Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.61
      1 /*	$NetBSD: nvme.c,v 1.61 2022/07/31 12:02:28 mlelstv Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.61 2022/07/31 12:02:28 mlelstv Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 #include "ioconf.h"
     44 #include "locators.h"
     45 
     46 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
     47 
     48 int nvme_adminq_size = 32;
     49 int nvme_ioq_size = 1024;
     50 
     51 static int	nvme_print(void *, const char *);
     52 
     53 static int	nvme_ready(struct nvme_softc *, uint32_t);
     54 static int	nvme_enable(struct nvme_softc *, u_int);
     55 static int	nvme_disable(struct nvme_softc *);
     56 static int	nvme_shutdown(struct nvme_softc *);
     57 
     58 uint32_t	nvme_op_sq_enter(struct nvme_softc *,
     59 		    struct nvme_queue *, struct nvme_ccb *);
     60 void		nvme_op_sq_leave(struct nvme_softc *,
     61 		    struct nvme_queue *, struct nvme_ccb *);
     62 uint32_t	nvme_op_sq_enter_locked(struct nvme_softc *,
     63 		    struct nvme_queue *, struct nvme_ccb *);
     64 void		nvme_op_sq_leave_locked(struct nvme_softc *,
     65 		    struct nvme_queue *, struct nvme_ccb *);
     66 
     67 void		nvme_op_cq_done(struct nvme_softc *,
     68 		    struct nvme_queue *, struct nvme_ccb *);
     69 
     70 static const struct nvme_ops nvme_ops = {
     71 	.op_sq_enter		= nvme_op_sq_enter,
     72 	.op_sq_leave		= nvme_op_sq_leave,
     73 	.op_sq_enter_locked	= nvme_op_sq_enter_locked,
     74 	.op_sq_leave_locked	= nvme_op_sq_leave_locked,
     75 
     76 	.op_cq_done		= nvme_op_cq_done,
     77 };
     78 
     79 #ifdef NVME_DEBUG
     80 static void	nvme_dumpregs(struct nvme_softc *);
     81 #endif
     82 static int	nvme_identify(struct nvme_softc *, u_int);
     83 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     84 		    void *);
     85 
     86 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
     87 static void	nvme_ccbs_free(struct nvme_queue *);
     88 
     89 static struct nvme_ccb *
     90 		nvme_ccb_get(struct nvme_queue *, bool);
     91 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     92 
     93 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     94 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     95 		    struct nvme_ccb *, void *), int);
     96 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     97 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     98 		    struct nvme_cqe *);
     99 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
    100 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
    101 		    struct nvme_cqe *);
    102 
    103 static struct nvme_queue *
    104 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
    105 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
    106 static void	nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
    107 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
    108 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
    109 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
    110 		    struct nvme_ccb *, void *));
    111 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
    112 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
    113 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
    114 		    bool (*)(void *), void *);
    115 
    116 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
    117 		    void *);
    118 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
    119 		    struct nvme_cqe *);
    120 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
    121 		    void *);
    122 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    123 		    struct nvme_cqe *);
    124 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
    125 		    void *);
    126 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
    127 		    struct nvme_cqe *);
    128 
    129 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    130 		    void *);
    131 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    132 		    struct nvme_cqe *);
    133 static int	nvme_command_passthrough(struct nvme_softc *,
    134 		    struct nvme_pt_command *, uint32_t, struct lwp *, bool);
    135 
    136 static int	nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
    137 		    u_int *);
    138 
    139 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    140 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    141 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    142 #define NVME_TIMO_SY		60	/* sync cache timeout */
    143 
    144 /*
    145  * Some controllers, at least Apple NVMe, always require split
    146  * transfers, so don't use bus_space_{read,write}_8() on LP64.
    147  */
    148 uint64_t
    149 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    150 {
    151 	uint64_t v;
    152 	uint32_t *a = (uint32_t *)&v;
    153 
    154 #if _BYTE_ORDER == _LITTLE_ENDIAN
    155 	a[0] = nvme_read4(sc, r);
    156 	a[1] = nvme_read4(sc, r + 4);
    157 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    158 	a[1] = nvme_read4(sc, r);
    159 	a[0] = nvme_read4(sc, r + 4);
    160 #endif
    161 
    162 	return v;
    163 }
    164 
    165 void
    166 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    167 {
    168 	uint32_t *a = (uint32_t *)&v;
    169 
    170 #if _BYTE_ORDER == _LITTLE_ENDIAN
    171 	nvme_write4(sc, r, a[0]);
    172 	nvme_write4(sc, r + 4, a[1]);
    173 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    174 	nvme_write4(sc, r, a[1]);
    175 	nvme_write4(sc, r + 4, a[0]);
    176 #endif
    177 }
    178 
    179 #ifdef NVME_DEBUG
    180 static __used void
    181 nvme_dumpregs(struct nvme_softc *sc)
    182 {
    183 	uint64_t r8;
    184 	uint32_t r4;
    185 
    186 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    187 	r8 = nvme_read8(sc, NVME_CAP);
    188 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    189 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    190 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    191 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    192 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    193 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    194 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    195 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    196 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    197 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    198 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    199 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    200 
    201 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    202 
    203 	r4 = nvme_read4(sc, NVME_CC);
    204 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    205 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
    206 	    (1 << NVME_CC_IOCQES_R(r4)));
    207 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
    208 	    (1 << NVME_CC_IOSQES_R(r4)));
    209 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    210 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    211 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
    212 	    (1 << NVME_CC_MPS_R(r4)));
    213 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    214 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    215 
    216 	r4 = nvme_read4(sc, NVME_CSTS);
    217 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
    218 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
    219 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
    220 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
    221 
    222 	r4 = nvme_read4(sc, NVME_AQA);
    223 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
    224 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
    225 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
    226 
    227 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    228 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    229 #undef	DEVNAME
    230 }
    231 #endif	/* NVME_DEBUG */
    232 
    233 static int
    234 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    235 {
    236 	u_int i = 0;
    237 
    238 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    239 		if (i++ > sc->sc_rdy_to)
    240 			return ENXIO;
    241 
    242 		delay(1000);
    243 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    244 	}
    245 
    246 	return 0;
    247 }
    248 
    249 static int
    250 nvme_enable(struct nvme_softc *sc, u_int mps)
    251 {
    252 	uint32_t cc, csts;
    253 	int error;
    254 
    255 	cc = nvme_read4(sc, NVME_CC);
    256 	csts = nvme_read4(sc, NVME_CSTS);
    257 
    258 	/*
    259 	 * See note in nvme_disable. Short circuit if we're already enabled.
    260 	 */
    261 	if (ISSET(cc, NVME_CC_EN)) {
    262 		if (ISSET(csts, NVME_CSTS_RDY))
    263 			return 0;
    264 
    265 		goto waitready;
    266 	} else {
    267 		/* EN == 0 already wait for RDY == 0 or fail */
    268 		error = nvme_ready(sc, 0);
    269 		if (error)
    270 			return error;
    271 	}
    272 
    273 	if (sc->sc_ops->op_enable != NULL)
    274 		sc->sc_ops->op_enable(sc);
    275 
    276 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    277 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    278 	delay(5000);
    279 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    280 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    281 	delay(5000);
    282 
    283 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    284 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    285 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    286 	delay(5000);
    287 
    288 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    289 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    290 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    291 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    292 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    293 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    294 	SET(cc, NVME_CC_MPS(mps));
    295 	SET(cc, NVME_CC_EN);
    296 
    297 	nvme_write4(sc, NVME_CC, cc);
    298 	nvme_barrier(sc, 0, sc->sc_ios,
    299 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    300 
    301     waitready:
    302 	return nvme_ready(sc, NVME_CSTS_RDY);
    303 }
    304 
    305 static int
    306 nvme_disable(struct nvme_softc *sc)
    307 {
    308 	uint32_t cc, csts;
    309 	int error;
    310 
    311 	cc = nvme_read4(sc, NVME_CC);
    312 	csts = nvme_read4(sc, NVME_CSTS);
    313 
    314 	/*
    315 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
    316 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
    317 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
    318 	 * isn't the desired value. Short circuit if we're already disabled.
