nvme.c revision 1.7 1 /* $NetBSD: nvme.c,v 1.7 2016/09/16 12:57:26 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.7 2016/09/16 12:57:26 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 128;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, u_int);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *), int);
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static struct nvme_dmamem *
89 nvme_dmamem_alloc(struct nvme_softc *, size_t);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
92 int);
93
94 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
95 void *);
96 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
97 struct nvme_cqe *);
98 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
99 void *);
100 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
101 struct nvme_cqe *);
102
103 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static int nvme_command_passthrough(struct nvme_softc *,
108 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
109
110 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
111 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
112 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
113 #define NVME_TIMO_SY -1 /* sync cache timeout */
114
115 #define nvme_read4(_s, _r) \
116 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
117 #define nvme_write4(_s, _r, _v) \
118 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
119 #ifdef __LP64__
120 #define nvme_read8(_s, _r) \
121 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
122 #define nvme_write8(_s, _r, _v) \
123 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
124 #else /* __LP64__ */
125 static inline uint64_t
126 nvme_read8(struct nvme_softc *sc, bus_size_t r)
127 {
128 uint64_t v;
129 uint32_t *a = (uint32_t *)&v;
130
131 #if _BYTE_ORDER == _LITTLE_ENDIAN
132 a[0] = nvme_read4(sc, r);
133 a[1] = nvme_read4(sc, r + 4);
134 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
135 a[1] = nvme_read4(sc, r);
136 a[0] = nvme_read4(sc, r + 4);
137 #endif
138
139 return v;
140 }
141
142 static inline void
143 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
144 {
145 uint32_t *a = (uint32_t *)&v;
146
147 #if _BYTE_ORDER == _LITTLE_ENDIAN
148 nvme_write4(sc, r, a[0]);
149 nvme_write4(sc, r + 4, a[1]);
150 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
151 nvme_write4(sc, r, a[1]);
152 nvme_write4(sc, r + 4, a[0]);
153 #endif
154 }
155 #endif /* __LP64__ */
156 #define nvme_barrier(_s, _r, _l, _f) \
157 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
158
159 pool_cache_t nvme_ns_ctx_cache;
160 ONCE_DECL(nvme_init_once);
161
162 static int
163 nvme_init(void)
164 {
165 nvme_ns_ctx_cache = pool_cache_init(sizeof(struct nvme_ns_context),
166 0, 0, 0, "nvme_ns_ctx", NULL, IPL_BIO, NULL, NULL, NULL);
167 KASSERT(nvme_ns_ctx_cache != NULL);
168 return 0;
169 }
170
171 static void
172 nvme_version(struct nvme_softc *sc, uint32_t ver)
173 {
174 const char *v = NULL;
175
176 switch (ver) {
177 case NVME_VS_1_0:
178 v = "1.0";
179 break;
180 case NVME_VS_1_1:
181 v = "1.1";
182 break;
183 case NVME_VS_1_2:
184 v = "1.2";
185 break;
186 default:
187 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
188 return;
189 }
190
191 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
192 }
193
194 #ifdef NVME_DEBUG
195 static __used void
196 nvme_dumpregs(struct nvme_softc *sc)
197 {
198 uint64_t r8;
199 uint32_t r4;
200
201 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
202 r8 = nvme_read8(sc, NVME_CAP);
203 printf("%s: cap 0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
204 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
205 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
206 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
207 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
208 printf("%s: css %llu\n", DEVNAME(sc), NVME_CAP_CSS(r8));
209 printf("%s: nssrs %llu\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
210 printf("%s: dstrd %llu\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
211 printf("%s: to %llu msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
212 printf("%s: ams %llu\n", DEVNAME(sc), NVME_CAP_AMS(r8));
213 printf("%s: cqr %llu\n", DEVNAME(sc), NVME_CAP_CQR(r8));
214 printf("%s: mqes %llu\n", DEVNAME(sc), NVME_CAP_MQES(r8));
215
216 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
217
218 r4 = nvme_read4(sc, NVME_CC);
219 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
220 printf("%s: iocqes %u\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4));
221 printf("%s: iosqes %u\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4));
222 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
223 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
224 printf("%s: mps %u\n", DEVNAME(sc), NVME_CC_MPS_R(r4));
