Home | History | Annotate | Line # | Download | only in ic
rt2560.c revision 1.1.4.1
      1 /*	$NetBSD: rt2560.c,v 1.1.4.1 2006/07/13 17:49:23 gdamore Exp $	*/
      2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
      3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
      4 
      5 /*-
      6  * Copyright (c) 2005, 2006
      7  *	Damien Bergamini <damien.bergamini (at) free.fr>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*-
     23  * Ralink Technology RT2560 chipset driver
     24  * http://www.ralinktech.com/
     25  */
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.1.4.1 2006/07/13 17:49:23 gdamore Exp $");
     28 
     29 #include "bpfilter.h"
     30 
     31 #include <sys/param.h>
     32 #include <sys/sockio.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/callout.h>
     39 #include <sys/conf.h>
     40 #include <sys/device.h>
     41 
     42 #include <machine/bus.h>
     43 #include <machine/endian.h>
     44 #include <machine/intr.h>
     45 
     46 #if NBPFILTER > 0
     47 #include <net/bpf.h>
     48 #endif
     49 #include <net/if.h>
     50 #include <net/if_arp.h>
     51 #include <net/if_dl.h>
     52 #include <net/if_media.h>
     53 #include <net/if_types.h>
     54 #include <net/if_ether.h>
     55 
     56 #include <netinet/in.h>
     57 #include <netinet/in_systm.h>
     58 #include <netinet/in_var.h>
     59 #include <netinet/ip.h>
     60 
     61 #include <net80211/ieee80211_var.h>
     62 #include <net80211/ieee80211_rssadapt.h>
     63 #include <net80211/ieee80211_radiotap.h>
     64 
     65 #include <dev/ic/rt2560reg.h>
     66 #include <dev/ic/rt2560var.h>
     67 
     68 #include <dev/pci/pcireg.h>
     69 #include <dev/pci/pcivar.h>
     70 #include <dev/pci/pcidevs.h>
     71 
     72 #ifdef RAL_DEBUG
     73 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
     74 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
     75 int rt2560_debug = 0;
     76 #else
     77 #define DPRINTF(x)
     78 #define DPRINTFN(n, x)
     79 #endif
     80 
     81 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
     82 		    struct rt2560_tx_ring *, int);
     83 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
     84 		    struct rt2560_tx_ring *);
     85 static void	rt2560_free_tx_ring(struct rt2560_softc *,
     86 		    struct rt2560_tx_ring *);
     87 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
     88 		    struct rt2560_rx_ring *, int);
     89 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
     90 		    struct rt2560_rx_ring *);
     91 static void	rt2560_free_rx_ring(struct rt2560_softc *,
     92 		    struct rt2560_rx_ring *);
     93 static struct ieee80211_node *
     94 		rt2560_node_alloc(struct ieee80211_node_table *);
     95 static int	rt2560_media_change(struct ifnet *);
     96 static void	rt2560_next_scan(void *);
     97 static void	rt2560_iter_func(void *, struct ieee80211_node *);
     98 static void	rt2560_update_rssadapt(void *);
     99 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
    100     		    int);
    101 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
    102 static void	rt2560_encryption_intr(struct rt2560_softc *);
    103 static void	rt2560_tx_intr(struct rt2560_softc *);
    104 static void	rt2560_prio_intr(struct rt2560_softc *);
    105 static void	rt2560_decryption_intr(struct rt2560_softc *);
    106 static void	rt2560_rx_intr(struct rt2560_softc *);
    107 static void	rt2560_beacon_expire(struct rt2560_softc *);
    108 static void	rt2560_wakeup_expire(struct rt2560_softc *);
    109 #if NBPFILTER > 0
    110 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
    111 #endif
    112 static int	rt2560_ack_rate(struct ieee80211com *, int);
    113 static uint16_t	rt2560_txtime(int, int, uint32_t);
    114 static uint8_t	rt2560_plcp_signal(int);
    115 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
    116 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
    117 		    bus_addr_t);
    118 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
    119 		    struct ieee80211_node *);
    120 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
    121 		    struct ieee80211_node *);
    122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
    123 		    struct ieee80211_frame *, uint16_t);
    124 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
    125 		    struct ieee80211_node *);
    126 static void	rt2560_start(struct ifnet *);
    127 static void	rt2560_watchdog(struct ifnet *);
    128 static int	rt2560_reset(struct ifnet *);
    129 static int	rt2560_ioctl(struct ifnet *, u_long, caddr_t);
    130 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
    131 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
    132 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
    133 static void	rt2560_set_chan(struct rt2560_softc *,
    134 		    struct ieee80211_channel *);
    135 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
    136 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
    137 static void	rt2560_update_plcp(struct rt2560_softc *);
    138 static void	rt2560_update_slot(struct ifnet *);
    139 static void	rt2560_set_basicrates(struct rt2560_softc *);
    140 static void	rt2560_update_led(struct rt2560_softc *, int, int);
    141 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
    142 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
    143 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
    144 static void	rt2560_update_promisc(struct rt2560_softc *);
    145 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
    146 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
    147 static const char *rt2560_get_rf(int);
    148 static void	rt2560_read_eeprom(struct rt2560_softc *);
    149 static int	rt2560_bbp_init(struct rt2560_softc *);
    150 static int	rt2560_init(struct ifnet *);
    151 static void	rt2560_stop(void *);
    152 
    153 /*
    154  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    155  */
    156 static const struct ieee80211_rateset rt2560_rateset_11a =
    157 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    158 
    159 static const struct ieee80211_rateset rt2560_rateset_11b =
    160 	{ 4, { 2, 4, 11, 22 } };
    161 
    162 static const struct ieee80211_rateset rt2560_rateset_11g =
    163 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    164 
    165 /*
    166  * Default values for MAC registers; values taken from the reference driver.