    319 	 */
    320 	if (ISSET(cc, NVME_CC_EN)) {
    321 		if (!ISSET(csts, NVME_CSTS_RDY)) {
    322 			/* EN == 1, wait for RDY == 1 or fail */
    323 			error = nvme_ready(sc, NVME_CSTS_RDY);
    324 			if (error)
    325 				return error;
    326 		}
    327 	} else {
    328 		/* EN == 0 already wait for RDY == 0 */
    329 		if (!ISSET(csts, NVME_CSTS_RDY))
    330 			return 0;
    331 
    332 		goto waitready;
    333 	}
    334 
    335 	CLR(cc, NVME_CC_EN);
    336 	nvme_write4(sc, NVME_CC, cc);
    337 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
    338 
    339 	/*
    340 	 * Some drives have issues with accessing the mmio after we disable,
    341 	 * so delay for a bit after we write the bit to cope with these issues.
    342 	 */
    343 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
    344 		delay(B4_CHK_RDY_DELAY_MS);
    345 
    346     waitready:
    347 	return nvme_ready(sc, 0);
    348 }
    349 
    350 int
    351 nvme_attach(struct nvme_softc *sc)
    352 {
    353 	uint64_t cap;
    354 	uint32_t reg;
    355 	u_int mps = PAGE_SHIFT;
    356 	u_int ncq, nsq;
    357 	uint16_t adminq_entries = nvme_adminq_size;
    358 	uint16_t ioq_entries = nvme_ioq_size;
    359 	int i;
    360 
    361 	if (sc->sc_ops == NULL)
    362 		sc->sc_ops = &nvme_ops;
    363 
    364 	reg = nvme_read4(sc, NVME_VS);
    365 	if (reg == 0xffffffff) {
    366 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    367 		return 1;
    368 	}
    369 
    370 	if (NVME_VS_TER(reg) == 0)
    371 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
    372 		    NVME_VS_MNR(reg));
    373 	else
    374 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
    375 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
    376 
    377 	cap = nvme_read8(sc, NVME_CAP);
    378 	sc->sc_dstrd = NVME_CAP_DSTRD(cap);
    379 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    380 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    381 		    "is greater than CPU page size %u\n",
    382 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    383 		return 1;
    384 	}
    385 	if (NVME_CAP_MPSMAX(cap) < mps)
    386 		mps = NVME_CAP_MPSMAX(cap);
    387 	if (ioq_entries > NVME_CAP_MQES(cap))
    388 		ioq_entries = NVME_CAP_MQES(cap);
    389 
    390 	/* set initial values to be used for admin queue during probe */
    391 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    392 	sc->sc_mps = 1 << mps;
    393 	sc->sc_mdts = MAXPHYS;
    394 	sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
    395 
    396 	if (nvme_disable(sc) != 0) {
    397 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    398 		return 1;
    399 	}
    400 
    401 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
    402 	    sc->sc_dstrd);
    403 	if (sc->sc_admin_q == NULL) {
    404 		aprint_error_dev(sc->sc_dev,
    405 		    "unable to allocate admin queue\n");
    406 		return 1;
    407 	}
    408 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    409 		goto free_admin_q;
    410 
    411 	if (nvme_enable(sc, mps) != 0) {
    412 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    413 		goto disestablish_admin_q;
    414 	}
    415 
    416 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    417 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    418 		goto disable;
    419 	}
    420 	if (sc->sc_nn == 0) {
    421 		aprint_error_dev(sc->sc_dev, "namespace not found\n");
    422 		goto disable;
    423 	}
    424 
    425 	/* we know how big things are now */
    426 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    427 
    428 	/* reallocate ccbs of admin queue with new max sgl. */
    429 	nvme_ccbs_free(sc->sc_admin_q);
    430 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    431 
    432 	if (sc->sc_use_mq) {
    433 		/* Limit the number of queues to the number allocated in HW */
    434 		if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
    435 			aprint_error_dev(sc->sc_dev,
    436 			    "unable to get number of queues\n");
    437 			goto disable;
    438 		}
    439 		if (sc->sc_nq > ncq)
    440 			sc->sc_nq = ncq;
    441 		if (sc->sc_nq > nsq)
    442 			sc->sc_nq = nsq;
    443 	}
    444 
    445 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    446 	for (i = 0; i < sc->sc_nq; i++) {
    447 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
    448 		    sc->sc_dstrd);
    449 		if (sc->sc_q[i] == NULL) {
    450 			aprint_error_dev(sc->sc_dev,
    451 			    "unable to allocate io queue\n");
    452 			goto free_q;
    453 		}
    454 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    455 			aprint_error_dev(sc->sc_dev,
    456 			    "unable to create io queue\n");
    457 			nvme_q_free(sc, sc->sc_q[i]);
    458 			goto free_q;
    459 		}
    460 	}
    461 
    462 	if (!sc->sc_use_mq)
    463 		nvme_write4(sc, NVME_INTMC, 1);
    464 
    465 	/* probe subdevices */
    466 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    467 	    KM_SLEEP);
    468 	nvme_rescan(sc->sc_dev, NULL, NULL);
    469 
    470 	return 0;
    471 
    472 free_q:
    473 	while (--i >= 0) {
    474 		nvme_q_delete(sc, sc->sc_q[i]);
    475 		nvme_q_free(sc, sc->sc_q[i]);
    476 	}
    477 disable:
    478 	nvme_disable(sc);
    479 disestablish_admin_q:
    480 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    481 free_admin_q:
    482 	nvme_q_free(sc, sc->sc_admin_q);
    483 
    484 	return 1;
    485 }
    486 
    487 int
    488 nvme_rescan(device_t self, const char *ifattr, const int *locs)
    489 {
    490 	struct nvme_softc *sc = device_private(self);
    491 	struct nvme_attach_args naa;
    492 	struct nvm_namespace_format *f;
    493 	struct nvme_namespace *ns;
    494 	uint64_t cap;
    495 	int ioq_entries = nvme_ioq_size;
    496 	int i, mlocs[NVMECF_NLOCS];
    497 	int error;
    498 
    499 	cap = nvme_read8(sc, NVME_CAP);
    500 	if (ioq_entries > NVME_CAP_MQES(cap))
    501 		ioq_entries = NVME_CAP_MQES(cap);
    502 
    503 	for (i = 1; i <= sc->sc_nn; i++) {
    504 		if (sc->sc_namespaces[i - 1].dev)
    505 			continue;
    506 
    507 		/* identify to check for availability */
    508 		error = nvme_ns_identify(sc, i);
    509 		if (error) {
    510 			aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
    511 			continue;
    512 		}
    513 
    514 		ns = nvme_ns_get(sc, i);
    515 		KASSERT(ns);
    516 
    517 		f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
    518 
    519 		/*
    520 		 * NVME1.0e 6.11 Identify command
    521 		 *
    522 		 * LBADS values smaller than 9 are not supported, a value
    523 		 * of zero means that the format is not used.
