nvme.c revision 1.67.4.1 1 /* $NetBSD: nvme.c,v 1.67.4.1 2024/03/12 09:58:26 martin Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.67.4.1 2024/03/12 09:58:26 martin Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 #include "ioconf.h"
44 #include "locators.h"
45
46 #define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
47
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50
51 static int nvme_print(void *, const char *);
52
53 static int nvme_ready(struct nvme_softc *, uint32_t);
54 static int nvme_enable(struct nvme_softc *, u_int);
55 static int nvme_disable(struct nvme_softc *);
56 static int nvme_shutdown(struct nvme_softc *);
57
58 uint32_t nvme_op_sq_enter(struct nvme_softc *,
59 struct nvme_queue *, struct nvme_ccb *);
60 void nvme_op_sq_leave(struct nvme_softc *,
61 struct nvme_queue *, struct nvme_ccb *);
62 uint32_t nvme_op_sq_enter_locked(struct nvme_softc *,
63 struct nvme_queue *, struct nvme_ccb *);
64 void nvme_op_sq_leave_locked(struct nvme_softc *,
65 struct nvme_queue *, struct nvme_ccb *);
66
67 void nvme_op_cq_done(struct nvme_softc *,
68 struct nvme_queue *, struct nvme_ccb *);
69
70 static const struct nvme_ops nvme_ops = {
71 .op_sq_enter = nvme_op_sq_enter,
72 .op_sq_leave = nvme_op_sq_leave,
73 .op_sq_enter_locked = nvme_op_sq_enter_locked,
74 .op_sq_leave_locked = nvme_op_sq_leave_locked,
75
76 .op_cq_done = nvme_op_cq_done,
77 };
78
79 #ifdef NVME_DEBUG
80 static void nvme_dumpregs(struct nvme_softc *);
81 #endif
82 static int nvme_identify(struct nvme_softc *, u_int);
83 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
84 void *);
85
86 static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
87 static void nvme_ccbs_free(struct nvme_queue *);
88
89 static struct nvme_ccb *
90 nvme_ccb_get(struct nvme_queue *, bool);
91 static struct nvme_ccb *
92 nvme_ccb_get_bio(struct nvme_softc *, struct buf *,
93 struct nvme_queue **);
94 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
95
96 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
97 struct nvme_ccb *, void (*)(struct nvme_queue *,
98 struct nvme_ccb *, void *), int);
99 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
100 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
101 struct nvme_cqe *);
102 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
103 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
104 struct nvme_cqe *);
105
106 static struct nvme_queue *
107 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
108 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
109 static void nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
110 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
111 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
112 struct nvme_ccb *, void (*)(struct nvme_queue *,
113 struct nvme_ccb *, void *));
114 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
115 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
116 static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
117 bool (*)(void *), void *);
118
119 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
120 void *);
121 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
122 struct nvme_cqe *);
123 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
124 void *);
125 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
126 struct nvme_cqe *);
127 static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
128 void *);
129 static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
130 struct nvme_cqe *);
131
132 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
133 void *);
134 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
135 struct nvme_cqe *);
136 static int nvme_command_passthrough(struct nvme_softc *,
137 struct nvme_pt_command *, uint32_t, struct lwp *, bool);
138
139 static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
140 u_int *);
141
142 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
143 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
144 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
145 #define NVME_TIMO_SY 60 /* sync cache timeout */
146
147 /*
148 * Some controllers, at least Apple NVMe, always require split
149 * transfers, so don't use bus_space_{read,write}_8() on LP64.
150 */
151 uint64_t
152 nvme_read8(struct nvme_softc *sc, bus_size_t r)
153 {
154 uint64_t v;
155 uint32_t *a = (uint32_t *)&v;
156
157 #if _BYTE_ORDER == _LITTLE_ENDIAN
158 a[0] = nvme_read4(sc, r);
159 a[1] = nvme_read4(sc, r + 4);
160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
161 a[1] = nvme_read4(sc, r);
162 a[0] = nvme_read4(sc, r + 4);
163 #endif
164
165 return v;
166 }
167
168 void
169 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
170 {
171 uint32_t *a = (uint32_t *)&v;
172
173 #if _BYTE_ORDER == _LITTLE_ENDIAN
174 nvme_write4(sc, r, a[0]);
175 nvme_write4(sc, r + 4, a[1]);
176 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
177 nvme_write4(sc, r, a[1]);
178 nvme_write4(sc, r + 4, a[0]);
179 #endif
180 }
181
182 #ifdef NVME_DEBUG
183 static __used void
184 nvme_dumpregs(struct nvme_softc *sc)
185 {
186 uint64_t r8;
187 uint32_t r4;
188
189 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
190 r8 = nvme_read8(sc, NVME_CAP);
191 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
192 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
193 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
194 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
195 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
196 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
197 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
198 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
199 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
200 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
201 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
202 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
203
204 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
205
206 r4 = nvme_read4(sc, NVME_CC);
207 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
208 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
209 (1 << NVME_CC_IOCQES_R(r4)));
210 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
211 (1 << NVME_CC_IOSQES_R(r4)));
212 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
213 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
214 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
215 (1 << NVME_CC_MPS_R(r4)));
216 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
217 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
218
219 r4 = nvme_read4(sc, NVME_CSTS);
220 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
221 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
222 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
223 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
224
225 r4 = nvme_read4(sc, NVME_AQA);
226 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
227 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
228 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
229
230 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef DEVNAME
233 }
234 #endif /* NVME_DEBUG */
235
236 static int
237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 u_int i = 0;
240
241 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
242 if (i++ > sc->sc_rdy_to)
243 return ENXIO;
244
245 delay(1000);
246 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
247 }
248
249 return 0;
250 }
251
252 static int
253 nvme_enable(struct nvme_softc *sc, u_int mps)
254 {
255 uint32_t cc, csts;
256 int error;
257
258 cc = nvme_read4(sc, NVME_CC);
259 csts = nvme_read4(sc, NVME_CSTS);
260
261 /*
262 * See note in nvme_disable. Short circuit if we're already enabled.
263 */
264 if (ISSET(cc, NVME_CC_EN)) {
265 if (ISSET(csts, NVME_CSTS_RDY))
266 return 0;
267
268 goto waitready;
269 } else {
270 /* EN == 0 already wait for RDY == 0 or fail */
271 error = nvme_ready(sc, 0);
272 if (error)
273 return error;
274 }
275
276 if (sc->sc_ops->op_enable != NULL)
277 sc->sc_ops->op_enable(sc);
278
279 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
280 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
281 delay(5000);
282 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
283 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
284 delay(5000);
285
286 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
287 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
288 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
289 delay(5000);
290
291 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
292 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
293 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
294 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
295 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
296 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
297 SET(cc, NVME_CC_MPS(mps));
298 SET(cc, NVME_CC_EN);
299
300 nvme_write4(sc, NVME_CC, cc);
301 nvme_barrier(sc, 0, sc->sc_ios,
302 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
303
304 waitready:
305 return nvme_ready(sc, NVME_CSTS_RDY);
306 }
307
308 static int
309 nvme_disable(struct nvme_softc *sc)
310 {
311 uint32_t cc, csts;
312 int error;
313
314 cc = nvme_read4(sc, NVME_CC);
315 csts = nvme_read4(sc, NVME_CSTS);
316
317 /*
318 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
319 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
320 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
321 * isn't the desired value. Short circuit if we're already disabled.
