is greater than CPU page size %u\n",
330 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
331 return 1;
332 }
333 if (NVME_CAP_MPSMAX(cap) < mps)
334 mps = NVME_CAP_MPSMAX(cap);
335
336 sc->sc_rdy_to = NVME_CAP_TO(cap);
337 sc->sc_mps = 1 << mps;
338 sc->sc_mdts = MAXPHYS;
339 sc->sc_max_sgl = 2;
340
341 if (nvme_disable(sc) != 0) {
342 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
343 return 1;
344 }
345
346 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
347 if (sc->sc_admin_q == NULL) {
348 aprint_error_dev(sc->sc_dev,
349 "unable to allocate admin queue\n");
350 return 1;
351 }
352 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
353 goto free_admin_q;
354
355 if (nvme_enable(sc, mps) != 0) {
356 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
357 goto disestablish_admin_q;
358 }
359
360 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
361 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
362 goto disable;
363 }
364
365 /* we know how big things are now */
366 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
367
368 /* reallocate ccbs of admin queue with new max sgl. */
369 nvme_ccbs_free(sc->sc_admin_q);
370 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
371
372 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
373 if (sc->sc_q == NULL) {
374 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
375 goto disable;
376 }
377 for (i = 0; i < sc->sc_nq; i++) {
378 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
379 if (sc->sc_q[i] == NULL) {
380 aprint_error_dev(sc->sc_dev,
381 "unable to allocate io queue\n");
382 goto free_q;
383 }
384 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
385 aprint_error_dev(sc->sc_dev,
386 "unable to create io queue\n");
387 nvme_q_free(sc, sc->sc_q[i]);
388 goto free_q;
389 }
390 }
391
392 if (!sc->sc_use_mq)
393 nvme_write4(sc, NVME_INTMC, 1);
394
395 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
396 KM_SLEEP);
397 for (i = 0; i < sc->sc_nn; i++) {
398 memset(&naa, 0, sizeof(naa));
399 naa.naa_nsid = i + 1;
400 naa.naa_qentries = ioq_entries;
401 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
402 nvme_print);
403 }
404
405 return 0;
406
407 free_q:
408 while (--i >= 0) {
409 nvme_q_delete(sc, sc->sc_q[i]);
410 nvme_q_free(sc, sc->sc_q[i]);
411 }
412 disable:
413 nvme_disable(sc);
414 disestablish_admin_q:
415 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
416 free_admin_q:
417 nvme_q_free(sc, sc->sc_admin_q);
418
419 return 1;
420 }
421
422 static int
423 nvme_print(void *aux, const char *pnp)
424 {
425 struct nvme_attach_args *naa = aux;
426
427 if (pnp)
428 aprint_normal("at %s", pnp);
429
430 if (naa->naa_nsid > 0)
431 aprint_normal(" nsid %d", naa->naa_nsid);
432
433 return UNCONF;
434 }
435
436 int
437 nvme_detach(struct nvme_softc *sc, int flags)
438 {
439 int i, error;
440
441 error = config_detach_children(sc->sc_dev, flags);
442 if (error)
443 return error;
444
445 error = nvme_shutdown(sc);
446 if (error)
447 return error;
448
449 for (i = 0; i < sc->sc_nq; i++)
450 nvme_q_free(sc, sc->sc_q[i]);
451 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
452 nvme_q_free(sc, sc->sc_admin_q);
453