    524 		 */
    525 		if (f->lbads < 9) {
    526 			if (f->lbads > 0)
    527 				aprint_error_dev(self,
    528 						 "unsupported logical data size %u\n", f->lbads);
    529 			continue;
    530 		}
    531 
    532 		mlocs[NVMECF_NSID] = i;
    533 
    534 		memset(&naa, 0, sizeof(naa));
    535 		naa.naa_nsid = i;
    536 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
    537 		naa.naa_maxphys = sc->sc_mdts;
    538 		naa.naa_typename = sc->sc_modelname;
    539 		sc->sc_namespaces[i - 1].dev =
    540 		    config_found(sc->sc_dev, &naa, nvme_print,
    541 				 CFARGS(.submatch = config_stdsubmatch,
    542 					.locators = mlocs));
    543 	}
    544 	return 0;
    545 }
    546 
    547 static int
    548 nvme_print(void *aux, const char *pnp)
    549 {
    550 	struct nvme_attach_args *naa = aux;
    551 
    552 	if (pnp)
    553 		aprint_normal("ld at %s", pnp);
    554 
    555 	if (naa->naa_nsid > 0)
    556 		aprint_normal(" nsid %d", naa->naa_nsid);
    557 
    558 	return UNCONF;
    559 }
    560 
    561 int
    562 nvme_detach(struct nvme_softc *sc, int flags)
    563 {
    564 	int i, error;
    565 
    566 	error = config_detach_children(sc->sc_dev, flags);
    567 	if (error)
    568 		return error;
    569 
    570 	error = nvme_shutdown(sc);
    571 	if (error)
    572 		return error;
    573 
    574 	/* from now on we are committed to detach, following will never fail */
    575 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    576 	for (i = 0; i < sc->sc_nq; i++)
    577 		nvme_q_free(sc, sc->sc_q[i]);
    578 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    579 	nvme_q_free(sc, sc->sc_admin_q);
    580 
    581 	return 0;
    582 }
    583 
    584 int
    585 nvme_suspend(struct nvme_softc *sc)
    586 {
    587 
    588 	return nvme_shutdown(sc);
    589 }
    590 
    591 int
    592 nvme_resume(struct nvme_softc *sc)
    593 {
    594 	int ioq_entries = nvme_ioq_size;
    595 	uint64_t cap;
    596 	int i, error;
    597 
    598 	error = nvme_disable(sc);
    599 	if (error) {
    600 		device_printf(sc->sc_dev, "unable to disable controller\n");
    601 		return error;
    602 	}
    603 
    604 	nvme_q_reset(sc, sc->sc_admin_q);
    605 
    606 	error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
    607 	if (error) {
    608 		device_printf(sc->sc_dev, "unable to enable controller\n");
    609 		return error;
    610 	}
    611 
    612 	for (i = 0; i < sc->sc_nq; i++) {
    613 		cap = nvme_read8(sc, NVME_CAP);
    614 		if (ioq_entries > NVME_CAP_MQES(cap))
    615 			ioq_entries = NVME_CAP_MQES(cap);
    616 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
    617 		    sc->sc_dstrd);
    618 		if (sc->sc_q[i] == NULL) {
    619 			error = ENOMEM;
    620 			device_printf(sc->sc_dev, "unable to allocate io q %d"
    621 			    "\n", i);
    622 			goto disable;
    623 		}
    624 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    625 			error = EIO;
    626 			device_printf(sc->sc_dev, "unable to create io q %d"
    627 			    "\n", i);
    628 			nvme_q_free(sc, sc->sc_q[i]);
    629 			goto free_q;
    630 		}
    631 	}
    632 
    633 	nvme_write4(sc, NVME_INTMC, 1);
    634 
    635 	return 0;
    636 
    637 free_q:
    638 	while (i --> 0)
    639 		nvme_q_free(sc, sc->sc_q[i]);
    640 disable:
    641 	(void)nvme_disable(sc);
    642 
    643 	return error;
    644 }
    645 
    646 static int
    647 nvme_shutdown(struct nvme_softc *sc)
    648 {
    649 	uint32_t cc, csts;
    650 	bool disabled = false;
    651 	int i;
    652 
    653 	if (!sc->sc_use_mq)
    654 		nvme_write4(sc, NVME_INTMS, 1);
    655 
    656 	for (i = 0; i < sc->sc_nq; i++) {
    657 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    658 			aprint_error_dev(sc->sc_dev,
    659 			    "unable to delete io queue %d, disabling\n", i + 1);
    660 			disabled = true;
    661 		}
    662 	}
    663 	if (disabled)
    664 		goto disable;
    665 
    666 	cc = nvme_read4(sc, NVME_CC);
    667 	CLR(cc, NVME_CC_SHN_MASK);
    668 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    669 	nvme_write4(sc, NVME_CC, cc);
    670 
    671 	for (i = 0; i < 4000; i++) {
    672 		nvme_barrier(sc, 0, sc->sc_ios,
    673 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    674 		csts = nvme_read4(sc, NVME_CSTS);
    675 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    676 			return 0;
    677 
    678 		delay(1000);
    679 	}
    680 
    681 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    682 
    683 disable:
    684 	nvme_disable(sc);
    685 	return 0;
    686 }
    687 
    688 void
    689 nvme_childdet(device_t self, device_t child)
    690 {
    691 	struct nvme_softc *sc = device_private(self);
    692 	int i;
    693 
    694 	for (i = 0; i < sc->sc_nn; i++) {
    695 		if (sc->sc_namespaces[i].dev == child) {
    696 			/* Already freed ns->ident. */
    697 			sc->sc_namespaces[i].dev = NULL;
    698 			break;
    699 		}
    700 	}
    701 }
    702 
    703 int
    704 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    705 {
    706 	struct nvme_sqe sqe;
    707 	struct nvm_identify_namespace *identify;
    708 	struct nvme_dmamem *mem;
    709 	struct nvme_ccb *ccb;
    710 	struct nvme_namespace *ns;
    711 	int rv;
    712 
    713 	KASSERT(nsid > 0);
    714 
    715 	ns = nvme_ns_get(sc, nsid);
    716 	KASSERT(ns);
    717 
    718 	if (ns->ident != NULL)
    719 		return 0;
    720 
    721 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
    722 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
    723 
    724 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    725 	if (mem == NULL) {
    726 		nvme_ccb_put(sc->sc_admin_q, ccb);
    727 		return ENOMEM;
    728 	}
    729 
    730 	memset(&sqe, 0, sizeof(sqe));
    731 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    732 	htolem32(&sqe.nsid, nsid);
    733 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    734 	htolem32(&sqe.cdw10, 0);
    735 
    736 	ccb->ccb_done = nvme_empty_done;
    737 	ccb->ccb_cookie = &sqe;
    738 
    739 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    740 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    741 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    742 
    743 	nvme_ccb_put(sc->sc_admin_q, ccb);
    744 
    745 	if (rv != 0) {
    746 		rv = EIO;
    747 		goto done;
    748 	}
    749 
    750 	/* commit */
    751 
    752 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    753 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
    754 
    755 	/* Convert data to host endian */
    756 	nvme_identify_namespace_swapbytes(identify);
    757 
    758 	ns->ident = identify;
    759 
    760 done:
    761 	nvme_dmamem_free(sc, mem);
    762 
    763 	return rv;
    764 }
    765 
    766 int
    767 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
    768     struct buf *bp, void *data, size_t datasize,
    769     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
    770 {
    771 	struct nvme_queue *q = nvme_get_q(sc, bp, false);
    772 	struct nvme_ccb *ccb;
    773 	bus_dmamap_t dmap;
    774 	int i, error;
    775 
    776 	ccb = nvme_ccb_get(q, false);
    777 	if (ccb == NULL)
    778 		return EAGAIN;
    779 
    780 	ccb->ccb_done = nvme_ns_io_done;
    781 	ccb->ccb_cookie = cookie;
    782 
    783 	/* namespace context */
    784 	ccb->nnc_nsid = nsid;
    785 	ccb->nnc_flags = flags;
    786 	ccb->nnc_buf = bp;
    787 	ccb->nnc_datasize = datasize;
    788 	ccb->nnc_secsize = secsize;
    789 	ccb->nnc_blkno = blkno;
    790 	ccb->nnc_done = nnc_done;
    791 
    792 	dmap = ccb->ccb_dmamap;
    793 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
    794 	    datasize, NULL,
    795 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
    796 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    797 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
    798 	      BUS_DMA_READ : BUS_DMA_WRITE));
    799 	if (error) {
    800 		nvme_ccb_put(q, ccb);
    801 		return error;
    802 	}
    803 
    804 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    805 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
    806 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    807 
    808 	if (dmap->dm_nsegs > 2) {
    809 		for (i = 1; i < dmap->dm_nsegs; i++) {
    810 			htolem64(&ccb->ccb_prpl[i - 1],
    811 			    dmap->dm_segs[i].ds_addr);
    812 		}
    813 		bus_dmamap_sync(sc->sc_dmat,
    814 		    NVME_DMA_MAP(q->q_ccb_prpls),
    815 		    ccb->ccb_prpl_off,
    816 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    817 		    BUS_DMASYNC_PREWRITE);
    818 	}
    819 
    820 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    821 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    822 			return EIO;
    823 		return 0;
    824 	}
    825 
    826 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    827 	return 0;
    828 }
    829 
    830 static void
    831 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    832 {
    833 	struct nvme_sqe_io *sqe = slot;
    834 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    835 
    836 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    837 	    NVM_CMD_READ : NVM_CMD_WRITE;
    838 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    839 
    840 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    841 	switch (dmap->dm_nsegs) {
    842 	case 1:
    843 		break;
    844 	case 2:
    845 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    846 		break;
    847 	default:
    848 		/* the prp list is already set up and synced */
    849 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    850 		break;
    851 	}
    852 
    853 	htolem64(&sqe->slba, ccb->nnc_blkno);
    854 
    855 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
    856 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
    857 
    858 	/* guaranteed by upper layers, but check just in case */
    859 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
    860 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
    861 }
    862 
    863 static void
    864 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    865     struct nvme_cqe *cqe)
    866 {
    867 	struct nvme_softc *sc = q->q_sc;
    868 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    869 	void *nnc_cookie = ccb->ccb_cookie;
    870 	nvme_nnc_done nnc_done = ccb->nnc_done;
    871 	struct buf *bp = ccb->nnc_buf;
    872 
    873 	if (dmap->dm_nsegs > 2) {
    874 		bus_dmamap_sync(sc->sc_dmat,
    875 		    NVME_DMA_MAP(q->q_ccb_prpls),
    876 		    ccb->ccb_prpl_off,
    877 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
    878 		    BUS_DMASYNC_POSTWRITE);
    879 	}
    880 
    881 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    882 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
    883 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    884 
    885 	bus_dmamap_unload(sc->sc_dmat, dmap);
    886 	nvme_ccb_put(q, ccb);
    887 
    888 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
    889 }
    890 
    891 /*
    892  * If there is no volatile write cache, it makes no sense to issue
    893  * flush commands or query for the status.
