nvme.c revision 1.9 1 /* $NetBSD: nvme.c,v 1.9 2016/09/18 21:19:39 jdolecek Exp $ */
2 /* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2014 David Gwynne <dlg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.9 2016/09/18 21:19:39 jdolecek Exp $");
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 1024;
45
46 static int nvme_print(void *, const char *);
47
48 static int nvme_ready(struct nvme_softc *, uint32_t);
49 static int nvme_enable(struct nvme_softc *, u_int);
50 static int nvme_disable(struct nvme_softc *);
51 static int nvme_shutdown(struct nvme_softc *);
52
53 static void nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int nvme_identify(struct nvme_softc *, u_int);
58 static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 void *);
60
61 static int nvme_ccbs_alloc(struct nvme_queue *, u_int);
62 static void nvme_ccbs_free(struct nvme_queue *);
63
64 static struct nvme_ccb *
65 nvme_ccb_get(struct nvme_queue *);
66 static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67
68 static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 struct nvme_ccb *, void (*)(struct nvme_queue *,
70 struct nvme_ccb *, void *), int);
71 static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 struct nvme_cqe *);
74 static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 struct nvme_cqe *);
77
78 static struct nvme_queue *
79 nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 struct nvme_ccb *, void (*)(struct nvme_queue *,
84 struct nvme_ccb *, void *));
85 static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87
88 static struct nvme_dmamem *
89 nvme_dmamem_alloc(struct nvme_softc *, size_t);
90 static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91 static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
92 int);
93
94 static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
95 void *);
96 static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
97 struct nvme_cqe *);
98 static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
99 void *);
100 static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
101 struct nvme_cqe *);
102
103 static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
104 void *);
105 static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
106 struct nvme_cqe *);
107 static int nvme_command_passthrough(struct nvme_softc *,
108 struct nvme_pt_command *, uint16_t, struct lwp *, bool);
109
110 #define NVME_TIMO_QOP 5 /* queue create and delete timeout */
111 #define NVME_TIMO_IDENT 10 /* probe identify timeout */
112 #define NVME_TIMO_PT -1 /* passthrough cmd timeout */
113 #define NVME_TIMO_SY -1 /* sync cache timeout */
114
115 #define nvme_read4(_s, _r) \
116 bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
117 #define nvme_write4(_s, _r, _v) \
118 bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
119 #ifdef __LP64__
120 #define nvme_read8(_s, _r) \
121 bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
122 #define nvme_write8(_s, _r, _v) \
123 bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
124 #else /* __LP64__ */
125 static inline uint64_t
126 nvme_read8(struct nvme_softc *sc, bus_size_t r)
127 {
128 uint64_t v;
129 uint32_t *a = (uint32_t *)&v;
130
131 #if _BYTE_ORDER == _LITTLE_ENDIAN
132 a[0] = nvme_read4(sc, r);
133 a[1] = nvme_read4(sc, r + 4);
134 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
135 a[1] = nvme_read4(sc, r);
136 a[0] = nvme_read4(sc, r + 4);
137 #endif
138
139 return v;
140 }
141
142 static inline void
143 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
144 {
145 uint32_t *a = (uint32_t *)&v;
146
147 #if _BYTE_ORDER == _LITTLE_ENDIAN
148 nvme_write4(sc, r, a[0]);
149 nvme_write4(sc, r + 4, a[1]);
150 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
151 nvme_write4(sc, r, a[1]);
152 nvme_write4(sc, r + 4, a[0]);
153 #endif
154 }
155 #endif /* __LP64__ */
156 #define nvme_barrier(_s, _r, _l, _f) \
157 bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
158
159 static void
160 nvme_version(struct nvme_softc *sc, uint32_t ver)
161 {
162 const char *v = NULL;
163
164 switch (ver) {
165 case NVME_VS_1_0:
166 v = "1.0";
167 break;
168 case NVME_VS_1_1:
169 v = "1.1";
170 break;
171 case NVME_VS_1_2:
172 v = "1.2";
173 break;
174 default:
175 aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
176 return;
177 }
178
179 aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
180 }
181
182 #ifdef NVME_DEBUG
183 static __used void
184 nvme_dumpregs(struct nvme_softc *sc)
185 {
186 uint64_t r8;
187 uint32_t r4;
188
189 #define DEVNAME(_sc) device_xname((_sc)->sc_dev)
190 r8 = nvme_read8(sc, NVME_CAP);
191 printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
192 printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
193 (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
194 printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
195 (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
196 printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
197 printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
198 printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
199 printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
200 printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
201 printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
202 printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
203
204 printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
205
206 r4 = nvme_read4(sc, NVME_CC);
207 printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
208 printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
209 (1 << NVME_CC_IOCQES_R(r4)));