322 */
323 if (ISSET(cc, NVME_CC_EN)) {
324 if (!ISSET(csts, NVME_CSTS_RDY)) {
325 /* EN == 1, wait for RDY == 1 or fail */
326 error = nvme_ready(sc, NVME_CSTS_RDY);
327 if (error)
328 return error;
329 }
330 } else {
331 /* EN == 0 already wait for RDY == 0 */
332 if (!ISSET(csts, NVME_CSTS_RDY))
333 return 0;
334
335 goto waitready;
336 }
337
338 CLR(cc, NVME_CC_EN);
339 nvme_write4(sc, NVME_CC, cc);
340 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
341
342 /*
343 * Some drives have issues with accessing the mmio after we disable,
344 * so delay for a bit after we write the bit to cope with these issues.
345 */
346 if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
347 delay(B4_CHK_RDY_DELAY_MS);
348
349 waitready:
350 return nvme_ready(sc, 0);
351 }
352
353 int
354 nvme_attach(struct nvme_softc *sc)
355 {
356 uint64_t cap;
357 uint32_t reg;
358 u_int mps = PAGE_SHIFT;
359 u_int ncq, nsq;
360 uint16_t adminq_entries = nvme_adminq_size;
361 uint16_t ioq_entries = nvme_ioq_size;
362 int i;
363
364 if (sc->sc_ops == NULL)
365 sc->sc_ops = &nvme_ops;
366
367 reg = nvme_read4(sc, NVME_VS);
368 if (reg == 0xffffffff) {
369 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
370 return 1;
371 }
372
373 if (NVME_VS_TER(reg) == 0)
374 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
375 NVME_VS_MNR(reg));
376 else
377 aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
378 NVME_VS_MNR(reg), NVME_VS_TER(reg));
379
380 cap = nvme_read8(sc, NVME_CAP);
381 sc->sc_dstrd = NVME_CAP_DSTRD(cap);
382 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
383 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
384 "is greater than CPU page size %u\n",
385 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
386 return 1;
387 }
388 if (NVME_CAP_MPSMAX(cap) < mps)
389 mps = NVME_CAP_MPSMAX(cap);
390 if (ioq_entries > NVME_CAP_MQES(cap))
391 ioq_entries = NVME_CAP_MQES(cap);
392
393 /* set initial values to be used for admin queue during probe */
394 sc->sc_rdy_to = NVME_CAP_TO(cap);
395 sc->sc_mps = 1 << mps;
396 sc->sc_mdts = MAXPHYS;
397 sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
398
399 if (nvme_disable(sc) != 0) {
400 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
401 return 1;
402 }
403
404 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
405 sc->sc_dstrd);
406 if (sc->sc_admin_q == NULL) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to allocate admin queue\n");
409 return 1;
410 }
411 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
412 goto free_admin_q;
413
414 if (nvme_enable(sc, mps) != 0) {
415 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
416 goto disestablish_admin_q;
417 }
418
419 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
420 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
421 goto disable;
422 }
423 if (sc->sc_nn == 0) {
424 aprint_error_dev(sc->sc_dev, "namespace not found\n");
425 goto disable;
426 }
427
428 /* we know how big things are now */
429 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
430
431 /* reallocate ccbs of admin queue with new max sgl. */
432 nvme_ccbs_free(sc->sc_admin_q);
433 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
434
435 if (sc->sc_use_mq) {
436 /* Limit the number of queues to the number allocated in HW */
437 if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
438 aprint_error_dev(sc->sc_dev,
439 "unable to get number of queues\n");
440 goto disable;
441 }
442 if (sc->sc_nq > ncq)
443 sc->sc_nq = ncq;
444 if (sc->sc_nq > nsq)
445 sc->sc_nq = nsq;
446 }
447
448 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
449 for (i = 0; i < sc->sc_nq; i++) {
450 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
451 sc->sc_dstrd);
452 if (sc->sc_q[i] == NULL) {
453 aprint_error_dev(sc->sc_dev,
454 "unable to allocate io queue\n");
455 goto free_q;
456 }
457 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
458 aprint_error_dev(sc->sc_dev,
459 "unable to create io queue\n");
460 nvme_q_free(sc, sc->sc_q[i]);
461 goto free_q;
462 }
463 }
464
465 if (!sc->sc_use_mq)
466 nvme_write4(sc, NVME_INTMC, 1);
467
468 /* probe subdevices */
469 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
470 KM_SLEEP);
471 nvme_rescan(sc->sc_dev, NULL, NULL);
472
473 return 0;
474
475 free_q:
476 while (--i >= 0) {
477 nvme_q_delete(sc, sc->sc_q[i]);
478 nvme_q_free(sc, sc->sc_q[i]);
479 }
480 disable:
481 nvme_disable(sc);
482 disestablish_admin_q:
483 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
484 free_admin_q:
485 nvme_q_free(sc, sc->sc_admin_q);
486
487 return 1;
488 }
489
490 int
491 nvme_rescan(device_t self, const char *ifattr, const int *locs)
492 {
493 struct nvme_softc *sc = device_private(self);
494 struct nvme_attach_args naa;
495 struct nvm_namespace_format *f;
496 struct nvme_namespace *ns;
497 uint64_t cap;
498 int ioq_entries = nvme_ioq_size;
499 int i, mlocs[NVMECF_NLOCS];
500 int error;
501
502 cap = nvme_read8(sc, NVME_CAP);
503 if (ioq_entries > NVME_CAP_MQES(cap))
504 ioq_entries = NVME_CAP_MQES(cap);
505
506 for (i = 1; i <= sc->sc_nn; i++) {
507 if (sc->sc_namespaces[i - 1].dev)
508 continue;
509
510 /* identify to check for availability */
511 error = nvme_ns_identify(sc, i);
512 if (error) {
513 aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
514 continue;
515 }
516
517 ns = nvme_ns_get(sc, i);
518 KASSERT(ns);
519
520 f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
521
522 /*
523 * NVME1.0e 6.11 Identify command
524 *
525 * LBADS values smaller than 9 are not supported, a value
526 * of zero means that the format is not used.