    894  */
    895 static bool
    896 nvme_has_volatile_write_cache(struct nvme_softc *sc)
    897 {
    898 	/* sc_identify is filled during attachment */
    899 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
    900 }
    901 
    902 static bool
    903 nvme_ns_sync_finished(void *cookie)
    904 {
    905 	int *result = cookie;
    906 
    907 	return (*result != 0);
    908 }
    909 
    910 int
    911 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
    912 {
    913 	struct nvme_queue *q = nvme_get_q(sc, NULL, true);
    914 	struct nvme_ccb *ccb;
    915 	int result = 0;
    916 
    917 	if (!nvme_has_volatile_write_cache(sc)) {
    918 		/* cache not present, no value in trying to flush it */
    919 		return 0;
    920 	}
    921 
    922 	ccb = nvme_ccb_get(q, true);
    923 	KASSERT(ccb != NULL);
    924 
    925 	ccb->ccb_done = nvme_ns_sync_done;
    926 	ccb->ccb_cookie = &result;
    927 
    928 	/* namespace context */
    929 	ccb->nnc_nsid = nsid;
    930 	ccb->nnc_flags = flags;
    931 	ccb->nnc_done = NULL;
    932 
    933 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
    934 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    935 			return EIO;
    936 		return 0;
    937 	}
    938 
    939 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    940 
    941 	/* wait for completion */
    942 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
    943 	KASSERT(result != 0);
    944 
    945 	return (result > 0) ? 0 : EIO;
    946 }
    947 
    948 static void
    949 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    950 {
    951 	struct nvme_sqe *sqe = slot;
    952 
    953 	sqe->opcode = NVM_CMD_FLUSH;
    954 	htolem32(&sqe->nsid, ccb->nnc_nsid);
    955 }
    956 
    957 static void
    958 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    959     struct nvme_cqe *cqe)
    960 {
    961 	int *result = ccb->ccb_cookie;
    962 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
    963 
    964 	if (status == NVME_CQE_SC_SUCCESS)
    965 		*result = 1;
    966 	else
    967 		*result = -1;
    968 
    969 	nvme_ccb_put(q, ccb);
    970 }
    971 
    972 static bool
    973 nvme_getcache_finished(void *xc)
    974 {
    975 	int *addr = xc;
    976 
    977 	return (*addr != 0);
    978 }
    979 
    980 /*
    981  * Get status of volatile write cache. Always asynchronous.
    982  */
    983 int
    984 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
    985 {
    986 	struct nvme_ccb *ccb;
    987 	struct nvme_queue *q = sc->sc_admin_q;
    988 	int result = 0, error;
    989 
    990 	if (!nvme_has_volatile_write_cache(sc)) {
    991 		/* cache simply not present */
    992 		*addr = 0;
    993 		return 0;
    994 	}
    995 
    996 	ccb = nvme_ccb_get(q, true);
    997 	KASSERT(ccb != NULL);
    998 
    999 	ccb->ccb_done = nvme_getcache_done;
   1000 	ccb->ccb_cookie = &result;
   1001 
   1002 	/* namespace context */
   1003 	ccb->nnc_flags = 0;
   1004 	ccb->nnc_done = NULL;
   1005 
   1006 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
   1007 
   1008 	/* wait for completion */
   1009 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
   1010 	KASSERT(result != 0);
   1011 
   1012 	if (result > 0) {
   1013 		*addr = result;
   1014 		error = 0;
   1015 	} else
   1016 		error = EINVAL;
   1017 
   1018 	return error;
   1019 }
   1020 
   1021 static void
   1022 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1023 {
   1024 	struct nvme_sqe *sqe = slot;
   1025 
   1026 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
   1027 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
   1028 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
   1029 }
   1030 
   1031 static void
   1032 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1033     struct nvme_cqe *cqe)
   1034 {
   1035 	int *addr = ccb->ccb_cookie;
   1036 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
   1037 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
   1038 	int result;
   1039 
   1040 	if (status == NVME_CQE_SC_SUCCESS) {
   1041 		result = 0;
   1042 
   1043 		/*
   1044 		 * DPO not supported, Dataset Management (DSM) field doesn't
   1045 		 * specify the same semantics. FUA is always supported.
   1046 		 */
   1047 		result = DKCACHE_FUA;
   1048 
   1049 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
   1050 			result |= DKCACHE_WRITE;
   1051 
   1052 		/*
   1053 		 * If volatile write cache is present, the flag shall also be
   1054 		 * settable.
   1055 		 */
   1056 		result |= DKCACHE_WCHANGE;
   1057 
   1058 		/*
   1059 		 * ONCS field indicates whether the optional SAVE is also
   1060 		 * supported for Set Features. According to spec v1.3,
   1061 		 * Volatile Write Cache however doesn't support persistency
   1062 		 * across power cycle/reset.
   1063 		 */
   1064 
   1065 	} else {
   1066 		result = -1;
   1067 	}
   1068 
   1069 	*addr = result;
   1070 
   1071 	nvme_ccb_put(q, ccb);
   1072 }
   1073 
   1074 struct nvme_setcache_state {
   1075 	int dkcache;
   1076 	int result;
   1077 };
   1078 
   1079 static bool
   1080 nvme_setcache_finished(void *xc)
   1081 {
   1082 	struct nvme_setcache_state *st = xc;
   1083 
   1084 	return (st->result != 0);
   1085 }
   1086 
   1087 static void
   1088 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1089 {
   1090 	struct nvme_sqe *sqe = slot;
   1091 	struct nvme_setcache_state *st = ccb->ccb_cookie;
   1092 
   1093 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
   1094 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
   1095 	if (st->dkcache & DKCACHE_WRITE)
   1096 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
   1097 }
   1098 
   1099 static void
   1100 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1101     struct nvme_cqe *cqe)
   1102 {
   1103 	struct nvme_setcache_state *st = ccb->ccb_cookie;
   1104 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
   1105 
   1106 	if (status == NVME_CQE_SC_SUCCESS) {
   1107 		st->result = 1;
   1108 	} else {
   1109 		st->result = -1;
   1110 	}
   1111 
   1112 	nvme_ccb_put(q, ccb);
   1113 }
   1114 
   1115 /*
   1116  * Set status of volatile write cache. Always asynchronous.