    167  */
    168 static const struct {
    169 	uint32_t	reg;
    170 	uint32_t	val;
    171 } rt2560_def_mac[] = {
    172 	{ RT2560_PSCSR0,      0x00020002 },
    173 	{ RT2560_PSCSR1,      0x00000002 },
    174 	{ RT2560_PSCSR2,      0x00020002 },
    175 	{ RT2560_PSCSR3,      0x00000002 },
    176 	{ RT2560_TIMECSR,     0x00003f21 },
    177 	{ RT2560_CSR9,        0x00000780 },
    178 	{ RT2560_CSR11,       0x07041483 },
    179 	{ RT2560_CNT3,        0x00000000 },
    180 	{ RT2560_TXCSR1,      0x07614562 },
    181 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
    182 	{ RT2560_ACKPCTCSR,   0x7038140a },
    183 	{ RT2560_ARTCSR1,     0x1d21252d },
    184 	{ RT2560_ARTCSR2,     0x1919191d },
    185 	{ RT2560_RXCSR0,      0xffffffff },
    186 	{ RT2560_RXCSR3,      0xb3aab3af },
    187 	{ RT2560_PCICSR,      0x000003b8 },
    188 	{ RT2560_PWRCSR0,     0x3f3b3100 },
    189 	{ RT2560_GPIOCSR,     0x0000ff00 },
    190 	{ RT2560_TESTCSR,     0x000000f0 },
    191 	{ RT2560_PWRCSR1,     0x000001ff },
    192 	{ RT2560_MACCSR0,     0x00213223 },
    193 	{ RT2560_MACCSR1,     0x00235518 },
    194 	{ RT2560_RLPWCSR,     0x00000040 },
    195 	{ RT2560_RALINKCSR,   0x9a009a11 },
    196 	{ RT2560_CSR7,        0xffffffff },
    197 	{ RT2560_BBPCSR1,     0x82188200 },
    198 	{ RT2560_TXACKCSR0,   0x00000020 },
    199 	{ RT2560_SECCSR3,     0x0000e78f }
    200 };
    201 
    202 /*
    203  * Default values for BBP registers; values taken from the reference driver.
    204  */
    205 static const struct {
    206 	uint8_t	reg;
    207 	uint8_t	val;
    208 } rt2560_def_bbp[] = {
    209 	{  3, 0x02 },
    210 	{  4, 0x19 },
    211 	{ 14, 0x1c },
    212 	{ 15, 0x30 },
    213 	{ 16, 0xac },
    214 	{ 17, 0x48 },
    215 	{ 18, 0x18 },
    216 	{ 19, 0xff },
    217 	{ 20, 0x1e },
    218 	{ 21, 0x08 },
    219 	{ 22, 0x08 },
    220 	{ 23, 0x08 },
    221 	{ 24, 0x80 },
    222 	{ 25, 0x50 },
    223 	{ 26, 0x08 },
    224 	{ 27, 0x23 },
    225 	{ 30, 0x10 },
    226 	{ 31, 0x2b },
    227 	{ 32, 0xb9 },
    228 	{ 34, 0x12 },
    229 	{ 35, 0x50 },
    230 	{ 39, 0xc4 },
    231 	{ 40, 0x02 },
    232 	{ 41, 0x60 },
    233 	{ 53, 0x10 },
    234 	{ 54, 0x18 },
    235 	{ 56, 0x08 },
    236 	{ 57, 0x10 },
    237 	{ 58, 0x08 },
    238 	{ 61, 0x60 },
    239 	{ 62, 0x10 },
    240 	{ 75, 0xff }
    241 };
    242 
    243 /*
    244  * Default values for RF register R2 indexed by channel numbers; values taken
    245  * from the reference driver.
    246  */
    247 static const uint32_t rt2560_rf2522_r2[] = {
    248 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
    249 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
    250 };
    251 
    252 static const uint32_t rt2560_rf2523_r2[] = {
    253 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    254 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    255 };
    256 
    257 static const uint32_t rt2560_rf2524_r2[] = {
    258 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    259 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    260 };
    261 
    262 static const uint32_t rt2560_rf2525_r2[] = {
    263 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
    264 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
    265 };
    266 
    267 static const uint32_t rt2560_rf2525_hi_r2[] = {
    268 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
    269 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
    270 };
    271 
    272 static const uint32_t rt2560_rf2525e_r2[] = {
    273 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
    274 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
    275 };
    276 
    277 static const uint32_t rt2560_rf2526_hi_r2[] = {
    278 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
    279 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
    280 };
    281 
    282 static const uint32_t rt2560_rf2526_r2[] = {
    283 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
    284 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
    285 };
    286 
    287 /*
    288  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
    289  * values taken from the reference driver.
