nvme.c revision 1.62 1 /* $NetBSD: nvme.c,v 1.62 2022/08/14 12:08:57 jmcneill Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.62 2022/08/14 12:08:57 jmcneill Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44 #include "locators.h"
45
46 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
47
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50
51 static int nvme_print(void *, const char *);
52
53 static int nvme_ready(struct nvme_softc *, uint32_t);
54 static int nvme_enable(struct nvme_softc *, u_int);
55 static int nvme_disable(struct nvme_softc *);
56 static int nvme_shutdown(struct nvme_softc *);
57
58 uint32_t nvme_op_sq_enter(struct nvme_softc *,
59 struct nvme_queue *, struct nvme_ccb *);
60 void nvme_op_sq_leave(struct nvme_softc *,
61 struct nvme_queue *, struct nvme_ccb *);
62 uint32_t nvme_op_sq_enter_locked(struct nvme_softc *,
63 struct nvme_queue *, struct nvme_ccb *);
64 void nvme_op_sq_leave_locked(struct nvme_softc *,
65 struct nvme_queue *, struct nvme_ccb *);
66
67 void nvme_op_cq_done(struct nvme_softc *,
68 struct nvme_queue *, struct nvme_ccb *);
69
70 static const struct nvme_ops nvme_ops = {
71 .op_sq_enter = nvme_op_sq_enter,
72 .op_sq_leave = nvme_op_sq_leave,
73 .op_sq_enter_locked = nvme_op_sq_enter_locked,
74 .op_sq_leave_locked = nvme_op_sq_leave_locked,
75
76 .op_cq_done = nvme_op_cq_done,
77 };
78
79 #ifdef NVME_DEBUG
80 static void nvme_dumpregs(struct nvme_softc *);
81 #endif
82 static int nvme_identify(struct nvme_softc *, u_int);
83 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
84 void *);
85
86 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
87 static void nvme_ccbs_free(struct nvme_queue *);
88
89 static struct nvme_ccb *
90 nvme_ccb_get(struct nvme_queue *, bool);
91 static struct nvme_ccb *
92 nvme_ccb_get_bio(struct nvme_softc *, struct buf *,
93 struct nvme_queue **);
94 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
95
96 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
97 struct nvme_ccb *, void (*)(struct nvme_queue *,
98 struct nvme_ccb *, void *), int);
99 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
100 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
101 struct nvme_cqe *);
102 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
103 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105
106 static struct nvme_queue *
107 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
108 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
109 static void nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
110 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
111 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
112 struct nvme_ccb *, void (*)(struct nvme_queue *,
113 struct nvme_ccb *, void *));
114 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
115 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
116 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
117 bool (*)(void *), void *);
118
119 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
120 void *);
121 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
122 struct nvme_cqe *);
123 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
124 void *);
125 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
126 struct nvme_cqe *);
127 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
128 void *);
129 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
130 struct nvme_cqe *);
131
132 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
133 void *);
134 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
135 struct nvme_cqe *);
136 static int nvme_command_passthrough(struct nvme_softc *,
137 struct nvme_pt_command *, uint32_t, struct lwp *, bool);
138
139 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
140 u_int *);
141
142 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
143 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
144 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
145 #define NVME_TIMO_SY 60 /* sync cache timeout */
146
147 /*
148 * Some controllers, at least Apple NVMe, always require split
149 * transfers, so don't use bus_space_{read,write}_8() on LP64.
150 */
151 uint64_t
152 nvme_read8(struct nvme_softc *sc, bus_size_t r)
153 {
154 uint64_t v;
155 uint32_t *a = (uint32_t *)&v;
156
157 #if _BYTE_ORDER == _LITTLE_ENDIAN
158 a[0] = nvme_read4(sc, r);
159 a[1] = nvme_read4(sc, r + 4);
160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
161 a[1] = nvme_read4(sc, r);
162 a[0] = nvme_read4(sc, r + 4);
163 #endif
164
165 return v;
166 }
167
168 void
169 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
170 {
171 uint32_t *a = (uint32_t *)&v;
172
173 #if _BYTE_ORDER == _LITTLE_ENDIAN
174 nvme_write4(sc, r, a[0]);
175 nvme_write4(sc, r + 4, a[1]);
176 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
177 nvme_write4(sc, r, a[1]);
178 nvme_write4(sc, r + 4, a[0]);
179 #endif
180 }
181
182 #ifdef NVME_DEBUG
183 static __used void
184 nvme_dumpregs(struct nvme_softc *sc)
185 {
186 uint64_t r8;
187 uint32_t r4;
188
189 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
190 r8 = nvme_read8(sc, NVME_CAP);
191 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
192 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
193 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
194 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
195 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
196 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
197 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
198 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
199 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
200 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
201 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
202 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
203
204 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
205
206 r4 = nvme_read4(sc, NVME_CC);
207 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
208 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
209 (1 << NVME_CC_IOCQES_R(r4)));
210 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
211 (1 << NVME_CC_IOSQES_R(r4)));
212 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
213 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
214 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
215 (1 << NVME_CC_MPS_R(r4)));
216 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
217 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
218
219 r4 = nvme_read4(sc, NVME_CSTS);
220 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
221 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
222 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
223 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
224
225 r4 = nvme_read4(sc, NVME_AQA);
226 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
227 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
228 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
229
230 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef DEVNAME
233 }
234 #endif /* NVME_DEBUG */
235
236 static int
237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 u_int i = 0;
240
241 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
242 if (i++ > sc->sc_rdy_to)
243 return ENXIO;
244
245 delay(1000);
246 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
247 }
248
249 return 0;
250 }
251
252 static int
253 nvme_enable(struct nvme_softc *sc, u_int mps)
254 {
255 uint32_t cc, csts;
256 int error;
257
258 cc = nvme_read4(sc, NVME_CC);
259 csts = nvme_read4(sc, NVME_CSTS);
260
261 /*
262 * See note in nvme_disable. Short circuit if we're already enabled.
263 */
264 if (ISSET(cc, NVME_CC_EN)) {
265 if (ISSET(csts, NVME_CSTS_RDY))
266 return 0;
267
268 goto waitready;
269 } else {
270 /* EN == 0 already wait for RDY == 0 or fail */
271 error = nvme_ready(sc, 0);
272 if (error)
273 return error;
274 }
275
276 if (sc->sc_ops->op_enable != NULL)
277 sc->sc_ops->op_enable(sc);
278
279 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
280 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
281 delay(5000);
282 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
283 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
284 delay(5000);
285
286 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
287 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
288 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
289 delay(5000);
290
291 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
292 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
293 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
294 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
295 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
296 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
297 SET(cc, NVME_CC_MPS(mps));
298 SET(cc, NVME_CC_EN);
299
300 nvme_write4(sc, NVME_CC, cc);
301 nvme_barrier(sc, 0, sc->sc_ios,
302 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
303
304 waitready:
305 return nvme_ready(sc, NVME_CSTS_RDY);
306 }
307
308 static int
309 nvme_disable(struct nvme_softc *sc)
310 {
311 uint32_t cc, csts;
312 int error;
313
314 cc = nvme_read4(sc, NVME_CC);
315 csts = nvme_read4(sc, NVME_CSTS);
316
317 /*
318 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
319 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
320 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
321 * isn't the desired value. Short circuit if we're already disabled.