454 return 0;
455 }
456
457 static int
458 nvme_shutdown(struct nvme_softc *sc)
459 {
460 uint32_t cc, csts;
461 bool disabled = false;
462 int i;
463
464 if (!sc->sc_use_mq)
465 nvme_write4(sc, NVME_INTMS, 1);
466
467 for (i = 0; i < sc->sc_nq; i++) {
468 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
469 aprint_error_dev(sc->sc_dev,
470 "unable to delete io queue %d, disabling\n", i + 1);
471 disabled = true;
472 }
473 }
474 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
475 if (disabled)
476 goto disable;
477
478 cc = nvme_read4(sc, NVME_CC);
479 CLR(cc, NVME_CC_SHN_MASK);
480 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
481 nvme_write4(sc, NVME_CC, cc);
482
483 for (i = 0; i < 4000; i++) {
484 nvme_barrier(sc, 0, sc->sc_ios,
485 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
486 csts = nvme_read4(sc, NVME_CSTS);
487 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
488 return 0;
489
490 delay(1000);
491 }
492
493 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
494
495 disable:
496 nvme_disable(sc);
497 return 0;
498 }
499
500 void
501 nvme_childdet(device_t self, device_t child)
502 {
503 struct nvme_softc *sc = device_private(self);
504 int i;
505
506 for (i = 0; i < sc->sc_nn; i++) {
507 if (sc->sc_namespaces[i].dev == child) {
508 /* Already freed ns->ident. */
509 sc->sc_namespaces[i].dev = NULL;
510 break;
511 }
512 }
513 }
514
515 int
516 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
517 {
518 struct nvme_sqe sqe;
519 struct nvm_identify_namespace *identify;
520 struct nvme_dmamem *mem;
521 struct nvme_ccb *ccb;
522 struct nvme_namespace *ns;
523 int rv;
524
525 KASSERT(nsid > 0);
526
527 ccb = nvme_ccb_get(sc->sc_admin_q);
528 KASSERT(ccb != NULL);
529
530 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
531 if (mem == NULL)
532 return ENOMEM;
533
534 memset(&sqe, 0, sizeof(sqe));
535 sqe.opcode = NVM_ADMIN_IDENTIFY;
536 htolem32(&sqe.nsid, nsid);
537 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
538 htolem32(&sqe.cdw10, 0);
539
540 ccb->ccb_done = nvme_empty_done;
541 ccb->ccb_cookie = &sqe;
542
543 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
544 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
545 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
546
547 nvme_ccb_put(sc->sc_admin_q, ccb);
548
549 if (rv != 0) {
550 rv = EIO;
551 goto done;
552 }
553
554 /* commit */
555
556 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
557 memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
558
559 ns = nvme_ns_get(sc, nsid);
560 KASSERT(ns);
561 ns->ident = identify;
562
563 done:
564 nvme_dmamem_free(sc, mem);
565
566 return rv;
567 }
568
569 int
570 nvme_ns_dobio(struct nvme_softc *sc, struct nvme_ns_context *ctx)
571 {
572 struct nvme_queue *q = nvme_get_q(sc);
573 struct nvme_ccb *ccb;
574 bus_dmamap_t dmap;
575 int i, error;
576
577 ccb = nvme_ccb_get(q);
578 if (ccb == NULL)
579 return EAGAIN;
580
581 ccb->ccb_done = nvme_ns_io_done;
582 ccb->ccb_cookie = ctx;
583
584 dmap = ccb->ccb_dmamap;
585 error = bus_dmamap_load(sc->sc_dmat, dmap, ctx->nnc_data,
586 ctx->nnc_datasize, NULL,
587 (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL) ?
