Home | History | Annotate | Line # | Download | only in ic
nvme.c revision 1.7
      1 /*	$NetBSD: nvme.c,v 1.7 2016/09/16 12:57:26 jdolecek Exp $	*/
      2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.7 2016/09/16 12:57:26 jdolecek Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/systm.h>
     25 #include <sys/kernel.h>
     26 #include <sys/atomic.h>
     27 #include <sys/bus.h>
     28 #include <sys/buf.h>
     29 #include <sys/conf.h>
     30 #include <sys/device.h>
     31 #include <sys/kmem.h>
     32 #include <sys/once.h>
     33 #include <sys/proc.h>
     34 #include <sys/queue.h>
     35 #include <sys/mutex.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <dev/ic/nvmereg.h>
     40 #include <dev/ic/nvmevar.h>
     41 #include <dev/ic/nvmeio.h>
     42 
     43 int nvme_adminq_size = 128;
     44 int nvme_ioq_size = 128;
     45 
     46 static int	nvme_print(void *, const char *);
     47 
     48 static int	nvme_ready(struct nvme_softc *, uint32_t);
     49 static int	nvme_enable(struct nvme_softc *, u_int);
     50 static int	nvme_disable(struct nvme_softc *);
     51 static int	nvme_shutdown(struct nvme_softc *);
     52 
     53 static void	nvme_version(struct nvme_softc *, uint32_t);
     54 #ifdef NVME_DEBUG
     55 static void	nvme_dumpregs(struct nvme_softc *);
     56 #endif
     57 static int	nvme_identify(struct nvme_softc *, u_int);
     58 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
     59 		    void *);
     60 
     61 static int	nvme_ccbs_alloc(struct nvme_queue *, u_int);
     62 static void	nvme_ccbs_free(struct nvme_queue *);
     63 
     64 static struct nvme_ccb *
     65 		nvme_ccb_get(struct nvme_queue *);
     66 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
     67 
     68 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
     69 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     70 		    struct nvme_ccb *, void *), int);
     71 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     72 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
     73 		    struct nvme_cqe *);
     74 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
     75 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
     76 		    struct nvme_cqe *);
     77 
     78 static struct nvme_queue *
     79 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
     80 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
     81 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
     82 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
     83 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
     84 		    struct nvme_ccb *, void *));
     85 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
     86 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
     87 
     88 static struct nvme_dmamem *
     89 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
     90 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
     91 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
     92 		    int);
     93 
     94 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
     95 		    void *);
     96 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
     97 		    struct nvme_cqe *);
     98 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
     99 		    void *);
    100 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
    101 		    struct nvme_cqe *);
    102 
    103 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
    104 		    void *);
    105 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
    106 		    struct nvme_cqe *);
    107 static int	nvme_command_passthrough(struct nvme_softc *,
    108 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
    109 
    110 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
    111 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
    112 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
    113 #define NVME_TIMO_SY		-1	/* sync cache timeout */
    114 
    115 #define nvme_read4(_s, _r) \
    116 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
    117 #define nvme_write4(_s, _r, _v) \
    118 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    119 #ifdef __LP64__
    120 #define nvme_read8(_s, _r) \
    121 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
    122 #define nvme_write8(_s, _r, _v) \
    123 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
    124 #else /* __LP64__ */
    125 static inline uint64_t
    126 nvme_read8(struct nvme_softc *sc, bus_size_t r)
    127 {
    128 	uint64_t v;
    129 	uint32_t *a = (uint32_t *)&v;
    130 
    131 #if _BYTE_ORDER == _LITTLE_ENDIAN
    132 	a[0] = nvme_read4(sc, r);
    133 	a[1] = nvme_read4(sc, r + 4);
    134 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    135 	a[1] = nvme_read4(sc, r);
    136 	a[0] = nvme_read4(sc, r + 4);
    137 #endif
    138 
    139 	return v;
    140 }
    141 
    142 static inline void
    143 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
    144 {
    145 	uint32_t *a = (uint32_t *)&v;
    146 
    147 #if _BYTE_ORDER == _LITTLE_ENDIAN
    148 	nvme_write4(sc, r, a[0]);
    149 	nvme_write4(sc, r + 4, a[1]);
    150 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
    151 	nvme_write4(sc, r, a[1]);
    152 	nvme_write4(sc, r + 4, a[0]);
    153 #endif
    154 }
    155 #endif /* __LP64__ */
    156 #define nvme_barrier(_s, _r, _l, _f) \
    157 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
    158 
    159 pool_cache_t nvme_ns_ctx_cache;
    160 ONCE_DECL(nvme_init_once);
    161 
    162 static int
    163 nvme_init(void)
    164 {
    165 	nvme_ns_ctx_cache = pool_cache_init(sizeof(struct nvme_ns_context),
    166 	    0, 0, 0, "nvme_ns_ctx", NULL, IPL_BIO, NULL, NULL, NULL);
    167 	KASSERT(nvme_ns_ctx_cache != NULL);
    168 	return 0;
    169 }
    170 
    171 static void
    172 nvme_version(struct nvme_softc *sc, uint32_t ver)
    173 {
    174 	const char *v = NULL;
    175 
    176 	switch (ver) {
    177 	case NVME_VS_1_0:
    178 		v = "1.0";
    179 		break;
    180 	case NVME_VS_1_1:
    181 		v = "1.1";
    182 		break;
    183 	case NVME_VS_1_2:
    184 		v = "1.2";
    185 		break;
    186 	default:
    187 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
    188 		return;
    189 	}
    190 
    191 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
    192 }
    193 
    194 #ifdef NVME_DEBUG
    195 static __used void
    196 nvme_dumpregs(struct nvme_softc *sc)
    197 {