    290  */
    291 static const struct {
    292 	uint8_t		chan;
    293 	uint32_t	r1;
    294 	uint32_t	r2;
    295 	uint32_t	r4;
    296 } rt2560_rf5222[] = {
    297 	{   1, 0x08808, 0x0044d, 0x00282 },
    298 	{   2, 0x08808, 0x0044e, 0x00282 },
    299 	{   3, 0x08808, 0x0044f, 0x00282 },
    300 	{   4, 0x08808, 0x00460, 0x00282 },
    301 	{   5, 0x08808, 0x00461, 0x00282 },
    302 	{   6, 0x08808, 0x00462, 0x00282 },
    303 	{   7, 0x08808, 0x00463, 0x00282 },
    304 	{   8, 0x08808, 0x00464, 0x00282 },
    305 	{   9, 0x08808, 0x00465, 0x00282 },
    306 	{  10, 0x08808, 0x00466, 0x00282 },
    307 	{  11, 0x08808, 0x00467, 0x00282 },
    308 	{  12, 0x08808, 0x00468, 0x00282 },
    309 	{  13, 0x08808, 0x00469, 0x00282 },
    310 	{  14, 0x08808, 0x0046b, 0x00286 },
    311 
    312 	{  36, 0x08804, 0x06225, 0x00287 },
    313 	{  40, 0x08804, 0x06226, 0x00287 },
    314 	{  44, 0x08804, 0x06227, 0x00287 },
    315 	{  48, 0x08804, 0x06228, 0x00287 },
    316 	{  52, 0x08804, 0x06229, 0x00287 },
    317 	{  56, 0x08804, 0x0622a, 0x00287 },
    318 	{  60, 0x08804, 0x0622b, 0x00287 },
    319 	{  64, 0x08804, 0x0622c, 0x00287 },
    320 
    321 	{ 100, 0x08804, 0x02200, 0x00283 },
    322 	{ 104, 0x08804, 0x02201, 0x00283 },
    323 	{ 108, 0x08804, 0x02202, 0x00283 },
    324 	{ 112, 0x08804, 0x02203, 0x00283 },
    325 	{ 116, 0x08804, 0x02204, 0x00283 },
    326 	{ 120, 0x08804, 0x02205, 0x00283 },
    327 	{ 124, 0x08804, 0x02206, 0x00283 },
    328 	{ 128, 0x08804, 0x02207, 0x00283 },
    329 	{ 132, 0x08804, 0x02208, 0x00283 },
    330 	{ 136, 0x08804, 0x02209, 0x00283 },
    331 	{ 140, 0x08804, 0x0220a, 0x00283 },
    332 
    333 	{ 149, 0x08808, 0x02429, 0x00281 },
    334 	{ 153, 0x08808, 0x0242b, 0x00281 },
    335 	{ 157, 0x08808, 0x0242d, 0x00281 },
    336 	{ 161, 0x08808, 0x0242f, 0x00281 }
    337 };
    338 
    339 int
    340 rt2560_attach(void *xsc, int id)
    341 {
    342 	struct rt2560_softc *sc = xsc;
    343 	struct ieee80211com *ic = &sc->sc_ic;
    344 	struct ifnet *ifp = &sc->sc_if;
    345 	int error, i;
    346 
    347 	callout_init(&sc->scan_ch);
    348 	callout_init(&sc->rssadapt_ch);
    349 
    350 	/* retrieve RT2560 rev. no */
    351 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
    352 
    353 	/* retrieve MAC address */
    354 	rt2560_get_macaddr(sc, ic->ic_myaddr);
    355 
    356 	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
    357 	    ether_sprintf(ic->ic_myaddr));
    358 
    359 	/* retrieve RF rev. no and various other things from EEPROM */
    360 	rt2560_read_eeprom(sc);
    361 
    362 	aprint_normal("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
    363 	    sc->sc_dev.dv_xname, sc->asic_rev, rt2560_get_rf(sc->rf_rev));
    364 
    365 	/*
    366 	 * Allocate Tx and Rx rings.
    367 	 */
    368 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
    369 	if (error != 0) {
    370 		aprint_error("%s: could not allocate Tx ring\n)",
    371 		    sc->sc_dev.dv_xname);
    372 		goto fail1;
    373 	}
    374 
    375 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
    376 	if (error != 0) {
    377 		aprint_error("%s: could not allocate ATIM ring\n",
    378 		    sc->sc_dev.dv_xname);
    379 		goto fail2;
    380 	}
    381 
    382 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
    383 	if (error != 0) {
    384 		aprint_error("%s: could not allocate Prio ring\n",
    385 		    sc->sc_dev.dv_xname);
    386 		goto fail3;
    387 	}
    388 
    389 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
    390 	if (error != 0) {
    391 		aprint_error("%s: could not allocate Beacon ring\n",
    392 		    sc->sc_dev.dv_xname);
    393 		goto fail4;
    394 	}
    395 
    396 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
    397 	if (error != 0) {
    398 		aprint_error("%s: could not allocate Rx ring\n",
    399 		    sc->sc_dev.dv_xname);
    400 		goto fail5;
    401 	}
    402 
    403 	ifp->if_softc = sc;
    404 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    405 	ifp->if_init = rt2560_init;
    406 	ifp->if_ioctl = rt2560_ioctl;
    407 	ifp->if_start = rt2560_start;
    408 	ifp->if_watchdog = rt2560_watchdog;
    409 	IFQ_SET_READY(&ifp->if_snd);
    410 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    411 
    412 	ic->ic_ifp = ifp;
    413 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    414 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    415 	ic->ic_state = IEEE80211_S_INIT;
    416 
    417 	/* set device capabilities */
    418 	ic->ic_caps =
    419 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    420 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    421 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    422 	    IEEE80211_C_TXPMGT |	/* tx power management */
    423 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    424 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    425 	    IEEE80211_C_WPA;		/* 802.11i */
    426 
    427 	if (sc->rf_rev == RT2560_RF_5222) {
    428 		/* set supported .11a rates */
    429 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
    430 
    431 		/* set supported .11a channels */
    432 		for (i = 36; i <= 64; i += 4) {
    433 			ic->ic_channels[i].ic_freq =
    434 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    435 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    436 		}
    437 		for (i = 100; i <= 140; i += 4) {
    438 			ic->ic_channels[i].ic_freq =
    439 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    440 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    441 		}
    442 		for (i = 149; i <= 161; i += 4) {
    443 			ic->ic_channels[i].ic_freq =
    444 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    445 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    446 		}
    447 	}
    448 
    449 	/* set supported .11b and .11g rates */
    450 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
    451 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
    452 
    453 	/* set supported .11b and .11g channels (1 through 14) */
    454 	for (i = 1; i <= 14; i++) {
    455 		ic->ic_channels[i].ic_freq =
    456 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    457 		ic->ic_channels[i].ic_flags =
    458 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    459 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    460 	}
    461 
    462 	if_attach(ifp);
    463 	ieee80211_ifattach(ic);
    464 	ic->ic_node_alloc = rt2560_node_alloc;
    465 	ic->ic_updateslot = rt2560_update_slot;
    466 	ic->ic_reset = rt2560_reset;
    467 
    468 	/* override state transition machine */
    469 	sc->sc_newstate = ic->ic_newstate;
    470 	ic->ic_newstate = rt2560_newstate;
    471 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
    472 
    473 #if NBPFILTER > 0
    474 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    475 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
    476 #endif
    477 
    478 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    479 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    480 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
    481 
    482 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    483 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    484 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
    485 
    486 
    487 	sc->dwelltime = 200;
    488 
    489 	ieee80211_announce(ic);
    490 
    491 	return 0;