210 printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
211 (1 << NVME_CC_IOSQES_R(r4)));
212 printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
213 printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
214 printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
215 (1 << NVME_CC_MPS_R(r4)));
216 printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
217 printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
218
219 r4 = nvme_read4(sc, NVME_CSTS);
220 printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
221 printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
222 printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
223 printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
224
225 r4 = nvme_read4(sc, NVME_AQA);
226 printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
227 printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
228 printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
229
230 printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef DEVNAME
233 }
234 #endif /* NVME_DEBUG */
235
236 static int
237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 u_int i = 0;
240 uint32_t cc;
241
242 cc = nvme_read4(sc, NVME_CC);
243 if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
244 aprint_error_dev(sc->sc_dev,
245 "controller enabled status expected %d, found to be %d\n",
246 (rdy != 0), ((cc & NVME_CC_EN) != 0));
247 return ENXIO;
248 }
249
250 while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
251 if (i++ > sc->sc_rdy_to)
252 return ENXIO;
253
254 delay(1000);
255 nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
256 }
257
258 return 0;
259 }
260
261 static int
262 nvme_enable(struct nvme_softc *sc, u_int mps)
263 {
264 uint32_t cc, csts;
265
266 cc = nvme_read4(sc, NVME_CC);
267 csts = nvme_read4(sc, NVME_CSTS);
268
269 if (ISSET(cc, NVME_CC_EN)) {
270 aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
271
272 if (ISSET(csts, NVME_CSTS_RDY))
273 return 1;
274
275 goto waitready;
276 }
277
278 nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
279 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
280 delay(5000);
281 nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
282 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
283 delay(5000);
284
285 nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
286 NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
287 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
288 delay(5000);
289
290 CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
291 NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
292 SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
293 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
294 SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
295 SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
296 SET(cc, NVME_CC_MPS(mps));
297 SET(cc, NVME_CC_EN);
298
299 nvme_write4(sc, NVME_CC, cc);
300 nvme_barrier(sc, 0, sc->sc_ios,
301 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
302 delay(5000);
303
304 waitready:
305 return nvme_ready(sc, NVME_CSTS_RDY);
306 }
307
308 static int
309 nvme_disable(struct nvme_softc *sc)
310 {
311 uint32_t cc, csts;
312
313 cc = nvme_read4(sc, NVME_CC);
314 csts = nvme_read4(sc, NVME_CSTS);
315
316 if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
317 nvme_ready(sc, NVME_CSTS_RDY);
318
319 CLR(cc, NVME_CC_EN);
320
321 nvme_write4(sc, NVME_CC, cc);
322 nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
323
324 delay(5000);
325
326 return nvme_ready(sc, 0);
327 }
328
329 int
330 nvme_attach(struct nvme_softc *sc)
331 {
332 struct nvme_attach_args naa;
333 uint64_t cap;
334 uint32_t reg;
335 u_int dstrd;
336 u_int mps = PAGE_SHIFT;
337 int adminq_entries = nvme_adminq_size;
338 int ioq_entries = nvme_ioq_size;
339 int i;
340
341 reg = nvme_read4(sc, NVME_VS);
342 if (reg == 0xffffffff) {
343 aprint_error_dev(sc->sc_dev, "invalid mapping\n");
344 return 1;
345 }
346
347 nvme_version(sc, reg);
348
349 cap = nvme_read8(sc, NVME_CAP);
350 dstrd = NVME_CAP_DSTRD(cap);
351 if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
352 aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
353 "is greater than CPU page size %u\n",
354 1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
355 return 1;
356 }
357 if (NVME_CAP_MPSMAX(cap) < mps)
358 mps = NVME_CAP_MPSMAX(cap);
359
360 /* set initial values to be used for admin queue during probe */
361 sc->sc_rdy_to = NVME_CAP_TO(cap);
362 sc->sc_mps = 1 << mps;
363 sc->sc_mdts = MAXPHYS;
364 sc->sc_max_sgl = 2;
365
366 if (nvme_disable(sc) != 0) {
367 aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
368 return 1;
369 }
370
371 sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
372 if (sc->sc_admin_q == NULL) {
373 aprint_error_dev(sc->sc_dev,
374 "unable to allocate admin queue\n");
375 return 1;
376 }
377 if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
378 goto free_admin_q;
379
380 if (nvme_enable(sc, mps) != 0) {
381 aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
382 goto disestablish_admin_q;
383 }
384
385 if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
386 aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
387 goto disable;
388 }
389
390 /* we know how big things are now */
391 sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
392
393 /* reallocate ccbs of admin queue with new max sgl. */
394 nvme_ccbs_free(sc->sc_admin_q);
395 nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
396
397 sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
398 if (sc->sc_q == NULL) {