225 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
226 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
227
228 printf("%s: csts 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_CSTS));
229 printf("%s: aqa 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_AQA));
230 printf("%s: asq 0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 printf("%s: acq 0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef DEVNAME
233 }
234 #endif /* NVME_DEBUG */
235
236 static int
237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 u_int i = 0;
240
241 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
242 if (i++ > sc->sc_rdy_to)
243 return 1;
244
245 delay(1000);
246 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
247 }
248
249 return 0;
250 }
251
252 static int
253 nvme_enable(struct nvme_softc *sc, u_int mps)
254 {
255 uint32_t cc;
256
257 cc = nvme_read4(sc, NVME_CC);
258 if (ISSET(cc, NVME_CC_EN)) {
259 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
260 return 0;
261 }
262
263 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
264 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
265 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
266
267 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
268 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
269 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
270 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
271
272 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
273 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
274 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
275 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
276 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
277 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
278 SET(cc, NVME_CC_MPS(mps));
279 SET(cc, NVME_CC_EN);
280
281 nvme_write4(sc, NVME_CC, cc);
282 nvme_barrier(sc, 0, sc->sc_ios,
283 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
284
285 return nvme_ready(sc, NVME_CSTS_RDY);
286 }
287
288 static int
289 nvme_disable(struct nvme_softc *sc)
290 {
291 uint32_t cc, csts;
292
293 cc = nvme_read4(sc, NVME_CC);
294 if (ISSET(cc, NVME_CC_EN)) {
295 csts = nvme_read4(sc, NVME_CSTS);
296 if (!ISSET(csts, NVME_CSTS_CFS) &&
297 nvme_ready(sc, NVME_CSTS_RDY) != 0)
298 return 1;
299 }
300
301 CLR(cc, NVME_CC_EN);
302
303 nvme_write4(sc, NVME_CC, cc);
304 nvme_barrier(sc, 0, sc->sc_ios,
305 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
306
307 return nvme_ready(sc, 0);
308 }
309
310 int
311 nvme_attach(struct nvme_softc *sc)
312 {
313 struct nvme_attach_args naa;
314 uint64_t cap;
315 uint32_t reg;
316 u_int dstrd;
317 u_int mps = PAGE_SHIFT;
318 int adminq_entries = nvme_adminq_size;
319 int ioq_entries = nvme_ioq_size;
320 int i;
321
322 RUN_ONCE(&nvme_init_once, nvme_init);
323
324 reg = nvme_read4(sc, NVME_VS);
325 if (reg == 0xffffffff) {
326 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
327 return 1;
328 }
329
330 nvme_version(sc, reg);
331
332 cap = nvme_read8(sc, NVME_CAP);
333 dstrd = NVME_CAP_DSTRD(cap);
334 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
335 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
336 "is greater than CPU page size %u\n",
337 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
338 return 1;
339 }
340 if (NVME_CAP_MPSMAX(cap) < mps)
341 mps = NVME_CAP_MPSMAX(cap);
342
343 sc->sc_rdy_to = NVME_CAP_TO(cap);
344 sc->sc_mps = 1 << mps;
345 sc->sc_mdts = MAXPHYS;
346 sc->sc_max_sgl = 2;
347
348 if (nvme_disable(sc) != 0) {
349 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
350 return 1;
351 }
352
353 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
354 if (sc->sc_admin_q == NULL) {
355 aprint_error_dev(sc->sc_dev,
356 "unable to allocate admin queue\n");
357 return 1;
358 }
359 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
360 goto free_admin_q;
361
362 if (nvme_enable(sc, mps) != 0) {
363 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
364 goto disestablish_admin_q;
365 }
366
367 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
368 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
369 goto disable;
370 }
371
372 /* we know how big things are now */
373 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
374
375 /* reallocate ccbs of admin queue with new max sgl. */
376 nvme_ccbs_free(sc->sc_admin_q);
377 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
378
379 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
380 if (sc->sc_q == NULL) {
381 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
382 goto disable;
383 }
384 for (i = 0; i < sc->sc_nq; i++) {
385 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
386 if (sc->sc_q[i] == NULL) {
387 aprint_error_dev(sc->sc_dev,
388 "unable to allocate io queue\n");