588 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
589 (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
590 BUS_DMA_READ : BUS_DMA_WRITE));
591 if (error) {
592 nvme_ccb_put(q, ccb);
593 return error;
594 }
595
596 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
597 ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
598 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
599
600 if (dmap->dm_nsegs > 2) {
601 for (i = 1; i < dmap->dm_nsegs; i++) {
602 htolem64(&ccb->ccb_prpl[i - 1],
603 dmap->dm_segs[i].ds_addr);
604 }
605 bus_dmamap_sync(sc->sc_dmat,
606 NVME_DMA_MAP(q->q_ccb_prpls),
607 ccb->ccb_prpl_off,
608 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
609 BUS_DMASYNC_PREWRITE);
610 }
611
612 if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
613 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill) != 0)
614 return EIO;
615 return 0;
616 }
617
618 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
619 return 0;
620 }
621
622 static void
623 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
624 {
625 struct nvme_sqe_io *sqe = slot;
626 struct nvme_ns_context *ctx = ccb->ccb_cookie;
627 bus_dmamap_t dmap = ccb->ccb_dmamap;
628
629 sqe->opcode = ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
630 NVM_CMD_READ : NVM_CMD_WRITE;
631 htolem32(&sqe->nsid, ctx->nnc_nsid);
632
633 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
634 switch (dmap->dm_nsegs) {
635 case 1:
636 break;
637 case 2:
638 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
639 break;
640 default:
641 /* the prp list is already set up and synced */
642 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
643 break;
644 }
645
646 htolem64(&sqe->slba, ctx->nnc_blkno);
647 htolem16(&sqe->nlb, (ctx->nnc_datasize / ctx->nnc_secsize) - 1);
648 }
649
650 static void
651 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
652 struct nvme_cqe *cqe)
653 {
654 struct nvme_softc *sc = q->q_sc;
655 struct nvme_ns_context *ctx = ccb->ccb_cookie;
656 bus_dmamap_t dmap = ccb->ccb_dmamap;
657 uint16_t flags;
658
659 if (dmap->dm_nsegs > 2) {
660 bus_dmamap_sync(sc->sc_dmat,
661 NVME_DMA_MAP(q->q_ccb_prpls),
662 ccb->ccb_prpl_off,
663 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
664 BUS_DMASYNC_POSTWRITE);
665 }
666
667 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
668 ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
669 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
670
671 bus_dmamap_unload(sc->sc_dmat, dmap);
672 nvme_ccb_put(q, ccb);
673
674 flags = lemtoh16(&cqe->flags);
675
676 ctx->nnc_status = flags;
677 (*ctx->nnc_done)(ctx);
678 }
679
680 int
681 nvme_ns_sync(struct nvme_softc *sc, struct nvme_ns_context *ctx)
682 {
683 struct nvme_queue *q = nvme_get_q(sc);
684 struct nvme_ccb *ccb;
685
686 ccb = nvme_ccb_get(q);
687 if (ccb == NULL)
688 return EAGAIN;
689
690 ccb->ccb_done = nvme_ns_sync_done;
691 ccb->ccb_cookie = ctx;
692
693 if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
694 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill) != 0)
695 return EIO;
696 return 0;
697 }
698
699 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
700 return 0;
701 }
702
703 static void
704 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
705 {
706 struct nvme_sqe *sqe = slot;
707 struct nvme_ns_context *ctx = ccb->ccb_cookie;
708
709 sqe->opcode = NVM_CMD_FLUSH;
710 htolem32(&sqe->nsid, ctx->nnc_nsid);
711 }
712
713 static void
714 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
715 struct nvme_cqe *cqe)
716 {
717 struct nvme_ns_context *ctx = ccb->ccb_cookie;
718 uint16_t flags;
719
720 nvme_ccb_put(q, ccb);
721
722 flags = lemtoh16(&cqe->flags);
723
724 ctx->nnc_status = flags;
725 (*ctx->nnc_done)(ctx);
726 }
727
728 void
729 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
730 {
731 struct nvme_namespace *ns;
732 struct nvm_identify_namespace *identify;
733
734 ns = nvme_ns_get(sc, nsid);
735 KASSERT(ns);
736
737 identify = ns->ident;
738 ns->ident = NULL;
739 if (identify != NULL)
740 kmem_free(identify, sizeof(*identify));
741 }
742
743 static void
744 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