    492 
    493 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
    494 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
    495 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
    496 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
    497 fail1:
    498 	return ENXIO;
    499 }
    500 
    501 
    502 int
    503 rt2560_detach(void *xsc)
    504 {
    505 	struct rt2560_softc *sc = xsc;
    506 	struct ifnet *ifp = &sc->sc_if;
    507 
    508 	callout_stop(&sc->scan_ch);
    509 	callout_stop(&sc->rssadapt_ch);
    510 
    511 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
    512 	if_detach(ifp);
    513 
    514 	rt2560_free_tx_ring(sc, &sc->txq);
    515 	rt2560_free_tx_ring(sc, &sc->atimq);
    516 	rt2560_free_tx_ring(sc, &sc->prioq);
    517 	rt2560_free_tx_ring(sc, &sc->bcnq);
    518 	rt2560_free_rx_ring(sc, &sc->rxq);
    519 
    520 	return 0;
    521 }
    522 
    523 int
    524 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
    525     int count)
    526 {
    527 	int i, nsegs, error;
    528 
    529 	ring->count = count;
    530 	ring->queued = 0;
    531 	ring->cur = ring->next = 0;
    532 	ring->cur_encrypt = ring->next_encrypt = 0;
    533 
    534 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
    535 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    536 	if (error != 0) {
    537 		printf("%s: could not create desc DMA map\n",
    538 		    sc->sc_dev.dv_xname);
    539 		goto fail;
    540 	}
    541 
    542 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
    543 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    544 	if (error != 0) {
    545 		printf("%s: could not allocate DMA memory\n",
    546 		    sc->sc_dev.dv_xname);
    547 		goto fail;
    548 	}
    549 
    550 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    551 	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
    552 	    BUS_DMA_NOWAIT);
    553 	if (error != 0) {
    554 		printf("%s: could not map desc DMA memory\n",
    555 		    sc->sc_dev.dv_xname);
    556 		goto fail;
    557 	}
    558 
    559 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    560 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    561 	if (error != 0) {
    562 		printf("%s: could not load desc DMA map\n",
    563 		    sc->sc_dev.dv_xname);
    564 		goto fail;
    565 	}
    566 
    567 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
    568 	ring->physaddr = ring->map->dm_segs->ds_addr;
    569 
    570 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
    571 	    M_NOWAIT);
    572 	if (ring->data == NULL) {
    573 		printf("%s: could not allocate soft data\n",
    574 		    sc->sc_dev.dv_xname);
    575 		error = ENOMEM;
    576 		goto fail;
    577 	}
    578 
    579 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
    580 	for (i = 0; i < count; i++) {
    581 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    582 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
    583 		    &ring->data[i].map);
    584 		if (error != 0) {
    585 			printf("%s: could not create DMA map\n",
    586 			    sc->sc_dev.dv_xname);
    587 			goto fail;
    588 		}
    589 	}
    590 
    591 	return 0;
    592 
    593 fail:	rt2560_free_tx_ring(sc, ring);
    594 	return error;
    595 }
    596 
    597 void
    598 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    599 {
    600 	struct rt2560_tx_desc *desc;
    601 	struct rt2560_tx_data *data;
    602 	int i;
    603 
    604 	for (i = 0; i < ring->count; i++) {
    605 		desc = &ring->desc[i];
    606 		data = &ring->data[i];
    607 
    608 		if (data->m != NULL) {
    609 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    610 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    611 			bus_dmamap_unload(sc->sc_dmat, data->map);
    612 			m_freem(data->m);
    613 			data->m = NULL;
    614 		}
    615 
    616 		if (data->ni != NULL) {
    617 			ieee80211_free_node(data->ni);
    618 			data->ni = NULL;
    619 		}
    620 
    621 		desc->flags = 0;
    622 	}
    623 
    624 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    625 	    BUS_DMASYNC_PREWRITE);
    626 
    627 	ring->queued = 0;
    628 	ring->cur = ring->next = 0;
    629 	ring->cur_encrypt = ring->next_encrypt = 0;
    630 }
    631 
    632 void
    633 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    634 {
    635 	struct rt2560_tx_data *data;
    636 	int i;
    637 
    638 	if (ring->desc != NULL) {
    639 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    640 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    641 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    642 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
    643 		    ring->count * RT2560_TX_DESC_SIZE);
    644 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    645 	}
    646 
    647 	if (ring->data != NULL) {
    648 		for (i = 0; i < ring->count; i++) {
    649 			data = &ring->data[i];
    650 
    651 			if (data->m != NULL) {
    652 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    653 				    data->map->dm_mapsize,
    654 				    BUS_DMASYNC_POSTWRITE);
    655 				bus_dmamap_unload(sc->sc_dmat, data->map);
    656 				m_freem(data->m);
    657 			}
    658 
    659 			if (data->ni != NULL)
    660 				ieee80211_free_node(data->ni);
    661 
    662 
    663 			if (data->map != NULL)
    664 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    665 		}
    666 		free(ring->data, M_DEVBUF);
    667 	}
    668 }
    669 
    670 int
    671 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
    672     int count)
    673 {
    674 	struct rt2560_rx_desc *desc;
    675 	struct rt2560_rx_data *data;
    676 	int i, nsegs, error;
    677 
    678 	ring->count = count;
    679 	ring->cur = ring->next = 0;
    680 	ring->cur_decrypt = 0;
    681 
    682 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
    683 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    684 	if (error != 0) {
    685 		printf("%s: could not create desc DMA map\n",
    686 		    sc->sc_dev.dv_xname);
    687 		goto fail;
    688 	}
    689 
    690 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
    691 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    692 	if (error != 0) {
    693 		printf("%s: could not allocate DMA memory\n",
    694 		    sc->sc_dev.dv_xname);
    695 		goto fail;
    696 	}
    697 
    698 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    699 	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
    700 	    BUS_DMA_NOWAIT);
    701 	if (error != 0) {
    702 		printf("%s: could not map desc DMA memory\n",
    703 		    sc->sc_dev.dv_xname);
    704 		goto fail;
    705 	}
    706 
    707 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    708 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    709 	if (error != 0) {
    710 		printf("%s: could not load desc DMA map\n",
    711 		    sc->sc_dev.dv_xname);
    712 		goto fail;
    713 	}
    714 
    715 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
    716 	ring->physaddr = ring->map->dm_segs->ds_addr;
    717 
    718 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
    719 	    M_NOWAIT);
    720 	if (ring->data == NULL) {
    721 		printf("%s: could not allocate soft data\n",
    722 		    sc->sc_dev.dv_xname);
    723 		error = ENOMEM;
    724 		goto fail;
    725 	}
    726 
    727 	/*
    728 	 * Pre-allocate Rx buffers and populate Rx ring.