389 goto free_q;
390 }
391 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
392 aprint_error_dev(sc->sc_dev,
393 "unable to create io queue\n");
394 nvme_q_free(sc, sc->sc_q[i]);
395 goto free_q;
396 }
397 }
398
399 if (!sc->sc_use_mq)
400 nvme_write4(sc, NVME_INTMC, 1);
401
402 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
403 KM_SLEEP);
404 for (i = 0; i < sc->sc_nn; i++) {
405 memset(&naa, 0, sizeof(naa));
406 naa.naa_nsid = i + 1;
407 naa.naa_qentries = ioq_entries;
408 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
409 nvme_print);
410 }
411
412 return 0;
413
414 free_q:
415 while (--i >= 0) {
416 nvme_q_delete(sc, sc->sc_q[i]);
417 nvme_q_free(sc, sc->sc_q[i]);
418 }
419 disable:
420 nvme_disable(sc);
421 disestablish_admin_q:
422 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
423 free_admin_q:
424 nvme_q_free(sc, sc->sc_admin_q);
425
426 return 1;
427 }
428
429 static int
430 nvme_print(void *aux, const char *pnp)
431 {
432 struct nvme_attach_args *naa = aux;
433
434 if (pnp)
435 aprint_normal("at %s", pnp);
436
437 if (naa->naa_nsid > 0)
438 aprint_normal(" nsid %d", naa->naa_nsid);
439
440 return UNCONF;
441 }
442
443 int
444 nvme_detach(struct nvme_softc *sc, int flags)
445 {
446 int i, error;
447
448 error = config_detach_children(sc->sc_dev, flags);
449 if (error)
450 return error;
451
452 error = nvme_shutdown(sc);
453 if (error)
454 return error;
455
456 for (i = 0; i < sc->sc_nq; i++)
457 nvme_q_free(sc, sc->sc_q[i]);
458 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
459 nvme_q_free(sc, sc->sc_admin_q);
460
461 return 0;
462 }
463
464 static int
465 nvme_shutdown(struct nvme_softc *sc)
466 {
467 uint32_t cc, csts;
468 bool disabled = false;
469 int i;
470
471 if (!sc->sc_use_mq)
472 nvme_write4(sc, NVME_INTMS, 1);
473
474 for (i = 0; i < sc->sc_nq; i++) {
475 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
476 aprint_error_dev(sc->sc_dev,
477 "unable to delete io queue %d, disabling\n", i + 1);
478 disabled = true;
479 }
480 }
481 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
482 if (disabled)
483 goto disable;
484
485 cc = nvme_read4(sc, NVME_CC);
486 CLR(cc, NVME_CC_SHN_MASK);
487 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
488 nvme_write4(sc, NVME_CC, cc);
489
490 for (i = 0; i < 4000; i++) {
491 nvme_barrier(sc, 0, sc->sc_ios,
492 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
493 csts = nvme_read4(sc, NVME_CSTS);
494 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
495 return 0;
496
497 delay(1000);
498 }
499
500 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
501
502 disable:
503 nvme_disable(sc);
504 return 0;
505 }
506
507 void
508 nvme_childdet(device_t self, device_t child)
509 {
510 struct nvme_softc *sc = device_private(self);
511 int i;
512
513 for (i = 0; i < sc->sc_nn; i++) {
514 if (sc->sc_namespaces[i].dev == child) {
515 /* Already freed ns->ident. */
516 sc->sc_namespaces[i].dev = NULL;
517 break;
518 }
519 }
520 }
521
522 int
523 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
524 {
525 struct nvme_sqe sqe;
526 struct nvm_identify_namespace *identify;
527 struct nvme_dmamem *mem;
528 struct nvme_ccb *ccb;
529 struct nvme_namespace *ns;
530 int rv;
531
532 KASSERT(nsid > 0);
533
534 ccb = nvme_ccb_get(sc->sc_admin_q);
535 KASSERT(ccb != NULL);
536
537 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
538 if (mem == NULL)
539 return ENOMEM;
540
541 memset(&sqe, 0, sizeof(sqe));
542 sqe.opcode = NVM_ADMIN_IDENTIFY;
543 htolem32(&sqe.nsid, nsid);
544 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
545 htolem32(&sqe.cdw10, 0);
546
547 ccb->ccb_done = nvme_empty_done;
548 ccb->ccb_cookie = &sqe;
549
550 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
551 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
552 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
553
554 nvme_ccb_put(sc->sc_admin_q, ccb);
555
556 if (rv != 0) {
557 rv = EIO;
558 goto done;
559 }
560
561 /* commit */
562
563 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
564 memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
565
566 ns = nvme_ns_get(sc, nsid);
567 KASSERT(ns);
568 ns->ident = identify;
569
570 done:
571 nvme_dmamem_free(sc, mem);
572
573 return rv;
574 }
575
576 int
577 nvme_ns_dobio(struct nvme_softc *sc, struct nvme_ns_context *ctx)
578 {
579 struct nvme_queue *q = nvme_get_q(sc);
580 struct nvme_ccb *ccb;
581 bus_dmamap_t dmap;
582 int i, error;
583
584 ccb = nvme_ccb_get(q);
585 if (ccb == NULL)
586 return EAGAIN;
587
588 ccb->ccb_done = nvme_ns_io_done;
589 ccb->ccb_cookie = ctx;
590
591 dmap = ccb->ccb_dmamap;
592 error = bus_dmamap_load(sc->sc_dmat, dmap, ctx->nnc_data,
593 ctx->nnc_datasize, NULL,
594 (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL) ?