745 {
746 struct nvme_softc *sc = q->q_sc;
747 struct nvme_sqe *sqe = slot;
748 struct nvme_pt_command *pt = ccb->ccb_cookie;
749 bus_dmamap_t dmap = ccb->ccb_dmamap;
750 int i;
751
752 sqe->opcode = pt->cmd.opcode;
753 htolem32(&sqe->nsid, pt->cmd.nsid);
754
755 if (pt->buf != NULL && pt->len > 0) {
756 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
757 switch (dmap->dm_nsegs) {
758 case 1:
759 break;
760 case 2:
761 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
762 break;
763 default:
764 for (i = 1; i < dmap->dm_nsegs; i++) {
765 htolem64(&ccb->ccb_prpl[i - 1],
766 dmap->dm_segs[i].ds_addr);
767 }
768 bus_dmamap_sync(sc->sc_dmat,
769 NVME_DMA_MAP(q->q_ccb_prpls),
770 ccb->ccb_prpl_off,
771 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
772 BUS_DMASYNC_PREWRITE);
773 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
774 break;
775 }
776 }
777
778 htolem32(&sqe->cdw10, pt->cmd.cdw10);
779 htolem32(&sqe->cdw11, pt->cmd.cdw11);
780 htolem32(&sqe->cdw12, pt->cmd.cdw12);
781 htolem32(&sqe->cdw13, pt->cmd.cdw13);
782 htolem32(&sqe->cdw14, pt->cmd.cdw14);
783 htolem32(&sqe->cdw15, pt->cmd.cdw15);
784 }
785
786 static void
787 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
788 {
789 struct nvme_softc *sc = q->q_sc;
790 struct nvme_pt_command *pt = ccb->ccb_cookie;
791 bus_dmamap_t dmap = ccb->ccb_dmamap;
792
793 if (pt->buf != NULL && pt->len > 0) {
794 if (dmap->dm_nsegs > 2) {
795 bus_dmamap_sync(sc->sc_dmat,
796 NVME_DMA_MAP(q->q_ccb_prpls),
797 ccb->ccb_prpl_off,
798 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
799 BUS_DMASYNC_POSTWRITE);
800 }
801
802 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
803 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
804 bus_dmamap_unload(sc->sc_dmat, dmap);
805 }
806
807 pt->cpl.cdw0 = cqe->cdw0;
808 pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
809 }
810
811 static int
812 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
813 uint16_t nsid, struct lwp *l, bool is_adminq)
814 {
815 struct nvme_queue *q;
816 struct nvme_ccb *ccb;
817 void *buf = NULL;
818 int error;
819
820 if ((pt->buf == NULL && pt->len > 0) ||
821 (pt->buf != NULL && pt->len == 0))
822 return EINVAL;
823
824 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
825 ccb = nvme_ccb_get(q);
826 if (ccb == NULL)
827 return EBUSY;
828
829 if (pt->buf != NULL && pt->len > 0) {
830 buf = kmem_alloc(pt->len, KM_SLEEP);
831 if (buf == NULL) {
832 error = ENOMEM;
833 goto ccb_put;
834 }
835 if (!pt->is_read) {
836 error = copyin(pt->buf, buf, pt->len);
837 if (error)
838 goto kmem_free;
839 }
840 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
841 pt->len, NULL,
842 BUS_DMA_WAITOK |
843 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
844 if (error)
845 goto kmem_free;
846 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
847 0, ccb->ccb_dmamap->dm_mapsize,
848 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
849 }
850
851 ccb->ccb_done = nvme_pt_done;
852 ccb->ccb_cookie = pt;
853
854 pt->cmd.nsid = nsid;
855 if (nvme_poll(sc, q, ccb, nvme_pt_fill)) {
856 error = EIO;
857 goto out;
858 }
859
860 error = 0;
861 out:
862 if (buf != NULL) {
863 if (error == 0 && pt->is_read)
864 error = copyout(buf, pt->buf, pt->len);
865 kmem_free:
866 kmem_free(buf, pt->len);
867 }
868 ccb_put:
869 nvme_ccb_put(q, ccb);
870 return error;
871 }
872
873 static void
874 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
875 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
876 {
877 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
878 uint32_t tail;
879
880 mutex_enter(&q->q_sq_mtx);
881 tail = q->q_sq_tail;
882 if (++q->q_sq_tail >= q->q_entries)
883 q->q_sq_tail = 0;
884
885 sqe += tail;
886
887 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
888 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
889 memset(sqe, 0, sizeof(*sqe));
890 (*fill)(q, ccb, sqe);
891 sqe->cid = ccb->ccb_id;
892 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
893 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
894
895 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