    198 	uint64_t r8;
    199 	uint32_t r4;
    200 
    201 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
    202 	r8 = nvme_read8(sc, NVME_CAP);
    203 	printf("%s: cap  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
    204 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
    205 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
    206 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
    207 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
    208 	printf("%s:  css %llu\n", DEVNAME(sc), NVME_CAP_CSS(r8));
    209 	printf("%s:  nssrs %llu\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
    210 	printf("%s:  dstrd %llu\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
    211 	printf("%s:  to %llu msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
    212 	printf("%s:  ams %llu\n", DEVNAME(sc), NVME_CAP_AMS(r8));
    213 	printf("%s:  cqr %llu\n", DEVNAME(sc), NVME_CAP_CQR(r8));
    214 	printf("%s:  mqes %llu\n", DEVNAME(sc), NVME_CAP_MQES(r8));
    215 
    216 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
    217 
    218 	r4 = nvme_read4(sc, NVME_CC);
    219 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
    220 	printf("%s:  iocqes %u\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4));
    221 	printf("%s:  iosqes %u\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4));
    222 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
    223 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
    224 	printf("%s:  mps %u\n", DEVNAME(sc), NVME_CC_MPS_R(r4));
    225 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
    226 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
    227 
    228 	printf("%s: csts 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_CSTS));
    229 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_AQA));
    230 	printf("%s: asq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
    231 	printf("%s: acq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
    232 #undef	DEVNAME
    233 }
    234 #endif	/* NVME_DEBUG */
    235 
    236 static int
    237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
    238 {
    239 	u_int i = 0;
    240 
    241 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
    242 		if (i++ > sc->sc_rdy_to)
    243 			return 1;
    244 
    245 		delay(1000);
    246 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
    247 	}
    248 
    249 	return 0;
    250 }
    251 
    252 static int
    253 nvme_enable(struct nvme_softc *sc, u_int mps)
    254 {
    255 	uint32_t cc;
    256 
    257 	cc = nvme_read4(sc, NVME_CC);
    258 	if (ISSET(cc, NVME_CC_EN)) {
    259 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
    260 		return 0;
    261 	}
    262 
    263 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
    264 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
    265 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    266 
    267 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
    268 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    269 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
    270 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
    271 
    272 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
    273 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
    274 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
    275 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
    276 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
    277 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
    278 	SET(cc, NVME_CC_MPS(mps));
    279 	SET(cc, NVME_CC_EN);
    280 
    281 	nvme_write4(sc, NVME_CC, cc);
    282 	nvme_barrier(sc, 0, sc->sc_ios,
    283 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    284 
    285 	return nvme_ready(sc, NVME_CSTS_RDY);
    286 }
    287 
    288 static int
    289 nvme_disable(struct nvme_softc *sc)
    290 {
    291 	uint32_t cc, csts;
    292 
    293 	cc = nvme_read4(sc, NVME_CC);
    294 	if (ISSET(cc, NVME_CC_EN)) {
    295 		csts = nvme_read4(sc, NVME_CSTS);
    296 		if (!ISSET(csts, NVME_CSTS_CFS) &&
    297 		    nvme_ready(sc, NVME_CSTS_RDY) != 0)
    298 			return 1;
    299 	}
    300 
    301 	CLR(cc, NVME_CC_EN);
    302 
    303 	nvme_write4(sc, NVME_CC, cc);
    304 	nvme_barrier(sc, 0, sc->sc_ios,
    305 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    306 
    307 	return nvme_ready(sc, 0);
    308 }
    309 
    310 int
    311 nvme_attach(struct nvme_softc *sc)
    312 {
    313 	struct nvme_attach_args naa;
    314 	uint64_t cap;
    315 	uint32_t reg;
    316 	u_int dstrd;
    317 	u_int mps = PAGE_SHIFT;
    318 	int adminq_entries = nvme_adminq_size;
    319 	int ioq_entries = nvme_ioq_size;
    320 	int i;
    321 
    322 	RUN_ONCE(&nvme_init_once, nvme_init);
    323 
    324 	reg = nvme_read4(sc, NVME_VS);
    325 	if (reg == 0xffffffff) {
    326 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
    327 		return 1;
    328 	}
    329 
    330 	nvme_version(sc, reg);
    331 
    332 	cap = nvme_read8(sc, NVME_CAP);
    333 	dstrd = NVME_CAP_DSTRD(cap);
    334 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
    335 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
    336 		    "is greater than CPU page size %u\n",
    337 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
    338 		return 1;
    339 	}
    340 	if (NVME_CAP_MPSMAX(cap) < mps)
    341 		mps = NVME_CAP_MPSMAX(cap);
    342 
    343 	sc->sc_rdy_to = NVME_CAP_TO(cap);
    344 	sc->sc_mps = 1 << mps;
    345 	sc->sc_mdts = MAXPHYS;
    346 	sc->sc_max_sgl = 2;
    347 
    348 	if (nvme_disable(sc) != 0) {
    349 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
    350 		return 1;
    351 	}
    352 
    353 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
    354 	if (sc->sc_admin_q == NULL) {
    355 		aprint_error_dev(sc->sc_dev,
    356 		    "unable to allocate admin queue\n");
    357 		return 1;
    358 	}
    359 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
    360 		goto free_admin_q;
    361 
    362 	if (nvme_enable(sc, mps) != 0) {
    363 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
    364 		goto disestablish_admin_q;
    365 	}
    366 
    367 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
    368 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
    369 		goto disable;
    370 	}
    371 
    372 	/* we know how big things are now */