595 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
596 (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
597 BUS_DMA_READ : BUS_DMA_WRITE));
598 if (error) {
599 nvme_ccb_put(q, ccb);
600 return error;
601 }
602
603 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
604 ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
605 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
606
607 if (dmap->dm_nsegs > 2) {
608 for (i = 1; i < dmap->dm_nsegs; i++) {
609 htolem64(&ccb->ccb_prpl[i - 1],
610 dmap->dm_segs[i].ds_addr);
611 }
612 bus_dmamap_sync(sc->sc_dmat,
613 NVME_DMA_MAP(q->q_ccb_prpls),
614 ccb->ccb_prpl_off,
615 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
616 BUS_DMASYNC_PREWRITE);
617 }
618
619 if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
620 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
621 return EIO;
622 return 0;
623 }
624
625 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
626 return 0;
627 }
628
629 static void
630 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
631 {
632 struct nvme_sqe_io *sqe = slot;
633 struct nvme_ns_context *ctx = ccb->ccb_cookie;
634 bus_dmamap_t dmap = ccb->ccb_dmamap;
635
636 sqe->opcode = ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
637 NVM_CMD_READ : NVM_CMD_WRITE;
638 htolem32(&sqe->nsid, ctx->nnc_nsid);
639
640 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
641 switch (dmap->dm_nsegs) {
642 case 1:
643 break;
644 case 2:
645 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
646 break;
647 default:
648 /* the prp list is already set up and synced */
649 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
650 break;
651 }
652
653 htolem64(&sqe->slba, ctx->nnc_blkno);
654 htolem16(&sqe->nlb, (ctx->nnc_datasize / ctx->nnc_secsize) - 1);
655 }
656
657 static void
658 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
659 struct nvme_cqe *cqe)
660 {
661 struct nvme_softc *sc = q->q_sc;
662 struct nvme_ns_context *ctx = ccb->ccb_cookie;
663 bus_dmamap_t dmap = ccb->ccb_dmamap;
664 uint16_t flags;
665
666 if (dmap->dm_nsegs > 2) {
667 bus_dmamap_sync(sc->sc_dmat,
668 NVME_DMA_MAP(q->q_ccb_prpls),
669 ccb->ccb_prpl_off,
670 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
671 BUS_DMASYNC_POSTWRITE);
672 }
673
674 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
675 ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
676 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
677
678 bus_dmamap_unload(sc->sc_dmat, dmap);
679 nvme_ccb_put(q, ccb);
680
681 flags = lemtoh16(&cqe->flags);
682
683 ctx->nnc_status = flags;
684 (*ctx->nnc_done)(ctx);
685 }
686
687 int
688 nvme_ns_sync(struct nvme_softc *sc, struct nvme_ns_context *ctx)
689 {
690 struct nvme_queue *q = nvme_get_q(sc);
691 struct nvme_ccb *ccb;
692
693 ccb = nvme_ccb_get(q);
694 if (ccb == NULL)
695 return EAGAIN;
696
697 ccb->ccb_done = nvme_ns_sync_done;
698 ccb->ccb_cookie = ctx;
699
700 if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
701 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
702 return EIO;
703 return 0;
704 }
705
706 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
707 return 0;
708 }
709
710 static void
711 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
712 {
713 struct nvme_sqe *sqe = slot;
714 struct nvme_ns_context *ctx = ccb->ccb_cookie;
715
716 sqe->opcode = NVM_CMD_FLUSH;
717 htolem32(&sqe->nsid, ctx->nnc_nsid);
718 }
719
720 static void
721 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
722 struct nvme_cqe *cqe)
723 {
724 struct nvme_ns_context *ctx = ccb->ccb_cookie;
725 uint16_t flags;
726
727 nvme_ccb_put(q, ccb);
728
729 flags = lemtoh16(&cqe->flags);
730
731 ctx->nnc_status = flags;
732 (*ctx->nnc_done)(ctx);
733 }
734
735 void
736 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
737 {
738 struct nvme_namespace *ns;
739 struct nvm_identify_namespace *identify;
740
741 ns = nvme_ns_get(sc, nsid);
742 KASSERT(ns);
743
744 identify = ns->ident;
745 ns->ident = NULL;
746 if (identify != NULL)
747 kmem_free(identify, sizeof(*identify));
748 }
749
750 static void
751 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
752 {
753 struct nvme_softc *sc = q->q_sc;
754 struct nvme_sqe *sqe = slot;
755 struct nvme_pt_command *pt = ccb->ccb_cookie;
756 bus_dmamap_t dmap = ccb->ccb_dmamap;
757 int i;
758
759 sqe->opcode = pt->cmd.opcode;
760 htolem32(&sqe->nsid, pt->cmd.nsid);
761
762 if (pt->buf != NULL && pt->len > 0) {
763 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
764 switch (dmap->dm_nsegs) {
765 case 1:
766 break;
767 case 2:
768 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
769 break;
770 default:
771 for (i = 1; i < dmap->dm_nsegs; i++) {
772 htolem64(&ccb->ccb_prpl[i - 1],
773 dmap->dm_segs[i].ds_addr);
774 }
775 bus_dmamap_sync(sc->sc_dmat,
776 NVME_DMA_MAP(q->q_ccb_prpls),
777 ccb->ccb_prpl_off,
778 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
779 BUS_DMASYNC_PREWRITE);
780 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