896 mutex_exit(&q->q_sq_mtx);
897 }
898
899 struct nvme_poll_state {
900 struct nvme_sqe s;
901 struct nvme_cqe c;
902 };
903
904 static int
905 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
906 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
907 {
908 struct nvme_poll_state state;
909 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
910 void *cookie;
911 uint16_t flags;
912
913 memset(&state, 0, sizeof(state));
914 (*fill)(q, ccb, &state.s);
915
916 done = ccb->ccb_done;
917 cookie = ccb->ccb_cookie;
918
919 ccb->ccb_done = nvme_poll_done;
920 ccb->ccb_cookie = &state;
921
922 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
923 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
924 if (nvme_q_complete(sc, q) == 0)
925 delay(10);
926
927 /* XXX no timeout? */
928 }
929
930 ccb->ccb_cookie = cookie;
931 done(q, ccb, &state.c);
932
933 flags = lemtoh16(&state.c.flags);
934
935 return flags & ~NVME_CQE_PHASE;
936 }
937
938 static void
939 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
940 {
941 struct nvme_sqe *sqe = slot;
942 struct nvme_poll_state *state = ccb->ccb_cookie;
943
944 *sqe = state->s;
945 }
946
947 static void
948 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
949 struct nvme_cqe *cqe)
950 {
951 struct nvme_poll_state *state = ccb->ccb_cookie;
952
953 SET(cqe->flags, htole16(NVME_CQE_PHASE));
954 state->c = *cqe;
955 }
956
957 static void
958 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
959 {
960 struct nvme_sqe *src = ccb->ccb_cookie;
961 struct nvme_sqe *dst = slot;
962
963 *dst = *src;
964 }
965
966 static void
967 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
968 struct nvme_cqe *cqe)
969 {
970 }
971
972 static int
973 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
974 {
975 struct nvme_ccb *ccb;
976 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
977 uint32_t head;
978 uint16_t flags;
979 int rv = 0;
980
981 if (!mutex_tryenter(&q->q_cq_mtx))
982 return -1;
983
984 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
985 head = q->q_cq_head;
986 for (;;) {
987 cqe = &ring[head];
988 flags = lemtoh16(&cqe->flags);
989 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
990 break;
991
992 ccb = &q->q_ccbs[cqe->cid];
993 ccb->ccb_done(q, ccb, cqe);
994
995 if (++head >= q->q_entries) {
996 head = 0;
997 q->q_cq_phase ^= NVME_CQE_PHASE;
998 }
999
1000 rv = 1;
1001 }
1002 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1003
1004 if (rv)
1005 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head = head);
1006 mutex_exit(&q->q_cq_mtx);
1007
1008 return rv;
1009 }
1010
1011 static int
1012 nvme_identify(struct nvme_softc *sc, u_int mps)
1013 {
1014 char sn[41], mn[81], fr[17];
1015 struct nvm_identify_controller *identify;
1016 struct nvme_dmamem *mem;
1017 struct nvme_ccb *ccb;
1018 u_int mdts;
1019 int rv = 1;
1020
1021 ccb = nvme_ccb_get(sc->sc_admin_q);
1022 if (ccb == NULL)
1023 panic("%s: nvme_ccb_get returned NULL", __func__);
1024
1025 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1026 if (mem == NULL)
1027 return 1;
1028
1029 ccb->ccb_done = nvme_empty_done;
1030 ccb->ccb_cookie = mem;
1031
1032 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1033 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify);
1034 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1035
1036 nvme_ccb_put(sc->sc_admin_q, ccb);
1037
1038 if (rv != 0)
1039 goto done;
1040
1041 identify = NVME_DMA_KVA(mem);
1042
1043 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1044 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1045 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1046 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1047 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1048 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1049 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1050 sn);
1051
1052 if (identify->mdts > 0) {
1053 mdts = (1 << identify->mdts) * (1 << mps);
1054 if (mdts < sc->sc_mdts)
1055 sc->sc_mdts = mdts;
1056 }
1057
1058 sc->sc_nn = lemtoh32(&identify->nn);
1059
1060 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1061