399 aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
400 goto disable;
401 }
402 for (i = 0; i < sc->sc_nq; i++) {
403 sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
404 if (sc->sc_q[i] == NULL) {
405 aprint_error_dev(sc->sc_dev,
406 "unable to allocate io queue\n");
407 goto free_q;
408 }
409 if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
410 aprint_error_dev(sc->sc_dev,
411 "unable to create io queue\n");
412 nvme_q_free(sc, sc->sc_q[i]);
413 goto free_q;
414 }
415 }
416
417 if (!sc->sc_use_mq)
418 nvme_write4(sc, NVME_INTMC, 1);
419
420 snprintf(sc->sc_ctxpoolname, sizeof(sc->sc_ctxpoolname),
421 "%s_ns_ctx", device_xname(sc->sc_dev));
422 sc->sc_ctxpool = pool_cache_init(sizeof(struct nvme_ns_context),
423 0, 0, 0, sc->sc_ctxpoolname, NULL, IPL_BIO, NULL, NULL, NULL);
424 if (sc->sc_ctxpool == NULL) {
425 aprint_error_dev(sc->sc_dev, "unable to create ctx pool\n");
426 goto free_q;
427 }
428
429 /* probe subdevices */
430 sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
431 KM_SLEEP);
432 if (sc->sc_namespaces == NULL)
433 goto free_q;
434 for (i = 0; i < sc->sc_nn; i++) {
435 memset(&naa, 0, sizeof(naa));
436 naa.naa_nsid = i + 1;
437 naa.naa_qentries = ioq_entries;
438 sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
439 nvme_print);
440 }
441
442 return 0;
443
444 free_q:
445 while (--i >= 0) {
446 nvme_q_delete(sc, sc->sc_q[i]);
447 nvme_q_free(sc, sc->sc_q[i]);
448 }
449 disable:
450 nvme_disable(sc);
451 disestablish_admin_q:
452 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
453 free_admin_q:
454 nvme_q_free(sc, sc->sc_admin_q);
455
456 return 1;
457 }
458
459 static int
460 nvme_print(void *aux, const char *pnp)
461 {
462 struct nvme_attach_args *naa = aux;
463
464 if (pnp)
465 aprint_normal("at %s", pnp);
466
467 if (naa->naa_nsid > 0)
468 aprint_normal(" nsid %d", naa->naa_nsid);
469
470 return UNCONF;
471 }
472
473 int
474 nvme_detach(struct nvme_softc *sc, int flags)
475 {
476 int i, error;
477
478 error = config_detach_children(sc->sc_dev, flags);
479 if (error)
480 return error;
481
482 error = nvme_shutdown(sc);
483 if (error)
484 return error;
485
486 /* from now on we are committed to detach, following will never fail */
487 pool_cache_destroy(sc->sc_ctxpool);
488
489 for (i = 0; i < sc->sc_nq; i++)
490 nvme_q_free(sc, sc->sc_q[i]);
491 kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
492 nvme_q_free(sc, sc->sc_admin_q);
493
494 return 0;
495 }
496
497 static int
498 nvme_shutdown(struct nvme_softc *sc)
499 {
500 uint32_t cc, csts;
501 bool disabled = false;
502 int i;
503
504 if (!sc->sc_use_mq)
505 nvme_write4(sc, NVME_INTMS, 1);
506
507 for (i = 0; i < sc->sc_nq; i++) {
508 if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
509 aprint_error_dev(sc->sc_dev,
510 "unable to delete io queue %d, disabling\n", i + 1);
511 disabled = true;
512 }
513 }
514 sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
515 if (disabled)
516 goto disable;
517
518 cc = nvme_read4(sc, NVME_CC);
519 CLR(cc, NVME_CC_SHN_MASK);
520 SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
521 nvme_write4(sc, NVME_CC, cc);
522
523 for (i = 0; i < 4000; i++) {
524 nvme_barrier(sc, 0, sc->sc_ios,
525 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
526 csts = nvme_read4(sc, NVME_CSTS);
527 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
528 return 0;
529
530 delay(1000);
531 }
532
533 aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
534
535 disable:
536 nvme_disable(sc);
537 return 0;
538 }
539
540 void
541 nvme_childdet(device_t self, device_t child)
542 {
543 struct nvme_softc *sc = device_private(self);
544 int i;
545
546 for (i = 0; i < sc->sc_nn; i++) {
547 if (sc->sc_namespaces[i].dev == child) {
548 /* Already freed ns->ident. */
549 sc->sc_namespaces[i].dev = NULL;
550 break;
551 }
552 }
553 }
554
555 int
556 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
557 {
558 struct nvme_sqe sqe;
559 struct nvm_identify_namespace *identify;
560 struct nvme_dmamem *mem;
561 struct nvme_ccb *ccb;
562 struct nvme_namespace *ns;
563 int rv;
564
565 KASSERT(nsid > 0);
566
567 ccb = nvme_ccb_get(sc->sc_admin_q);
568 if (ccb == NULL)
569 return EAGAIN;
570
571 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
572 if (mem == NULL)
573 return ENOMEM;
574
575 memset(&sqe, 0, sizeof(sqe));
576 sqe.opcode = NVM_ADMIN_IDENTIFY;
577 htolem32(&sqe.nsid, nsid);
578 htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
579 htolem32(&sqe.cdw10, 0);
580
581 ccb->ccb_done = nvme_empty_done;
582 ccb->ccb_cookie = &sqe;
583
584 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
585 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
586 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
587
588 nvme_ccb_put(sc->sc_admin_q, ccb);
589
590 if (rv != 0) {
591 rv = EIO;
592 goto done;
593 }
594
595 /* commit */
596
597 identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
598 memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
599
600 ns = nvme_ns_get(sc, nsid);
601 KASSERT(ns);
602 ns->ident = identify;
603
604 done:
605 nvme_dmamem_free(sc, mem);
606
607 return rv;
608 }
609
610 int
611 nvme_ns_dobio(struct nvme_softc *sc, struct nvme_ns_context *ctx)
612 {
613 struct nvme_queue *q = nvme_get_q(sc);
614 struct nvme_ccb *ccb;
615 bus_dmamap_t dmap;
616 int i, error;
617
618 ccb = nvme_ccb_get(q);
619 if (ccb == NULL)
620 return EAGAIN;
621
622 ccb->ccb_done = nvme_ns_io_done;
623 ccb->ccb_cookie = ctx;
624
625 dmap = ccb->ccb_dmamap;
626 error = bus_dmamap_load(sc->sc_dmat, dmap, ctx->nnc_data,
627 ctx->nnc_datasize, NULL,
628 (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL) ?