527 */
528 if (f->lbads < 9) {
529 if (f->lbads > 0)
530 aprint_error_dev(self,
531 "unsupported logical data size %u\n", f->lbads);
532 continue;
533 }
534
535 mlocs[NVMECF_NSID] = i;
536
537 memset(&naa, 0, sizeof(naa));
538 naa.naa_nsid = i;
539 naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
540 naa.naa_maxphys = sc->sc_mdts;
541 naa.naa_typename = sc->sc_modelname;
542 sc->sc_namespaces[i - 1].dev =
543 config_found(sc->sc_dev, &naa, nvme_print,
544 CFARGS(.submatch = config_stdsubmatch,
545 .locators = mlocs));
546 }
547 return 0;
548 }
549
550 static int
551 nvme_print(void *aux, const char *pnp)
552 {
553 struct nvme_attach_args *naa = aux;
554
555 if (pnp)
556 aprint_normal("ld at %s", pnp);
557
558 if (naa->naa_nsid > 0)
559 aprint_normal(" nsid %d", naa->naa_nsid);
560
561 return UNCONF;
562 }
563
564 int
565 nvme_detach(struct nvme_softc *sc, int flags)
566 {
567 int i, error;
568
569 error = config_detach_children(sc->sc_dev, flags);
570 if (error)
571 return error;
572
573 error = nvme_shutdown(sc);
574 if (error)
575 return error;
576
577 /* from now on we are committed to detach, following will never fail */
578 for (i = 0; i < sc->sc_nq; i++)
579 nvme_q_free(sc, sc->sc_q[i]);
580 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
581 nvme_q_free(sc, sc->sc_admin_q);
582
583 return 0;
584 }
585
586 int
587 nvme_suspend(struct nvme_softc *sc)
588 {
589
590 return nvme_shutdown(sc);
591 }
592
593 int
594 nvme_resume(struct nvme_softc *sc)
595 {
596 int i, error;
597
598 error = nvme_disable(sc);
599 if (error) {
600 device_printf(sc->sc_dev, "unable to disable controller\n");
601 return error;
602 }
603
604 nvme_q_reset(sc, sc->sc_admin_q);
605 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q)) {
606 error = EIO;
607 device_printf(sc->sc_dev, "unable to establish admin q\n");
608 goto disable;
609 }
610
611 error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
612 if (error) {
613 device_printf(sc->sc_dev, "unable to enable controller\n");
614 return error;
615 }
616
617 for (i = 0; i < sc->sc_nq; i++) {
618 nvme_q_reset(sc, sc->sc_q[i]);
619 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
620 error = EIO;
621 device_printf(sc->sc_dev, "unable to create io q %d"
622 "\n", i);
623 goto disable;
624 }
625 }
626
627 nvme_write4(sc, NVME_INTMC, 1);
628
629 return 0;
630
631 disable:
632 (void)nvme_disable(sc);
633
634 return error;
635 }
636
637 static int
638 nvme_shutdown(struct nvme_softc *sc)
639 {
640 uint32_t cc, csts;
641 bool disabled = false;
642 int i;
643
644 if (!sc->sc_use_mq)
645 nvme_write4(sc, NVME_INTMS, 1);
646
647 for (i = 0; i < sc->sc_nq; i++) {
648 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
649 aprint_error_dev(sc->sc_dev,
650 "unable to delete io queue %d, disabling\n", i + 1);
651 disabled = true;
652 }
653 }
654 if (disabled)
655 goto disable;
656
657 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
658
659 cc = nvme_read4(sc, NVME_CC);
660 CLR(cc, NVME_CC_SHN_MASK);
661 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
662 nvme_write4(sc, NVME_CC, cc);
663
664 for (i = 0; i < 4000; i++) {
665 nvme_barrier(sc, 0, sc->sc_ios,
666 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
667 csts = nvme_read4(sc, NVME_CSTS);
668 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
669 return 0;
670
671 delay(1000);
672 }
673
674 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
675
676 disable:
677 nvme_disable(sc);
678 return 0;
679 }
680
681 void
682 nvme_childdet(device_t self, device_t child)
683 {
684 struct nvme_softc *sc = device_private(self);
685 int i;
686
687 for (i = 0; i < sc->sc_nn; i++) {
688 if (sc->sc_namespaces[i].dev == child) {
689 /* Already freed ns->ident. */
690 sc->sc_namespaces[i].dev = NULL;
691 break;
692 }
693 }
694 }
695
696 int
697 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
698 {
699 struct nvme_sqe sqe;
700 struct nvm_identify_namespace *identify;
701 struct nvme_dmamem *mem;
702 struct nvme_ccb *ccb;
703 struct nvme_namespace *ns;
704 int rv;
705
706 KASSERT(nsid > 0);
707
708 ns = nvme_ns_get(sc, nsid);
709 KASSERT(ns);
710
711 if (ns->ident != NULL)
712 return 0;
713
714 ccb = nvme_ccb_get(sc->sc_admin_q, false);
715 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
716
717 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
718 if (mem == NULL) {
719 nvme_ccb_put(sc->sc_admin_q, ccb);
720 return ENOMEM;
721 }
722
723 memset(&sqe, 0, sizeof(sqe));
724 sqe.opcode = NVM_ADMIN_IDENTIFY;
725 htolem32(&sqe.nsid, nsid);
726 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
727 htolem32(&sqe.cdw10, 0);
728
729 ccb->ccb_done = nvme_empty_done;
730 ccb->ccb_cookie = &sqe;
731
732 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
733 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
734 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
735
736 nvme_ccb_put(sc->sc_admin_q, ccb);
737
738 if (rv != 0) {
739 rv = EIO;
740 goto done;
741 }
742
743 /* commit */
744
745 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
746 *identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
747
748 /* Convert data to host endian */
749 nvme_identify_namespace_swapbytes(identify);
750
751 ns->ident = identify;
752
753 done:
754 nvme_dmamem_free(sc, mem);
755
756 return rv;
757 }
758
759 int
760 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
761 struct buf *bp, void *data, size_t datasize,
762 int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
763 {
764 struct nvme_queue *q;
765 struct nvme_ccb *ccb;
766 bus_dmamap_t dmap;
767 int i, error;
768
769 ccb = nvme_ccb_get_bio(sc, bp, &q);
770 if (ccb == NULL)
771 return EAGAIN;
772
773 ccb->ccb_done = nvme_ns_io_done;
774 ccb->ccb_cookie = cookie;
775
776 /* namespace context */
777 ccb->nnc_nsid = nsid;
778 ccb->nnc_flags = flags;
779 ccb->nnc_buf = bp;
780 ccb->nnc_datasize = datasize;
781 ccb->nnc_secsize = secsize;
782 ccb->nnc_blkno = blkno;
783 ccb->nnc_done = nnc_done;
784
785 dmap = ccb->ccb_dmamap;
786 error = bus_dmamap_load(sc->sc_dmat, dmap, data,
787 datasize, NULL,
788 (ISSET(flags, NVME_NS_CTX_F_POLL) ?
789 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
790 (ISSET(flags, NVME_NS_CTX_F_READ) ?
791 BUS_DMA_READ : BUS_DMA_WRITE));
792 if (error) {
793 nvme_ccb_put(q, ccb);
794 return error;
795 }
796
797 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
798 ISSET(flags, NVME_NS_CTX_F_READ) ?
799 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
800
801 if (dmap->dm_nsegs > 2) {
802 for (i = 1; i < dmap->dm_nsegs; i++) {
803 htolem64(&ccb->ccb_prpl[i - 1],
804 dmap->dm_segs[i].ds_addr);
805 }
806 bus_dmamap_sync(sc->sc_dmat,
807 NVME_DMA_MAP(q->q_ccb_prpls),
808 ccb->ccb_prpl_off,
809 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
810 BUS_DMASYNC_PREWRITE);
811 }
812
813 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
814 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
815 return EIO;
816 return 0;
817 }
818
819 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
820 return 0;
821 }
822
823 static void
824 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
825 {
826 struct nvme_sqe_io *sqe = slot;
827 bus_dmamap_t dmap = ccb->ccb_dmamap;
828
829 sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
830 NVM_CMD_READ : NVM_CMD_WRITE;
831 htolem32(&sqe->nsid, ccb->nnc_nsid);
832
833 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
834 switch (dmap->dm_nsegs) {
835 case 1:
836 break;
837 case 2:
838 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
839 break;
840 default:
841 /* the prp list is already set up and synced */
842 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
843 break;
844 }
845
846 htolem64(&sqe->slba, ccb->nnc_blkno);
847
848 if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
849 htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
850
851 /* guaranteed by upper layers, but check just in case */
852 KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
853 htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
854 }
855
856 static void
857 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
858 struct nvme_cqe *cqe)
859 {
860 struct nvme_softc *sc = q->q_sc;
861 bus_dmamap_t dmap = ccb->ccb_dmamap;
862 void *nnc_cookie = ccb->ccb_cookie;
863 nvme_nnc_done nnc_done = ccb->nnc_done;
864 struct buf *bp = ccb->nnc_buf;
865
866 if (dmap->dm_nsegs > 2) {
867 bus_dmamap_sync(sc->sc_dmat,
868 NVME_DMA_MAP(q->q_ccb_prpls),
869 ccb->ccb_prpl_off,
870 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
871 BUS_DMASYNC_POSTWRITE);
872 }
873
874 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
875 ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
876 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
877
878 bus_dmamap_unload(sc->sc_dmat, dmap);
879 nvme_ccb_put(q, ccb);
880
881 nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
882 }
883
884 /*
885 * If there is no volatile write cache, it makes no sense to issue
886 * flush commands or query for the status.