322 */
323 if (ISSET(cc, NVME_CC_EN)) {
324 if (!ISSET(csts, NVME_CSTS_RDY)) {
325 /* EN == 1, wait for RDY == 1 or fail */
326 error = nvme_ready(sc, NVME_CSTS_RDY);
327 if (error)
328 return error;
329 }
330 } else {
331 /* EN == 0 already wait for RDY == 0 */
332 if (!ISSET(csts, NVME_CSTS_RDY))
333 return 0;
334
335 goto waitready;
336 }
337
338 CLR(cc, NVME_CC_EN);
339 nvme_write4(sc, NVME_CC, cc);
340 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
341
342 /*
343 * Some drives have issues with accessing the mmio after we disable,
344 * so delay for a bit after we write the bit to cope with these issues.
345 */
346 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
347 delay(B4_CHK_RDY_DELAY_MS);
348
349 waitready:
350 return nvme_ready(sc, 0);
351 }
352
353 int
354 nvme_attach(struct nvme_softc *sc)
355 {
356 uint64_t cap;
357 uint32_t reg;
358 u_int mps = PAGE_SHIFT;
359 u_int ncq, nsq;
360 uint16_t adminq_entries = nvme_adminq_size;
361 uint16_t ioq_entries = nvme_ioq_size;
362 int i;
363
364 if (sc->sc_ops == NULL)
365 sc->sc_ops = &nvme_ops;
366
367 reg = nvme_read4(sc, NVME_VS);
368 if (reg == 0xffffffff) {
369 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
370 return 1;
371 }
372
373 if (NVME_VS_TER(reg) == 0)
374 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
375 NVME_VS_MNR(reg));
376 else
377 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
378 NVME_VS_MNR(reg), NVME_VS_TER(reg));
379
380 cap = nvme_read8(sc, NVME_CAP);
381 sc->sc_dstrd = NVME_CAP_DSTRD(cap);
382 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
383 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
384 "is greater than CPU page size %u\n",
385 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
386 return 1;
387 }
388 if (NVME_CAP_MPSMAX(cap) < mps)
389 mps = NVME_CAP_MPSMAX(cap);
390 if (ioq_entries > NVME_CAP_MQES(cap))
391 ioq_entries = NVME_CAP_MQES(cap);
392
393 /* set initial values to be used for admin queue during probe */
394 sc->sc_rdy_to = NVME_CAP_TO(cap);
395 sc->sc_mps = 1 << mps;
396 sc->sc_mdts = MAXPHYS;
397 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
398
399 if (nvme_disable(sc) != 0) {
400 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
401 return 1;
402 }
403
404 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
405 sc->sc_dstrd);
406 if (sc->sc_admin_q == NULL) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to allocate admin queue\n");
409 return 1;
410 }
411 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
412 goto free_admin_q;
413
414 if (nvme_enable(sc, mps) != 0) {
415 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
416 goto disestablish_admin_q;
417 }
418
419 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
420 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
421 goto disable;
422 }
423 if (sc->sc_nn == 0) {
424 aprint_error_dev(sc->sc_dev, "namespace not found\n");
425 goto disable;
426 }
427
428 /* we know how big things are now */
429 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
430
431 /* reallocate ccbs of admin queue with new max sgl. */
432 nvme_ccbs_free(sc->sc_admin_q);
433 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
434
435 if (sc->sc_use_mq) {
436 /* Limit the number of queues to the number allocated in HW */
437 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
438 aprint_error_dev(sc->sc_dev,
439 "unable to get number of queues\n");
440 goto disable;
441 }
442 if (sc->sc_nq > ncq)
443 sc->sc_nq = ncq;
444 if (sc->sc_nq > nsq)
445 sc->sc_nq = nsq;
446 }
447
448 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
449 for (i = 0; i < sc->sc_nq; i++) {
450 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
451 sc->sc_dstrd);
452 if (sc->sc_q[i] == NULL) {
453 aprint_error_dev(sc->sc_dev,
454 "unable to allocate io queue\n");
455 goto free_q;
456 }
457 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
458 aprint_error_dev(sc->sc_dev,
459 "unable to create io queue\n");
460 nvme_q_free(sc, sc->sc_q[i]);
461 goto free_q;
462 }
463 }
464
465 if (!sc->sc_use_mq)
466 nvme_write4(sc, NVME_INTMC, 1);
467
468 /* probe subdevices */
469 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
470 KM_SLEEP);
471 nvme_rescan(sc->sc_dev, NULL, NULL);
472
473 return 0;
474
475 free_q:
476 while (--i >= 0) {
477 nvme_q_delete(sc, sc->sc_q[i]);
478 nvme_q_free(sc, sc->sc_q[i]);
479 }
480 disable:
481 nvme_disable(sc);
482 disestablish_admin_q:
483 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
484 free_admin_q:
485 nvme_q_free(sc, sc->sc_admin_q);
486
487 return 1;
488 }
489
490 int
491 nvme_rescan(device_t self, const char *ifattr, const int *locs)
492 {
493 struct nvme_softc *sc = device_private(self);
494 struct nvme_attach_args naa;
495 struct nvm_namespace_format *f;
496 struct nvme_namespace *ns;
497 uint64_t cap;
498 int ioq_entries = nvme_ioq_size;
499 int i, mlocs[NVMECF_NLOCS];
500 int error;
501
502 cap = nvme_read8(sc, NVME_CAP);
503 if (ioq_entries > NVME_CAP_MQES(cap))
504 ioq_entries = NVME_CAP_MQES(cap);
505
506 for (i = 1; i <= sc->sc_nn; i++) {
507 if (sc->sc_namespaces[i - 1].dev)
508 continue;
509
510 /* identify to check for availability */
511 error = nvme_ns_identify(sc, i);
512 if (error) {
513 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
514 continue;
515 }
516
517 ns = nvme_ns_get(sc, i);
518 KASSERT(ns);
519
520 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
521
522 /*
523 * NVME1.0e 6.11 Identify command
524 *
525 * LBADS values smaller than 9 are not supported, a value
526 * of zero means that the format is not used.