629 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
630 (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
631 BUS_DMA_READ : BUS_DMA_WRITE));
632 if (error) {
633 nvme_ccb_put(q, ccb);
634 return error;
635 }
636
637 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
638 ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
639 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
640
641 if (dmap->dm_nsegs > 2) {
642 for (i = 1; i < dmap->dm_nsegs; i++) {
643 htolem64(&ccb->ccb_prpl[i - 1],
644 dmap->dm_segs[i].ds_addr);
645 }
646 bus_dmamap_sync(sc->sc_dmat,
647 NVME_DMA_MAP(q->q_ccb_prpls),
648 ccb->ccb_prpl_off,
649 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
650 BUS_DMASYNC_PREWRITE);
651 }
652
653 if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
654 if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
655 return EIO;
656 return 0;
657 }
658
659 nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
660 return 0;
661 }
662
663 static void
664 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
665 {
666 struct nvme_sqe_io *sqe = slot;
667 struct nvme_ns_context *ctx = ccb->ccb_cookie;
668 bus_dmamap_t dmap = ccb->ccb_dmamap;
669
670 sqe->opcode = ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
671 NVM_CMD_READ : NVM_CMD_WRITE;
672 htolem32(&sqe->nsid, ctx->nnc_nsid);
673
674 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
675 switch (dmap->dm_nsegs) {
676 case 1:
677 break;
678 case 2:
679 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
680 break;
681 default:
682 /* the prp list is already set up and synced */
683 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
684 break;
685 }
686
687 htolem64(&sqe->slba, ctx->nnc_blkno);
688 htolem16(&sqe->nlb, (ctx->nnc_datasize / ctx->nnc_secsize) - 1);
689 }
690
691 static void
692 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
693 struct nvme_cqe *cqe)
694 {
695 struct nvme_softc *sc = q->q_sc;
696 struct nvme_ns_context *ctx = ccb->ccb_cookie;
697 bus_dmamap_t dmap = ccb->ccb_dmamap;
698 uint16_t flags;
699
700 if (dmap->dm_nsegs > 2) {
701 bus_dmamap_sync(sc->sc_dmat,
702 NVME_DMA_MAP(q->q_ccb_prpls),
703 ccb->ccb_prpl_off,
704 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
705 BUS_DMASYNC_POSTWRITE);
706 }
707
708 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
709 ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
710 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
711
712 bus_dmamap_unload(sc->sc_dmat, dmap);
713 nvme_ccb_put(q, ccb);
714
715 flags = lemtoh16(&cqe->flags);
716
717 ctx->nnc_status = flags;
718 (*ctx->nnc_done)(ctx);
719 }
720
721 int
722 nvme_ns_sync(struct nvme_softc *sc, struct nvme_ns_context *ctx)
723 {
724 struct nvme_queue *q = nvme_get_q(sc);
725 struct nvme_ccb *ccb;
726
727 ccb = nvme_ccb_get(q);
728 if (ccb == NULL)
729 return EAGAIN;
730
731 ccb->ccb_done = nvme_ns_sync_done;
732 ccb->ccb_cookie = ctx;
733
734 if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
735 if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
736 return EIO;
737 return 0;
738 }
739
740 nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
741 return 0;
742 }
743
744 static void
745 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
746 {
747 struct nvme_sqe *sqe = slot;
748 struct nvme_ns_context *ctx = ccb->ccb_cookie;
749
750 sqe->opcode = NVM_CMD_FLUSH;
751 htolem32(&sqe->nsid, ctx->nnc_nsid);
752 }
753
754 static void
755 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
756 struct nvme_cqe *cqe)
757 {
758 struct nvme_ns_context *ctx = ccb->ccb_cookie;
759 uint16_t flags;
760
761 nvme_ccb_put(q, ccb);
762
763 flags = lemtoh16(&cqe->flags);
764
765 ctx->nnc_status = flags;
766 (*ctx->nnc_done)(ctx);
767 }
768
769 void
770 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
771 {
772 struct nvme_namespace *ns;
773 struct nvm_identify_namespace *identify;
774
775 ns = nvme_ns_get(sc, nsid);
776 KASSERT(ns);
777
778 identify = ns->ident;
779 ns->ident = NULL;
780 if (identify != NULL)
781 kmem_free(identify, sizeof(*identify));
782 }
783
784 static void
785 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
786 {
787 struct nvme_softc *sc = q->q_sc;
788 struct nvme_sqe *sqe = slot;
789 struct nvme_pt_command *pt = ccb->ccb_cookie;
790 bus_dmamap_t dmap = ccb->ccb_dmamap;
791 int i;
792
793 sqe->opcode = pt->cmd.opcode;
794 htolem32(&sqe->nsid, pt->cmd.nsid);
795
796 if (pt->buf != NULL && pt->len > 0) {
797 htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
798 switch (dmap->dm_nsegs) {
799 case 1:
800 break;
801 case 2:
802 htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
803 break;
804 default:
805 for (i = 1; i < dmap->dm_nsegs; i++) {
806 htolem64(&ccb->ccb_prpl[i - 1],
807 dmap->dm_segs[i].ds_addr);
808 }
809 bus_dmamap_sync(sc->sc_dmat,
810 NVME_DMA_MAP(q->q_ccb_prpls),
811 ccb->ccb_prpl_off,
812 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
813 BUS_DMASYNC_PREWRITE);
814 htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
815 break;
816 }
817 }
818
819 htolem32(&sqe->cdw10, pt->cmd.cdw10);
820 htolem32(&sqe->cdw11, pt->cmd.cdw11);
821 htolem32(&sqe->cdw12, pt->cmd.cdw12);
822 htolem32(&sqe->cdw13, pt->cmd.cdw13);
823 htolem32(&sqe->cdw14, pt->cmd.cdw14);
824 htolem32(&sqe->cdw15, pt->cmd.cdw15);
825 }
826
827 static void
828 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
829 {
830 struct nvme_softc *sc = q->q_sc;
831 struct nvme_pt_command *pt = ccb->ccb_cookie;
832 bus_dmamap_t dmap = ccb->ccb_dmamap;
833
834 if (pt->buf != NULL && pt->len > 0) {
835 if (dmap->dm_nsegs > 2) {