   1117  */
   1118 int
   1119 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
   1120 {
   1121 	struct nvme_ccb *ccb;
   1122 	struct nvme_queue *q = sc->sc_admin_q;
   1123 	int error;
   1124 	struct nvme_setcache_state st;
   1125 
   1126 	if (!nvme_has_volatile_write_cache(sc)) {
   1127 		/* cache simply not present */
   1128 		return EOPNOTSUPP;
   1129 	}
   1130 
   1131 	if (dkcache & ~(DKCACHE_WRITE)) {
   1132 		/* unsupported parameters */
   1133 		return EOPNOTSUPP;
   1134 	}
   1135 
   1136 	ccb = nvme_ccb_get(q, true);
   1137 	KASSERT(ccb != NULL);
   1138 
   1139 	memset(&st, 0, sizeof(st));
   1140 	st.dkcache = dkcache;
   1141 
   1142 	ccb->ccb_done = nvme_setcache_done;
   1143 	ccb->ccb_cookie = &st;
   1144 
   1145 	/* namespace context */
   1146 	ccb->nnc_flags = 0;
   1147 	ccb->nnc_done = NULL;
   1148 
   1149 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
   1150 
   1151 	/* wait for completion */
   1152 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
   1153 	KASSERT(st.result != 0);
   1154 
   1155 	if (st.result > 0)
   1156 		error = 0;
   1157 	else
   1158 		error = EINVAL;
   1159 
   1160 	return error;
   1161 }
   1162 
   1163 void
   1164 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
   1165 {
   1166 	struct nvme_namespace *ns;
   1167 	struct nvm_identify_namespace *identify;
   1168 
   1169 	ns = nvme_ns_get(sc, nsid);
   1170 	KASSERT(ns);
   1171 
   1172 	identify = ns->ident;
   1173 	ns->ident = NULL;
   1174 	if (identify != NULL)
   1175 		kmem_free(identify, sizeof(*identify));
   1176 }
   1177 
   1178 struct nvme_pt_state {
   1179 	struct nvme_pt_command *pt;
   1180 	bool finished;
   1181 };
   1182 
   1183 static void
   1184 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1185 {
   1186 	struct nvme_softc *sc = q->q_sc;
   1187 	struct nvme_sqe *sqe = slot;
   1188 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1189 	struct nvme_pt_command *pt = state->pt;
   1190 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1191 	int i;
   1192 
   1193 	sqe->opcode = pt->cmd.opcode;
   1194 	htolem32(&sqe->nsid, pt->cmd.nsid);
   1195 
   1196 	if (pt->buf != NULL && pt->len > 0) {
   1197 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
   1198 		switch (dmap->dm_nsegs) {
   1199 		case 1:
   1200 			break;
   1201 		case 2:
   1202 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
   1203 			break;
   1204 		default:
   1205 			for (i = 1; i < dmap->dm_nsegs; i++) {
   1206 				htolem64(&ccb->ccb_prpl[i - 1],
   1207 				    dmap->dm_segs[i].ds_addr);
   1208 			}
   1209 			bus_dmamap_sync(sc->sc_dmat,
   1210 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1211 			    ccb->ccb_prpl_off,
   1212 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1213 			    BUS_DMASYNC_PREWRITE);
   1214 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
   1215 			break;
   1216 		}
   1217 	}
   1218 
   1219 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
   1220 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
   1221 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
   1222 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
   1223 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
   1224 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
   1225 }
   1226 
   1227 static void
   1228 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
   1229 {
   1230 	struct nvme_softc *sc = q->q_sc;
   1231 	struct nvme_pt_state *state = ccb->ccb_cookie;
   1232 	struct nvme_pt_command *pt = state->pt;
   1233 	bus_dmamap_t dmap = ccb->ccb_dmamap;
   1234 
   1235 	if (pt->buf != NULL && pt->len > 0) {
   1236 		if (dmap->dm_nsegs > 2) {
   1237 			bus_dmamap_sync(sc->sc_dmat,
   1238 			    NVME_DMA_MAP(q->q_ccb_prpls),
   1239 			    ccb->ccb_prpl_off,
   1240 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
   1241 			    BUS_DMASYNC_POSTWRITE);
   1242 		}
   1243 
   1244 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
   1245 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1246 		bus_dmamap_unload(sc->sc_dmat, dmap);
   1247 	}
   1248 
   1249 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
   1250 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
   1251 
   1252 	state->finished = true;
   1253 
   1254 	nvme_ccb_put(q, ccb);
   1255 }
   1256 
   1257 static bool
   1258 nvme_pt_finished(void *cookie)
   1259 {
   1260 	struct nvme_pt_state *state = cookie;
   1261 
   1262 	return state->finished;
   1263 }
   1264 
   1265 static int
   1266 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
   1267     uint32_t nsid, struct lwp *l, bool is_adminq)
   1268 {
   1269 	struct nvme_queue *q;
   1270 	struct nvme_ccb *ccb;
   1271 	void *buf = NULL;
   1272 	struct nvme_pt_state state;
   1273 	int error;
   1274 
   1275 	/* limit command size to maximum data transfer size */
   1276 	if ((pt->buf == NULL && pt->len > 0) ||
   1277 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
   1278 		return EINVAL;
   1279 
   1280 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
   1281 	ccb = nvme_ccb_get(q, true);
   1282 	KASSERT(ccb != NULL);
   1283 
   1284 	if (pt->buf != NULL) {
   1285 		KASSERT(pt->len > 0);
   1286 		buf = kmem_alloc(pt->len, KM_SLEEP);
   1287 		if (!pt->is_read) {
   1288 			error = copyin(pt->buf, buf, pt->len);
   1289 			if (error)
   1290 				goto kmem_free;
   1291 		}
   1292 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
   1293 		    pt->len, NULL,
   1294 		    BUS_DMA_WAITOK |
   1295 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
   1296 		if (error)
   1297 			goto kmem_free;
   1298 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
   1299 		    0, ccb->ccb_dmamap->dm_mapsize,
   1300 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
   1301 	}
   1302 
   1303 	memset(&state, 0, sizeof(state));
   1304 	state.pt = pt;
   1305 	state.finished = false;
   1306 
   1307 	ccb->ccb_done = nvme_pt_done;
   1308 	ccb->ccb_cookie = &state;
   1309 
   1310 	pt->cmd.nsid = nsid;
   1311 
   1312 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
   1313 
   1314 	/* wait for completion */
   1315 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
   1316 	KASSERT(state.finished);
   1317 
   1318 	error = 0;
   1319 
   1320 	if (buf != NULL) {
   1321 		if (error == 0 && pt->is_read)
   1322 			error = copyout(buf, pt->buf, pt->len);
   1323 kmem_free:
   1324 		kmem_free(buf, pt->len);
   1325 	}
   1326 
   1327 	return error;
   1328 }
   1329 
   1330 uint32_t
   1331 nvme_op_sq_enter(struct nvme_softc *sc,
   1332     struct nvme_queue *q, struct nvme_ccb *ccb)
   1333 {
   1334 	mutex_enter(&q->q_sq_mtx);
   1335 
   1336 	return nvme_op_sq_enter_locked(sc, q, ccb);
   1337 }
   1338 
   1339 uint32_t
   1340 nvme_op_sq_enter_locked(struct nvme_softc *sc,
   1341     struct nvme_queue *q, struct nvme_ccb *ccb)
   1342 {
   1343 	return q->q_sq_tail;
   1344 }
   1345 
   1346 void
   1347 nvme_op_sq_leave_locked(struct nvme_softc *sc,
   1348     struct nvme_queue *q, struct nvme_ccb *ccb)
   1349 {
   1350 	uint32_t tail;
   1351 
   1352 	tail = ++q->q_sq_tail;
   1353 	if (tail >= q->q_entries)
   1354 		tail = 0;
   1355 	q->q_sq_tail = tail;
   1356 	nvme_write4(sc, q->q_sqtdbl, tail);
   1357 }
   1358 
   1359 void
   1360 nvme_op_sq_leave(struct nvme_softc *sc,
   1361     struct nvme_queue *q, struct nvme_ccb *ccb)
   1362 {
   1363 	nvme_op_sq_leave_locked(sc, q, ccb);
   1364 
   1365 	mutex_exit(&q->q_sq_mtx);
   1366 }
   1367 
   1368 static void
   1369 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1370     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
   1371 {
   1372 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
   1373 	uint32_t tail;
   1374 
   1375 	tail = sc->sc_ops->op_sq_enter(sc, q, ccb);
   1376 
   1377 	sqe += tail;
   1378 
   1379 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1380 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
   1381 	memset(sqe, 0, sizeof(*sqe));
   1382 	(*fill)(q, ccb, sqe);
   1383 	htolem16(&sqe->cid, ccb->ccb_id);
   1384 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
   1385 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
   1386 
   1387 	sc->sc_ops->op_sq_leave(sc, q, ccb);
   1388 }
   1389 
   1390 struct nvme_poll_state {
   1391 	struct nvme_sqe s;
   1392 	struct nvme_cqe c;
   1393 	void *cookie;
   1394 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
   1395 };
   1396 
   1397 static int
   1398 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
   1399     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
   1400 {
   1401 	struct nvme_poll_state state;
   1402 	uint16_t flags;
   1403 	int step = 10;
   1404 	int maxloop = timo_sec * 1000000 / step;
   1405 	int error = 0;
   1406 
   1407 	memset(&state, 0, sizeof(state));
   1408 	(*fill)(q, ccb, &state.s);
   1409 
   1410 	state.done = ccb->ccb_done;
   1411 	state.cookie = ccb->ccb_cookie;
   1412 
   1413 	ccb->ccb_done = nvme_poll_done;
   1414 	ccb->ccb_cookie = &state;
   1415 
   1416 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
   1417 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
   1418 		if (nvme_q_complete(sc, q) == 0)
   1419 			delay(step);
   1420 
   1421 		if (timo_sec >= 0 && --maxloop <= 0) {
   1422 			error = ETIMEDOUT;
   1423 			break;
   1424 		}
   1425 	}
   1426 
   1427 	if (error == 0) {
   1428 		flags = lemtoh16(&state.c.flags);
   1429 		return flags & ~NVME_CQE_PHASE;
   1430 	} else {
   1431 		/*
   1432 		 * If it succeds later, it would hit ccb which will have been
   1433 		 * already reused for something else. Not good. Cross
   1434 		 * fingers and hope for best. XXX do controller reset?