    373 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
    374 
    375 	/* reallocate ccbs of admin queue with new max sgl. */
    376 	nvme_ccbs_free(sc->sc_admin_q);
    377 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
    378 
    379 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
    380 	if (sc->sc_q == NULL) {
    381 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
    382 		goto disable;
    383 	}
    384 	for (i = 0; i < sc->sc_nq; i++) {
    385 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
    386 		if (sc->sc_q[i] == NULL) {
    387 			aprint_error_dev(sc->sc_dev,
    388 			    "unable to allocate io queue\n");
    389 			goto free_q;
    390 		}
    391 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
    392 			aprint_error_dev(sc->sc_dev,
    393 			    "unable to create io queue\n");
    394 			nvme_q_free(sc, sc->sc_q[i]);
    395 			goto free_q;
    396 		}
    397 	}
    398 
    399 	if (!sc->sc_use_mq)
    400 		nvme_write4(sc, NVME_INTMC, 1);
    401 
    402 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
    403 	    KM_SLEEP);
    404 	for (i = 0; i < sc->sc_nn; i++) {
    405 		memset(&naa, 0, sizeof(naa));
    406 		naa.naa_nsid = i + 1;
    407 		naa.naa_qentries = ioq_entries;
    408 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
    409 		    nvme_print);
    410 	}
    411 
    412 	return 0;
    413 
    414 free_q:
    415 	while (--i >= 0) {
    416 		nvme_q_delete(sc, sc->sc_q[i]);
    417 		nvme_q_free(sc, sc->sc_q[i]);
    418 	}
    419 disable:
    420 	nvme_disable(sc);
    421 disestablish_admin_q:
    422 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    423 free_admin_q:
    424 	nvme_q_free(sc, sc->sc_admin_q);
    425 
    426 	return 1;
    427 }
    428 
    429 static int
    430 nvme_print(void *aux, const char *pnp)
    431 {
    432 	struct nvme_attach_args *naa = aux;
    433 
    434 	if (pnp)
    435 		aprint_normal("at %s", pnp);
    436 
    437 	if (naa->naa_nsid > 0)
    438 		aprint_normal(" nsid %d", naa->naa_nsid);
    439 
    440 	return UNCONF;
    441 }
    442 
    443 int
    444 nvme_detach(struct nvme_softc *sc, int flags)
    445 {
    446 	int i, error;
    447 
    448 	error = config_detach_children(sc->sc_dev, flags);
    449 	if (error)
    450 		return error;
    451 
    452 	error = nvme_shutdown(sc);
    453 	if (error)
    454 		return error;
    455 
    456 	for (i = 0; i < sc->sc_nq; i++)
    457 		nvme_q_free(sc, sc->sc_q[i]);
    458 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
    459 	nvme_q_free(sc, sc->sc_admin_q);
    460 
    461 	return 0;
    462 }
    463 
    464 static int
    465 nvme_shutdown(struct nvme_softc *sc)
    466 {
    467 	uint32_t cc, csts;
    468 	bool disabled = false;
    469 	int i;
    470 
    471 	if (!sc->sc_use_mq)
    472 		nvme_write4(sc, NVME_INTMS, 1);
    473 
    474 	for (i = 0; i < sc->sc_nq; i++) {
    475 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
    476 			aprint_error_dev(sc->sc_dev,
    477 			    "unable to delete io queue %d, disabling\n", i + 1);
    478 			disabled = true;
    479 		}
    480 	}
    481 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
    482 	if (disabled)
    483 		goto disable;
    484 
    485 	cc = nvme_read4(sc, NVME_CC);
    486 	CLR(cc, NVME_CC_SHN_MASK);
    487 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
    488 	nvme_write4(sc, NVME_CC, cc);
    489 
    490 	for (i = 0; i < 4000; i++) {
    491 		nvme_barrier(sc, 0, sc->sc_ios,
    492 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
    493 		csts = nvme_read4(sc, NVME_CSTS);
    494 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
    495 			return 0;
    496 
    497 		delay(1000);
    498 	}
    499 
    500 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
    501 
    502 disable:
    503 	nvme_disable(sc);
    504 	return 0;
    505 }
    506 
    507 void
    508 nvme_childdet(device_t self, device_t child)
    509 {
    510 	struct nvme_softc *sc = device_private(self);
    511 	int i;
    512 
    513 	for (i = 0; i < sc->sc_nn; i++) {
    514 		if (sc->sc_namespaces[i].dev == child) {
    515 			/* Already freed ns->ident. */
    516 			sc->sc_namespaces[i].dev = NULL;
    517 			break;
    518 		}
    519 	}
    520 }
    521 
    522 int
    523 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
    524 {
    525 	struct nvme_sqe sqe;
    526 	struct nvm_identify_namespace *identify;
    527 	struct nvme_dmamem *mem;
    528 	struct nvme_ccb *ccb;
    529 	struct nvme_namespace *ns;
    530 	int rv;
    531 
    532 	KASSERT(nsid > 0);
    533 
    534 	ccb = nvme_ccb_get(sc->sc_admin_q);
    535 	KASSERT(ccb != NULL);
    536 
    537 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
    538 	if (mem == NULL)
    539 		return ENOMEM;
    540 
    541 	memset(&sqe, 0, sizeof(sqe));
    542 	sqe.opcode = NVM_ADMIN_IDENTIFY;
    543 	htolem32(&sqe.nsid, nsid);
    544 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
    545 	htolem32(&sqe.cdw10, 0);
    546 
    547 	ccb->ccb_done = nvme_empty_done;
    548 	ccb->ccb_cookie = &sqe;
    549 
    550 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
    551 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
    552 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
    553 
    554 	nvme_ccb_put(sc->sc_admin_q, ccb);
    555 
    556 	if (rv != 0) {
    557 		rv = EIO;
    558 		goto done;
    559 	}
    560 
    561 	/* commit */
    562 
    563 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
    564 	memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
    565 
    566 	ns = nvme_ns_get(sc, nsid);
    567 	KASSERT(ns);
    568 	ns->ident = identify;
    569 
    570 done:
    571 	nvme_dmamem_free(sc, mem);
    572 
    573 	return rv;
    574 }
    575 
    576 int
    577 nvme_ns_dobio(struct nvme_softc *sc, struct nvme_ns_context *ctx)
    578 {
    579 	struct nvme_queue *q = nvme_get_q(sc);
    580 	struct nvme_ccb *ccb;
    581 	bus_dmamap_t dmap;
    582 	int i, error;
    583 
    584 	ccb = nvme_ccb_get(q);
    585 	if (ccb == NULL)
    586 		return EAGAIN;
    587 
    588 	ccb->ccb_done = nvme_ns_io_done;
    589 	ccb->ccb_cookie = ctx;
    590 
    591 	dmap = ccb->ccb_dmamap;
    592 	error = bus_dmamap_load(sc->sc_dmat, dmap, ctx->nnc_data,
    593 	    ctx->nnc_datasize, NULL,
    594 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL) ?