836 bus_dmamap_sync(sc->sc_dmat,
837 NVME_DMA_MAP(q->q_ccb_prpls),
838 ccb->ccb_prpl_off,
839 sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
840 BUS_DMASYNC_POSTWRITE);
841 }
842
843 bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
844 pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
845 bus_dmamap_unload(sc->sc_dmat, dmap);
846 }
847
848 pt->cpl.cdw0 = cqe->cdw0;
849 pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
850 }
851
852 static int
853 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
854 uint16_t nsid, struct lwp *l, bool is_adminq)
855 {
856 struct nvme_queue *q;
857 struct nvme_ccb *ccb;
858 void *buf = NULL;
859 int error;
860
861 /* limit command size to maximum data transfer size */
862 if ((pt->buf == NULL && pt->len > 0) ||
863 (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
864 return EINVAL;
865
866 q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
867 ccb = nvme_ccb_get(q);
868 if (ccb == NULL)
869 return EBUSY;
870
871 if (pt->buf != NULL) {
872 KASSERT(pt->len > 0);
873 buf = kmem_alloc(pt->len, KM_SLEEP);
874 if (buf == NULL) {
875 error = ENOMEM;
876 goto ccb_put;
877 }
878 if (!pt->is_read) {
879 error = copyin(pt->buf, buf, pt->len);
880 if (error)
881 goto kmem_free;
882 }
883 error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
884 pt->len, NULL,
885 BUS_DMA_WAITOK |
886 (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
887 if (error)
888 goto kmem_free;
889 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
890 0, ccb->ccb_dmamap->dm_mapsize,
891 pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
892 }
893
894 ccb->ccb_done = nvme_pt_done;
895 ccb->ccb_cookie = pt;
896
897 pt->cmd.nsid = nsid;
898 if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
899 error = EIO;
900 goto out;
901 }
902
903 error = 0;
904 out:
905 if (buf != NULL) {
906 if (error == 0 && pt->is_read)
907 error = copyout(buf, pt->buf, pt->len);
908 kmem_free:
909 kmem_free(buf, pt->len);
910 }
911 ccb_put:
912 nvme_ccb_put(q, ccb);
913 return error;
914 }
915
916 static void
917 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
918 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
919 {
920 struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
921 uint32_t tail;
922
923 mutex_enter(&q->q_sq_mtx);
924 tail = q->q_sq_tail;
925 if (++q->q_sq_tail >= q->q_entries)
926 q->q_sq_tail = 0;
927
928 sqe += tail;
929
930 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
931 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
932 memset(sqe, 0, sizeof(*sqe));
933 (*fill)(q, ccb, sqe);
934 sqe->cid = ccb->ccb_id;
935 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
936 sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
937
938 nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
939 mutex_exit(&q->q_sq_mtx);
940 }
941
942 struct nvme_poll_state {
943 struct nvme_sqe s;
944 struct nvme_cqe c;
945 };
946
947 static int
948 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
949 void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
950 {
951 struct nvme_poll_state state;
952 void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
953 void *cookie;
954 uint16_t flags;
955 int step = 10;
956 int maxloop = timo_sec * 1000000 / step;
957 int error = 0;
958
959 memset(&state, 0, sizeof(state));
960 (*fill)(q, ccb, &state.s);
961
962 done = ccb->ccb_done;
963 cookie = ccb->ccb_cookie;
964
965 ccb->ccb_done = nvme_poll_done;
966 ccb->ccb_cookie = &state;
967
968 nvme_q_submit(sc, q, ccb, nvme_poll_fill);
969 while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
970 if (nvme_q_complete(sc, q) == 0)
971 delay(step);
972
973 if (timo_sec >= 0 && --maxloop <= 0) {
974 error = ETIMEDOUT;
975 break;
976 }
977 }
978
979 ccb->ccb_cookie = cookie;
980 done(q, ccb, &state.c);
981
982 if (error == 0) {
983 flags = lemtoh16(&state.c.flags);
984 return flags & ~NVME_CQE_PHASE;
985 } else {
986 return 1;
987 }
988 }
989
990 static void
991 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
992 {
993 struct nvme_sqe *sqe = slot;
994 struct nvme_poll_state *state = ccb->ccb_cookie;
995
996 *sqe = state->s;
997 }
998
999 static void
1000 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1001 struct nvme_cqe *cqe)
1002 {
1003 struct nvme_poll_state *state = ccb->ccb_cookie;
1004
1005 SET(cqe->flags, htole16(NVME_CQE_PHASE));
1006 state->c = *cqe;
1007 }
1008
1009 static void
1010 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1011 {
1012 struct nvme_sqe *src = ccb->ccb_cookie;
1013 struct nvme_sqe *dst = slot;
1014
1015 *dst = *src;
1016 }
1017
1018 static void
1019 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1020 struct nvme_cqe *cqe)
1021 {
1022 }
1023
1024 static int
1025 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1026 {
1027 struct nvme_ccb *ccb;
1028 struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1029 uint16_t flags;
1030 int rv = 0;
1031
1032 mutex_enter(&q->q_cq_mtx);
1033
1034 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1035 for (;;) {
1036 cqe = &ring[q->q_cq_head];
1037 flags = lemtoh16(&cqe->flags);
1038 if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1039 break;
1040
1041 ccb = &q->q_ccbs[cqe->cid];
1042
1043 if (++q->q_cq_head >= q->q_entries) {
1044 q->q_cq_head = 0;
1045 q->q_cq_phase ^= NVME_CQE_PHASE;
1046 }
1047
1048 rv = 1;
1049
1050 /*
1051 * Unlock the mutext before calling the ccb_done callback
1052 * and re-lock afterwards. The callback triggers lddone()
1053 * which schedules another i/o, and also calls nvme_ccb_put().