    729 	 */
    730 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
    731 	for (i = 0; i < count; i++) {
    732 		desc = &sc->rxq.desc[i];
    733 		data = &sc->rxq.data[i];
    734 
    735 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    736 		    0, BUS_DMA_NOWAIT, &data->map);
    737 		if (error != 0) {
    738 			printf("%s: could not create DMA map\n",
    739 			    sc->sc_dev.dv_xname);
    740 			goto fail;
    741 		}
    742 
    743 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    744 		if (data->m == NULL) {
    745 			printf("%s: could not allocate rx mbuf\n",
    746 			    sc->sc_dev.dv_xname);
    747 			error = ENOMEM;
    748 			goto fail;
    749 		}
    750 
    751 		MCLGET(data->m, M_DONTWAIT);
    752 		if (!(data->m->m_flags & M_EXT)) {
    753 			printf("%s: could not allocate rx mbuf cluster\n",
    754 			    sc->sc_dev.dv_xname);
    755 			error = ENOMEM;
    756 			goto fail;
    757 		}
    758 
    759 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    760 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
    761 		if (error != 0) {
    762 			printf("%s: could not load rx buf DMA map",
    763 			    sc->sc_dev.dv_xname);
    764 			goto fail;
    765 		}
    766 
    767 		desc->flags = htole32(RT2560_RX_BUSY);
    768 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
    769 	}
    770 
    771 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    772 	    BUS_DMASYNC_PREWRITE);
    773 
    774 	return 0;
    775 
    776 fail:	rt2560_free_rx_ring(sc, ring);
    777 	return error;
    778 }
    779 
    780 void
    781 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    782 {
    783 	int i;
    784 
    785 	for (i = 0; i < ring->count; i++) {
    786 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
    787 		ring->data[i].drop = 0;
    788 	}
    789 
    790 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    791 	    BUS_DMASYNC_PREWRITE);
    792 
    793 	ring->cur = ring->next = 0;
    794 	ring->cur_decrypt = 0;
    795 }
    796 
    797 void
    798 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    799 {
    800 	struct rt2560_rx_data *data;
    801 	int i;
    802 
    803 	if (ring->desc != NULL) {
    804 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    805 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    806 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    807 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
    808 		    ring->count * RT2560_RX_DESC_SIZE);
    809 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    810 	}
    811 
    812 	if (ring->data != NULL) {
    813 		for (i = 0; i < ring->count; i++) {
    814 			data = &ring->data[i];
    815 
    816 			if (data->m != NULL) {
    817 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    818 				    data->map->dm_mapsize,
    819 				    BUS_DMASYNC_POSTREAD);
    820 				bus_dmamap_unload(sc->sc_dmat, data->map);
    821 				m_freem(data->m);
    822 			}
    823 
    824 			if (data->map != NULL)
    825 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    826 		}
    827 		free(ring->data, M_DEVBUF);
    828 	}
    829 }
    830 
    831 struct ieee80211_node *
    832 rt2560_node_alloc(struct ieee80211_node_table *nt)
    833 {
    834 	struct rt2560_node *rn;
    835 
    836 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
    837 	    M_NOWAIT | M_ZERO);
    838 
    839 	return (rn != NULL) ? &rn->ni : NULL;
    840 }
    841 
    842 int
    843 rt2560_media_change(struct ifnet *ifp)
    844 {
    845 	int error;
    846 
    847 	error = ieee80211_media_change(ifp);
    848 	if (error != ENETRESET)
    849 		return error;
    850 
    851 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    852 		rt2560_init(ifp);
    853 
    854 	return 0;
    855 }
    856 
    857 /*
    858  * This function is called periodically (every 200ms) during scanning to
    859  * switch from one channel to another.
    860  */
    861 void
    862 rt2560_next_scan(void *arg)
    863 {
    864 	struct rt2560_softc *sc = arg;
    865 	struct ieee80211com *ic = &sc->sc_ic;
    866 
    867 	if (ic->ic_state == IEEE80211_S_SCAN)
    868 		ieee80211_next_scan(ic);
    869 }
    870 
    871 /*
    872  * This function is called for each neighbor node.
    873  */
    874 void
    875 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
    876 {
    877 	struct rt2560_node *rn = (struct rt2560_node *)ni;
    878 
    879 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
    880 }
    881 
    882 /*
    883  * This function is called periodically (every 100ms) in RUN state to update
    884  * the rate adaptation statistics.