    595 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
    596 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    597 	      BUS_DMA_READ : BUS_DMA_WRITE));
    598 	if (error) {
    599 		nvme_ccb_put(q, ccb);
    600 		return error;
    601 	}
    602 
    603 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    604 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    605 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    606 
    607 	if (dmap->dm_nsegs > 2) {
    608 		for (i = 1; i < dmap->dm_nsegs; i++) {
    609 			htolem64(&ccb->ccb_prpl[i - 1],
    610 			    dmap->dm_segs[i].ds_addr);
    611 		}
    612 		bus_dmamap_sync(sc->sc_dmat,
    613 		    NVME_DMA_MAP(q->q_ccb_prpls),
    614 		    ccb->ccb_prpl_off,
    615 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    616 		    BUS_DMASYNC_PREWRITE);
    617 	}
    618 
    619 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
    620 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
    621 			return EIO;
    622 		return 0;
    623 	}
    624 
    625 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
    626 	return 0;
    627 }
    628 
    629 static void
    630 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    631 {
    632 	struct nvme_sqe_io *sqe = slot;
    633 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    634 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    635 
    636 	sqe->opcode = ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    637 	    NVM_CMD_READ : NVM_CMD_WRITE;
    638 	htolem32(&sqe->nsid, ctx->nnc_nsid);
    639 
    640 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    641 	switch (dmap->dm_nsegs) {
    642 	case 1:
    643 		break;
    644 	case 2:
    645 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    646 		break;
    647 	default:
    648 		/* the prp list is already set up and synced */
    649 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    650 		break;
    651 	}
    652 
    653 	htolem64(&sqe->slba, ctx->nnc_blkno);
    654 	htolem16(&sqe->nlb, (ctx->nnc_datasize / ctx->nnc_secsize) - 1);
    655 }
    656 
    657 static void
    658 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    659     struct nvme_cqe *cqe)
    660 {
    661 	struct nvme_softc *sc = q->q_sc;
    662 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    663 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    664 	uint16_t flags;
    665 
    666 	if (dmap->dm_nsegs > 2) {
    667 		bus_dmamap_sync(sc->sc_dmat,
    668 		    NVME_DMA_MAP(q->q_ccb_prpls),
    669 		    ccb->ccb_prpl_off,
    670 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    671 		    BUS_DMASYNC_POSTWRITE);
    672 	}
    673 
    674 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    675 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
    676 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    677 
    678 	bus_dmamap_unload(sc->sc_dmat, dmap);
    679 	nvme_ccb_put(q, ccb);
    680 
    681 	flags = lemtoh16(&cqe->flags);
    682 
    683 	ctx->nnc_status = flags;
    684 	(*ctx->nnc_done)(ctx);
    685 }
    686 
    687 int
    688 nvme_ns_sync(struct nvme_softc *sc, struct nvme_ns_context *ctx)
    689 {
    690 	struct nvme_queue *q = nvme_get_q(sc);
    691 	struct nvme_ccb *ccb;
    692 
    693 	ccb = nvme_ccb_get(q);
    694 	if (ccb == NULL)
    695 		return EAGAIN;
    696 
    697 	ccb->ccb_done = nvme_ns_sync_done;
    698 	ccb->ccb_cookie = ctx;
    699 
    700 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
    701 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
    702 			return EIO;
    703 		return 0;
    704 	}
    705 
    706 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
    707 	return 0;
    708 }
    709 
    710 static void
    711 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    712 {
    713 	struct nvme_sqe *sqe = slot;
    714 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    715 
    716 	sqe->opcode = NVM_CMD_FLUSH;
    717 	htolem32(&sqe->nsid, ctx->nnc_nsid);
    718 }
    719 
    720 static void
    721 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    722     struct nvme_cqe *cqe)
    723 {
    724 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
    725 	uint16_t flags;
    726 
    727 	nvme_ccb_put(q, ccb);
    728 
    729 	flags = lemtoh16(&cqe->flags);
    730 
    731 	ctx->nnc_status = flags;
    732 	(*ctx->nnc_done)(ctx);
    733 }
    734 
    735 void
    736 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
    737 {
    738 	struct nvme_namespace *ns;
    739 	struct nvm_identify_namespace *identify;
    740 
    741 	ns = nvme_ns_get(sc, nsid);
    742 	KASSERT(ns);
    743 
    744 	identify = ns->ident;
    745 	ns->ident = NULL;
    746 	if (identify != NULL)
    747 		kmem_free(identify, sizeof(*identify));
    748 }
    749 
    750 static void
    751 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    752 {
    753 	struct nvme_softc *sc = q->q_sc;
    754 	struct nvme_sqe *sqe = slot;
    755 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    756 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    757 	int i;
    758 
    759 	sqe->opcode = pt->cmd.opcode;
    760 	htolem32(&sqe->nsid, pt->cmd.nsid);
    761 
    762 	if (pt->buf != NULL && pt->len > 0) {
    763 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
    764 		switch (dmap->dm_nsegs) {
    765 		case 1:
    766 			break;
    767 		case 2:
    768 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
    769 			break;
    770 		default:
    771 			for (i = 1; i < dmap->dm_nsegs; i++) {
    772 				htolem64(&ccb->ccb_prpl[i - 1],
    773 				    dmap->dm_segs[i].ds_addr);
    774 			}
    775 			bus_dmamap_sync(sc->sc_dmat,
    776 			    NVME_DMA_MAP(q->q_ccb_prpls),
    777 			    ccb->ccb_prpl_off,