887 */
888 static bool
889 nvme_has_volatile_write_cache(struct nvme_softc *sc)
890 {
891 /* sc_identify is filled during attachment */
892 return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
893 }
894
895 static bool
896 nvme_ns_sync_finished(void *cookie)
897 {
898 int *result = cookie;
899
900 return (*result != 0);
901 }
902
903 int
904 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
905 {
906 struct nvme_queue *q = nvme_get_q(sc);
907 struct nvme_ccb *ccb;
908 int result = 0;
909
910 if (!nvme_has_volatile_write_cache(sc)) {
911 /* cache not present, no value in trying to flush it */
912 return 0;
913 }
914
915 ccb = nvme_ccb_get(q, true);
916 KASSERT(ccb != NULL);
917
918 ccb->ccb_done = nvme_ns_sync_done;
919 ccb->ccb_cookie = &result;
920
921 /* namespace context */
922 ccb->nnc_nsid = nsid;
923 ccb->nnc_flags = flags;
924 ccb->nnc_done = NULL;
925
926 if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
927 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
928 return EIO;
929 return 0;
930 }
931
932 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
933
934 /* wait for completion */
935 nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
936 KASSERT(result != 0);
937
938 return (result > 0) ? 0 : EIO;
939 }
940
941 static void
942 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
943 {
944 struct nvme_sqe *sqe = slot;
945
946 sqe->opcode = NVM_CMD_FLUSH;
947 htolem32(&sqe->nsid, ccb->nnc_nsid);
948 }
949
950 static void
951 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
952 struct nvme_cqe *cqe)
953 {
954 int *result = ccb->ccb_cookie;
955 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
956
957 if (status == NVME_CQE_SC_SUCCESS)
958 *result = 1;
959 else
960 *result = -1;
961
962 nvme_ccb_put(q, ccb);
963 }
964
965 static bool
966 nvme_getcache_finished(void *xc)
967 {
968 int *addr = xc;
969
970 return (*addr != 0);
971 }
972
973 /*
974 * Get status of volatile write cache. Always asynchronous.
975 */
976 int
977 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
978 {
979 struct nvme_ccb *ccb;
980 struct nvme_queue *q = sc->sc_admin_q;
981 int result = 0, error;
982
983 if (!nvme_has_volatile_write_cache(sc)) {
984 /* cache simply not present */
985 *addr = 0;
986 return 0;
987 }
988
989 ccb = nvme_ccb_get(q, true);
990 KASSERT(ccb != NULL);
991
992 ccb->ccb_done = nvme_getcache_done;
993 ccb->ccb_cookie = &result;
994
995 /* namespace context */
996 ccb->nnc_flags = 0;
997 ccb->nnc_done = NULL;
998
999 nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
1000
1001 /* wait for completion */
1002 nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
1003 KASSERT(result != 0);
1004
1005 if (result > 0) {
1006 *addr = result;
1007 error = 0;
1008 } else
1009 error = EINVAL;
1010
1011 return error;
1012 }
1013
1014 static void
1015 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1016 {
1017 struct nvme_sqe *sqe = slot;
1018
1019 sqe->opcode = NVM_ADMIN_GET_FEATURES;
1020 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1021 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1022 }
1023
1024 static void
1025 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1026 struct nvme_cqe *cqe)
1027 {
1028 int *addr = ccb->ccb_cookie;
1029 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1030 uint32_t cdw0 = lemtoh32(&cqe->cdw0);
1031 int result;
1032
1033 if (status == NVME_CQE_SC_SUCCESS) {
1034 result = 0;
1035
1036 /*
1037 * DPO not supported, Dataset Management (DSM) field doesn't
1038 * specify the same semantics. FUA is always supported.
1039 */
1040 result = DKCACHE_FUA;
1041
1042 if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
1043 result |= DKCACHE_WRITE;
1044
1045 /*
1046 * If volatile write cache is present, the flag shall also be
1047 * settable.
1048 */
1049 result |= DKCACHE_WCHANGE;
1050
1051 /*
1052 * ONCS field indicates whether the optional SAVE is also
1053 * supported for Set Features. According to spec v1.3,
1054 * Volatile Write Cache however doesn't support persistency
1055 * across power cycle/reset.
1056 */
1057
1058 } else {
1059 result = -1;
1060 }
1061
1062 *addr = result;
1063
1064 nvme_ccb_put(q, ccb);
1065 }
1066
1067 struct nvme_setcache_state {
1068 int dkcache;
1069 int result;
1070 };
1071
1072 static bool
1073 nvme_setcache_finished(void *xc)
1074 {
1075 struct nvme_setcache_state *st = xc;
1076
1077 return (st->result != 0);
1078 }
1079
1080 static void
1081 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1082 {
1083 struct nvme_sqe *sqe = slot;
1084 struct nvme_setcache_state *st = ccb->ccb_cookie;
1085
1086 sqe->opcode = NVM_ADMIN_SET_FEATURES;
1087 htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1088 if (st->dkcache & DKCACHE_WRITE)
1089 htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1090 }
1091
1092 static void
1093 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1094 struct nvme_cqe *cqe)
1095 {
1096 struct nvme_setcache_state *st = ccb->ccb_cookie;
1097 uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1098
1099 if (status == NVME_CQE_SC_SUCCESS) {
1100 st->result = 1;
1101 } else {
1102 st->result = -1;
1103 }
1104
1105 nvme_ccb_put(q, ccb);
1106 }
1107
1108 /*
1109 * Set status of volatile write cache. Always asynchronous.