   1435 		 */
   1436 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
   1437 
   1438 		/* Invoke the callback to clean state anyway */
   1439 		struct nvme_cqe cqe;
   1440 		memset(&cqe, 0, sizeof(cqe));
   1441 		ccb->ccb_done(q, ccb, &cqe);
   1442 
   1443 		return 1;
   1444 	}
   1445 }
   1446 
   1447 static void
   1448 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1449 {
   1450 	struct nvme_sqe *sqe = slot;
   1451 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1452 
   1453 	*sqe = state->s;
   1454 }
   1455 
   1456 static void
   1457 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1458     struct nvme_cqe *cqe)
   1459 {
   1460 	struct nvme_poll_state *state = ccb->ccb_cookie;
   1461 
   1462 	state->c = *cqe;
   1463 	SET(state->c.flags, htole16(NVME_CQE_PHASE));
   1464 
   1465 	ccb->ccb_cookie = state->cookie;
   1466 	state->done(q, ccb, &state->c);
   1467 }
   1468 
   1469 static void
   1470 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1471 {
   1472 	struct nvme_sqe *src = ccb->ccb_cookie;
   1473 	struct nvme_sqe *dst = slot;
   1474 
   1475 	*dst = *src;
   1476 }
   1477 
   1478 static void
   1479 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
   1480     struct nvme_cqe *cqe)
   1481 {
   1482 }
   1483 
   1484 void
   1485 nvme_op_cq_done(struct nvme_softc *sc,
   1486     struct nvme_queue *q, struct nvme_ccb *ccb)
   1487 {
   1488 	/* nop */
   1489 }
   1490 
   1491 static int
   1492 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
   1493 {
   1494 	struct nvme_ccb *ccb;
   1495 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
   1496 	uint16_t flags;
   1497 	int rv = 0;
   1498 
   1499 	mutex_enter(&q->q_cq_mtx);
   1500 
   1501 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1502 	for (;;) {
   1503 		cqe = &ring[q->q_cq_head];
   1504 		flags = lemtoh16(&cqe->flags);
   1505 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1506 			break;
   1507 
   1508 		ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
   1509 
   1510 		if (++q->q_cq_head >= q->q_entries) {
   1511 			q->q_cq_head = 0;
   1512 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1513 		}
   1514 
   1515 #ifdef DEBUG
   1516 		/*
   1517 		 * If we get spurious completion notification, something
   1518 		 * is seriously hosed up. Very likely DMA to some random
   1519 		 * memory place happened, so just bail out.
   1520 		 */
   1521 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
   1522 			panic("%s: invalid ccb detected",
   1523 			    device_xname(sc->sc_dev));
   1524 			/* NOTREACHED */
   1525 		}
   1526 #endif
   1527 
   1528 		rv++;
   1529 
   1530 		sc->sc_ops->op_cq_done(sc, q, ccb);
   1531 
   1532 		/*
   1533 		 * Unlock the mutex before calling the ccb_done callback
   1534 		 * and re-lock afterwards. The callback triggers lddone()
   1535 		 * which schedules another i/o, and also calls nvme_ccb_put().
   1536 		 * Unlock/relock avoids possibility of deadlock.
   1537 		 */
   1538 		mutex_exit(&q->q_cq_mtx);
   1539 		ccb->ccb_done(q, ccb, cqe);
   1540 		mutex_enter(&q->q_cq_mtx);
   1541 	}
   1542 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1543 
   1544 	if (rv)
   1545 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
   1546 
   1547 	mutex_exit(&q->q_cq_mtx);
   1548 
   1549 	return rv;
   1550 }
   1551 
   1552 static void
   1553 nvme_q_wait_complete(struct nvme_softc *sc,
   1554     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
   1555 {
   1556 	mutex_enter(&q->q_ccb_mtx);
   1557 	if (finished(cookie))
   1558 		goto out;
   1559 
   1560 	for(;;) {
   1561 		q->q_ccb_waiting = true;
   1562 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1563 
   1564 		if (finished(cookie))
   1565 			break;
   1566 	}
   1567 
   1568 out:
   1569 	mutex_exit(&q->q_ccb_mtx);
   1570 }
   1571 
   1572 static int
   1573 nvme_identify(struct nvme_softc *sc, u_int mps)
   1574 {
   1575 	char sn[41], mn[81], fr[17];
   1576 	struct nvm_identify_controller *identify;
   1577 	struct nvme_dmamem *mem;
   1578 	struct nvme_ccb *ccb;
   1579 	u_int mdts;
   1580 	int rv = 1;
   1581 
   1582 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1583 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1584 
   1585 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1586 	if (mem == NULL)
   1587 		return 1;
   1588 
   1589 	ccb->ccb_done = nvme_empty_done;
   1590 	ccb->ccb_cookie = mem;
   1591 
   1592 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1593 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1594 	    NVME_TIMO_IDENT);
   1595 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1596 
   1597 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1598 
   1599 	if (rv != 0)
   1600 		goto done;
   1601 
   1602 	identify = NVME_DMA_KVA(mem);
   1603 	sc->sc_identify = *identify;
   1604 	identify = NULL;
   1605 
   1606 	/* Convert data to host endian */
   1607 	nvme_identify_controller_swapbytes(&sc->sc_identify);
   1608 
   1609 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
   1610 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1611 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
   1612 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1613 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
   1614 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1615 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1616 	    sn);
   1617 
   1618 	strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
   1619 
   1620 	if (sc->sc_identify.mdts > 0) {
   1621 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
   1622 		if (mdts < sc->sc_mdts)
   1623 			sc->sc_mdts = mdts;
   1624 	}
   1625 
   1626 	sc->sc_nn = sc->sc_identify.nn;
   1627 
   1628 done:
   1629 	nvme_dmamem_free(sc, mem);
   1630 
   1631 	return rv;
   1632 }
   1633 
   1634 static int
   1635 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1636 {
   1637 	struct nvme_sqe_q sqe;
   1638 	struct nvme_ccb *ccb;
   1639 	int rv;
   1640 
   1641 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
   1642 		return 1;
   1643 
   1644 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1645 	KASSERT(ccb != NULL);
   1646 
   1647 	ccb->ccb_done = nvme_empty_done;
   1648 	ccb->ccb_cookie = &sqe;
   1649 
   1650 	memset(&sqe, 0, sizeof(sqe));
   1651 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1652 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1653 	htolem16(&sqe.qsize, q->q_entries - 1);
   1654 	htolem16(&sqe.qid, q->q_id);
   1655 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1656 	if (sc->sc_use_mq)
   1657 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1658 
   1659 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1660 	if (rv != 0)
   1661 		goto fail;
   1662 
   1663 	ccb->ccb_done = nvme_empty_done;
   1664 	ccb->ccb_cookie = &sqe;
   1665 
   1666 	memset(&sqe, 0, sizeof(sqe));
   1667 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1668 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1669 	htolem16(&sqe.qsize, q->q_entries - 1);
   1670 	htolem16(&sqe.qid, q->q_id);
   1671 	htolem16(&sqe.cqid, q->q_id);
   1672 	sqe.qflags = NVM_SQE_Q_PC;
   1673 
   1674 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1675 	if (rv != 0)
   1676 		goto fail;
   1677 
   1678 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1679 	return 0;
   1680 
   1681 fail:
   1682 	if (sc->sc_use_mq)
   1683 		sc->sc_intr_disestablish(sc, q->q_id);
   1684 
   1685 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1686 	return rv;
   1687 }
   1688 
   1689 static int
   1690 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1691 {
   1692 	struct nvme_sqe_q sqe;