    778 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    779 			    BUS_DMASYNC_PREWRITE);
    780 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
    781 			break;
    782 		}
    783 	}
    784 
    785 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
    786 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
    787 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
    788 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
    789 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
    790 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
    791 }
    792 
    793 static void
    794 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
    795 {
    796 	struct nvme_softc *sc = q->q_sc;
    797 	struct nvme_pt_command *pt = ccb->ccb_cookie;
    798 	bus_dmamap_t dmap = ccb->ccb_dmamap;
    799 
    800 	if (pt->buf != NULL && pt->len > 0) {
    801 		if (dmap->dm_nsegs > 2) {
    802 			bus_dmamap_sync(sc->sc_dmat,
    803 			    NVME_DMA_MAP(q->q_ccb_prpls),
    804 			    ccb->ccb_prpl_off,
    805 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
    806 			    BUS_DMASYNC_POSTWRITE);
    807 		}
    808 
    809 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
    810 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
    811 		bus_dmamap_unload(sc->sc_dmat, dmap);
    812 	}
    813 
    814 	pt->cpl.cdw0 = cqe->cdw0;
    815 	pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
    816 }
    817 
    818 static int
    819 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
    820     uint16_t nsid, struct lwp *l, bool is_adminq)
    821 {
    822 	struct nvme_queue *q;
    823 	struct nvme_ccb *ccb;
    824 	void *buf = NULL;
    825 	int error;
    826 
    827 	if ((pt->buf == NULL && pt->len > 0) ||
    828 	    (pt->buf != NULL && pt->len == 0))
    829 		return EINVAL;
    830 
    831 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
    832 	ccb = nvme_ccb_get(q);
    833 	if (ccb == NULL)
    834 		return EBUSY;
    835 
    836 	if (pt->buf != NULL && pt->len > 0) {
    837 		buf = kmem_alloc(pt->len, KM_SLEEP);
    838 		if (buf == NULL) {
    839 			error = ENOMEM;
    840 			goto ccb_put;
    841 		}
    842 		if (!pt->is_read) {
    843 			error = copyin(pt->buf, buf, pt->len);
    844 			if (error)
    845 				goto kmem_free;
    846 		}
    847 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
    848 		    pt->len, NULL,
    849 		    BUS_DMA_WAITOK |
    850 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
    851 		if (error)
    852 			goto kmem_free;
    853 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
    854 		    0, ccb->ccb_dmamap->dm_mapsize,
    855 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
    856 	}
    857 
    858 	ccb->ccb_done = nvme_pt_done;
    859 	ccb->ccb_cookie = pt;
    860 
    861 	pt->cmd.nsid = nsid;
    862 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
    863 		error = EIO;
    864 		goto out;
    865 	}
    866 
    867 	error = 0;
    868 out:
    869 	if (buf != NULL) {
    870 		if (error == 0 && pt->is_read)
    871 			error = copyout(buf, pt->buf, pt->len);
    872 kmem_free:
    873 		kmem_free(buf, pt->len);
    874 	}
    875 ccb_put:
    876 	nvme_ccb_put(q, ccb);
    877 	return error;
    878 }
    879 
    880 static void
    881 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    882     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
    883 {
    884 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
    885 	uint32_t tail;
    886 
    887 	mutex_enter(&q->q_sq_mtx);
    888 	tail = q->q_sq_tail;
    889 	if (++q->q_sq_tail >= q->q_entries)
    890 		q->q_sq_tail = 0;
    891 
    892 	sqe += tail;
    893 
    894 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    895 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
    896 	memset(sqe, 0, sizeof(*sqe));
    897 	(*fill)(q, ccb, sqe);
    898 	sqe->cid = ccb->ccb_id;
    899 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
    900 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
    901 
    902 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
    903 	mutex_exit(&q->q_sq_mtx);
    904 }
    905 
    906 struct nvme_poll_state {
    907 	struct nvme_sqe s;
    908 	struct nvme_cqe c;
    909 };
    910 
    911 static int
    912 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
    913     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
    914 {
    915 	struct nvme_poll_state state;
    916 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
    917 	void *cookie;
    918 	uint16_t flags;
    919 	int step = 10;
    920 	int maxloop = timo_sec * 1000000 / step;
    921 	int error = 0;
    922 
    923 	memset(&state, 0, sizeof(state));
    924 	(*fill)(q, ccb, &state.s);
    925 
    926 	done = ccb->ccb_done;
    927 	cookie = ccb->ccb_cookie;
    928 
    929 	ccb->ccb_done = nvme_poll_done;
    930 	ccb->ccb_cookie = &state;
    931 
    932 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
    933 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
    934 		if (nvme_q_complete(sc, q) == 0)
    935 			delay(step);
    936 
    937 		if (timo_sec >= 0 && --maxloop <= 0) {
    938 			error = ETIMEDOUT;
    939 			break;
    940 		}
    941 	}
    942 
    943 	ccb->ccb_cookie = cookie;
    944 	done(q, ccb, &state.c);
    945 
    946 	if (error == 0) {
    947 		flags = lemtoh16(&state.c.flags);
    948 		return flags & ~NVME_CQE_PHASE;
    949 	} else {
    950 		return 1;
    951 	}
    952 }
    953 
    954 static void
    955 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    956 {
    957 	struct nvme_sqe *sqe = slot;
    958 	struct nvme_poll_state *state = ccb->ccb_cookie;
    959 
    960 	*sqe = state->s;
    961 }
    962 
    963 static void
    964 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    965     struct nvme_cqe *cqe)
    966 {