1110 */
1111 int
1112 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1113 {
1114 struct nvme_ccb *ccb;
1115 struct nvme_queue *q = sc->sc_admin_q;
1116 int error;
1117 struct nvme_setcache_state st;
1118
1119 if (!nvme_has_volatile_write_cache(sc)) {
1120 /* cache simply not present */
1121 return EOPNOTSUPP;
1122 }
1123
1124 if (dkcache & ~(DKCACHE_WRITE)) {
1125 /* unsupported parameters */
1126 return EOPNOTSUPP;
1127 }
1128
1129 ccb = nvme_ccb_get(q, true);
1130 KASSERT(ccb != NULL);
1131
1132 memset(&st, 0, sizeof(st));
1133 st.dkcache = dkcache;
1134
1135 ccb->ccb_done = nvme_setcache_done;
1136 ccb->ccb_cookie = &st;
1137
1138 /* namespace context */
1139 ccb->nnc_flags = 0;
1140 ccb->nnc_done = NULL;
1141
1142 nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1143
1144 /* wait for completion */
1145 nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1146 KASSERT(st.result != 0);
1147
1148 if (st.result > 0)
1149 error = 0;
1150 else
1151 error = EINVAL;
1152
1153 return error;
1154 }
1155
1156 void
1157 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1158 {
1159 struct nvme_namespace *ns;
1160 struct nvm_identify_namespace *identify;
1161
1162 ns = nvme_ns_get(sc, nsid);
1163 KASSERT(ns);
1164
1165 identify = ns->ident;
1166 ns->ident = NULL;
1167 if (identify != NULL)
1168 kmem_free(identify, sizeof(*identify));
1169 }
1170
1171 struct nvme_pt_state {
1172 struct nvme_pt_command *pt;
1173 bool finished;
1174 };
1175
1176 static void
1177 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1178 {
1179 struct nvme_softc *sc = q->q_sc;
1180 struct nvme_sqe *sqe = slot;
1181 struct nvme_pt_state *state = ccb->ccb_cookie;
1182 struct nvme_pt_command *pt = state->pt;
1183 bus_dmamap_t dmap = ccb->ccb_dmamap;
1184 int i;
1185
1186 sqe->opcode = pt->cmd.opcode;
1187 htolem32(&sqe->nsid, pt->cmd.nsid);
1188
1189 if (pt->buf != NULL && pt->len > 0) {
1190 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1191 switch (dmap->dm_nsegs) {
1192 case 1:
1193 break;
1194 case 2:
1195 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1196 break;
1197 default:
1198 for (i = 1; i < dmap->dm_nsegs; i++) {
1199 htolem64(&ccb->ccb_prpl[i - 1],
1200 dmap->dm_segs[i].ds_addr);
1201 }
1202 bus_dmamap_sync(sc->sc_dmat,
1203 NVME_DMA_MAP(q->q_ccb_prpls),
1204 ccb->ccb_prpl_off,
1205 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1206 BUS_DMASYNC_PREWRITE);
1207 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1208 break;
1209 }
1210 }
1211
1212 htolem32(&sqe->cdw10, pt->cmd.cdw10);
1213 htolem32(&sqe->cdw11, pt->cmd.cdw11);
1214 htolem32(&sqe->cdw12, pt->cmd.cdw12);
1215 htolem32(&sqe->cdw13, pt->cmd.cdw13);
1216 htolem32(&sqe->cdw14, pt->cmd.cdw14);
1217 htolem32(&sqe->cdw15, pt->cmd.cdw15);
1218 }
1219
1220 static void
1221 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1222 {
1223 struct nvme_softc *sc = q->q_sc;
1224 struct nvme_pt_state *state = ccb->ccb_cookie;
1225 struct nvme_pt_command *pt = state->pt;
1226 bus_dmamap_t dmap = ccb->ccb_dmamap;
1227
1228 if (pt->buf != NULL && pt->len > 0) {
1229 if (dmap->dm_nsegs > 2) {
1230 bus_dmamap_sync(sc->sc_dmat,
1231 NVME_DMA_MAP(q->q_ccb_prpls),
1232 ccb->ccb_prpl_off,
1233 sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1234 BUS_DMASYNC_POSTWRITE);
1235 }
1236
1237 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1238 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1239 bus_dmamap_unload(sc->sc_dmat, dmap);
1240 }
1241
1242 pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1243 pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1244
1245 state->finished = true;
1246
1247 nvme_ccb_put(q, ccb);
1248 }
1249
1250 static bool
1251 nvme_pt_finished(void *cookie)
1252 {
1253 struct nvme_pt_state *state = cookie;
1254
1255 return state->finished;
1256 }
1257
1258 static int
1259 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1260 uint32_t nsid, struct lwp *l, bool is_adminq)
1261 {
1262 struct nvme_queue *q;
1263 struct nvme_ccb *ccb;
1264 void *buf = NULL;
1265 struct nvme_pt_state state;
1266 int error;
1267
1268 /* limit command size to maximum data transfer size */
1269 if ((pt->buf == NULL && pt->len > 0) ||
1270 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1271 return EINVAL;
1272
1273 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1274 ccb = nvme_ccb_get(q, true);
1275 KASSERT(ccb != NULL);
1276
1277 if (pt->buf != NULL) {
1278 KASSERT(pt->len > 0);
1279 buf = kmem_alloc(pt->len, KM_SLEEP);
1280 if (!pt->is_read) {
1281 error = copyin(pt->buf, buf, pt->len);
1282 if (error)
1283 goto kmem_free;
1284 }
1285 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1286 pt->len, NULL,
1287 BUS_DMA_WAITOK |
1288 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1289 if (error)
1290 goto kmem_free;
1291 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1292 0, ccb->ccb_dmamap->dm_mapsize,
1293 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1294 }
1295
1296 memset(&state, 0, sizeof(state));
1297 state.pt = pt;
1298 state.finished = false;
1299
1300 ccb->ccb_done = nvme_pt_done;
1301 ccb->ccb_cookie = &state;
1302
1303 pt->cmd.nsid = nsid;
1304
1305 nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1306
1307 /* wait for completion */
1308 nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1309 KASSERT(state.finished);
1310
1311 error = 0;
1312
1313 if (buf != NULL) {
1314 if (error == 0 && pt->is_read)
1315 error = copyout(buf, pt->buf, pt->len);
1316 kmem_free:
1317 kmem_free(buf, pt->len);
1318 }
1319
1320 return error;
1321 }
1322
1323 uint32_t
1324 nvme_op_sq_enter(struct nvme_softc *sc,
1325 struct nvme_queue *q, struct nvme_ccb *ccb)
1326 {
1327 mutex_enter(&q->q_sq_mtx);
1328
1329 return nvme_op_sq_enter_locked(sc, q, ccb);
1330 }
1331
1332 uint32_t
1333 nvme_op_sq_enter_locked(struct nvme_softc *sc,
1334 struct nvme_queue *q, struct nvme_ccb *ccb)
1335 {
1336 return q->q_sq_tail;
1337 }
1338
1339 void
1340 nvme_op_sq_leave_locked(struct nvme_softc *sc,
1341 struct nvme_queue *q, struct nvme_ccb *ccb)
1342 {
1343 uint32_t tail;
1344
1345 tail = ++q->q_sq_tail;
1346 if (tail >= q->q_entries)
1347 tail = 0;
1348 q->q_sq_tail = tail;
1349 nvme_write4(sc, q->q_sqtdbl, tail);
1350 }
1351
1352 void
1353 nvme_op_sq_leave(struct nvme_softc *sc,
1354 struct nvme_queue *q, struct nvme_ccb *ccb)
1355 {
1356 nvme_op_sq_leave_locked(sc, q, ccb);
1357
1358 mutex_exit(&q->q_sq_mtx);
1359 }
1360
1361 static void
1362 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1363 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1364 {
1365 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1366 uint32_t tail;
1367
1368 tail = sc->sc_ops->op_sq_enter(sc, q, ccb);
1369
1370 sqe += tail;
1371
1372 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1373 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1374 memset(sqe, 0, sizeof(*sqe));
1375 (*fill)(q, ccb, sqe);
1376 htolem16(&sqe->cid, ccb->ccb_id);
1377 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1378 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1379
1380 sc->sc_ops->op_sq_leave(sc, q, ccb);
1381 }
1382
1383 struct nvme_poll_state {
1384 struct nvme_sqe s;
1385 struct nvme_cqe c;
1386 void *cookie;
1387 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1388 };
1389
1390 static int
1391 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1392 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1393 {
1394 struct nvme_poll_state state;
1395 uint16_t flags;
1396 int step = 10;
1397 int maxloop = timo_sec * 1000000 / step;
1398 int error = 0;
1399
1400 memset(&state, 0, sizeof(state));
1401 (*fill)(q, ccb, &state.s);
1402
1403 state.done = ccb->ccb_done;
1404 state.cookie = ccb->ccb_cookie;
1405
1406 ccb->ccb_done = nvme_poll_done;
1407 ccb->ccb_cookie = &state;
1408
1409 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1410 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1411 if (nvme_q_complete(sc, q) == 0)
1412 delay(step);
1413
1414 if (timo_sec >= 0 && --maxloop <= 0) {
1415 error = ETIMEDOUT;
1416 break;
1417 }
1418 }
1419
1420 if (error == 0) {
1421 flags = lemtoh16(&state.c.flags);
1422 return flags & ~NVME_CQE_PHASE;
1423 } else {
1424 /*
1425 * If it succeds later, it would hit ccb which will have been
1426 * already reused for something else. Not good. Cross
1427 * fingers and hope for best. XXX do controller reset?