    885  */
    886 void
    887 rt2560_update_rssadapt(void *arg)
    888 {
    889 	struct rt2560_softc *sc = arg;
    890 	struct ieee80211com *ic = &sc->sc_ic;
    891 
    892 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
    893 
    894 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
    895 }
    896 
    897 int
    898 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    899 {
    900 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
    901 	enum ieee80211_state ostate;
    902 	struct ieee80211_node *ni;
    903 	struct mbuf *m;
    904 	int error = 0;
    905 
    906 	ostate = ic->ic_state;
    907 	callout_stop(&sc->scan_ch);
    908 
    909 	switch (nstate) {
    910 	case IEEE80211_S_INIT:
    911 		callout_stop(&sc->rssadapt_ch);
    912 
    913 		if (ostate == IEEE80211_S_RUN) {
    914 			/* abort TSF synchronization */
    915 			RAL_WRITE(sc, RT2560_CSR14, 0);
    916 
    917 			/* turn association led off */
    918 			rt2560_update_led(sc, 0, 0);
    919 		}
    920 		break;
    921 
    922 	case IEEE80211_S_SCAN:
    923 		rt2560_set_chan(sc, ic->ic_curchan);
    924 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
    925 		    rt2560_next_scan, sc);
    926 		break;
    927 
    928 	case IEEE80211_S_AUTH:
    929 		rt2560_set_chan(sc, ic->ic_curchan);
    930 		break;
    931 
    932 	case IEEE80211_S_ASSOC:
    933 		rt2560_set_chan(sc, ic->ic_curchan);
    934 		break;
    935 
    936 	case IEEE80211_S_RUN:
    937 		rt2560_set_chan(sc, ic->ic_curchan);
    938 
    939 		ni = ic->ic_bss;
    940 
    941 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    942 			rt2560_update_plcp(sc);
    943 			rt2560_set_basicrates(sc);
    944 			rt2560_set_bssid(sc, ni->ni_bssid);
    945 		}
    946 
    947 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    948 		    ic->ic_opmode == IEEE80211_M_IBSS) {
    949 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
    950 			if (m == NULL) {
    951 				printf("%s: could not allocate beacon\n",
    952 				    sc->sc_dev.dv_xname);
    953 				error = ENOBUFS;
    954 				break;
    955 			}
    956 
    957 			ieee80211_ref_node(ni);
    958 			error = rt2560_tx_bcn(sc, m, ni);
    959 			if (error != 0)
    960 				break;
    961 		}
    962 
    963 		/* turn assocation led on */
    964 		rt2560_update_led(sc, 1, 0);
    965 
    966 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    967 			callout_reset(&sc->rssadapt_ch, hz / 10,
    968 			    rt2560_update_rssadapt, sc);
    969 			rt2560_enable_tsf_sync(sc);
    970 		}
    971 		break;
    972 	}
    973 
    974 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
    975 }
    976 
    977 /*
    978  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
    979  * 93C66).
    980  */
    981 uint16_t
    982 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
    983 {
    984 	uint32_t tmp;
    985 	uint16_t val;
    986 	int n;
    987 
    988 	/* clock C once before the first command */
    989 	RT2560_EEPROM_CTL(sc, 0);
    990 
    991 	RT2560_EEPROM_CTL(sc, RT2560_S);
    992 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
    993 	RT2560_EEPROM_CTL(sc, RT2560_S);
    994 
    995 	/* write start bit (1) */
    996 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
    997 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
    998 
    999 	/* write READ opcode (10) */
   1000 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
   1001 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
   1002 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1003 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
   1004 
   1005 	/* write address (A5-A0 or A7-A0) */
   1006 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
   1007 	for (; n >= 0; n--) {
   1008 		RT2560_EEPROM_CTL(sc, RT2560_S |
   1009 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
   1010 		RT2560_EEPROM_CTL(sc, RT2560_S |
   1011 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
   1012 	}
   1013 
   1014 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1015 
   1016 	/* read data Q15-Q0 */
   1017 	val = 0;
   1018 	for (n = 15; n >= 0; n--) {
   1019 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
   1020 		tmp = RAL_READ(sc, RT2560_CSR21);
   1021 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
   1022 		RT2560_EEPROM_CTL(sc, RT2560_S);
   1023 	}
   1024 
   1025 	RT2560_EEPROM_CTL(sc, 0);
   1026 
   1027 	/* clear Chip Select and clock C */
   1028 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1029 	RT2560_EEPROM_CTL(sc, 0);
   1030 	RT2560_EEPROM_CTL(sc, RT2560_C);
   1031 
   1032 	return val;
   1033 }
   1034 
   1035 /*
   1036  * Some frames were processed by the hardware cipher engine and are ready for
   1037  * transmission.
   1038  */
   1039 void
   1040 rt2560_encryption_intr(struct rt2560_softc *sc)
   1041 {
   1042 	struct rt2560_tx_desc *desc;
   1043 	int hw;
   1044 
   1045 	/* retrieve last descriptor index processed by cipher engine */
   1046 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
   1047 	    RT2560_TX_DESC_SIZE;
   1048 
   1049 	for (; sc->txq.next_encrypt != hw;) {
   1050 		desc = &sc->txq.desc[sc->txq.next_encrypt];
   1051 
   1052 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1053 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1054 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1055 
   1056 		if (le32toh(desc->flags) &
   1057 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
   1058 			break;
   1059 
   1060 		/* for TKIP, swap eiv field to fix a bug in ASIC */
   1061 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
   1062 		    RT2560_TX_CIPHER_TKIP)
   1063 			desc->eiv = bswap32(desc->eiv);
   1064 
   1065 		/* mark the frame ready for transmission */
   1066 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1067 
   1068 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1069 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1070 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1071 
   1072 		DPRINTFN(15, ("encryption done idx=%u\n",
   1073 		    sc->txq.next_encrypt));
   1074 
   1075 		sc->txq.next_encrypt =
   1076 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
   1077 	}
   1078 
   1079 	/* kick Tx */
   1080 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
   1081 }
   1082 
   1083 void
   1084 rt2560_tx_intr(struct rt2560_softc *sc)
   1085 {
   1086 	struct ieee80211com *ic = &sc->sc_ic;
   1087 	struct ifnet *ifp = ic->ic_ifp;
   1088 	struct rt2560_tx_desc *desc;
   1089 	struct rt2560_tx_data *data;
   1090 	struct rt2560_node *rn;
   1091 
   1092 	for (;;) {
   1093 		desc = &sc->txq.desc[sc->txq.next];