    967 	struct nvme_poll_state *state = ccb->ccb_cookie;
    968 
    969 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
    970 	state->c = *cqe;
    971 }
    972 
    973 static void
    974 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
    975 {
    976 	struct nvme_sqe *src = ccb->ccb_cookie;
    977 	struct nvme_sqe *dst = slot;
    978 
    979 	*dst = *src;
    980 }
    981 
    982 static void
    983 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
    984     struct nvme_cqe *cqe)
    985 {
    986 }
    987 
    988 static int
    989 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
    990 {
    991 	struct nvme_ccb *ccb;
    992 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
    993 	uint32_t head;
    994 	uint16_t flags;
    995 	int rv = 0;
    996 
    997 	if (!mutex_tryenter(&q->q_cq_mtx))
    998 		return -1;
    999 
   1000 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1001 	head = q->q_cq_head;
   1002 	for (;;) {
   1003 		cqe = &ring[head];
   1004 		flags = lemtoh16(&cqe->flags);
   1005 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
   1006 			break;
   1007 
   1008 		ccb = &q->q_ccbs[cqe->cid];
   1009 		ccb->ccb_done(q, ccb, cqe);
   1010 
   1011 		if (++head >= q->q_entries) {
   1012 			head = 0;
   1013 			q->q_cq_phase ^= NVME_CQE_PHASE;
   1014 		}
   1015 
   1016 		rv = 1;
   1017 	}
   1018 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1019 
   1020 	if (rv)
   1021 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head = head);
   1022 	mutex_exit(&q->q_cq_mtx);
   1023 
   1024 	return rv;
   1025 }
   1026 
   1027 static int
   1028 nvme_identify(struct nvme_softc *sc, u_int mps)
   1029 {
   1030 	char sn[41], mn[81], fr[17];
   1031 	struct nvm_identify_controller *identify;
   1032 	struct nvme_dmamem *mem;
   1033 	struct nvme_ccb *ccb;
   1034 	u_int mdts;
   1035 	int rv = 1;
   1036 
   1037 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1038 	if (ccb == NULL)
   1039 		panic("%s: nvme_ccb_get returned NULL", __func__);
   1040 
   1041 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
   1042 	if (mem == NULL)
   1043 		return 1;
   1044 
   1045 	ccb->ccb_done = nvme_empty_done;
   1046 	ccb->ccb_cookie = mem;
   1047 
   1048 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
   1049 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
   1050 	    NVME_TIMO_IDENT);
   1051 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
   1052 
   1053 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1054 
   1055 	if (rv != 0)
   1056 		goto done;
   1057 
   1058 	identify = NVME_DMA_KVA(mem);
   1059 
   1060 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
   1061 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1062 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
   1063 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1064 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
   1065 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1066 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
   1067 	    sn);
   1068 
   1069 	if (identify->mdts > 0) {
   1070 		mdts = (1 << identify->mdts) * (1 << mps);
   1071 		if (mdts < sc->sc_mdts)
   1072 			sc->sc_mdts = mdts;
   1073 	}
   1074 
   1075 	sc->sc_nn = lemtoh32(&identify->nn);
   1076 
   1077 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
   1078 
   1079 done:
   1080 	nvme_dmamem_free(sc, mem);
   1081 
   1082 	return rv;
   1083 }
   1084 
   1085 static int
   1086 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
   1087 {
   1088 	struct nvme_sqe_q sqe;
   1089 	struct nvme_ccb *ccb;
   1090 	int rv;
   1091 
   1092 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q))
   1093 		return 1;
   1094 
   1095 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1096 	KASSERT(ccb != NULL);
   1097 
   1098 	ccb->ccb_done = nvme_empty_done;
   1099 	ccb->ccb_cookie = &sqe;
   1100 
   1101 	memset(&sqe, 0, sizeof(sqe));
   1102 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
   1103 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
   1104 	htolem16(&sqe.qsize, q->q_entries - 1);
   1105 	htolem16(&sqe.qid, q->q_id);
   1106 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
   1107 	if (sc->sc_use_mq)
   1108 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
   1109 
   1110 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1111 	if (rv != 0)
   1112 		goto fail;
   1113 
   1114 	ccb->ccb_done = nvme_empty_done;
   1115 	ccb->ccb_cookie = &sqe;
   1116 
   1117 	memset(&sqe, 0, sizeof(sqe));
   1118 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
   1119 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1120 	htolem16(&sqe.qsize, q->q_entries - 1);
   1121 	htolem16(&sqe.qid, q->q_id);
   1122 	htolem16(&sqe.cqid, q->q_id);
   1123 	sqe.qflags = NVM_SQE_Q_PC;
   1124 
   1125 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1126 	if (rv != 0)
   1127 		goto fail;
   1128 
   1129 fail:
   1130 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1131 	return rv;
   1132 }
   1133 
   1134 static int
   1135 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
   1136 {
   1137 	struct nvme_sqe_q sqe;
   1138 	struct nvme_ccb *ccb;
   1139 	int rv;
   1140 
   1141 	ccb = nvme_ccb_get(sc->sc_admin_q);
   1142 	KASSERT(ccb != NULL);
   1143 
   1144 	ccb->ccb_done = nvme_empty_done;
   1145 	ccb->ccb_cookie = &sqe;
   1146 
   1147 	memset(&sqe, 0, sizeof(sqe));
   1148 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
   1149 	htolem16(&sqe.qid, q->q_id);
   1150 
   1151 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1152 	if (rv != 0)
   1153 		goto fail;
   1154 
   1155 	ccb->ccb_done = nvme_empty_done;
   1156 	ccb->ccb_cookie = &sqe;
   1157 
   1158 	memset(&sqe, 0, sizeof(sqe));
   1159 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