781 break;
782 }
783 }
784
785 htolem32(&sqe->cdw10, pt->cmd.cdw10);
786 htolem32(&sqe->cdw11, pt->cmd.cdw11);
787 htolem32(&sqe->cdw12, pt->cmd.cdw12);
788 htolem32(&sqe->cdw13, pt->cmd.cdw13);
789 htolem32(&sqe->cdw14, pt->cmd.cdw14);
790 htolem32(&sqe->cdw15, pt->cmd.cdw15);
791 }
792
793 static void
794 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
795 {
796 struct nvme_softc *sc = q->q_sc;
797 struct nvme_pt_command *pt = ccb->ccb_cookie;
798 bus_dmamap_t dmap = ccb->ccb_dmamap;
799
800 if (pt->buf != NULL && pt->len > 0) {
801 if (dmap->dm_nsegs > 2) {
802 bus_dmamap_sync(sc->sc_dmat,
803 NVME_DMA_MAP(q->q_ccb_prpls),
804 ccb->ccb_prpl_off,
805 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
806 BUS_DMASYNC_POSTWRITE);
807 }
808
809 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
810 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
811 bus_dmamap_unload(sc->sc_dmat, dmap);
812 }
813
814 pt->cpl.cdw0 = cqe->cdw0;
815 pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
816 }
817
818 static int
819 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
820 uint16_t nsid, struct lwp *l, bool is_adminq)
821 {
822 struct nvme_queue *q;
823 struct nvme_ccb *ccb;
824 void *buf = NULL;
825 int error;
826
827 if ((pt->buf == NULL && pt->len > 0) ||
828 (pt->buf != NULL && pt->len == 0))
829 return EINVAL;
830
831 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
832 ccb = nvme_ccb_get(q);
833 if (ccb == NULL)
834 return EBUSY;
835
836 if (pt->buf != NULL && pt->len > 0) {
837 buf = kmem_alloc(pt->len, KM_SLEEP);
838 if (buf == NULL) {
839 error = ENOMEM;
840 goto ccb_put;
841 }
842 if (!pt->is_read) {
843 error = copyin(pt->buf, buf, pt->len);
844 if (error)
845 goto kmem_free;
846 }
847 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
848 pt->len, NULL,
849 BUS_DMA_WAITOK |
850 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
851 if (error)
852 goto kmem_free;
853 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
854 0, ccb->ccb_dmamap->dm_mapsize,
855 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
856 }
857
858 ccb->ccb_done = nvme_pt_done;
859 ccb->ccb_cookie = pt;
860
861 pt->cmd.nsid = nsid;
862 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
863 error = EIO;
864 goto out;
865 }
866
867 error = 0;
868 out:
869 if (buf != NULL) {
870 if (error == 0 && pt->is_read)
871 error = copyout(buf, pt->buf, pt->len);
872 kmem_free:
873 kmem_free(buf, pt->len);
874 }
875 ccb_put:
876 nvme_ccb_put(q, ccb);
877 return error;
878 }
879
880 static void
881 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
882 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
883 {
884 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
885 uint32_t tail;
886
887 mutex_enter(&q->q_sq_mtx);
888 tail = q->q_sq_tail;
889 if (++q->q_sq_tail >= q->q_entries)
890 q->q_sq_tail = 0;
891
892 sqe += tail;
893
894 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
895 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
896 memset(sqe, 0, sizeof(*sqe));
897 (*fill)(q, ccb, sqe);
898 sqe->cid = ccb->ccb_id;
899 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
900 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
901
902 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
903 mutex_exit(&q->q_sq_mtx);
904 }
905
906 struct nvme_poll_state {
907 struct nvme_sqe s;
908 struct nvme_cqe c;
909 };
910
911 static int
912 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
913 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
914 {
915 struct nvme_poll_state state;
916 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
917 void *cookie;
918 uint16_t flags;
919 int step = 10;
920 int maxloop = timo_sec * 1000000 / step;
921 int error = 0;
922
923 memset(&state, 0, sizeof(state));
924 (*fill)(q, ccb, &state.s);
925
926 done = ccb->ccb_done;
927 cookie = ccb->ccb_cookie;
928
929 ccb->ccb_done = nvme_poll_done;
930 ccb->ccb_cookie = &state;
931
932 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
933 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
934 if (nvme_q_complete(sc, q) == 0)
935 delay(step);
936
937 if (timo_sec >= 0 && --maxloop <= 0) {
938 error = ETIMEDOUT;
939 break;
940 }
941 }
942
943 ccb->ccb_cookie = cookie;
944 done(q, ccb, &state.c);
945
946 if (error == 0) {
947 flags = lemtoh16(&state.c.flags);
948 return flags & ~NVME_CQE_PHASE;
949 } else {
950 return 1;
951 }
952 }
953
954 static void
955 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
956 {
957 struct nvme_sqe *sqe = slot;
958 struct nvme_poll_state *state = ccb->ccb_cookie;
959
960 *sqe = state->s;
961 }
962
963 static void
964 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
965 struct nvme_cqe *cqe)
966 {
967 struct nvme_poll_state *state = ccb->ccb_cookie;
968
969 SET(cqe->flags, htole16(NVME_CQE_PHASE));
970 state->c = *cqe;
971 }
972
973 static void
974 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
975 {
976 struct nvme_sqe *src = ccb->ccb_cookie;