527 */
528 if (f->lbads < 9) {
529 if (f->lbads > 0)
530 aprint_error_dev(self,
531 "unsupported logical data size %u\n", f->lbads);
532 continue;
533 }
534
535 mlocs[NVMECF_NSID] = i;
536
537 memset(&naa, 0, sizeof(naa));
538 naa.naa_nsid = i;
539 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
540 naa.naa_maxphys = sc->sc_mdts;
541 naa.naa_typename = sc->sc_modelname;
542 sc->sc_namespaces[i - 1].dev =
543 config_found(sc->sc_dev, &naa, nvme_print,
544 CFARGS(.submatch = config_stdsubmatch,
545 .locators = mlocs));
546 }
547 return 0;
548 }
549
550 static int
551 nvme_print(void *aux, const char *pnp)
552 {
553 struct nvme_attach_args *naa = aux;
554
555 if (pnp)
556 aprint_normal("ld at %s", pnp);
557
558 if (naa->naa_nsid > 0)
559 aprint_normal(" nsid %d", naa->naa_nsid);
560
561 return UNCONF;
562 }
563
564 int
565 nvme_detach(struct nvme_softc *sc, int flags)
566 {
567 int i, error;
568
569 error = config_detach_children(sc->sc_dev, flags);
570 if (error)
571 return error;
572
573 error = nvme_shutdown(sc);
574 if (error)
575 return error;
576
577 /* from now on we are committed to detach, following will never fail */
578 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
579 for (i = 0; i < sc->sc_nq; i++)
580 nvme_q_free(sc, sc->sc_q[i]);
581 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
582 nvme_q_free(sc, sc->sc_admin_q);
583
584 return 0;
585 }
586
587 int
588 nvme_suspend(struct nvme_softc *sc)
589 {
590
591 return nvme_shutdown(sc);
592 }
593
594 int
595 nvme_resume(struct nvme_softc *sc)
596 {
597 int ioq_entries = nvme_ioq_size;
598 uint64_t cap;
599 int i, error;
600
601 error = nvme_disable(sc);
602 if (error) {
603 device_printf(sc->sc_dev, "unable to disable controller\n");
604 return error;
605 }
606
607 nvme_q_reset(sc, sc->sc_admin_q);
608
609 error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
610 if (error) {
611 device_printf(sc->sc_dev, "unable to enable controller\n");
612 return error;
613 }
614
615 for (i = 0; i < sc->sc_nq; i++) {
616 cap = nvme_read8(sc, NVME_CAP);
617 if (ioq_entries > NVME_CAP_MQES(cap))
618 ioq_entries = NVME_CAP_MQES(cap);
619 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
620 sc->sc_dstrd);
621 if (sc->sc_q[i] == NULL) {
622 error = ENOMEM;
623 device_printf(sc->sc_dev, "unable to allocate io q %d"
624 "\n", i);
625 goto disable;
626 }
627 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
628 error = EIO;
629 device_printf(sc->sc_dev, "unable to create io q %d"
630 "\n", i);
631 nvme_q_free(sc, sc->sc_q[i]);
632 goto free_q;
633 }
634 }
635
636 nvme_write4(sc, NVME_INTMC, 1);
637
638 return 0;
639
640 free_q:
641 while (i --> 0)
642 nvme_q_free(sc, sc->sc_q[i]);
643 disable:
644 (void)nvme_disable(sc);
645
646 return error;
647 }
648
649 static int
650 nvme_shutdown(struct nvme_softc *sc)
651 {
652 uint32_t cc, csts;
653 bool disabled = false;
654 int i;
655
656 if (!sc->sc_use_mq)
657 nvme_write4(sc, NVME_INTMS, 1);
658
659 for (i = 0; i < sc->sc_nq; i++) {
660 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
661 aprint_error_dev(sc->sc_dev,
662 "unable to delete io queue %d, disabling\n", i + 1);
663 disabled = true;
664 }
665 }
666 if (disabled)
667 goto disable;
668
669 cc = nvme_read4(sc, NVME_CC);
670 CLR(cc, NVME_CC_SHN_MASK);
671 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
672 nvme_write4(sc, NVME_CC, cc);
673
674 for (i = 0; i < 4000; i++) {
675 nvme_barrier(sc, 0, sc->sc_ios,
676 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
677 csts = nvme_read4(sc, NVME_CSTS);
678 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
679 return 0;
680
681 delay(1000);
682 }
683
684 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
685
686 disable:
687 nvme_disable(sc);
688 return 0;
689 }
690
691 void
692 nvme_childdet(device_t self, device_t child)
693 {
694 struct nvme_softc *sc = device_private(self);
695 int i;
696
697 for (i = 0; i < sc->sc_nn; i++) {
698 if (sc->sc_namespaces[i].dev == child) {
699 /* Already freed ns->ident. */
700 sc->sc_namespaces[i].dev = NULL;
701 break;
702 }
703 }
704 }
705
706 int
707 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
708 {
709 struct nvme_sqe sqe;
710 struct nvm_identify_namespace *identify;
711 struct nvme_dmamem *mem;
712 struct nvme_ccb *ccb;
713 struct nvme_namespace *ns;
714 int rv;
715
716 KASSERT(nsid > 0);
717
718 ns = nvme_ns_get(sc, nsid);
719 KASSERT(ns);
720
721 if (ns->ident != NULL)
722 return 0;
723
724 ccb = nvme_ccb_get(sc->sc_admin_q, false);
725 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
726
727 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
728 if (mem == NULL) {
729 nvme_ccb_put(sc->sc_admin_q, ccb);
730 return ENOMEM;
731 }
732
733 memset(&sqe, 0, sizeof(sqe));
734 sqe.opcode = NVM_ADMIN_IDENTIFY;
735 htolem32(&sqe.nsid, nsid);
736 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
737 htolem32(&sqe.cdw10, 0);
738
739 ccb->ccb_done = nvme_empty_done;
740 ccb->ccb_cookie = &sqe;
741
742 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
743 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
744 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
745
746 nvme_ccb_put(sc->sc_admin_q, ccb);
747
748 if (rv != 0) {
749 rv = EIO;
750 goto done;
751 }
752
753 /* commit */
754
755 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
756 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
757
758 /* Convert data to host endian */
759 nvme_identify_namespace_swapbytes(identify);
760
761 ns->ident = identify;
762
763 done:
764 nvme_dmamem_free(sc, mem);
765
766 return rv;
767 }
768
769 int
770 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
771 struct buf *bp, void *data, size_t datasize,
772 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
773 {
774 struct nvme_queue *q;
775 struct nvme_ccb *ccb;
776 bus_dmamap_t dmap;
777 int i, error;
778
779 ccb = nvme_ccb_get_bio(sc, bp, &q);
780 if (ccb == NULL)
781 return EAGAIN;
782
783 ccb->ccb_done = nvme_ns_io_done;
784 ccb->ccb_cookie = cookie;
785
786 /* namespace context */
787 ccb->nnc_nsid = nsid;
788 ccb->nnc_flags = flags;
789 ccb->nnc_buf = bp;
790 ccb->nnc_datasize = datasize;
791 ccb->nnc_secsize = secsize;
792 ccb->nnc_blkno = blkno;
793 ccb->nnc_done = nnc_done;
794
795 dmap = ccb->ccb_dmamap;
796 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
797 datasize, NULL,
798 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
799 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
800 (ISSET(flags, NVME_NS_CTX_F_READ) ?
801 BUS_DMA_READ : BUS_DMA_WRITE));
802 if (error) {
803 nvme_ccb_put(q, ccb);
804 return error;
805 }
806
807 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
808 ISSET(flags, NVME_NS_CTX_F_READ) ?
809 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
810
811 if (dmap->dm_nsegs > 2) {
812 for (i = 1; i < dmap->dm_nsegs; i++) {
813 htolem64(&ccb->ccb_prpl[i - 1],
814 dmap->dm_segs[i].ds_addr);
815 }
816 bus_dmamap_sync(sc->sc_dmat,
817 NVME_DMA_MAP(q->q_ccb_prpls),
818 ccb->ccb_prpl_off,
819 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
820 BUS_DMASYNC_PREWRITE);
821 }
822
823 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
824 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
825 return EIO;
826 return 0;
827 }
828
829 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
830 return 0;
831 }
832
833 static void
834 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
835 {
836 struct nvme_sqe_io *sqe = slot;
837 bus_dmamap_t dmap = ccb->ccb_dmamap;
838
839 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
840 NVM_CMD_READ : NVM_CMD_WRITE;
841 htolem32(&sqe->nsid, ccb->nnc_nsid);
842
843 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
844 switch (dmap->dm_nsegs) {
845 case 1:
846 break;
847 case 2:
848 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
849 break;
850 default:
851 /* the prp list is already set up and synced */
852 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
853 break;
854 }
855
856 htolem64(&sqe->slba, ccb->nnc_blkno);
857
858 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
859 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
860
861 /* guaranteed by upper layers, but check just in case */
862 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
863 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
864 }
865
866 static void
867 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
868 struct nvme_cqe *cqe)
869 {
870 struct nvme_softc *sc = q->q_sc;
871 bus_dmamap_t dmap = ccb->ccb_dmamap;
872 void *nnc_cookie = ccb->ccb_cookie;
873 nvme_nnc_done nnc_done = ccb->nnc_done;
874 struct buf *bp = ccb->nnc_buf;
875
876 if (dmap->dm_nsegs > 2) {
877 bus_dmamap_sync(sc->sc_dmat,
878 NVME_DMA_MAP(q->q_ccb_prpls),
879 ccb->ccb_prpl_off,
880 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
881 BUS_DMASYNC_POSTWRITE);
882 }
883
884 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
885 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
886 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
887
888 bus_dmamap_unload(sc->sc_dmat, dmap);
889 nvme_ccb_put(q, ccb);
890
891 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
892 }
893
894 /*
895 * If there is no volatile write cache, it makes no sense to issue
896 * flush commands or query for the status.