1054 * Unlock/relock avoids possibility of deadlock.
1055 */
1056 mutex_exit(&q->q_cq_mtx);
1057 ccb->ccb_done(q, ccb, cqe);
1058 mutex_enter(&q->q_cq_mtx);
1059 }
1060 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1061
1062 if (rv)
1063 nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1064
1065 mutex_exit(&q->q_cq_mtx);
1066
1067 return rv;
1068 }
1069
1070 static int
1071 nvme_identify(struct nvme_softc *sc, u_int mps)
1072 {
1073 char sn[41], mn[81], fr[17];
1074 struct nvm_identify_controller *identify;
1075 struct nvme_dmamem *mem;
1076 struct nvme_ccb *ccb;
1077 u_int mdts;
1078 int rv = 1;
1079
1080 ccb = nvme_ccb_get(sc->sc_admin_q);
1081 if (ccb == NULL)
1082 panic("%s: nvme_ccb_get returned NULL", __func__);
1083
1084 mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1085 if (mem == NULL)
1086 return 1;
1087
1088 ccb->ccb_done = nvme_empty_done;
1089 ccb->ccb_cookie = mem;
1090
1091 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1092 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1093 NVME_TIMO_IDENT);
1094 nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1095
1096 nvme_ccb_put(sc->sc_admin_q, ccb);
1097
1098 if (rv != 0)
1099 goto done;
1100
1101 identify = NVME_DMA_KVA(mem);
1102
1103 strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1104 sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1105 strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1106 sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1107 strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1108 sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1109 aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1110 sn);
1111
1112 if (identify->mdts > 0) {
1113 mdts = (1 << identify->mdts) * (1 << mps);
1114 if (mdts < sc->sc_mdts)
1115 sc->sc_mdts = mdts;
1116 }
1117
1118 sc->sc_nn = lemtoh32(&identify->nn);
1119
1120 memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1121
1122 done:
1123 nvme_dmamem_free(sc, mem);
1124
1125 return rv;
1126 }
1127
1128 static int
1129 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1130 {
1131 struct nvme_sqe_q sqe;
1132 struct nvme_ccb *ccb;
1133 int rv;
1134
1135 if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1136 return 1;
1137
1138 ccb = nvme_ccb_get(sc->sc_admin_q);
1139 KASSERT(ccb != NULL);
1140
1141 ccb->ccb_done = nvme_empty_done;
1142 ccb->ccb_cookie = &sqe;
1143
1144 memset(&sqe, 0, sizeof(sqe));
1145 sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1146 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1147 htolem16(&sqe.qsize, q->q_entries - 1);
1148 htolem16(&sqe.qid, q->q_id);
1149 sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1150 if (sc->sc_use_mq)
1151 htolem16(&sqe.cqid, q->q_id); /* qid == vector */
1152
1153 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1154 if (rv != 0)
1155 goto fail;
1156
1157 ccb->ccb_done = nvme_empty_done;
1158 ccb->ccb_cookie = &sqe;
1159
1160 memset(&sqe, 0, sizeof(sqe));
1161 sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1162 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1163 htolem16(&sqe.qsize, q->q_entries - 1);
1164 htolem16(&sqe.qid, q->q_id);
1165 htolem16(&sqe.cqid, q->q_id);
1166 sqe.qflags = NVM_SQE_Q_PC;
1167
1168 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1169 if (rv != 0)
1170 goto fail;
1171
1172 fail:
1173 nvme_ccb_put(sc->sc_admin_q, ccb);
1174 return rv;
1175 }
1176
1177 static int
1178 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1179 {
1180 struct nvme_sqe_q sqe;
1181 struct nvme_ccb *ccb;
1182 int rv;
1183
1184 ccb = nvme_ccb_get(sc->sc_admin_q);
1185 KASSERT(ccb != NULL);
1186
1187 ccb->ccb_done = nvme_empty_done;
1188 ccb->ccb_cookie = &sqe;
1189
1190 memset(&sqe, 0, sizeof(sqe));
1191 sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1192 htolem16(&sqe.qid, q->q_id);
1193
1194 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1195 if (rv != 0)
1196 goto fail;
1197
1198 ccb->ccb_done = nvme_empty_done;
1199 ccb->ccb_cookie = &sqe;
1200
1201 memset(&sqe, 0, sizeof(sqe));
1202 sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1203 htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1204 htolem16(&sqe.qid, q->q_id);
1205
1206 rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1207 if (rv != 0)
1208 goto fail;
1209
1210 fail:
1211 nvme_ccb_put(sc->sc_admin_q, ccb);
1212
1213 if (rv == 0 && sc->sc_use_mq) {
1214 if (sc->sc_intr_disestablish(sc, q->q_id))
1215 rv = 1;
1216 }
1217
1218 return rv;
1219 }
1220
1221 static void
1222 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1223 {
1224 struct nvme_sqe *sqe = slot;
1225 struct nvme_dmamem *mem = ccb->ccb_cookie;
1226
1227 sqe->opcode = NVM_ADMIN_IDENTIFY;
1228 htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1229 htolem32(&sqe->cdw10, 1);
1230 }
1231