   1094 		data = &sc->txq.data[sc->txq.next];
   1095 
   1096 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1097 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1098 		    BUS_DMASYNC_POSTREAD);
   1099 
   1100 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1101 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
   1102 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1103 			break;
   1104 
   1105 		rn = (struct rt2560_node *)data->ni;
   1106 
   1107 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1108 		case RT2560_TX_SUCCESS:
   1109 			DPRINTFN(10, ("data frame sent successfully\n"));
   1110 			if (data->id.id_node != NULL) {
   1111 				ieee80211_rssadapt_raise_rate(ic,
   1112 				    &rn->rssadapt, &data->id);
   1113 			}
   1114 			ifp->if_opackets++;
   1115 			break;
   1116 
   1117 		case RT2560_TX_SUCCESS_RETRY:
   1118 			DPRINTFN(9, ("data frame sent after %u retries\n",
   1119 			    (le32toh(desc->flags) >> 5) & 0x7));
   1120 			ifp->if_opackets++;
   1121 			break;
   1122 
   1123 		case RT2560_TX_FAIL_RETRY:
   1124 			DPRINTFN(9, ("sending data frame failed (too much "
   1125 			    "retries)\n"));
   1126 			if (data->id.id_node != NULL) {
   1127 				ieee80211_rssadapt_lower_rate(ic, data->ni,
   1128 				    &rn->rssadapt, &data->id);
   1129 			}
   1130 			ifp->if_oerrors++;
   1131 			break;
   1132 
   1133 		case RT2560_TX_FAIL_INVALID:
   1134 		case RT2560_TX_FAIL_OTHER:
   1135 		default:
   1136 			printf("%s: sending data frame failed 0x%08x\n",
   1137 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
   1138 			ifp->if_oerrors++;
   1139 		}
   1140 
   1141 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1142 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1143 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1144 		m_freem(data->m);
   1145 		data->m = NULL;
   1146 		ieee80211_free_node(data->ni);
   1147 		data->ni = NULL;
   1148 
   1149 		/* descriptor is no longer valid */
   1150 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1151 
   1152 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1153 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1154 		    BUS_DMASYNC_PREWRITE);
   1155 
   1156 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
   1157 
   1158 		sc->txq.queued--;
   1159 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
   1160 	}
   1161 
   1162 	sc->sc_tx_timer = 0;
   1163 	ifp->if_flags &= ~IFF_OACTIVE;
   1164 	rt2560_start(ifp);
   1165 }
   1166 
   1167 void
   1168 rt2560_prio_intr(struct rt2560_softc *sc)
   1169 {
   1170 	struct ieee80211com *ic = &sc->sc_ic;
   1171 	struct ifnet *ifp = ic->ic_ifp;
   1172 	struct rt2560_tx_desc *desc;
   1173 	struct rt2560_tx_data *data;
   1174 
   1175 	for (;;) {
   1176 		desc = &sc->prioq.desc[sc->prioq.next];
   1177 		data = &sc->prioq.data[sc->prioq.next];
   1178 
   1179 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1180 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1181 		    BUS_DMASYNC_POSTREAD);
   1182 
   1183 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1184 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1185 			break;
   1186 
   1187 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1188 		case RT2560_TX_SUCCESS:
   1189 			DPRINTFN(10, ("mgt frame sent successfully\n"));
   1190 			break;
   1191 
   1192 		case RT2560_TX_SUCCESS_RETRY:
   1193 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
   1194 			    (le32toh(desc->flags) >> 5) & 0x7));
   1195 			break;
   1196 
   1197 		case RT2560_TX_FAIL_RETRY:
   1198 			DPRINTFN(9, ("sending mgt frame failed (too much "
   1199 			    "retries)\n"));
   1200 			break;
   1201 
   1202 		case RT2560_TX_FAIL_INVALID:
   1203 		case RT2560_TX_FAIL_OTHER:
   1204 		default:
   1205 			printf("%s: sending mgt frame failed 0x%08x\n",
   1206 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
   1207 		}
   1208 
   1209 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1210 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1211 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1212 		m_freem(data->m);
   1213 		data->m = NULL;
   1214 		ieee80211_free_node(data->ni);
   1215 		data->ni = NULL;
   1216 
   1217 		/* descriptor is no longer valid */
   1218 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1219 
   1220 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1221 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1222 		    BUS_DMASYNC_PREWRITE);
   1223 
   1224 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
   1225 
   1226 		sc->prioq.queued--;
   1227 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
   1228 	}
   1229 
   1230 	sc->sc_tx_timer = 0;
   1231 	ifp->if_flags &= ~IFF_OACTIVE;
   1232 	rt2560_start(ifp);
   1233 }
   1234 
   1235 /*
   1236  * Some frames were processed by the hardware cipher engine and are ready for
   1237  * transmission to the IEEE802.11 layer.
   1238  */
   1239 void
   1240 rt2560_decryption_intr(struct rt2560_softc *sc)
   1241 {
   1242 	struct ieee80211com *ic = &sc->sc_ic;
   1243 	struct ifnet *ifp = ic->ic_ifp;
   1244 	struct rt2560_rx_desc *desc;
   1245 	struct rt2560_rx_data *data;
   1246 	struct rt2560_node *rn;
   1247 	struct ieee80211_frame *wh;
   1248 	struct ieee80211_node *ni;
   1249 	struct mbuf *mnew, *m;
   1250 	int hw, error;
   1251 
   1252 	/* retrieve last decriptor index processed by cipher engine */
   1253 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
   1254 	    RT2560_RX_DESC_SIZE;
   1255 
   1256 	for (; sc->rxq.cur_decrypt != hw;) {
   1257 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
   1258 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
   1259 
   1260 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1261 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1262 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1263 
   1264 		if (le32toh(desc->flags) &
   1265 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1266 			break;
   1267 
   1268 		if (data->drop) {
   1269 			ifp->if_ierrors++;
   1270 			goto skip;
   1271 		}
   1272 
   1273 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
   1274 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
   1275 			ifp->if_ierrors++;
   1276 			goto skip;
   1277 		}
   1278 
   1279 		/*
   1280 		 * Try to allocate a new mbuf for this ring element and load it
   1281 		 * before processing the current mbuf.  If the ring element
   1282 		 * cannot be loaded, drop the received packet and reuse the old
   1283 		 * mbuf.  In the unlikely case that the old mbuf can't be
   1284 		 * reloaded either, explicitly panic.