   1160 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
   1161 	htolem16(&sqe.qid, q->q_id);
   1162 
   1163 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
   1164 	if (rv != 0)
   1165 		goto fail;
   1166 
   1167 fail:
   1168 	nvme_ccb_put(sc->sc_admin_q, ccb);
   1169 
   1170 	if (rv == 0 && sc->sc_use_mq) {
   1171 		if (sc->sc_intr_disestablish(sc, q->q_id))
   1172 			rv = 1;
   1173 	}
   1174 
   1175 	return rv;
   1176 }
   1177 
   1178 static void
   1179 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
   1180 {
   1181 	struct nvme_sqe *sqe = slot;
   1182 	struct nvme_dmamem *mem = ccb->ccb_cookie;
   1183 
   1184 	sqe->opcode = NVM_ADMIN_IDENTIFY;
   1185 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
   1186 	htolem32(&sqe->cdw10, 1);
   1187 }
   1188 
   1189 static int
   1190 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
   1191 {
   1192 	struct nvme_softc *sc = q->q_sc;
   1193 	struct nvme_ccb *ccb;
   1194 	bus_addr_t off;
   1195 	uint64_t *prpl;
   1196 	u_int i;
   1197 
   1198 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
   1199 	SIMPLEQ_INIT(&q->q_ccb_list);
   1200 
   1201 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
   1202 	if (q->q_ccbs == NULL)
   1203 		return 1;
   1204 
   1205 	q->q_nccbs = nccbs;
   1206 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
   1207 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
   1208 
   1209 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
   1210 	off = 0;
   1211 
   1212 	for (i = 0; i < nccbs; i++) {
   1213 		ccb = &q->q_ccbs[i];
   1214 
   1215 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
   1216 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
   1217 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1218 		    &ccb->ccb_dmamap) != 0)
   1219 			goto free_maps;
   1220 
   1221 		ccb->ccb_id = i;
   1222 		ccb->ccb_prpl = prpl;
   1223 		ccb->ccb_prpl_off = off;
   1224 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
   1225 
   1226 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
   1227 
   1228 		prpl += sc->sc_max_sgl;
   1229 		off += sizeof(*prpl) * sc->sc_max_sgl;
   1230 	}
   1231 
   1232 	return 0;
   1233 
   1234 free_maps:
   1235 	nvme_ccbs_free(q);
   1236 	return 1;
   1237 }
   1238 
   1239 static struct nvme_ccb *
   1240 nvme_ccb_get(struct nvme_queue *q)
   1241 {
   1242 	struct nvme_ccb *ccb;
   1243 
   1244 	mutex_enter(&q->q_ccb_mtx);
   1245 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
   1246 	if (ccb != NULL)
   1247 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1248 	mutex_exit(&q->q_ccb_mtx);
   1249 
   1250 	return ccb;
   1251 }
   1252 
   1253 static void
   1254 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
   1255 {
   1256 
   1257 	mutex_enter(&q->q_ccb_mtx);
   1258 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
   1259 	mutex_exit(&q->q_ccb_mtx);
   1260 }
   1261 
   1262 static void
   1263 nvme_ccbs_free(struct nvme_queue *q)
   1264 {
   1265 	struct nvme_softc *sc = q->q_sc;
   1266 	struct nvme_ccb *ccb;
   1267 
   1268 	mutex_enter(&q->q_ccb_mtx);
   1269 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
   1270 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
   1271 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
   1272 	}
   1273 	mutex_exit(&q->q_ccb_mtx);
   1274 
   1275 	nvme_dmamem_free(sc, q->q_ccb_prpls);
   1276 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
   1277 	q->q_ccbs = NULL;
   1278 	mutex_destroy(&q->q_ccb_mtx);
   1279 }
   1280 
   1281 static struct nvme_queue *
   1282 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
   1283 {
   1284 	struct nvme_queue *q;
   1285 
   1286 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
   1287 	if (q == NULL)
   1288 		return NULL;
   1289 
   1290 	q->q_sc = sc;
   1291 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
   1292 	    sizeof(struct nvme_sqe) * entries);
   1293 	if (q->q_sq_dmamem == NULL)
   1294 		goto free;
   1295 
   1296 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
   1297 	    sizeof(struct nvme_cqe) * entries);
   1298 	if (q->q_cq_dmamem == NULL)
   1299 		goto free_sq;
   1300 
   1301 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
   1302 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
   1303 
   1304 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1305 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
   1306 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
   1307 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
   1308 	q->q_id = id;
   1309 	q->q_entries = entries;
   1310 	q->q_sq_tail = 0;
   1311 	q->q_cq_head = 0;
   1312 	q->q_cq_phase = NVME_CQE_PHASE;
   1313 
   1314 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
   1315 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
   1316 
   1317 	if (nvme_ccbs_alloc(q, entries) != 0) {
   1318 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
   1319 		goto free_cq;
   1320 	}
   1321 
   1322 	return q;
   1323 
   1324 free_cq:
   1325 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1326 free_sq:
   1327 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1328 free:
   1329 	kmem_free(q, sizeof(*q));
   1330 
   1331 	return NULL;
   1332 }
   1333 
   1334 static void
   1335 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
   1336 {
   1337 	nvme_ccbs_free(q);
   1338 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
   1339 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
   1340 	nvme_dmamem_free(sc, q->q_cq_dmamem);
   1341 	nvme_dmamem_free(sc, q->q_sq_dmamem);
   1342 	kmem_free(q, sizeof(*q));
   1343 }
   1344 
   1345 int
   1346 nvme_intr(void *xsc)
   1347 {
   1348 	struct nvme_softc *sc = xsc;
   1349 	int rv = 0;
   1350 
   1351 	nvme_write4(sc, NVME_INTMS, 1);