977 struct nvme_sqe *dst = slot;
978
979 *dst = *src;
980 }
981
982 static void
983 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
984 struct nvme_cqe *cqe)
985 {
986 }
987
988 static int
989 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
990 {
991 struct nvme_ccb *ccb;
992 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
993 uint32_t head;
994 uint16_t flags;
995 int rv = 0;
996
997 if (!mutex_tryenter(&q->q_cq_mtx))
998 return -1;
999
1000 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1001 head = q->q_cq_head;
1002 for (;;) {
1003 cqe = &ring[head];
1004 flags = lemtoh16(&cqe->flags);
1005 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1006 break;
1007
1008 ccb = &q->q_ccbs[cqe->cid];
1009 ccb->ccb_done(q, ccb, cqe);
1010
1011 if (++head >= q->q_entries) {
1012 head = 0;
1013 q->q_cq_phase ^= NVME_CQE_PHASE;
1014 }
1015
1016 rv = 1;
1017 }
1018 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1019
1020 if (rv)
1021 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head = head);
1022 mutex_exit(&q->q_cq_mtx);
1023
1024 return rv;
1025 }
1026
1027 static int
1028 nvme_identify(struct nvme_softc *sc, u_int mps)
1029 {
1030 char sn[41], mn[81], fr[17];
1031 struct nvm_identify_controller *identify;
1032 struct nvme_dmamem *mem;
1033 struct nvme_ccb *ccb;
1034 u_int mdts;
1035 int rv = 1;
1036
1037 ccb = nvme_ccb_get(sc->sc_admin_q);
1038 if (ccb == NULL)
1039 panic("%s: nvme_ccb_get returned NULL", __func__);
1040
1041 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1042 if (mem == NULL)
1043 return 1;
1044
1045 ccb->ccb_done = nvme_empty_done;
1046 ccb->ccb_cookie = mem;
1047
1048 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1049 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1050 NVME_TIMO_IDENT);
1051 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1052
1053 nvme_ccb_put(sc->sc_admin_q, ccb);
1054
1055 if (rv != 0)
1056 goto done;
1057
1058 identify = NVME_DMA_KVA(mem);
1059
1060 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1061 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1062 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1063 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1064 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1065 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1066 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1067 sn);
1068
1069 if (identify->mdts > 0) {
1070 mdts = (1 << identify->mdts) * (1 << mps);
1071 if (mdts < sc->sc_mdts)
1072 sc->sc_mdts = mdts;
1073 }
1074
1075 sc->sc_nn = lemtoh32(&identify->nn);
1076
1077 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1078
1079 done:
1080 nvme_dmamem_free(sc, mem);
1081
1082 return rv;
1083 }
1084
1085 static int
1086 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1087 {
1088 struct nvme_sqe_q sqe;
1089 struct nvme_ccb *ccb;
1090 int rv;
1091
1092 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q))
1093 return 1;
1094
1095 ccb = nvme_ccb_get(sc->sc_admin_q);
1096 KASSERT(ccb != NULL);
1097
1098 ccb->ccb_done = nvme_empty_done;
1099 ccb->ccb_cookie = &sqe;
1100
1101 memset(&sqe, 0, sizeof(sqe));
1102 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1103 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1104 htolem16(&sqe.qsize, q->q_entries - 1);
1105 htolem16(&sqe.qid, q->q_id);
1106 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1107 if (sc->sc_use_mq)
1108 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1109
1110 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1111 if (rv != 0)
1112 goto fail;
1113
1114 ccb->ccb_done = nvme_empty_done;
1115 ccb->ccb_cookie = &sqe;
1116
1117 memset(&sqe, 0, sizeof(sqe));
1118 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1119 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1120 htolem16(&sqe.qsize, q->q_entries - 1);
1121 htolem16(&sqe.qid, q->q_id);
1122 htolem16(&sqe.cqid, q->q_id);
1123 sqe.qflags = NVM_SQE_Q_PC;
1124
1125 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1126 if (rv != 0)
1127 goto fail;
1128
1129 fail:
1130 nvme_ccb_put(sc->sc_admin_q, ccb);
1131 return rv;
1132 }
1133
1134 static int
1135 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1136 {
1137 struct nvme_sqe_q sqe;
1138 struct nvme_ccb *ccb;
1139 int rv;
1140
1141 ccb = nvme_ccb_get(sc->sc_admin_q);
1142 KASSERT(ccb != NULL);
1143
1144 ccb->ccb_done = nvme_empty_done;
1145 ccb->ccb_cookie = &sqe;
1146
1147 memset(&sqe, 0, sizeof(sqe));
1148 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1149 htolem16(&sqe.qid, q->q_id);
1150
1151 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1152 if (rv != 0)
1153 goto fail;
1154
1155 ccb->ccb_done = nvme_empty_done;
1156 ccb->ccb_cookie = &sqe;
1157
1158 memset(&sqe, 0, sizeof(sqe));
1159 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1160 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1161 htolem16(&sqe.qid, q->q_id);
1162
1163 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1164 if (rv != 0)
1165 goto fail;
1166