897 */
898 static bool
899 nvme_has_volatile_write_cache(struct nvme_softc *sc)
900 {
901 /* sc_identify is filled during attachment */
902 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
903 }
904
905 static bool
906 nvme_ns_sync_finished(void *cookie)
907 {
908 int *result = cookie;
909
910 return (*result != 0);
911 }
912
913 int
914 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
915 {
916 struct nvme_queue *q = nvme_get_q(sc);
917 struct nvme_ccb *ccb;
918 int result = 0;
919
920 if (!nvme_has_volatile_write_cache(sc)) {
921 /* cache not present, no value in trying to flush it */
922 return 0;
923 }
924
925 ccb = nvme_ccb_get(q, true);
926 KASSERT(ccb != NULL);
927
928 ccb->ccb_done = nvme_ns_sync_done;
929 ccb->ccb_cookie = &result;
930
931 /* namespace context */
932 ccb->nnc_nsid = nsid;
933 ccb->nnc_flags = flags;
934 ccb->nnc_done = NULL;
935
936 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
937 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
938 return EIO;
939 return 0;
940 }
941
942 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
943
944 /* wait for completion */
945 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
946 KASSERT(result != 0);
947
948 return (result > 0) ? 0 : EIO;
949 }
950
951 static void
952 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
953 {
954 struct nvme_sqe *sqe = slot;
955
956 sqe->opcode = NVM_CMD_FLUSH;
957 htolem32(&sqe->nsid, ccb->nnc_nsid);
958 }
959
960 static void
961 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
962 struct nvme_cqe *cqe)
963 {
964 int *result = ccb->ccb_cookie;
965 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
966
967 if (status == NVME_CQE_SC_SUCCESS)
968 *result = 1;
969 else
970 *result = -1;
971
972 nvme_ccb_put(q, ccb);
973 }
974
975 static bool
976 nvme_getcache_finished(void *xc)
977 {
978 int *addr = xc;
979
980 return (*addr != 0);
981 }
982
983 /*
984 * Get status of volatile write cache. Always asynchronous.
985 */
986 int
987 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
988 {
989 struct nvme_ccb *ccb;
990 struct nvme_queue *q = sc->sc_admin_q;
991 int result = 0, error;
992
993 if (!nvme_has_volatile_write_cache(sc)) {
994 /* cache simply not present */
995 *addr = 0;
996 return 0;
997 }
998
999 ccb = nvme_ccb_get(q, true);
1000 KASSERT(ccb != NULL);
1001
1002 ccb->ccb_done = nvme_getcache_done;
1003 ccb->ccb_cookie = &result;
1004
1005 /* namespace context */
1006 ccb->nnc_flags = 0;
1007 ccb->nnc_done = NULL;
1008
1009 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
1010
1011 /* wait for completion */
1012 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
1013 KASSERT(result != 0);
1014
1015 if (result > 0) {
1016 *addr = result;
1017 error = 0;
1018 } else
1019 error = EINVAL;
1020
1021 return error;
1022 }
1023
1024 static void
1025 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1026 {
1027 struct nvme_sqe *sqe = slot;
1028
1029 sqe->opcode = NVM_ADMIN_GET_FEATURES;
1030 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1031 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1032 }
1033
1034 static void
1035 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1036 struct nvme_cqe *cqe)
1037 {
1038 int *addr = ccb->ccb_cookie;
1039 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1040 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
1041 int result;
1042
1043 if (status == NVME_CQE_SC_SUCCESS) {
1044 result = 0;
1045
1046 /*
1047 * DPO not supported, Dataset Management (DSM) field doesn't
1048 * specify the same semantics. FUA is always supported.
1049 */
1050 result = DKCACHE_FUA;
1051
1052 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
1053 result |= DKCACHE_WRITE;
1054
1055 /*
1056 * If volatile write cache is present, the flag shall also be
1057 * settable.
1058 */
1059 result |= DKCACHE_WCHANGE;
1060
1061 /*
1062 * ONCS field indicates whether the optional SAVE is also
1063 * supported for Set Features. According to spec v1.3,
1064 * Volatile Write Cache however doesn't support persistency
1065 * across power cycle/reset.
1066 */
1067
1068 } else {
1069 result = -1;
1070 }
1071
1072 *addr = result;
1073
1074 nvme_ccb_put(q, ccb);
1075 }
1076
1077 struct nvme_setcache_state {
1078 int dkcache;
1079 int result;
1080 };
1081
1082 static bool
1083 nvme_setcache_finished(void *xc)
1084 {
1085 struct nvme_setcache_state *st = xc;
1086
1087 return (st->result != 0);
1088 }
1089
1090 static void
1091 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1092 {
1093 struct nvme_sqe *sqe = slot;
1094 struct nvme_setcache_state *st = ccb->ccb_cookie;
1095
1096 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1097 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1098 if (st->dkcache & DKCACHE_WRITE)
1099 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1100 }
1101
1102 static void
1103 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1104 struct nvme_cqe *cqe)
1105 {
1106 struct nvme_setcache_state *st = ccb->ccb_cookie;
1107 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1108
1109 if (status == NVME_CQE_SC_SUCCESS) {
1110 st->result = 1;
1111 } else {
1112 st->result = -1;
1113 }
1114
1115 nvme_ccb_put(q, ccb);
1116 }
1117
1118 /*
1119 * Set status of volatile write cache. Always asynchronous.