1062 done:
1063 nvme_dmamem_free(sc, mem);
1064
1065 return rv;
1066 }
1067
1068 static int
1069 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1070 {
1071 struct nvme_sqe_q sqe;
1072 struct nvme_ccb *ccb;
1073 int rv;
1074
1075 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q))
1076 return 1;
1077
1078 ccb = nvme_ccb_get(sc->sc_admin_q);
1079 KASSERT(ccb != NULL);
1080
1081 ccb->ccb_done = nvme_empty_done;
1082 ccb->ccb_cookie = &sqe;
1083
1084 memset(&sqe, 0, sizeof(sqe));
1085 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1086 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1087 htolem16(&sqe.qsize, q->q_entries - 1);
1088 htolem16(&sqe.qid, q->q_id);
1089 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1090 if (sc->sc_use_mq)
1091 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1092
1093 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1094 if (rv != 0)
1095 goto fail;
1096
1097 ccb->ccb_done = nvme_empty_done;
1098 ccb->ccb_cookie = &sqe;
1099
1100 memset(&sqe, 0, sizeof(sqe));
1101 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1102 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1103 htolem16(&sqe.qsize, q->q_entries - 1);
1104 htolem16(&sqe.qid, q->q_id);
1105 htolem16(&sqe.cqid, q->q_id);
1106 sqe.qflags = NVM_SQE_Q_PC;
1107
1108 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1109 if (rv != 0)
1110 goto fail;
1111
1112 fail:
1113 nvme_ccb_put(sc->sc_admin_q, ccb);
1114 return rv;
1115 }
1116
1117 static int
1118 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1119 {
1120 struct nvme_sqe_q sqe;
1121 struct nvme_ccb *ccb;
1122 int rv;
1123
1124 ccb = nvme_ccb_get(sc->sc_admin_q);
1125 KASSERT(ccb != NULL);
1126
1127 ccb->ccb_done = nvme_empty_done;
1128 ccb->ccb_cookie = &sqe;
1129
1130 memset(&sqe, 0, sizeof(sqe));
1131 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1132 htolem16(&sqe.qid, q->q_id);
1133
1134 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1135 if (rv != 0)
1136 goto fail;
1137
1138 ccb->ccb_done = nvme_empty_done;
1139 ccb->ccb_cookie = &sqe;
1140
1141 memset(&sqe, 0, sizeof(sqe));
1142 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1143 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1144 htolem16(&sqe.qid, q->q_id);
1145
1146 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1147 if (rv != 0)
1148 goto fail;
1149
1150 fail:
1151 nvme_ccb_put(sc->sc_admin_q, ccb);
1152
1153 if (rv == 0 && sc->sc_use_mq) {
1154 if (sc->sc_intr_disestablish(sc, q->q_id))
1155 rv = 1;
1156 }
1157
1158 return rv;
1159 }
1160
1161 static void
1162 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1163 {
1164 struct nvme_sqe *sqe = slot;
1165 struct nvme_dmamem *mem = ccb->ccb_cookie;
1166
1167 sqe->opcode = NVM_ADMIN_IDENTIFY;
1168 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1169 htolem32(&sqe->cdw10, 1);
1170 }
1171
1172 static int
1173 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
1174 {
1175 struct nvme_softc *sc = q->q_sc;
1176 struct nvme_ccb *ccb;
1177 bus_addr_t off;
1178 uint64_t *prpl;
1179 u_int i;
1180
1181 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1182 SIMPLEQ_INIT(&q->q_ccb_list);
1183
1184 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1185 if (q->q_ccbs == NULL)
1186 return 1;
1187
1188 q->q_nccbs = nccbs;
1189 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1190 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1191
1192 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1193 off = 0;
1194
1195 for (i = 0; i < nccbs; i++) {
1196 ccb = &q->q_ccbs[i];
1197
1198 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1199 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1200 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1201 &ccb->ccb_dmamap) != 0)
1202 goto free_maps;
1203
1204 ccb->ccb_id = i;
1205 ccb->ccb_prpl = prpl;
1206 ccb->ccb_prpl_off = off;
1207 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1208
1209 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1210
1211 prpl += sc->sc_max_sgl;
1212 off += sizeof(*prpl) * sc->sc_max_sgl;
1213 }
1214
1215 return 0;