1167 fail:
1168 nvme_ccb_put(sc->sc_admin_q, ccb);
1169
1170 if (rv == 0 && sc->sc_use_mq) {
1171 if (sc->sc_intr_disestablish(sc, q->q_id))
1172 rv = 1;
1173 }
1174
1175 return rv;
1176 }
1177
1178 static void
1179 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1180 {
1181 struct nvme_sqe *sqe = slot;
1182 struct nvme_dmamem *mem = ccb->ccb_cookie;
1183
1184 sqe->opcode = NVM_ADMIN_IDENTIFY;
1185 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1186 htolem32(&sqe->cdw10, 1);
1187 }
1188
1189 static int
1190 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
1191 {
1192 struct nvme_softc *sc = q->q_sc;
1193 struct nvme_ccb *ccb;
1194 bus_addr_t off;
1195 uint64_t *prpl;
1196 u_int i;
1197
1198 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1199 SIMPLEQ_INIT(&q->q_ccb_list);
1200
1201 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1202 if (q->q_ccbs == NULL)
1203 return 1;
1204
1205 q->q_nccbs = nccbs;
1206 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1207 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1208
1209 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1210 off = 0;
1211
1212 for (i = 0; i < nccbs; i++) {
1213 ccb = &q->q_ccbs[i];
1214
1215 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1216 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1217 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1218 &ccb->ccb_dmamap) != 0)
1219 goto free_maps;
1220
1221 ccb->ccb_id = i;
1222 ccb->ccb_prpl = prpl;
1223 ccb->ccb_prpl_off = off;
1224 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1225
1226 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1227
1228 prpl += sc->sc_max_sgl;
1229 off += sizeof(*prpl) * sc->sc_max_sgl;
1230 }
1231
1232 return 0;
1233
1234 free_maps:
1235 nvme_ccbs_free(q);
1236 return 1;
1237 }
1238
1239 static struct nvme_ccb *
1240 nvme_ccb_get(struct nvme_queue *q)
1241 {
1242 struct nvme_ccb *ccb;
1243
1244 mutex_enter(&q->q_ccb_mtx);
1245 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1246 if (ccb != NULL)
1247 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1248 mutex_exit(&q->q_ccb_mtx);
1249
1250 return ccb;
1251 }
1252
1253 static void
1254 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1255 {
1256
1257 mutex_enter(&q->q_ccb_mtx);
1258 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1259 mutex_exit(&q->q_ccb_mtx);
1260 }
1261
1262 static void
1263 nvme_ccbs_free(struct nvme_queue *q)
1264 {
1265 struct nvme_softc *sc = q->q_sc;
1266 struct nvme_ccb *ccb;
1267
1268 mutex_enter(&q->q_ccb_mtx);
1269 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1270 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1271 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1272 }
1273 mutex_exit(&q->q_ccb_mtx);
1274
1275 nvme_dmamem_free(sc, q->q_ccb_prpls);
1276 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1277 q->q_ccbs = NULL;
1278 mutex_destroy(&q->q_ccb_mtx);
1279 }
1280
1281 static struct nvme_queue *
1282 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1283 {
1284 struct nvme_queue *q;
1285
1286 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1287 if (q == NULL)
1288 return NULL;
1289
1290 q->q_sc = sc;
1291 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1292 sizeof(struct nvme_sqe) * entries);
1293 if (q->q_sq_dmamem == NULL)
1294 goto free;
1295
1296 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1297 sizeof(struct nvme_cqe) * entries);
1298 if (q->q_cq_dmamem == NULL)
1299 goto free_sq;
1300
1301 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1302 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1303
1304 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1305 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1306 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1307 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1308 q->q_id = id;
1309 q->q_entries = entries;
1310 q->q_sq_tail = 0;
1311 q->q_cq_head = 0;
1312 q->q_cq_phase = NVME_CQE_PHASE;
1313
1314 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1315 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1316
1317 if (nvme_ccbs_alloc(q, entries) != 0) {
1318 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1319 goto free_cq;
1320 }
1321
1322 return q;
1323
1324 free_cq:
1325 nvme_dmamem_free(sc, q->q_cq_dmamem);
1326 free_sq:
1327 nvme_dmamem_free(sc, q->q_sq_dmamem);
1328 free:
1329 kmem_free(q, sizeof(*q));
1330
1331 return NULL;
1332 }
1333
1334 static void
1335 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1336 {
1337 nvme_ccbs_free(q);
1338 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1339 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1340 nvme_dmamem_free(sc, q->q_cq_dmamem);
1341 nvme_dmamem_free(sc, q->q_sq_dmamem);
1342 kmem_free(q, sizeof(*q));
1343 }
1344
1345 int
1346 nvme_intr(void *xsc)
1347 {
1348 struct nvme_softc *sc = xsc;
1349 int rv = 0;
1350
1351 nvme_write4(sc, NVME_INTMS, 1);
1352
1353 if (nvme_q_complete(sc, sc->sc_admin_q))
1354 rv = 1;