   1693 	struct nvme_ccb *ccb;
   1694 	int rv;
   1695 
   1696 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1697 	KASSERT(ccb != NULL);
   1698 
   1699 	ccb->ccb_done = nvme_empty_done;
   1700 	ccb->ccb_cookie = &sqe;
   1701 
   1702 	memset(&sqe, 0, sizeof(sqe));
   1703 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1704 	htolem16(&sqe.qid, q->q_id);
   1705 
   1706 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1707 	if (rv != 0)
   1708 		goto fail;
   1709 
   1710 	ccb->ccb_done = nvme_empty_done;
   1711 	ccb->ccb_cookie = &sqe;
   1712 
   1713 	memset(&sqe, 0, sizeof(sqe));
   1714 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1715 	htolem16(&sqe.qid, q->q_id);
   1716 
   1717 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1718 	if (rv != 0)
   1719 		goto fail;
   1720 
   1721 fail:
   1722 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1723 
   1724 	if (rv == 0 && sc->sc_use_mq) {
   1725 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1726 			rv = 1;
   1727 	}
   1728 
   1729 	return rv;
   1730 }
   1731 
   1732 static void
   1733 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1734 {
   1735 	struct nvme_sqe *sqe = slot;
   1736 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1737 
   1738 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1739 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1740 	htolem32(&sqe->cdw10, 1);
   1741 }
   1742 
   1743 static int
   1744 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
   1745     u_int *nsqa)
   1746 {
   1747 	struct nvme_pt_state state;
   1748 	struct nvme_pt_command pt;
   1749 	struct nvme_ccb *ccb;
   1750 	int rv;
   1751 
   1752 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
   1753 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
   1754 
   1755 	memset(&pt, 0, sizeof(pt));
   1756 	pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
   1757 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
   1758 	pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
   1759 
   1760 	memset(&state, 0, sizeof(state));
   1761 	state.pt = &pt;
   1762 	state.finished = false;
   1763 
   1764 	ccb->ccb_done = nvme_pt_done;
   1765 	ccb->ccb_cookie = &state;
   1766 
   1767 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
   1768 
   1769 	if (rv != 0) {
   1770 		*ncqa = *nsqa = 0;
   1771 		return EIO;
   1772 	}
   1773 
   1774 	*ncqa = (pt.cpl.cdw0 >> 16) + 1;
   1775 	*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
   1776 
   1777 	return 0;
   1778 }
   1779 
   1780 static int
   1781 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
   1782 {
   1783 	struct nvme_softc *sc = q->q_sc;
   1784 	struct nvme_ccb *ccb;
   1785 	bus_addr_t off;
   1786 	uint64_t *prpl;
   1787 	u_int i;
   1788 
   1789 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1790 	cv_init(&q->q_ccb_wait, "nvmeqw");
   1791 	q->q_ccb_waiting = false;
   1792 	SIMPLEQ_INIT(&q->q_ccb_list);
   1793 
   1794 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1795 
   1796 	q->q_nccbs = nccbs;
   1797 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1798 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1799 
   1800 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1801 	off = 0;
   1802 
   1803 	for (i = 0; i < nccbs; i++) {
   1804 		ccb = &q->q_ccbs[i];
   1805 
   1806 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1807 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1808 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1809 		    &ccb->ccb_dmamap) != 0)
   1810 			goto free_maps;
   1811 
   1812 		ccb->ccb_id = i;
   1813 		ccb->ccb_prpl = prpl;
   1814 		ccb->ccb_prpl_off = off;
   1815 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1816 
   1817 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1818 
   1819 		prpl += sc->sc_max_sgl;
   1820 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1821 	}
   1822 
   1823 	return 0;
   1824 
   1825 free_maps:
   1826 	nvme_ccbs_free(q);
   1827 	return 1;
   1828 }
   1829 
   1830 static struct nvme_ccb *
   1831 nvme_ccb_get(struct nvme_queue *q, bool wait)
   1832 {
   1833 	struct nvme_ccb *ccb = NULL;
   1834 
   1835 	mutex_enter(&q->q_ccb_mtx);
   1836 again:
   1837 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1838 	if (ccb != NULL) {
   1839 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1840 #ifdef DEBUG
   1841 		ccb->ccb_cookie = NULL;
   1842 #endif
   1843 	} else {
   1844 		if (__predict_false(wait)) {
   1845 			q->q_ccb_waiting = true;
   1846 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
   1847 			goto again;
   1848 		}
   1849 	}
   1850 	mutex_exit(&q->q_ccb_mtx);
   1851 
   1852 	return ccb;
   1853 }
   1854 
   1855 static void
   1856 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1857 {
   1858 
   1859 	mutex_enter(&q->q_ccb_mtx);
   1860 #ifdef DEBUG
   1861 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
   1862 #endif
   1863 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1864 
   1865 	/* It's unlikely there are any waiters, it's not used for regular I/O */
   1866 	if (__predict_false(q->q_ccb_waiting)) {
   1867 		q->q_ccb_waiting = false;
   1868 		cv_broadcast(&q->q_ccb_wait);
   1869 	}
   1870 
   1871 	mutex_exit(&q->q_ccb_mtx);
   1872 }
   1873 
   1874 static void
   1875 nvme_ccbs_free(struct nvme_queue *q)
   1876 {
   1877 	struct nvme_softc *sc = q->q_sc;
   1878 	struct nvme_ccb *ccb;
   1879 
   1880 	mutex_enter(&q->q_ccb_mtx);
   1881 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1882 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1883 		/*
   1884 		 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
   1885 		 * internally. don't hold spin mutex
   1886 		 */
   1887 		mutex_exit(&q->q_ccb_mtx);
   1888 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1889 		mutex_enter(&q->q_ccb_mtx);
   1890 	}
   1891 	mutex_exit(&q->q_ccb_mtx);
   1892 
   1893 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1894 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1895 	q->q_ccbs = NULL;
   1896 	cv_destroy(&q->q_ccb_wait);
   1897 	mutex_destroy(&q->q_ccb_mtx);
   1898 }
   1899 
   1900 static struct nvme_queue *
   1901 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1902 {
   1903 	struct nvme_queue *q;
   1904 
   1905 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1906 	q->q_sc = sc;
   1907 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1908 	    sizeof(struct nvme_sqe) * entries);
   1909 	if (q->q_sq_dmamem == NULL)
   1910 		goto free;
   1911 
   1912 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1913 	    sizeof(struct nvme_cqe) * entries);
   1914 	if (q->q_cq_dmamem == NULL)
   1915 		goto free_sq;
   1916 
   1917 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1918 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1919 
   1920 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1921 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1922 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1923 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1924 	q->q_id = id;
   1925 	q->q_entries = entries;
   1926 	q->q_sq_tail = 0;
   1927 	q->q_cq_head = 0;
   1928 	q->q_cq_phase = NVME_CQE_PHASE;
   1929 
   1930 	if (sc->sc_ops->op_q_alloc != NULL) {
   1931 		if (sc->sc_ops->op_q_alloc(sc, q) != 0)
   1932 			goto free_cq;
   1933 	}
   1934 
   1935 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1936 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1937 
   1938 	/*
   1939 	 * Due to definition of full and empty queue (queue is empty
   1940 	 * when head == tail, full when tail is one less then head),
   1941 	 * we can actually only have (entries - 1) in-flight commands.