1232 static int
1233 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
1234 {
1235 struct nvme_softc *sc = q->q_sc;
1236 struct nvme_ccb *ccb;
1237 bus_addr_t off;
1238 uint64_t *prpl;
1239 u_int i;
1240
1241 mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1242 SIMPLEQ_INIT(&q->q_ccb_list);
1243
1244 q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1245 if (q->q_ccbs == NULL)
1246 return 1;
1247
1248 q->q_nccbs = nccbs;
1249 q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1250 sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1251
1252 prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1253 off = 0;
1254
1255 for (i = 0; i < nccbs; i++) {
1256 ccb = &q->q_ccbs[i];
1257
1258 if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1259 sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1260 sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1261 &ccb->ccb_dmamap) != 0)
1262 goto free_maps;
1263
1264 ccb->ccb_id = i;
1265 ccb->ccb_prpl = prpl;
1266 ccb->ccb_prpl_off = off;
1267 ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1268
1269 SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1270
1271 prpl += sc->sc_max_sgl;
1272 off += sizeof(*prpl) * sc->sc_max_sgl;
1273 }
1274
1275 return 0;
1276
1277 free_maps:
1278 nvme_ccbs_free(q);
1279 return 1;
1280 }
1281
1282 static struct nvme_ccb *
1283 nvme_ccb_get(struct nvme_queue *q)
1284 {
1285 struct nvme_ccb *ccb;
1286
1287 mutex_enter(&q->q_ccb_mtx);
1288 ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1289 if (ccb != NULL)
1290 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1291 mutex_exit(&q->q_ccb_mtx);
1292
1293 return ccb;
1294 }
1295
1296 static void
1297 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1298 {
1299
1300 mutex_enter(&q->q_ccb_mtx);
1301 SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1302 mutex_exit(&q->q_ccb_mtx);
1303 }
1304
1305 static void
1306 nvme_ccbs_free(struct nvme_queue *q)
1307 {
1308 struct nvme_softc *sc = q->q_sc;
1309 struct nvme_ccb *ccb;
1310
1311 mutex_enter(&q->q_ccb_mtx);
1312 while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1313 SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1314 bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1315 }
1316 mutex_exit(&q->q_ccb_mtx);
1317
1318 nvme_dmamem_free(sc, q->q_ccb_prpls);
1319 kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1320 q->q_ccbs = NULL;
1321 mutex_destroy(&q->q_ccb_mtx);
1322 }
1323
1324 static struct nvme_queue *
1325 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1326 {
1327 struct nvme_queue *q;
1328
1329 q = kmem_alloc(sizeof(*q), KM_SLEEP);
1330 if (q == NULL)
1331 return NULL;
1332
1333 q->q_sc = sc;
1334 q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1335 sizeof(struct nvme_sqe) * entries);
1336 if (q->q_sq_dmamem == NULL)
1337 goto free;
1338
1339 q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1340 sizeof(struct nvme_cqe) * entries);
1341 if (q->q_cq_dmamem == NULL)
1342 goto free_sq;
1343
1344 memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1345 memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1346
1347 mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1348 mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1349 q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1350 q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1351 q->q_id = id;
1352 q->q_entries = entries;
1353 q->q_sq_tail = 0;
1354 q->q_cq_head = 0;
1355 q->q_cq_phase = NVME_CQE_PHASE;
1356
1357 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1358 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1359
1360 if (nvme_ccbs_alloc(q, entries) != 0) {
1361 aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1362 goto free_cq;
1363 }
1364
1365 return q;
1366
1367 free_cq:
1368 nvme_dmamem_free(sc, q->q_cq_dmamem);
1369 free_sq:
1370 nvme_dmamem_free(sc, q->q_sq_dmamem);
1371 free:
1372 kmem_free(q, sizeof(*q));
1373
1374 return NULL;
1375 }
1376
1377 static void
1378 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1379 {
1380 nvme_ccbs_free(q);
1381 mutex_destroy(&q->q_sq_mtx);
1382 mutex_destroy(&q->q_cq_mtx);
1383 nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1384 nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1385 nvme_dmamem_free(sc, q->q_cq_dmamem);
1386 nvme_dmamem_free(sc, q->q_sq_dmamem);
1387 kmem_free(q, sizeof(*q));
1388 }
1389
1390 int
1391 nvme_intr(void *xsc)
1392 {
1393 struct nvme_softc *sc = xsc;
1394 int rv = 0;
1395
1396 /* INTx is level triggered, controller deasserts the interrupt only
1397 * when we advance command queue head via write to the doorbell */
1398 if (nvme_q_complete(sc, sc->sc_admin_q))
1399 rv = 1;
1400 if (sc->sc_q != NULL)
1401 if (nvme_q_complete(sc, sc->sc_q[0]))
1402 rv = 1;
1403
1404 return rv;
1405 }
1406
1407 int