1120 */
1121 int
1122 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1123 {
1124 struct nvme_ccb *ccb;
1125 struct nvme_queue *q = sc->sc_admin_q;
1126 int error;
1127 struct nvme_setcache_state st;
1128
1129 if (!nvme_has_volatile_write_cache(sc)) {
1130 /* cache simply not present */
1131 return EOPNOTSUPP;
1132 }
1133
1134 if (dkcache & ~(DKCACHE_WRITE)) {
1135 /* unsupported parameters */
1136 return EOPNOTSUPP;
1137 }
1138
1139 ccb = nvme_ccb_get(q, true);
1140 KASSERT(ccb != NULL);
1141
1142 memset(&st, 0, sizeof(st));
1143 st.dkcache = dkcache;
1144
1145 ccb->ccb_done = nvme_setcache_done;
1146 ccb->ccb_cookie = &st;
1147
1148 /* namespace context */
1149 ccb->nnc_flags = 0;
1150 ccb->nnc_done = NULL;
1151
1152 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1153
1154 /* wait for completion */
1155 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1156 KASSERT(st.result != 0);
1157
1158 if (st.result > 0)
1159 error = 0;
1160 else
1161 error = EINVAL;
1162
1163 return error;
1164 }
1165
1166 void
1167 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1168 {
1169 struct nvme_namespace *ns;
1170 struct nvm_identify_namespace *identify;
1171
1172 ns = nvme_ns_get(sc, nsid);
1173 KASSERT(ns);
1174
1175 identify = ns->ident;
1176 ns->ident = NULL;
1177 if (identify != NULL)
1178 kmem_free(identify, sizeof(*identify));
1179 }
1180
1181 struct nvme_pt_state {
1182 struct nvme_pt_command *pt;
1183 bool finished;
1184 };
1185
1186 static void
1187 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1188 {
1189 struct nvme_softc *sc = q->q_sc;
1190 struct nvme_sqe *sqe = slot;
1191 struct nvme_pt_state *state = ccb->ccb_cookie;
1192 struct nvme_pt_command *pt = state->pt;
1193 bus_dmamap_t dmap = ccb->ccb_dmamap;
1194 int i;
1195
1196 sqe->opcode = pt->cmd.opcode;
1197 htolem32(&sqe->nsid, pt->cmd.nsid);
1198
1199 if (pt->buf != NULL && pt->len > 0) {
1200 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1201 switch (dmap->dm_nsegs) {
1202 case 1:
1203 break;
1204 case 2:
1205 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1206 break;
1207 default:
1208 for (i = 1; i < dmap->dm_nsegs; i++) {
1209 htolem64(&ccb->ccb_prpl[i - 1],
1210 dmap->dm_segs[i].ds_addr);
1211 }
1212 bus_dmamap_sync(sc->sc_dmat,
1213 NVME_DMA_MAP(q->q_ccb_prpls),
1214 ccb->ccb_prpl_off,
1215 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1216 BUS_DMASYNC_PREWRITE);
1217 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1218 break;
1219 }
1220 }
1221
1222 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1223 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1224 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1225 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1226 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1227 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1228 }
1229
1230 static void
1231 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1232 {
1233 struct nvme_softc *sc = q->q_sc;
1234 struct nvme_pt_state *state = ccb->ccb_cookie;
1235 struct nvme_pt_command *pt = state->pt;
1236 bus_dmamap_t dmap = ccb->ccb_dmamap;
1237
1238 if (pt->buf != NULL && pt->len > 0) {
1239 if (dmap->dm_nsegs > 2) {
1240 bus_dmamap_sync(sc->sc_dmat,
1241 NVME_DMA_MAP(q->q_ccb_prpls),
1242 ccb->ccb_prpl_off,
1243 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1244 BUS_DMASYNC_POSTWRITE);
1245 }
1246
1247 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1248 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1249 bus_dmamap_unload(sc->sc_dmat, dmap);
1250 }
1251
1252 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1253 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1254
1255 state->finished = true;
1256
1257 nvme_ccb_put(q, ccb);
1258 }
1259
1260 static bool
1261 nvme_pt_finished(void *cookie)
1262 {
1263 struct nvme_pt_state *state = cookie;
1264
1265 return state->finished;
1266 }
1267
1268 static int
1269 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1270 uint32_t nsid, struct lwp *l, bool is_adminq)
1271 {
1272 struct nvme_queue *q;
1273 struct nvme_ccb *ccb;
1274 void *buf = NULL;
1275 struct nvme_pt_state state;
1276 int error;
1277
1278 /* limit command size to maximum data transfer size */
1279 if ((pt->buf == NULL && pt->len > 0) ||
1280 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1281 return EINVAL;
1282
1283 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1284 ccb = nvme_ccb_get(q, true);
1285 KASSERT(ccb != NULL);
1286
1287 if (pt->buf != NULL) {
1288 KASSERT(pt->len > 0);
1289 buf = kmem_alloc(pt->len, KM_SLEEP);
1290 if (!pt->is_read) {
1291 error = copyin(pt->buf, buf, pt->len);
1292 if (error)
1293 goto kmem_free;
1294 }
1295 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1296 pt->len, NULL,
1297 BUS_DMA_WAITOK |
1298 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1299 if (error)
1300 goto kmem_free;
1301 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1302 0, ccb->ccb_dmamap->dm_mapsize,
1303 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1304 }
1305
1306 memset(&state, 0, sizeof(state));
1307 state.pt = pt;
1308 state.finished = false;
1309
1310 ccb->ccb_done = nvme_pt_done;
1311 ccb->ccb_cookie = &state;
1312
1313 pt->cmd.nsid = nsid;
1314
1315 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1316
1317 /* wait for completion */
1318 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1319 KASSERT(state.finished);
1320
1321 error = 0;
1322
1323 if (buf != NULL) {
1324 if (error == 0 && pt->is_read)
1325 error = copyout(buf, pt->buf, pt->len);
1326 kmem_free:
1327 kmem_free(buf, pt->len);
1328 }
1329
1330 return error;
1331 }
1332
1333 uint32_t
1334 nvme_op_sq_enter(struct nvme_softc *sc,
1335 struct nvme_queue *q, struct nvme_ccb *ccb)
1336 {
1337 mutex_enter(&q->q_sq_mtx);
1338
1339 return nvme_op_sq_enter_locked(sc, q, ccb);
1340 }
1341
1342 uint32_t
1343 nvme_op_sq_enter_locked(struct nvme_softc *sc,
1344 struct nvme_queue *q, struct nvme_ccb *ccb)
1345 {
1346 return q->q_sq_tail;
1347 }
1348
1349 void
1350 nvme_op_sq_leave_locked(struct nvme_softc *sc,
1351 struct nvme_queue *q, struct nvme_ccb *ccb)
1352 {
1353 uint32_t tail;
1354
1355 tail = ++q->q_sq_tail;
1356 if (tail >= q->q_entries)
1357 tail = 0;
1358 q->q_sq_tail = tail;
1359 nvme_write4(sc, q->q_sqtdbl, tail);
1360 }
1361
1362 void
1363 nvme_op_sq_leave(struct nvme_softc *sc,
1364 struct nvme_queue *q, struct nvme_ccb *ccb)
1365 {
1366 nvme_op_sq_leave_locked(sc, q, ccb);
1367
1368 mutex_exit(&q->q_sq_mtx);
1369 }
1370
1371 static void
1372 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1373 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1374 {
1375 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1376 uint32_t tail;
1377
1378 tail = sc->sc_ops->op_sq_enter(sc, q, ccb);
1379
1380 sqe += tail;
1381
1382 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1383 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1384 memset(sqe, 0, sizeof(*sqe));
1385 (*fill)(q, ccb, sqe);
1386 htolem16(&sqe->cid, ccb->ccb_id);
1387 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1388 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1389
1390 sc->sc_ops->op_sq_leave(sc, q, ccb);
1391 }
1392
1393 struct nvme_poll_state {
1394 struct nvme_sqe s;
1395 struct nvme_cqe c;
1396 void *cookie;
1397 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1398 };
1399
1400 static int
1401 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1402 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1403 {
1404 struct nvme_poll_state state;
1405 uint16_t flags;
1406 int step = 10;
1407 int maxloop = timo_sec * 1000000 / step;
1408 int error = 0;
1409
1410 memset(&state, 0, sizeof(state));
1411 (*fill)(q, ccb, &state.s);
1412
1413 state.done = ccb->ccb_done;
1414 state.cookie = ccb->ccb_cookie;
1415
1416 ccb->ccb_done = nvme_poll_done;
1417 ccb->ccb_cookie = &state;
1418
1419 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1420 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1421 if (nvme_q_complete(sc, q) == 0)
1422 delay(step);
1423
1424 if (timo_sec >= 0 && --maxloop <= 0) {
1425 error = ETIMEDOUT;
1426 break;
1427 }
1428 }
1429
1430 if (error == 0) {
1431 flags = lemtoh16(&state.c.flags);
1432 return flags & ~NVME_CQE_PHASE;
1433 } else {
1434 /*
1435 * If it succeds later, it would hit ccb which will have been
1436 * already reused for something else. Not good. Cross
1437 * fingers and hope for best. XXX do controller reset?