1216
1217 free_maps:
1218 nvme_ccbs_free(q);
1219 return 1;
1220 }
1221
1222 static struct nvme_ccb *
1223 nvme_ccb_get(struct nvme_queue *q)
1224 {
1225 struct nvme_ccb *ccb;
1226
1227 mutex_enter(&q->q_ccb_mtx);
1228 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1229 if (ccb != NULL)
1230 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1231 mutex_exit(&q->q_ccb_mtx);
1232
1233 return ccb;
1234 }
1235
1236 static void
1237 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1238 {
1239
1240 mutex_enter(&q->q_ccb_mtx);
1241 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1242 mutex_exit(&q->q_ccb_mtx);
1243 }
1244
1245 static void
1246 nvme_ccbs_free(struct nvme_queue *q)
1247 {
1248 struct nvme_softc *sc = q->q_sc;
1249 struct nvme_ccb *ccb;
1250
1251 mutex_enter(&q->q_ccb_mtx);
1252 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1253 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1254 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1255 }
1256 mutex_exit(&q->q_ccb_mtx);
1257
1258 nvme_dmamem_free(sc, q->q_ccb_prpls);
1259 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1260 q->q_ccbs = NULL;
1261 mutex_destroy(&q->q_ccb_mtx);
1262 }
1263
1264 static struct nvme_queue *
1265 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1266 {
1267 struct nvme_queue *q;
1268
1269 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1270 if (q == NULL)
1271 return NULL;
1272
1273 q->q_sc = sc;
1274 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1275 sizeof(struct nvme_sqe) * entries);
1276 if (q->q_sq_dmamem == NULL)
1277 goto free;
1278
1279 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1280 sizeof(struct nvme_cqe) * entries);
1281 if (q->q_cq_dmamem == NULL)
1282 goto free_sq;
1283
1284 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1285 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1286
1287 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1288 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1289 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1290 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1291 q->q_id = id;
1292 q->q_entries = entries;
1293 q->q_sq_tail = 0;
1294 q->q_cq_head = 0;
1295 q->q_cq_phase = NVME_CQE_PHASE;
1296
1297 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1298 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1299
1300 if (nvme_ccbs_alloc(q, entries) != 0) {
1301 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1302 goto free_cq;
1303 }
1304
1305 return q;
1306
1307 free_cq:
1308 nvme_dmamem_free(sc, q->q_cq_dmamem);
1309 free_sq:
1310 nvme_dmamem_free(sc, q->q_sq_dmamem);
1311 free:
1312 kmem_free(q, sizeof(*q));
1313
1314 return NULL;
1315 }
1316
1317 static void
1318 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1319 {
1320 nvme_ccbs_free(q);
1321 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1322 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1323 nvme_dmamem_free(sc, q->q_cq_dmamem);
1324 nvme_dmamem_free(sc, q->q_sq_dmamem);
1325 kmem_free(q, sizeof(*q));
1326 }
1327
1328 int
1329 nvme_intr(void *xsc)
1330 {
1331 struct nvme_softc *sc = xsc;
1332 int rv = 0;
1333
1334 nvme_write4(sc, NVME_INTMS, 1);
1335
1336 if (nvme_q_complete(sc, sc->sc_admin_q))
1337 rv = 1;
1338 if (sc->sc_q != NULL)
1339 if (nvme_q_complete(sc, sc->sc_q[0]))
1340 rv = 1;
1341
1342 nvme_write4(sc, NVME_INTMC, 1);
1343
1344 return rv;
1345 }
1346
1347 int
1348 nvme_mq_msi_intr(void *xq)
1349 {
1350 struct nvme_queue *q = xq;
1351 struct nvme_softc *sc = q->q_sc;
1352 int rv = 0;
1353
1354 nvme_write4(sc, NVME_INTMS, 1U << q->q_id);
1355
1356 if (nvme_q_complete(sc, q))
1357 rv = 1;
1358
1359 nvme_write4(sc, NVME_INTMC, 1U << q->q_id);
1360
1361 return rv;
1362 }
1363
1364 int
1365 nvme_mq_msix_intr(void *xq)
1366 {
1367 struct nvme_queue *q = xq;
1368 int rv = 0;
1369
1370 if (nvme_q_complete(q->q_sc, q))
1371 rv = 1;
1372
1373 return rv;
1374 }
1375
1376 static struct nvme_dmamem *
1377 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1378 {
1379 struct nvme_dmamem *ndm;
1380 int nsegs;
1381
1382 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1383 if (ndm == NULL)