1408 nvme_intr_msi(void *xq)
1409 {
1410 struct nvme_queue *q = xq;
1411
1412 KASSERT(q && q->q_sc && q->q_sc->sc_softih
1413 && q->q_sc->sc_softih[q->q_id]);
1414
1415 /* MSI are edge triggered, so can handover processing to softint */
1416 softint_schedule(q->q_sc->sc_softih[q->q_id]);
1417
1418 return 1;
1419 }
1420
1421 void
1422 nvme_softintr_msi(void *xq)
1423 {
1424 struct nvme_queue *q = xq;
1425 struct nvme_softc *sc = q->q_sc;
1426
1427 nvme_q_complete(sc, q);
1428 }
1429
1430 static struct nvme_dmamem *
1431 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1432 {
1433 struct nvme_dmamem *ndm;
1434 int nsegs;
1435
1436 ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1437 if (ndm == NULL)
1438 return NULL;
1439
1440 ndm->ndm_size = size;
1441
1442 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1443 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1444 goto ndmfree;
1445
1446 if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1447 1, &nsegs, BUS_DMA_WAITOK) != 0)
1448 goto destroy;
1449
1450 if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1451 &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1452 goto free;
1453 memset(ndm->ndm_kva, 0, size);
1454
1455 if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1456 NULL, BUS_DMA_WAITOK) != 0)
1457 goto unmap;
1458
1459 return ndm;
1460
1461 unmap:
1462 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1463 free:
1464 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1465 destroy:
1466 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1467 ndmfree:
1468 kmem_free(ndm, sizeof(*ndm));
1469 return NULL;
1470 }
1471
1472 static void
1473 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1474 {
1475 bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1476 0, NVME_DMA_LEN(mem), ops);
1477 }
1478
1479 void
1480 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1481 {
1482 bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1483 bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1484 bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1485 bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1486 kmem_free(ndm, sizeof(*ndm));
1487 }
1488
1489 /*
1490 * ioctl
1491 */
1492
1493 dev_type_open(nvmeopen);
1494 dev_type_close(nvmeclose);
1495 dev_type_ioctl(nvmeioctl);
1496
1497 const struct cdevsw nvme_cdevsw = {
1498 .d_open = nvmeopen,
1499 .d_close = nvmeclose,
1500 .d_read = noread,
1501 .d_write = nowrite,
1502 .d_ioctl = nvmeioctl,
1503 .d_stop = nostop,
1504 .d_tty = notty,
1505 .d_poll = nopoll,
1506 .d_mmap = nommap,
1507 .d_kqfilter = nokqfilter,
1508 .d_discard = nodiscard,
1509 .d_flag = D_OTHER,
1510 };
1511
1512 extern struct cfdriver nvme_cd;
1513
1514 /*
1515 * Accept an open operation on the control device.
1516 */
1517 int
1518 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1519 {
1520 struct nvme_softc *sc;
1521 int unit = minor(dev) / 0x10000;
1522 int nsid = minor(dev) & 0xffff;
1523 int nsidx;
1524
1525 if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1526 return ENXIO;
1527 if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1528 return ENXIO;
1529
1530 if (nsid == 0) {
1531 /* controller */
1532 if (ISSET(sc->sc_flags, NVME_F_OPEN))
1533 return EBUSY;
1534 SET(sc->sc_flags, NVME_F_OPEN);
1535 } else {
1536 /* namespace */
1537 nsidx = nsid - 1;
1538 if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1539 return ENXIO;
1540 if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1541 return EBUSY;
1542 SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1543 }
1544 return 0;
1545 }
1546
1547 /*
1548 * Accept the last close on the control device.
1549 */
1550 int
1551 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1552 {
1553 struct nvme_softc *sc;
1554 int unit = minor(dev) / 0x10000;
1555 int nsid = minor(dev) & 0xffff;
1556 int nsidx;
1557
1558 sc = device_lookup_private(&nvme_cd, unit);
1559 if (sc == NULL)
1560 return ENXIO;
1561
1562 if (nsid == 0) {
1563 /* controller */
1564 CLR(sc->sc_flags, NVME_F_OPEN);
1565 } else {
1566 /* namespace */
1567 nsidx = nsid - 1;
1568 if (nsidx >= sc->sc_nn)
1569 return ENXIO;
1570 CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1571 }
1572
1573 return 0;
1574 }
1575
1576 /*
1577 * Handle control operations.
1578 */
1579 int
1580 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1581 {
1582 struct nvme_softc *sc;
1583 int unit = minor(dev) / 0x10000;
1584 int nsid = minor(dev) & 0xffff;
1585 struct nvme_pt_command *pt;
1586
1587 sc = device_lookup_private(&nvme_cd, unit);
1588 if (sc == NULL)
1589 return ENXIO;
1590
1591 switch (cmd) {
1592 case NVME_PASSTHROUGH_CMD:
1593 pt = data;
1594 return nvme_command_passthrough(sc, data,
1595 nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1596 }
1597
1598 return ENOTTY;
1599 }
1600