1438 */
1439 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1440
1441 /* Invoke the callback to clean state anyway */
1442 struct nvme_cqe cqe;
1443 memset(&cqe, 0, sizeof(cqe));
1444 ccb->ccb_done(q, ccb, &cqe);
1445
1446 return 1;
1447 }
1448 }
1449
1450 static void
1451 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1452 {
1453 struct nvme_sqe *sqe = slot;
1454 struct nvme_poll_state *state = ccb->ccb_cookie;
1455
1456 *sqe = state->s;
1457 }
1458
1459 static void
1460 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1461 struct nvme_cqe *cqe)
1462 {
1463 struct nvme_poll_state *state = ccb->ccb_cookie;
1464
1465 state->c = *cqe;
1466 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1467
1468 ccb->ccb_cookie = state->cookie;
1469 state->done(q, ccb, &state->c);
1470 }
1471
1472 static void
1473 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1474 {
1475 struct nvme_sqe *src = ccb->ccb_cookie;
1476 struct nvme_sqe *dst = slot;
1477
1478 *dst = *src;
1479 }
1480
1481 static void
1482 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1483 struct nvme_cqe *cqe)
1484 {
1485 }
1486
1487 void
1488 nvme_op_cq_done(struct nvme_softc *sc,
1489 struct nvme_queue *q, struct nvme_ccb *ccb)
1490 {
1491 /* nop */
1492 }
1493
1494 static int
1495 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1496 {
1497 struct nvme_ccb *ccb;
1498 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1499 uint16_t flags;
1500 int rv = 0;
1501
1502 mutex_enter(&q->q_cq_mtx);
1503
1504 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1505 for (;;) {
1506 cqe = &ring[q->q_cq_head];
1507 flags = lemtoh16(&cqe->flags);
1508 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1509 break;
1510
1511 ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1512
1513 if (++q->q_cq_head >= q->q_entries) {
1514 q->q_cq_head = 0;
1515 q->q_cq_phase ^= NVME_CQE_PHASE;
1516 }
1517
1518 #ifdef DEBUG
1519 /*
1520 * If we get spurious completion notification, something
1521 * is seriously hosed up. Very likely DMA to some random
1522 * memory place happened, so just bail out.
1523 */
1524 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1525 panic("%s: invalid ccb detected",
1526 device_xname(sc->sc_dev));
1527 /* NOTREACHED */
1528 }
1529 #endif
1530
1531 rv++;
1532
1533 sc->sc_ops->op_cq_done(sc, q, ccb);
1534
1535 /*
1536 * Unlock the mutex before calling the ccb_done callback
1537 * and re-lock afterwards. The callback triggers lddone()
1538 * which schedules another i/o, and also calls nvme_ccb_put().
1539 * Unlock/relock avoids possibility of deadlock.
1540 */
1541 mutex_exit(&q->q_cq_mtx);
1542 ccb->ccb_done(q, ccb, cqe);
1543 mutex_enter(&q->q_cq_mtx);
1544 }
1545 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1546
1547 if (rv)
1548 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1549
1550 mutex_exit(&q->q_cq_mtx);
1551
1552 return rv;
1553 }
1554
1555 static void
1556 nvme_q_wait_complete(struct nvme_softc *sc,
1557 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1558 {
1559 mutex_enter(&q->q_ccb_mtx);
1560 if (finished(cookie))
1561 goto out;
1562
1563 for(;;) {
1564 q->q_ccb_waiting = true;
1565 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1566
1567 if (finished(cookie))
1568 break;
1569 }
1570
1571 out:
1572 mutex_exit(&q->q_ccb_mtx);
1573 }
1574
1575 static int
1576 nvme_identify(struct nvme_softc *sc, u_int mps)
1577 {
1578 char sn[41], mn[81], fr[17];
1579 struct nvm_identify_controller *identify;
1580 struct nvme_dmamem *mem;
1581 struct nvme_ccb *ccb;
1582 u_int mdts;
1583 int rv = 1;
1584
1585 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1586 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1587
1588 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1589 if (mem == NULL)
1590 return 1;
1591
1592 ccb->ccb_done = nvme_empty_done;
1593 ccb->ccb_cookie = mem;
1594
1595 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1596 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1597 NVME_TIMO_IDENT);
1598 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1599
1600 nvme_ccb_put(sc->sc_admin_q, ccb);
1601
1602 if (rv != 0)
1603 goto done;
1604
1605 identify = NVME_DMA_KVA(mem);
1606 sc->sc_identify = *identify;
1607 identify = NULL;
1608
1609 /* Convert data to host endian */
1610 nvme_identify_controller_swapbytes(&sc->sc_identify);
1611
1612 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1613 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1614 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1615 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1616 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1617 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1618 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1619 sn);
1620
1621 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1622
1623 if (sc->sc_identify.mdts > 0) {
1624 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1625 if (mdts < sc->sc_mdts)
1626 sc->sc_mdts = mdts;
1627 }
1628
1629 sc->sc_nn = sc->sc_identify.nn;
1630
1631 done:
1632 nvme_dmamem_free(sc, mem);
1633
1634 return rv;
1635 }
1636
1637 static int
1638 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1639 {
1640 struct nvme_sqe_q sqe;
1641 struct nvme_ccb *ccb;
1642 int rv;
1643
1644 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1645 return 1;
1646
1647 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1648 KASSERT(ccb != NULL);
1649
1650 ccb->ccb_done = nvme_empty_done;
1651 ccb->ccb_cookie = &sqe;
1652
1653 memset(&sqe, 0, sizeof(sqe));
1654 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1655 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1656 htolem16(&sqe.qsize, q->q_entries - 1);
1657 htolem16(&sqe.qid, q->q_id);
1658 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1659 if (sc->sc_use_mq)
1660 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1661
1662 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1663 if (rv != 0)
1664 goto fail;
1665
1666 ccb->ccb_done = nvme_empty_done;
1667 ccb->ccb_cookie = &sqe;
1668
1669 memset(&sqe, 0, sizeof(sqe));
1670 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1671 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1672 htolem16(&sqe.qsize, q->q_entries - 1);
1673 htolem16(&sqe.qid, q->q_id);
1674 htolem16(&sqe.cqid, q->q_id);
1675 sqe.qflags = NVM_SQE_Q_PC;
1676
1677 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1678 if (rv != 0)
1679 goto fail;
1680
1681 nvme_ccb_put(sc->sc_admin_q, ccb);
1682 return 0;
1683
1684 fail:
1685 if (sc->sc_use_mq)
1686 sc->sc_intr_disestablish(sc, q->q_id);
1687
1688 nvme_ccb_put(sc->sc_admin_q, ccb);
1689 return rv;
1690 }
1691
1692 static int
1693 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1694 {
1695 struct nvme_sqe_q sqe;
1696 struct nvme_ccb *ccb;
1697 int rv;
1698
1699 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1700 KASSERT(ccb != NULL);
1701
1702 ccb->ccb_done = nvme_empty_done;
1703 ccb->ccb_cookie = &sqe;
1704
1705 memset(&sqe, 0, sizeof(sqe));
1706 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1707 htolem16(&sqe.qid, q->q_id);
1708
1709 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1710 if (rv != 0)
1711 goto fail;
1712
1713 ccb->ccb_done = nvme_empty_done;