1384 return NULL;
1385
1386 ndm->ndm_size = size;
1387
1388 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1389 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1390 goto ndmfree;
1391
1392 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1393 1, &nsegs, BUS_DMA_WAITOK) != 0)
1394 goto destroy;
1395
1396 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1397 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1398 goto free;
1399 memset(ndm->ndm_kva, 0, size);
1400
1401 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1402 NULL, BUS_DMA_WAITOK) != 0)
1403 goto unmap;
1404
1405 return ndm;
1406
1407 unmap:
1408 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1409 free:
1410 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1411 destroy:
1412 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1413 ndmfree:
1414 kmem_free(ndm, sizeof(*ndm));
1415 return NULL;
1416 }
1417
1418 static void
1419 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1420 {
1421 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1422 0, NVME_DMA_LEN(mem), ops);
1423 }
1424
1425 void
1426 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1427 {
1428 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1429 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1430 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1431 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1432 kmem_free(ndm, sizeof(*ndm));
1433 }
1434
1435 /*
1436 * ioctl
1437 */
1438
1439 dev_type_open(nvmeopen);
1440 dev_type_close(nvmeclose);
1441 dev_type_ioctl(nvmeioctl);
1442
1443 const struct cdevsw nvme_cdevsw = {
1444 .d_open = nvmeopen,
1445 .d_close = nvmeclose,
1446 .d_read = noread,
1447 .d_write = nowrite,
1448 .d_ioctl = nvmeioctl,
1449 .d_stop = nostop,
1450 .d_tty = notty,
1451 .d_poll = nopoll,
1452 .d_mmap = nommap,
1453 .d_kqfilter = nokqfilter,
1454 .d_discard = nodiscard,
1455 .d_flag = D_OTHER,
1456 };
1457
1458 extern struct cfdriver nvme_cd;
1459
1460 /*
1461 * Accept an open operation on the control device.
1462 */
1463 int
1464 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1465 {
1466 struct nvme_softc *sc;
1467 int unit = minor(dev) / 0x10000;
1468 int nsid = minor(dev) & 0xffff;
1469 int nsidx;
1470
1471 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1472 return ENXIO;
1473 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1474 return ENXIO;
1475
1476 if (nsid == 0) {
1477 /* controller */
1478 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1479 return EBUSY;
1480 SET(sc->sc_flags, NVME_F_OPEN);
1481 } else {
1482 /* namespace */
1483 nsidx = nsid - 1;
1484 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1485 return ENXIO;
1486 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1487 return EBUSY;
1488 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1489 }
1490 return 0;
1491 }
1492
1493 /*
1494 * Accept the last close on the control device.
1495 */
1496 int
1497 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1498 {
1499 struct nvme_softc *sc;
1500 int unit = minor(dev) / 0x10000;
1501 int nsid = minor(dev) & 0xffff;
1502 int nsidx;
1503
1504 sc = device_lookup_private(&nvme_cd, unit);
1505 if (sc == NULL)
1506 return ENXIO;
1507
1508 if (nsid == 0) {
1509 /* controller */
1510 CLR(sc->sc_flags, NVME_F_OPEN);
1511 } else {
1512 /* namespace */
1513 nsidx = nsid - 1;
1514 if (nsidx >= sc->sc_nn)
1515 return ENXIO;
1516 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1517 }
1518
1519 return 0;
1520 }
1521
1522 /*
1523 * Handle control operations.
1524 */
1525 int
1526 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1527 {
1528 struct nvme_softc *sc;
1529 int unit = minor(dev) / 0x10000;
1530 int nsid = minor(dev) & 0xffff;
1531 struct nvme_pt_command *pt;
1532
1533 sc = device_lookup_private(&nvme_cd, unit);
1534 if (sc == NULL)
1535 return ENXIO;
1536
1537 switch (cmd) {
1538 case NVME_PASSTHROUGH_CMD:
1539 pt = data;
1540 return nvme_command_passthrough(sc, data,
1541 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1542 }
1543
1544 return ENOTTY;
1545 }
1546