1428 */
1429 aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1430
1431 /* Invoke the callback to clean state anyway */
1432 struct nvme_cqe cqe;
1433 memset(&cqe, 0, sizeof(cqe));
1434 ccb->ccb_done(q, ccb, &cqe);
1435
1436 return 1;
1437 }
1438 }
1439
1440 static void
1441 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1442 {
1443 struct nvme_sqe *sqe = slot;
1444 struct nvme_poll_state *state = ccb->ccb_cookie;
1445
1446 *sqe = state->s;
1447 }
1448
1449 static void
1450 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1451 struct nvme_cqe *cqe)
1452 {
1453 struct nvme_poll_state *state = ccb->ccb_cookie;
1454
1455 state->c = *cqe;
1456 SET(state->c.flags, htole16(NVME_CQE_PHASE));
1457
1458 ccb->ccb_cookie = state->cookie;
1459 state->done(q, ccb, &state->c);
1460 }
1461
1462 static void
1463 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1464 {
1465 struct nvme_sqe *src = ccb->ccb_cookie;
1466 struct nvme_sqe *dst = slot;
1467
1468 *dst = *src;
1469 }
1470
1471 static void
1472 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1473 struct nvme_cqe *cqe)
1474 {
1475 }
1476
1477 void
1478 nvme_op_cq_done(struct nvme_softc *sc,
1479 struct nvme_queue *q, struct nvme_ccb *ccb)
1480 {
1481 /* nop */
1482 }
1483
1484 static int
1485 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1486 {
1487 struct nvme_ccb *ccb;
1488 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1489 uint16_t flags;
1490 int rv = 0;
1491
1492 mutex_enter(&q->q_cq_mtx);
1493
1494 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1495 for (;;) {
1496 cqe = &ring[q->q_cq_head];
1497 flags = lemtoh16(&cqe->flags);
1498 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1499 break;
1500
1501 /*
1502 * Make sure we have read the flags _before_ we read
1503 * the cid. Otherwise the CPU might speculatively read
1504 * the cid before the entry has been assigned to our
1505 * phase.
1506 */
1507 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1508
1509 ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1510
1511 if (++q->q_cq_head >= q->q_entries) {
1512 q->q_cq_head = 0;
1513 q->q_cq_phase ^= NVME_CQE_PHASE;
1514 }
1515
1516 #ifdef DEBUG
1517 /*
1518 * If we get spurious completion notification, something
1519 * is seriously hosed up. Very likely DMA to some random
1520 * memory place happened, so just bail out.
1521 */
1522 if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1523 panic("%s: invalid ccb detected",
1524 device_xname(sc->sc_dev));
1525 /* NOTREACHED */
1526 }
1527 #endif
1528
1529 rv++;
1530
1531 sc->sc_ops->op_cq_done(sc, q, ccb);
1532
1533 /*
1534 * Unlock the mutex before calling the ccb_done callback
1535 * and re-lock afterwards. The callback triggers lddone()
1536 * which schedules another i/o, and also calls nvme_ccb_put().
1537 * Unlock/relock avoids possibility of deadlock.
1538 */
1539 mutex_exit(&q->q_cq_mtx);
1540 ccb->ccb_done(q, ccb, cqe);
1541 mutex_enter(&q->q_cq_mtx);
1542 }
1543 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1544
1545 if (rv)
1546 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1547
1548 mutex_exit(&q->q_cq_mtx);
1549
1550 return rv;
1551 }
1552
1553 static void
1554 nvme_q_wait_complete(struct nvme_softc *sc,
1555 struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1556 {
1557 mutex_enter(&q->q_ccb_mtx);
1558 if (finished(cookie))
1559 goto out;
1560
1561 for(;;) {
1562 q->q_ccb_waiting = true;
1563 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1564
1565 if (finished(cookie))
1566 break;
1567 }
1568
1569 out:
1570 mutex_exit(&q->q_ccb_mtx);
1571 }
1572
1573 static int
1574 nvme_identify(struct nvme_softc *sc, u_int mps)
1575 {
1576 char sn[41], mn[81], fr[17];
1577 struct nvm_identify_controller *identify;
1578 struct nvme_dmamem *mem;
1579 struct nvme_ccb *ccb;
1580 u_int mdts;
1581 int rv = 1;
1582
1583 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1584 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1585
1586 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1587 if (mem == NULL)
1588 return 1;
1589
1590 ccb->ccb_done = nvme_empty_done;
1591 ccb->ccb_cookie = mem;
1592
1593 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1594 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1595 NVME_TIMO_IDENT);
1596 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1597
1598 nvme_ccb_put(sc->sc_admin_q, ccb);
1599
1600 if (rv != 0)
1601 goto done;
1602
1603 identify = NVME_DMA_KVA(mem);
1604 sc->sc_identify = *identify;
1605 identify = NULL;
1606
1607 /* Convert data to host endian */
1608 nvme_identify_controller_swapbytes(&sc->sc_identify);
1609
1610 strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1611 sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1612 strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1613 sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1614 strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1615 sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1616 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1617 sn);
1618
1619 strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1620
1621 if (sc->sc_identify.mdts > 0) {
1622 mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1623 if (mdts < sc->sc_mdts)
1624 sc->sc_mdts = mdts;
1625 }
1626
1627 sc->sc_nn = sc->sc_identify.nn;
1628
1629 done:
1630 nvme_dmamem_free(sc, mem);
1631
1632 return rv;
1633 }
1634
1635 static int
1636 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1637 {
1638 struct nvme_sqe_q sqe;
1639 struct nvme_ccb *ccb;
1640 int rv;
1641
1642 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1643 return 1;
1644
1645 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1646 KASSERT(ccb != NULL);
1647
1648 ccb->ccb_done = nvme_empty_done;
1649 ccb->ccb_cookie = &sqe;
1650
1651 memset(&sqe, 0, sizeof(sqe));
1652 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1653 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1654 htolem16(&sqe.qsize, q->q_entries - 1);
1655 htolem16(&sqe.qid, q->q_id);
1656 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1657 if (sc->sc_use_mq)
1658 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1659
1660 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1661 if (rv != 0)
1662 goto fail;
1663
1664 ccb->ccb_done = nvme_empty_done;
1665 ccb->ccb_cookie = &sqe;
1666
1667 memset(&sqe, 0, sizeof(sqe));
1668 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1669 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1670 htolem16(&sqe.qsize, q->q_entries - 1);
1671 htolem16(&sqe.qid, q->q_id);
1672 htolem16(&sqe.cqid, q->q_id);
1673 sqe.qflags = NVM_SQE_Q_PC;
1674
1675 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1676 if (rv != 0)
1677 goto fail;
1678
1679 nvme_ccb_put(sc->sc_admin_q, ccb);
1680 return 0;
1681
1682 fail:
1683 if (sc->sc_use_mq)
1684 sc->sc_intr_disestablish(sc, q->q_id);
1685
1686 nvme_ccb_put(sc->sc_admin_q, ccb);
1687 return rv;
1688 }
1689
1690 static int
1691 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1692 {
1693 struct nvme_sqe_q sqe;
1694 struct nvme_ccb *ccb;
1695 int rv;
1696
1697 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1698 KASSERT(ccb != NULL);
1699
1700 ccb->ccb_done = nvme_empty_done;
1701 ccb->ccb_cookie = &sqe;
1702
1703 memset(&sqe, 0, sizeof(sqe));
1704 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1705 htolem16(&sqe.qid, q->q_id);