1714 ccb->ccb_cookie = &sqe;
1715
1716 memset(&sqe, 0, sizeof(sqe));
1717 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1718 htolem16(&sqe.qid, q->q_id);
1719
1720 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1721 if (rv != 0)
1722 goto fail;
1723
1724 fail:
1725 nvme_ccb_put(sc->sc_admin_q, ccb);
1726
1727 if (rv == 0 && sc->sc_use_mq) {
1728 if (sc->sc_intr_disestablish(sc, q->q_id))
1729 rv = 1;
1730 }
1731
1732 return rv;
1733 }
1734
1735 static void
1736 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1737 {
1738 struct nvme_sqe *sqe = slot;
1739 struct nvme_dmamem *mem = ccb->ccb_cookie;
1740
1741 sqe->opcode = NVM_ADMIN_IDENTIFY;
1742 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1743 htolem32(&sqe->cdw10, 1);
1744 }
1745
1746 static int
1747 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1748 u_int *nsqa)
1749 {
1750 struct nvme_pt_state state;
1751 struct nvme_pt_command pt;
1752 struct nvme_ccb *ccb;
1753 int rv;
1754
1755 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1756 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1757
1758 memset(&pt, 0, sizeof(pt));
1759 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1760 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1761 pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1762
1763 memset(&state, 0, sizeof(state));
1764 state.pt = &pt;
1765 state.finished = false;
1766
1767 ccb->ccb_done = nvme_pt_done;
1768 ccb->ccb_cookie = &state;
1769
1770 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1771
1772 if (rv != 0) {
1773 *ncqa = *nsqa = 0;
1774 return EIO;
1775 }
1776
1777 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1778 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1779
1780 return 0;
1781 }
1782
1783 static int
1784 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1785 {
1786 struct nvme_softc *sc = q->q_sc;
1787 struct nvme_ccb *ccb;
1788 bus_addr_t off;
1789 uint64_t *prpl;
1790 u_int i;
1791
1792 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1793 cv_init(&q->q_ccb_wait, "nvmeqw");
1794 q->q_ccb_waiting = false;
1795 SIMPLEQ_INIT(&q->q_ccb_list);
1796
1797 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1798
1799 q->q_nccbs = nccbs;
1800 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1801 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1802
1803 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1804 off = 0;
1805
1806 for (i = 0; i < nccbs; i++) {
1807 ccb = &q->q_ccbs[i];
1808
1809 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1810 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1811 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1812 &ccb->ccb_dmamap) != 0)
1813 goto free_maps;
1814
1815 ccb->ccb_id = i;
1816 ccb->ccb_prpl = prpl;
1817 ccb->ccb_prpl_off = off;
1818 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1819
1820 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1821
1822 prpl += sc->sc_max_sgl;
1823 off += sizeof(*prpl) * sc->sc_max_sgl;
1824 }
1825
1826 return 0;
1827
1828 free_maps:
1829 nvme_ccbs_free(q);
1830 return 1;
1831 }
1832
1833 static struct nvme_ccb *
1834 nvme_ccb_get(struct nvme_queue *q, bool wait)
1835 {
1836 struct nvme_ccb *ccb = NULL;
1837
1838 mutex_enter(&q->q_ccb_mtx);
1839 again:
1840 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1841 if (ccb != NULL) {
1842 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1843 #ifdef DEBUG
1844 ccb->ccb_cookie = NULL;
1845 #endif
1846 } else {
1847 if (__predict_false(wait)) {
1848 q->q_ccb_waiting = true;
1849 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1850 goto again;
1851 }
1852 }
1853 mutex_exit(&q->q_ccb_mtx);
1854
1855 return ccb;
1856 }
1857
1858 static struct nvme_ccb *
1859 nvme_ccb_get_bio(struct nvme_softc *sc, struct buf *bp,
1860 struct nvme_queue **selq)
1861 {
1862 u_int cpuindex = cpu_index(bp->b_ci);
1863
1864 /*
1865 * Find a queue with available ccbs, preferring the originating
1866 * CPU's queue.
1867 */
1868
1869 for (u_int qoff = 0; qoff < sc->sc_nq; qoff++) {
1870 struct nvme_queue *q = sc->sc_q[(cpuindex + qoff) % sc->sc_nq];
1871 struct nvme_ccb *ccb;
1872
1873 mutex_enter(&q->q_ccb_mtx);
1874 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1875 if (ccb != NULL) {
1876 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1877 #ifdef DEBUG
1878 ccb->ccb_cookie = NULL;
1879 #endif
1880 }
1881 mutex_exit(&q->q_ccb_mtx);
1882
1883 if (ccb != NULL) {
1884 *selq = q;
1885 return ccb;
1886 }
1887 }
1888
1889 return NULL;
1890 }
1891
1892 static void
1893 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1894 {
1895
1896 mutex_enter(&q->q_ccb_mtx);
1897 #ifdef DEBUG
1898 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1899 #endif
1900 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1901
1902 /* It's unlikely there are any waiters, it's not used for regular I/O */
1903 if (__predict_false(q->q_ccb_waiting)) {
1904 q->q_ccb_waiting = false;
1905 cv_broadcast(&q->q_ccb_wait);
1906 }
1907
1908 mutex_exit(&q->q_ccb_mtx);
1909 }
1910
1911 static void
1912 nvme_ccbs_free(struct nvme_queue *q)
1913 {
1914 struct nvme_softc *sc = q->q_sc;
1915 struct nvme_ccb *ccb;
1916
1917 mutex_enter(&q->q_ccb_mtx);
1918 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1919 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1920 /*
1921 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1922 * internally. don't hold spin mutex
1923 */
1924 mutex_exit(&q->q_ccb_mtx);
1925 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1926 mutex_enter(&q->q_ccb_mtx);
1927 }
1928 mutex_exit(&q->q_ccb_mtx);
1929
1930 nvme_dmamem_free(sc, q->q_ccb_prpls);
1931 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1932 q->q_ccbs = NULL;
1933 cv_destroy(&q->q_ccb_wait);
1934 mutex_destroy(&q->q_ccb_mtx);
1935 }
1936
1937 static struct nvme_queue *
1938 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1939 {
1940 struct nvme_queue *q;
1941
1942 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1943 q->q_sc = sc;
1944 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1945 sizeof(struct nvme_sqe) * entries);
1946 if (q->q_sq_dmamem == NULL)
1947 goto free;
1948
1949 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1950 sizeof(struct nvme_cqe) * entries);
1951 if (q->q_cq_dmamem == NULL)
1952 goto free_sq;
1953
1954 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1955 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1956
1957 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1958 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1959 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1960 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1961 q->q_id = id;
1962 q->q_entries = entries;
1963 q->q_sq_tail = 0;
1964 q->q_cq_head = 0;
1965 q->q_cq_phase = NVME_CQE_PHASE;
1966
1967 if (sc->sc_ops->op_q_alloc != NULL) {
1968 if (sc->sc_ops->op_q_alloc(sc, q) != 0)
1969 goto free_cq;
1970 }
1971
1972 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1973 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1974
1975 /*
1976 * Due to definition of full and empty queue (queue is empty
1977 * when head == tail, full when tail is one less then head),
1978 * we can actually only have (entries - 1) in-flight commands.