1355 if (sc->sc_q != NULL)
1356 if (nvme_q_complete(sc, sc->sc_q[0]))
1357 rv = 1;
1358
1359 nvme_write4(sc, NVME_INTMC, 1);
1360
1361 return rv;
1362 }
1363
1364 int
1365 nvme_mq_msi_intr(void *xq)
1366 {
1367 struct nvme_queue *q = xq;
1368 struct nvme_softc *sc = q->q_sc;
1369 int rv = 0;
1370
1371 nvme_write4(sc, NVME_INTMS, 1U << q->q_id);
1372
1373 if (nvme_q_complete(sc, q))
1374 rv = 1;
1375
1376 nvme_write4(sc, NVME_INTMC, 1U << q->q_id);
1377
1378 return rv;
1379 }
1380
1381 int
1382 nvme_mq_msix_intr(void *xq)
1383 {
1384 struct nvme_queue *q = xq;
1385 int rv = 0;
1386
1387 if (nvme_q_complete(q->q_sc, q))
1388 rv = 1;
1389
1390 return rv;
1391 }
1392
1393 static struct nvme_dmamem *
1394 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1395 {
1396 struct nvme_dmamem *ndm;
1397 int nsegs;
1398
1399 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1400 if (ndm == NULL)
1401 return NULL;
1402
1403 ndm->ndm_size = size;
1404
1405 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1406 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1407 goto ndmfree;
1408
1409 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1410 1, &nsegs, BUS_DMA_WAITOK) != 0)
1411 goto destroy;
1412
1413 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1414 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1415 goto free;
1416 memset(ndm->ndm_kva, 0, size);
1417
1418 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1419 NULL, BUS_DMA_WAITOK) != 0)
1420 goto unmap;
1421
1422 return ndm;
1423
1424 unmap:
1425 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1426 free:
1427 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1428 destroy:
1429 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1430 ndmfree:
1431 kmem_free(ndm, sizeof(*ndm));
1432 return NULL;
1433 }
1434
1435 static void
1436 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1437 {
1438 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1439 0, NVME_DMA_LEN(mem), ops);
1440 }
1441
1442 void
1443 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1444 {
1445 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1446 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1447 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1448 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1449 kmem_free(ndm, sizeof(*ndm));
1450 }
1451
1452 /*
1453 * ioctl
1454 */
1455
1456 dev_type_open(nvmeopen);
1457 dev_type_close(nvmeclose);
1458 dev_type_ioctl(nvmeioctl);
1459
1460 const struct cdevsw nvme_cdevsw = {
1461 .d_open = nvmeopen,
1462 .d_close = nvmeclose,
1463 .d_read = noread,
1464 .d_write = nowrite,
1465 .d_ioctl = nvmeioctl,
1466 .d_stop = nostop,
1467 .d_tty = notty,
1468 .d_poll = nopoll,
1469 .d_mmap = nommap,
1470 .d_kqfilter = nokqfilter,
1471 .d_discard = nodiscard,
1472 .d_flag = D_OTHER,
1473 };
1474
1475 extern struct cfdriver nvme_cd;
1476
1477 /*
1478 * Accept an open operation on the control device.
1479 */
1480 int
1481 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1482 {
1483 struct nvme_softc *sc;
1484 int unit = minor(dev) / 0x10000;
1485 int nsid = minor(dev) & 0xffff;
1486 int nsidx;
1487
1488 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1489 return ENXIO;
1490 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1491 return ENXIO;
1492
1493 if (nsid == 0) {
1494 /* controller */
1495 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1496 return EBUSY;
1497 SET(sc->sc_flags, NVME_F_OPEN);
1498 } else {
1499 /* namespace */
1500 nsidx = nsid - 1;
1501 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1502 return ENXIO;
1503 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1504 return EBUSY;
1505 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1506 }
1507 return 0;
1508 }
1509
1510 /*
1511 * Accept the last close on the control device.
1512 */
1513 int
1514 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1515 {
1516 struct nvme_softc *sc;
1517 int unit = minor(dev) / 0x10000;
1518 int nsid = minor(dev) & 0xffff;
1519 int nsidx;
1520
1521 sc = device_lookup_private(&nvme_cd, unit);
1522 if (sc == NULL)
1523 return ENXIO;
1524
1525 if (nsid == 0) {
1526 /* controller */
1527 CLR(sc->sc_flags, NVME_F_OPEN);
1528 } else {
1529 /* namespace */
1530 nsidx = nsid - 1;
1531 if (nsidx >= sc->sc_nn)
1532 return ENXIO;
1533 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1534 }
1535
1536 return 0;
1537 }
1538
1539 /*
1540 * Handle control operations.
1541 */
1542 int
1543 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1544 {
1545 struct nvme_softc *sc;
1546 int unit = minor(dev) / 0x10000;
1547 int nsid = minor(dev) & 0xffff;
1548 struct nvme_pt_command *pt;
1549
1550 sc = device_lookup_private(&nvme_cd, unit);
1551 if (sc == NULL)
1552 return ENXIO;
1553
1554 switch (cmd) {
1555 case NVME_PASSTHROUGH_CMD:
1556 pt = data;
1557 return nvme_command_passthrough(sc, data,
1558 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1559 }
1560
1561 return ENOTTY;
1562 }
1563