1706
1707 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1708 if (rv != 0)
1709 goto fail;
1710
1711 ccb->ccb_done = nvme_empty_done;
1712 ccb->ccb_cookie = &sqe;
1713
1714 memset(&sqe, 0, sizeof(sqe));
1715 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1716 htolem16(&sqe.qid, q->q_id);
1717
1718 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1719 if (rv != 0)
1720 goto fail;
1721
1722 fail:
1723 nvme_ccb_put(sc->sc_admin_q, ccb);
1724
1725 if (rv == 0 && sc->sc_use_mq) {
1726 if (sc->sc_intr_disestablish(sc, q->q_id))
1727 rv = 1;
1728 }
1729
1730 return rv;
1731 }
1732
1733 static void
1734 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1735 {
1736 struct nvme_sqe *sqe = slot;
1737 struct nvme_dmamem *mem = ccb->ccb_cookie;
1738
1739 sqe->opcode = NVM_ADMIN_IDENTIFY;
1740 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1741 htolem32(&sqe->cdw10, 1);
1742 }
1743
1744 static int
1745 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1746 u_int *nsqa)
1747 {
1748 struct nvme_pt_state state;
1749 struct nvme_pt_command pt;
1750 struct nvme_ccb *ccb;
1751 int rv;
1752
1753 ccb = nvme_ccb_get(sc->sc_admin_q, false);
1754 KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1755
1756 memset(&pt, 0, sizeof(pt));
1757 pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1758 pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1759 pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1760
1761 memset(&state, 0, sizeof(state));
1762 state.pt = &pt;
1763 state.finished = false;
1764
1765 ccb->ccb_done = nvme_pt_done;
1766 ccb->ccb_cookie = &state;
1767
1768 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1769
1770 if (rv != 0) {
1771 *ncqa = *nsqa = 0;
1772 return EIO;
1773 }
1774
1775 *ncqa = (pt.cpl.cdw0 >> 16) + 1;
1776 *nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1777
1778 return 0;
1779 }
1780
1781 static int
1782 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1783 {
1784 struct nvme_softc *sc = q->q_sc;
1785 struct nvme_ccb *ccb;
1786 bus_addr_t off;
1787 uint64_t *prpl;
1788 u_int i;
1789
1790 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1791 cv_init(&q->q_ccb_wait, "nvmeqw");
1792 q->q_ccb_waiting = false;
1793 SIMPLEQ_INIT(&q->q_ccb_list);
1794
1795 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1796
1797 q->q_nccbs = nccbs;
1798 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1799 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1800
1801 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1802 off = 0;
1803
1804 for (i = 0; i < nccbs; i++) {
1805 ccb = &q->q_ccbs[i];
1806
1807 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1808 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1809 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1810 &ccb->ccb_dmamap) != 0)
1811 goto free_maps;
1812
1813 ccb->ccb_id = i;
1814 ccb->ccb_prpl = prpl;
1815 ccb->ccb_prpl_off = off;
1816 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1817
1818 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1819
1820 prpl += sc->sc_max_sgl;
1821 off += sizeof(*prpl) * sc->sc_max_sgl;
1822 }
1823
1824 return 0;
1825
1826 free_maps:
1827 nvme_ccbs_free(q);
1828 return 1;
1829 }
1830
1831 static struct nvme_ccb *
1832 nvme_ccb_get(struct nvme_queue *q, bool wait)
1833 {
1834 struct nvme_ccb *ccb = NULL;
1835
1836 mutex_enter(&q->q_ccb_mtx);
1837 again:
1838 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1839 if (ccb != NULL) {
1840 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1841 #ifdef DEBUG
1842 ccb->ccb_cookie = NULL;
1843 #endif
1844 } else {
1845 if (__predict_false(wait)) {
1846 q->q_ccb_waiting = true;
1847 cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1848 goto again;
1849 }
1850 }
1851 mutex_exit(&q->q_ccb_mtx);
1852
1853 return ccb;
1854 }
1855
1856 static struct nvme_ccb *
1857 nvme_ccb_get_bio(struct nvme_softc *sc, struct buf *bp,
1858 struct nvme_queue **selq)
1859 {
1860 u_int cpuindex = cpu_index((bp && bp->b_ci) ? bp->b_ci : curcpu());
1861
1862 /*
1863 * Find a queue with available ccbs, preferring the originating
1864 * CPU's queue.
1865 */
1866
1867 for (u_int qoff = 0; qoff < sc->sc_nq; qoff++) {
1868 struct nvme_queue *q = sc->sc_q[(cpuindex + qoff) % sc->sc_nq];
1869 struct nvme_ccb *ccb;
1870
1871 mutex_enter(&q->q_ccb_mtx);
1872 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1873 if (ccb != NULL) {
1874 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1875 #ifdef DEBUG
1876 ccb->ccb_cookie = NULL;
1877 #endif
1878 }
1879 mutex_exit(&q->q_ccb_mtx);
1880
1881 if (ccb != NULL) {
1882 *selq = q;
1883 return ccb;
1884 }
1885 }
1886
1887 return NULL;
1888 }
1889
1890 static void
1891 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1892 {
1893
1894 mutex_enter(&q->q_ccb_mtx);
1895 #ifdef DEBUG
1896 ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1897 #endif
1898 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1899
1900 /* It's unlikely there are any waiters, it's not used for regular I/O */
1901 if (__predict_false(q->q_ccb_waiting)) {
1902 q->q_ccb_waiting = false;
1903 cv_broadcast(&q->q_ccb_wait);
1904 }
1905
1906 mutex_exit(&q->q_ccb_mtx);
1907 }
1908
1909 static void
1910 nvme_ccbs_free(struct nvme_queue *q)
1911 {
1912 struct nvme_softc *sc = q->q_sc;
1913 struct nvme_ccb *ccb;
1914
1915 mutex_enter(&q->q_ccb_mtx);
1916 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1917 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1918 /*
1919 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1920 * internally. don't hold spin mutex
1921 */
1922 mutex_exit(&q->q_ccb_mtx);
1923 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1924 mutex_enter(&q->q_ccb_mtx);
1925 }
1926 mutex_exit(&q->q_ccb_mtx);
1927
1928 nvme_dmamem_free(sc, q->q_ccb_prpls);
1929 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1930 q->q_ccbs = NULL;
1931 cv_destroy(&q->q_ccb_wait);
1932 mutex_destroy(&q->q_ccb_mtx);
1933 }
1934
1935 static struct nvme_queue *
1936 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1937 {
1938 struct nvme_queue *q;
1939
1940 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1941 q->q_sc = sc;
1942 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1943 sizeof(struct nvme_sqe) * entries);
1944 if (q->q_sq_dmamem == NULL)
1945 goto free;
1946
1947 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1948 sizeof(struct nvme_cqe) * entries);
1949 if (q->q_cq_dmamem == NULL)
1950 goto free_sq;
1951
1952 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1953 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1954
1955 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1956 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1957 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1958 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1959 q->q_id = id;
1960 q->q_entries = entries;
1961 q->q_sq_tail = 0;
1962 q->q_cq_head = 0;
1963 q->q_cq_phase = NVME_CQE_PHASE;
1964
1965 if (sc->sc_ops->op_q_alloc != NULL) {
1966 if (sc->sc_ops->op_q_alloc(sc, q) != 0)
1967 goto free_cq;
1968 }
1969
1970 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1971 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1972
1973 /*
1974 * Due to definition of full and empty queue (queue is empty
1975 * when head == tail, full when tail is one less then head),
1976 * we can actually only have (entries - 1) in-flight commands.