   1352 
   1353 	if (nvme_q_complete(sc, sc->sc_admin_q))
   1354 		rv = 1;
   1355 	if (sc->sc_q != NULL)
   1356 		if (nvme_q_complete(sc, sc->sc_q[0]))
   1357 			rv = 1;
   1358 
   1359 	nvme_write4(sc, NVME_INTMC, 1);
   1360 
   1361 	return rv;
   1362 }
   1363 
   1364 int
   1365 nvme_mq_msi_intr(void *xq)
   1366 {
   1367 	struct nvme_queue *q = xq;
   1368 	struct nvme_softc *sc = q->q_sc;
   1369 	int rv = 0;
   1370 
   1371 	nvme_write4(sc, NVME_INTMS, 1U << q->q_id);
   1372 
   1373 	if (nvme_q_complete(sc, q))
   1374 		rv = 1;
   1375 
   1376 	nvme_write4(sc, NVME_INTMC, 1U << q->q_id);
   1377 
   1378 	return rv;
   1379 }
   1380 
   1381 int
   1382 nvme_mq_msix_intr(void *xq)
   1383 {
   1384 	struct nvme_queue *q = xq;
   1385 	int rv = 0;
   1386 
   1387 	if (nvme_q_complete(q->q_sc, q))
   1388 		rv = 1;
   1389 
   1390 	return rv;
   1391 }
   1392 
   1393 static struct nvme_dmamem *
   1394 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
   1395 {
   1396 	struct nvme_dmamem *ndm;
   1397 	int nsegs;
   1398 
   1399 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
   1400 	if (ndm == NULL)
   1401 		return NULL;
   1402 
   1403 	ndm->ndm_size = size;
   1404 
   1405 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   1406 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
   1407 		goto ndmfree;
   1408 
   1409 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
   1410 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
   1411 		goto destroy;
   1412 
   1413 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
   1414 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
   1415 		goto free;
   1416 	memset(ndm->ndm_kva, 0, size);
   1417 
   1418 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
   1419 	    NULL, BUS_DMA_WAITOK) != 0)
   1420 		goto unmap;
   1421 
   1422 	return ndm;
   1423 
   1424 unmap:
   1425 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
   1426 free:
   1427 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1428 destroy:
   1429 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1430 ndmfree:
   1431 	kmem_free(ndm, sizeof(*ndm));
   1432 	return NULL;
   1433 }
   1434 
   1435 static void
   1436 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
   1437 {
   1438 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
   1439 	    0, NVME_DMA_LEN(mem), ops);
   1440 }
   1441 
   1442 void
   1443 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
   1444 {
   1445 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
   1446 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
   1447 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
   1448 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
   1449 	kmem_free(ndm, sizeof(*ndm));
   1450 }
   1451 
   1452 /*
   1453  * ioctl
   1454  */
   1455 
   1456 dev_type_open(nvmeopen);
   1457 dev_type_close(nvmeclose);
   1458 dev_type_ioctl(nvmeioctl);
   1459 
   1460 const struct cdevsw nvme_cdevsw = {
   1461 	.d_open = nvmeopen,
   1462 	.d_close = nvmeclose,
   1463 	.d_read = noread,
   1464 	.d_write = nowrite,
   1465 	.d_ioctl = nvmeioctl,
   1466 	.d_stop = nostop,
   1467 	.d_tty = notty,
   1468 	.d_poll = nopoll,
   1469 	.d_mmap = nommap,
   1470 	.d_kqfilter = nokqfilter,
   1471 	.d_discard = nodiscard,
   1472 	.d_flag = D_OTHER,
   1473 };
   1474 
   1475 extern struct cfdriver nvme_cd;
   1476 
   1477 /*
   1478  * Accept an open operation on the control device.
   1479  */
   1480 int
   1481 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
   1482 {
   1483 	struct nvme_softc *sc;
   1484 	int unit = minor(dev) / 0x10000;
   1485 	int nsid = minor(dev) & 0xffff;
   1486 	int nsidx;
   1487 
   1488 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
   1489 		return ENXIO;
   1490 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
   1491 		return ENXIO;
   1492 
   1493 	if (nsid == 0) {
   1494 		/* controller */
   1495 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
   1496 			return EBUSY;
   1497 		SET(sc->sc_flags, NVME_F_OPEN);
   1498 	} else {
   1499 		/* namespace */
   1500 		nsidx = nsid - 1;
   1501 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
   1502 			return ENXIO;
   1503 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
   1504 			return EBUSY;
   1505 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1506 	}
   1507 	return 0;
   1508 }
   1509 
   1510 /*
   1511  * Accept the last close on the control device.
   1512  */
   1513 int
   1514 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
   1515 {
   1516 	struct nvme_softc *sc;
   1517 	int unit = minor(dev) / 0x10000;
   1518 	int nsid = minor(dev) & 0xffff;
   1519 	int nsidx;
   1520 
   1521 	sc = device_lookup_private(&nvme_cd, unit);
   1522 	if (sc == NULL)
   1523 		return ENXIO;
   1524 
   1525 	if (nsid == 0) {
   1526 		/* controller */
   1527 		CLR(sc->sc_flags, NVME_F_OPEN);
   1528 	} else {
   1529 		/* namespace */
   1530 		nsidx = nsid - 1;
   1531 		if (nsidx >= sc->sc_nn)
   1532 			return ENXIO;
   1533 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
   1534 	}
   1535 
   1536 	return 0;
   1537 }
   1538 
   1539 /*
   1540  * Handle control operations.
   1541  */
   1542 int
   1543 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1544 {
   1545 	struct nvme_softc *sc;
   1546 	int unit = minor(dev) / 0x10000;
   1547 	int nsid = minor(dev) & 0xffff;
   1548 	struct nvme_pt_command *pt;
   1549 
   1550 	sc = device_lookup_private(&nvme_cd, unit);
   1551 	if (sc == NULL)
   1552 		return ENXIO;
   1553 
   1554 	switch (cmd) {
   1555 	case NVME_PASSTHROUGH_CMD:
   1556 		pt = data;
   1557 		return nvme_command_passthrough(sc, data,
   1558 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
   1559 	}
   1560 
   1561 	return ENOTTY;
   1562 }
   1563