1979 */
1980 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1981 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1982 goto free_cq;
1983 }
1984
1985 return q;
1986
1987 free_cq:
1988 nvme_dmamem_free(sc, q->q_cq_dmamem);
1989 free_sq:
1990 nvme_dmamem_free(sc, q->q_sq_dmamem);
1991 free:
1992 kmem_free(q, sizeof(*q));
1993
1994 return NULL;
1995 }
1996
1997 static void
1998 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
1999 {
2000
2001 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
2002 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
2003
2004 q->q_sq_tail = 0;
2005 q->q_cq_head = 0;
2006 q->q_cq_phase = NVME_CQE_PHASE;
2007
2008 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
2009 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
2010 }
2011
2012 static void
2013 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
2014 {
2015 nvme_ccbs_free(q);
2016 mutex_destroy(&q->q_sq_mtx);
2017 mutex_destroy(&q->q_cq_mtx);
2018 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
2019 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
2020
2021 if (sc->sc_ops->op_q_alloc != NULL)
2022 sc->sc_ops->op_q_free(sc, q);
2023
2024 nvme_dmamem_free(sc, q->q_cq_dmamem);
2025 nvme_dmamem_free(sc, q->q_sq_dmamem);
2026 kmem_free(q, sizeof(*q));
2027 }
2028
2029 int
2030 nvme_intr(void *xsc)
2031 {
2032 struct nvme_softc *sc = xsc;
2033
2034 /*
2035 * INTx is level triggered, controller deasserts the interrupt only
2036 * when we advance command queue head via write to the doorbell.
2037 * Tell the controller to block the interrupts while we process
2038 * the queue(s).
2039 */
2040 nvme_write4(sc, NVME_INTMS, 1);
2041
2042 softint_schedule(sc->sc_softih[0]);
2043
2044 /* don't know, might not have been for us */
2045 return 1;
2046 }
2047
2048 void
2049 nvme_softintr_intx(void *xq)
2050 {
2051 struct nvme_queue *q = xq;
2052 struct nvme_softc *sc = q->q_sc;
2053
2054 nvme_q_complete(sc, sc->sc_admin_q);
2055 if (sc->sc_q != NULL)
2056 nvme_q_complete(sc, sc->sc_q[0]);
2057
2058 /*
2059 * Processing done, tell controller to issue interrupts again. There
2060 * is no race, as NVMe spec requires the controller to maintain state,
2061 * and assert the interrupt whenever there are unacknowledged
2062 * completion queue entries.
2063 */
2064 nvme_write4(sc, NVME_INTMC, 1);
2065 }
2066
2067 int
2068 nvme_intr_msi(void *xq)
2069 {
2070 struct nvme_queue *q = xq;
2071
2072 KASSERT(q && q->q_sc && q->q_sc->sc_softih
2073 && q->q_sc->sc_softih[q->q_id]);
2074
2075 /*
2076 * MSI/MSI-X are edge triggered, so can handover processing to softint
2077 * without masking the interrupt.
2078 */
2079 softint_schedule(q->q_sc->sc_softih[q->q_id]);
2080
2081 return 1;
2082 }
2083
2084 void
2085 nvme_softintr_msi(void *xq)
2086 {
2087 struct nvme_queue *q = xq;
2088 struct nvme_softc *sc = q->q_sc;
2089
2090 nvme_q_complete(sc, q);
2091 }
2092
2093 struct nvme_dmamem *
2094 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
2095 {
2096 struct nvme_dmamem *ndm;
2097 int nsegs;
2098
2099 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
2100 if (ndm == NULL)
2101 return NULL;
2102
2103 ndm->ndm_size = size;
2104
2105 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
2106 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
2107 goto ndmfree;
2108
2109 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
2110 1, &nsegs, BUS_DMA_WAITOK) != 0)
2111 goto destroy;
2112
2113 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
2114 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
2115 goto free;
2116
2117 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
2118 NULL, BUS_DMA_WAITOK) != 0)
2119 goto unmap;
2120
2121 memset(ndm->ndm_kva, 0, size);
2122 bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
2123
2124 return ndm;
2125
2126 unmap:
2127 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
2128 free:
2129 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2130 destroy:
2131 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2132 ndmfree:
2133 kmem_free(ndm, sizeof(*ndm));
2134 return NULL;
2135 }
2136
2137 void
2138 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
2139 {
2140 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
2141 0, NVME_DMA_LEN(mem), ops);
2142 }
2143
2144 void
2145 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
2146 {
2147 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
2148 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
2149 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2150 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2151 kmem_free(ndm, sizeof(*ndm));
2152 }
2153
2154 /*
2155 * ioctl
2156 */
2157
2158 dev_type_open(nvmeopen);
2159 dev_type_close(nvmeclose);
2160 dev_type_ioctl(nvmeioctl);
2161
2162 const struct cdevsw nvme_cdevsw = {
2163 .d_open = nvmeopen,
2164 .d_close = nvmeclose,
2165 .d_read = noread,
2166 .d_write = nowrite,
2167 .d_ioctl = nvmeioctl,
2168 .d_stop = nostop,
2169 .d_tty = notty,
2170 .d_poll = nopoll,
2171 .d_mmap = nommap,
2172 .d_kqfilter = nokqfilter,
2173 .d_discard = nodiscard,
2174 .d_flag = D_OTHER,
2175 };
2176
2177 /*
2178 * Accept an open operation on the control device.
2179 */
2180 int
2181 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2182 {
2183 struct nvme_softc *sc;
2184 int unit = minor(dev) / 0x10000;
2185 int nsid = minor(dev) & 0xffff;
2186 int nsidx;
2187
2188 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2189 return ENXIO;
2190 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2191 return ENXIO;
2192
2193 if (nsid == 0) {
2194 /* controller */
2195 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2196 return EBUSY;
2197 SET(sc->sc_flags, NVME_F_OPEN);
2198 } else {
2199 /* namespace */
2200 nsidx = nsid - 1;
2201 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2202 return ENXIO;
2203 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2204 return EBUSY;
2205 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2206 }
2207 return 0;
2208 }
2209
2210 /*
2211 * Accept the last close on the control device.
2212 */
2213 int
2214 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2215 {
2216 struct nvme_softc *sc;
2217 int unit = minor(dev) / 0x10000;
2218 int nsid = minor(dev) & 0xffff;
2219 int nsidx;
2220
2221 sc = device_lookup_private(&nvme_cd, unit);
2222 if (sc == NULL)
2223 return ENXIO;
2224
2225 if (nsid == 0) {
2226 /* controller */
2227 CLR(sc->sc_flags, NVME_F_OPEN);
2228 } else {
2229 /* namespace */
2230 nsidx = nsid - 1;
2231 if (nsidx >= sc->sc_nn)
2232 return ENXIO;
2233 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2234 }
2235
2236 return 0;
2237 }
2238
2239 /*
2240 * Handle control operations.
2241 */
2242 int
2243 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2244 {
2245 struct nvme_softc *sc;
2246 int unit = minor(dev) / 0x10000;
2247 int nsid = minor(dev) & 0xffff;
2248 struct nvme_pt_command *pt;
2249
2250 sc = device_lookup_private(&nvme_cd, unit);
2251 if (sc == NULL)
2252 return ENXIO;
2253
2254 switch (cmd) {
2255 case NVME_PASSTHROUGH_CMD:
2256 pt = data;
2257 return nvme_command_passthrough(sc, data,
2258 nsid == 0 ? pt->cmd.nsid : (uint32_t)nsid, l, nsid == 0);
2259 }
2260
2261 return ENOTTY;
2262 }
2263