1977 */
1978 if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1979 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1980 goto free_cq;
1981 }
1982
1983 return q;
1984
1985 free_cq:
1986 nvme_dmamem_free(sc, q->q_cq_dmamem);
1987 free_sq:
1988 nvme_dmamem_free(sc, q->q_sq_dmamem);
1989 free:
1990 kmem_free(q, sizeof(*q));
1991
1992 return NULL;
1993 }
1994
1995 static void
1996 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
1997 {
1998
1999 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
2000 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
2001
2002 q->q_sq_tail = 0;
2003 q->q_cq_head = 0;
2004 q->q_cq_phase = NVME_CQE_PHASE;
2005
2006 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
2007 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
2008 }
2009
2010 static void
2011 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
2012 {
2013 nvme_ccbs_free(q);
2014 mutex_destroy(&q->q_sq_mtx);
2015 mutex_destroy(&q->q_cq_mtx);
2016 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
2017 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
2018
2019 if (sc->sc_ops->op_q_alloc != NULL)
2020 sc->sc_ops->op_q_free(sc, q);
2021
2022 nvme_dmamem_free(sc, q->q_cq_dmamem);
2023 nvme_dmamem_free(sc, q->q_sq_dmamem);
2024 kmem_free(q, sizeof(*q));
2025 }
2026
2027 int
2028 nvme_intr(void *xsc)
2029 {
2030 struct nvme_softc *sc = xsc;
2031
2032 /*
2033 * INTx is level triggered, controller deasserts the interrupt only
2034 * when we advance command queue head via write to the doorbell.
2035 * Tell the controller to block the interrupts while we process
2036 * the queue(s).
2037 */
2038 nvme_write4(sc, NVME_INTMS, 1);
2039
2040 softint_schedule(sc->sc_softih[0]);
2041
2042 /* don't know, might not have been for us */
2043 return 1;
2044 }
2045
2046 void
2047 nvme_softintr_intx(void *xq)
2048 {
2049 struct nvme_queue *q = xq;
2050 struct nvme_softc *sc = q->q_sc;
2051
2052 nvme_q_complete(sc, sc->sc_admin_q);
2053 if (sc->sc_q != NULL)
2054 nvme_q_complete(sc, sc->sc_q[0]);
2055
2056 /*
2057 * Processing done, tell controller to issue interrupts again. There
2058 * is no race, as NVMe spec requires the controller to maintain state,
2059 * and assert the interrupt whenever there are unacknowledged
2060 * completion queue entries.
2061 */
2062 nvme_write4(sc, NVME_INTMC, 1);
2063 }
2064
2065 int
2066 nvme_intr_msi(void *xq)
2067 {
2068 struct nvme_queue *q = xq;
2069
2070 KASSERT(q);
2071 KASSERT(q->q_sc);
2072 KASSERT(q->q_sc->sc_softih);
2073 KASSERT(q->q_sc->sc_softih[q->q_id]);
2074
2075 /*
2076 * MSI/MSI-X are edge triggered, so can handover processing to softint
2077 * without masking the interrupt.
2078 */
2079 softint_schedule(q->q_sc->sc_softih[q->q_id]);
2080
2081 return 1;
2082 }
2083
2084 void
2085 nvme_softintr_msi(void *xq)
2086 {
2087 struct nvme_queue *q = xq;
2088 struct nvme_softc *sc = q->q_sc;
2089
2090 nvme_q_complete(sc, q);
2091 }
2092
2093 struct nvme_dmamem *
2094 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
2095 {
2096 struct nvme_dmamem *ndm;
2097 int nsegs;
2098
2099 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
2100 if (ndm == NULL)
2101 return NULL;
2102
2103 ndm->ndm_size = size;
2104
2105 if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
2106 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
2107 goto ndmfree;
2108
2109 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
2110 1, &nsegs, BUS_DMA_WAITOK) != 0)
2111 goto destroy;
2112
2113 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
2114 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
2115 goto free;
2116
2117 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
2118 NULL, BUS_DMA_WAITOK) != 0)
2119 goto unmap;
2120
2121 memset(ndm->ndm_kva, 0, size);
2122 bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
2123
2124 return ndm;
2125
2126 unmap:
2127 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
2128 free:
2129 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2130 destroy:
2131 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2132 ndmfree:
2133 kmem_free(ndm, sizeof(*ndm));
2134 return NULL;
2135 }
2136
2137 void
2138 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
2139 {
2140 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
2141 0, NVME_DMA_LEN(mem), ops);
2142 }
2143
2144 void
2145 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
2146 {
2147 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
2148 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
2149 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2150 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2151 kmem_free(ndm, sizeof(*ndm));
2152 }
2153
2154 /*
2155 * ioctl
2156 */
2157
2158 dev_type_open(nvmeopen);
2159 dev_type_close(nvmeclose);
2160 dev_type_ioctl(nvmeioctl);
2161
2162 const struct cdevsw nvme_cdevsw = {
2163 .d_open = nvmeopen,
2164 .d_close = nvmeclose,
2165 .d_read = noread,
2166 .d_write = nowrite,
2167 .d_ioctl = nvmeioctl,
2168 .d_stop = nostop,
2169 .d_tty = notty,
2170 .d_poll = nopoll,
2171 .d_mmap = nommap,
2172 .d_kqfilter = nokqfilter,
2173 .d_discard = nodiscard,
2174 .d_flag = D_OTHER,
2175 };
2176
2177 /*
2178 * Accept an open operation on the control device.
2179 */
2180 int
2181 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2182 {
2183 struct nvme_softc *sc;
2184 int unit = minor(dev) / 0x10000;
2185 int nsid = minor(dev) & 0xffff;
2186 int nsidx;
2187
2188 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2189 return ENXIO;
2190 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2191 return ENXIO;
2192
2193 if (nsid == 0) {
2194 /* controller */
2195 if (ISSET(sc->sc_flags, NVME_F_OPEN))
2196 return EBUSY;
2197 SET(sc->sc_flags, NVME_F_OPEN);
2198 } else {
2199 /* namespace */
2200 nsidx = nsid - 1;
2201 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2202 return ENXIO;
2203 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2204 return EBUSY;
2205 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2206 }
2207 return 0;
2208 }
2209
2210 /*
2211 * Accept the last close on the control device.
2212 */
2213 int
2214 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2215 {
2216 struct nvme_softc *sc;
2217 int unit = minor(dev) / 0x10000;
2218 int nsid = minor(dev) & 0xffff;
2219 int nsidx;
2220
2221 sc = device_lookup_private(&nvme_cd, unit);
2222 if (sc == NULL)
2223 return ENXIO;
2224
2225 if (nsid == 0) {
2226 /* controller */
2227 CLR(sc->sc_flags, NVME_F_OPEN);
2228 } else {
2229 /* namespace */
2230 nsidx = nsid - 1;
2231 if (nsidx >= sc->sc_nn)
2232 return ENXIO;
2233 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2234 }
2235
2236 return 0;
2237 }
2238
2239 /*
2240 * Handle control operations.
2241 */
2242 int
2243 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2244 {
2245 struct nvme_softc *sc;
2246 int unit = minor(dev) / 0x10000;
2247 int nsid = minor(dev) & 0xffff;
2248 struct nvme_pt_command *pt;
2249
2250 sc = device_lookup_private(&nvme_cd, unit);
2251 if (sc == NULL)
2252 return ENXIO;
2253
2254 switch (cmd) {
2255 case NVME_PASSTHROUGH_CMD:
2256 pt = data;
2257 return nvme_command_passthrough(sc, data,
2258 nsid == 0 ? pt->cmd.nsid : (uint32_t)nsid, l, nsid == 0);
2259 }
2260
2261 return ENOTTY;
2262 }
2263