   1942 	 */
   1943 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
   1944 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1945 		goto free_cq;
   1946 	}
   1947 
   1948 	return q;
   1949 
   1950 free_cq:
   1951 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1952 free_sq:
   1953 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1954 free:
   1955 	kmem_free(q, sizeof(*q));
   1956 
   1957 	return NULL;
   1958 }
   1959 
   1960 static void
   1961 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
   1962 {
   1963 
   1964 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1965 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1966 
   1967 	q->q_sq_tail = 0;
   1968 	q->q_cq_head = 0;
   1969 	q->q_cq_phase = NVME_CQE_PHASE;
   1970 
   1971 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1972 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1973 }
   1974 
   1975 static void
   1976 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1977 {
   1978 	nvme_ccbs_free(q);
   1979 	mutex_destroy(&q->q_sq_mtx);
   1980 	mutex_destroy(&q->q_cq_mtx);
   1981 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1982 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1983 
   1984 	if (sc->sc_ops->op_q_alloc != NULL)
   1985 		sc->sc_ops->op_q_free(sc, q);
   1986 
   1987 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1988 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1989 	kmem_free(q, sizeof(*q));
   1990 }
   1991 
   1992 int
   1993 nvme_intr(void *xsc)
   1994 {
   1995 	struct nvme_softc *sc = xsc;
   1996 
   1997 	/*
   1998 	 * INTx is level triggered, controller deasserts the interrupt only
   1999 	 * when we advance command queue head via write to the doorbell.
   2000 	 * Tell the controller to block the interrupts while we process
   2001 	 * the queue(s).
   2002 	 */
   2003 	nvme_write4(sc, NVME_INTMS, 1);
   2004 
   2005 	softint_schedule(sc->sc_softih[0]);
   2006 
   2007 	/* don't know, might not have been for us */
   2008 	return 1;
   2009 }
   2010 
   2011 void
   2012 nvme_softintr_intx(void *xq)
   2013 {
   2014 	struct nvme_queue *q = xq;
   2015 	struct nvme_softc *sc = q->q_sc;
   2016 
   2017 	nvme_q_complete(sc, sc->sc_admin_q);
   2018 	if (sc->sc_q != NULL)
   2019 	        nvme_q_complete(sc, sc->sc_q[0]);
   2020 
   2021 	/*
   2022 	 * Processing done, tell controller to issue interrupts again. There
   2023 	 * is no race, as NVMe spec requires the controller to maintain state,
   2024 	 * and assert the interrupt whenever there are unacknowledged
   2025 	 * completion queue entries.
   2026 	 */
   2027 	nvme_write4(sc, NVME_INTMC, 1);
   2028 }
   2029 
   2030 int
   2031 nvme_intr_msi(void *xq)
   2032 {
   2033 	struct nvme_queue *q = xq;
   2034 
   2035 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
   2036 	    && q->q_sc->sc_softih[q->q_id]);
   2037 
   2038 	/*
   2039 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
   2040 	 * without masking the interrupt.
   2041 	 */
   2042 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
   2043 
   2044 	return 1;
   2045 }
   2046 
   2047 void
   2048 nvme_softintr_msi(void *xq)
   2049 {
   2050 	struct nvme_queue *q = xq;
   2051 	struct nvme_softc *sc = q->q_sc;
   2052 
   2053 	nvme_q_complete(sc, q);
   2054 }
   2055 
   2056 struct nvme_dmamem *
   2057 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   2058 {
   2059 	struct nvme_dmamem *ndm;
   2060 	int nsegs;
   2061 
   2062 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   2063 	if (ndm == NULL)
   2064 		return NULL;
   2065 
   2066 	ndm->ndm_size = size;
   2067 
   2068 	if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
   2069 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   2070 		goto ndmfree;
   2071 
   2072 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   2073 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   2074 		goto destroy;
   2075 
   2076 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   2077 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   2078 		goto free;
   2079 
   2080 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   2081 	    NULL, BUS_DMA_WAITOK) != 0)
   2082 		goto unmap;
   2083 
   2084 	memset(ndm->ndm_kva, 0, size);
   2085 	bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
   2086 
   2087 	return ndm;
   2088 
   2089 unmap:
   2090 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   2091 free:
   2092 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   2093 destroy:
   2094 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   2095 ndmfree:
   2096 	kmem_free(ndm, sizeof(*ndm));
   2097 	return NULL;
   2098 }
   2099 
   2100 void
   2101 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   2102 {
   2103 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   2104 	    0, NVME_DMA_LEN(mem), ops);
   2105 }
   2106 
   2107 void
   2108 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   2109 {
   2110 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   2111 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   2112 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   2113 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   2114 	kmem_free(ndm, sizeof(*ndm));
   2115 }
   2116 
   2117 /*
   2118  * ioctl
   2119  */
   2120 
   2121 dev_type_open(nvmeopen);
   2122 dev_type_close(nvmeclose);
   2123 dev_type_ioctl(nvmeioctl);
   2124 
   2125 const struct cdevsw nvme_cdevsw = {
   2126 	.d_open = nvmeopen,
   2127 	.d_close = nvmeclose,
   2128 	.d_read = noread,
   2129 	.d_write = nowrite,
   2130 	.d_ioctl = nvmeioctl,
   2131 	.d_stop = nostop,
   2132 	.d_tty = notty,
   2133 	.d_poll = nopoll,
   2134 	.d_mmap = nommap,
   2135 	.d_kqfilter = nokqfilter,
   2136 	.d_discard = nodiscard,
   2137 	.d_flag = D_OTHER,
   2138 };
   2139 
   2140 /*
   2141  * Accept an open operation on the control device.
   2142  */
   2143 int
   2144 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   2145 {
   2146 	struct nvme_softc *sc;
   2147 	int unit = minor(dev) / 0x10000;
   2148 	int nsid = minor(dev) & 0xffff;
   2149 	int nsidx;
   2150 
   2151 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   2152 		return ENXIO;
   2153 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   2154 		return ENXIO;
   2155 
   2156 	if (nsid == 0) {
   2157 		/* controller */
   2158 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   2159 			return EBUSY;
   2160 		SET(sc->sc_flags, NVME_F_OPEN);
   2161 	} else {
   2162 		/* namespace */
   2163 		nsidx = nsid - 1;
   2164 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   2165 			return ENXIO;
   2166 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   2167 			return EBUSY;
   2168 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   2169 	}
   2170 	return 0;
   2171 }
   2172 
   2173 /*
   2174  * Accept the last close on the control device.
   2175  */
   2176 int
   2177 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   2178 {
   2179 	struct nvme_softc *sc;
   2180 	int unit = minor(dev) / 0x10000;
   2181 	int nsid = minor(dev) & 0xffff;
   2182 	int nsidx;
   2183 
   2184 	sc = device_lookup_private(&nvme_cd, unit);
   2185 	if (sc == NULL)
   2186 		return ENXIO;
   2187 
   2188 	if (nsid == 0) {
   2189 		/* controller */
   2190 		CLR(sc->sc_flags, NVME_F_OPEN);
   2191 	} else {
   2192 		/* namespace */
   2193 		nsidx = nsid - 1;
   2194 		if (nsidx >= sc->sc_nn)
   2195 			return ENXIO;
   2196 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   2197 	}
   2198 
   2199 	return 0;
   2200 }
   2201 
   2202 /*
   2203  * Handle control operations.
   2204  */
   2205 int
   2206 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   2207 {
   2208 	struct nvme_softc *sc;
   2209 	int unit = minor(dev) / 0x10000;
   2210 	int nsid = minor(dev) & 0xffff;
   2211 	struct nvme_pt_command *pt;
   2212 
   2213 	sc = device_lookup_private(&nvme_cd, unit);
   2214 	if (sc == NULL)
   2215 		return ENXIO;
   2216 
   2217 	switch (cmd) {
   2218 	case NVME_PASSTHROUGH_CMD:
   2219 		pt = data;
   2220 		return nvme_command_passthrough(sc, data,
   2221 		    nsid == 0 ? pt->cmd.nsid : (uint32_t)nsid, l, nsid == 0);
   2222 	}
   2223 
   2224 	return ENOTTY;
   2225 }
   2226