   1285 		 */
   1286 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1287 		if (mnew == NULL) {
   1288 			ifp->if_ierrors++;
   1289 			goto skip;
   1290 		}
   1291 
   1292 		MCLGET(mnew, M_DONTWAIT);
   1293 		if (!(mnew->m_flags & M_EXT)) {
   1294 			m_freem(mnew);
   1295 			ifp->if_ierrors++;
   1296 			goto skip;
   1297 		}
   1298 
   1299 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1300 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1301 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1302 
   1303 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1304 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
   1305 		if (error != 0) {
   1306 			m_freem(mnew);
   1307 
   1308 			/* try to reload the old mbuf */
   1309 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1310 			    mtod(data->m, void *), MCLBYTES, NULL,
   1311 			    BUS_DMA_NOWAIT);
   1312 			if (error != 0) {
   1313 				/* very unlikely that it will fail... */
   1314 				panic("%s: could not load old rx mbuf",
   1315 				    sc->sc_dev.dv_xname);
   1316 			}
   1317 			ifp->if_ierrors++;
   1318 			goto skip;
   1319 		}
   1320 
   1321 		/*
   1322 		 * New mbuf successfully loaded, update Rx ring and continue
   1323 		 * processing.
   1324 		 */
   1325 		m = data->m;
   1326 		data->m = mnew;
   1327 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1328 
   1329 		/* finalize mbuf */
   1330 		m->m_pkthdr.rcvif = ifp;
   1331 		m->m_pkthdr.len = m->m_len =
   1332 		    (le32toh(desc->flags) >> 16) & 0xfff;
   1333 
   1334 #if NBPFILTER > 0
   1335 		if (sc->sc_drvbpf != NULL) {
   1336 			struct mbuf mb;
   1337 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
   1338 			uint32_t tsf_lo, tsf_hi;
   1339 
   1340 			/* get timestamp (low and high 32 bits) */
   1341 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
   1342 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
   1343 
   1344 			tap->wr_tsf =
   1345 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
   1346 			tap->wr_flags = 0;
   1347 			tap->wr_rate = rt2560_rxrate(desc);
   1348 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1349 			tap->wr_chan_flags =
   1350 			    htole16(ic->ic_ibss_chan->ic_flags);
   1351 			tap->wr_antenna = sc->rx_ant;
   1352 			tap->wr_antsignal = desc->rssi;
   1353 
   1354 			M_COPY_PKTHDR(&mb, m);
   1355 			mb.m_data = (caddr_t)tap;
   1356 			mb.m_len = sc->sc_txtap_len;
   1357 			mb.m_next = m;
   1358 			mb.m_pkthdr.len += mb.m_len;
   1359 			bpf_mtap(sc->sc_drvbpf, &mb);
   1360 		}
   1361 #endif
   1362 
   1363 		wh = mtod(m, struct ieee80211_frame *);
   1364 		ni = ieee80211_find_rxnode(ic,
   1365 		    (struct ieee80211_frame_min *)wh);
   1366 
   1367 		/* send the frame to the 802.11 layer */
   1368 		ieee80211_input(ic, m, ni, desc->rssi, 0);
   1369 
   1370 		/* give rssi to the rate adatation algorithm */
   1371 		rn = (struct rt2560_node *)ni;
   1372 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
   1373 
   1374 		/* node is no longer needed */
   1375 		ieee80211_free_node(ni);
   1376 
   1377 skip:		desc->flags = htole32(RT2560_RX_BUSY);
   1378 
   1379 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1380 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1381 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1382 
   1383 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
   1384 
   1385 		sc->rxq.cur_decrypt =
   1386 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
   1387 	}
   1388 
   1389 	/*
   1390 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
   1391 	 * without calling if_start().
   1392 	 */
   1393 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
   1394 		rt2560_start(ifp);
   1395 }
   1396 
   1397 /*
   1398  * Some frames were received. Pass them to the hardware cipher engine before
   1399  * sending them to the 802.11 layer.
   1400  */
   1401 void
   1402 rt2560_rx_intr(struct rt2560_softc *sc)
   1403 {
   1404 	struct rt2560_rx_desc *desc;
   1405 	struct rt2560_rx_data *data;
   1406 
   1407 	for (;;) {
   1408 		desc = &sc->rxq.desc[sc->rxq.cur];
   1409 		data = &sc->rxq.data[sc->rxq.cur];
   1410 
   1411 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1412 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1413 		    BUS_DMASYNC_POSTREAD);
   1414 
   1415 		if (le32toh(desc->flags) &
   1416 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1417 			break;
   1418 
   1419 		data->drop = 0;
   1420 
   1421 		if (le32toh(desc->flags) &
   1422 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
   1423 			/*
   1424 			 * This should not happen since we did not request
   1425 			 * to receive those frames when we filled RXCSR0.
   1426 			 */
   1427 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
   1428 			    le32toh(desc->flags)));
   1429 			data->drop = 1;
   1430 		}
   1431 
   1432 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
   1433 			DPRINTFN(5, ("bad length\n"));
   1434 			data->drop = 1;
   1435 		}
   1436 
   1437 		/* mark the frame for decryption */
   1438 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
   1439 
   1440 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1441 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1442 		    BUS_DMASYNC_PREWRITE);
   1443 
   1444 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
   1445 
   1446 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
   1447 	}
   1448 
   1449 	/* kick decrypt */
   1450 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
   1451 }
   1452 
   1453 #if 0
   1454 void
   1455 rt2560_shutdown(void *xsc)
   1456 {
   1457 	struct rt2560_softc *sc = xsc;
   1458 
   1459 	rt2560_stop(sc);
   1460 }
   1461 
   1462 void
   1463 rt2560_suspend(void *xsc)
   1464 {
   1465 	struct rt2560_softc *sc = xsc;
   1466 
   1467 	rt2560_stop(sc);
   1468 }
   1469 
   1470 void
   1471 rt2560_resume(void *xsc)
   1472 {
   1473 	struct rt2560_softc *sc = xsc;
   1474 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1475 
   1476 	if (ifp->if_flags & IFF_UP) {
   1477 		ifp->if_init(ifp->if_softc);
   1478 		if (ifp->if_flags & IFF_RUNNING)
   1479 			ifp->if_start(ifp);
   1480 	}
   1481 }
   1482 
   1483 #endif
   1484 /*
   1485  * This function is called periodically in IBSS mode when a new beacon must be
   1486  * sent out.
   1487  */
   1488 static void
   1489 rt2560_beacon_expire(struct rt2560_softc *sc)
   1490 {
   1491 	struct ieee80211com *ic = &sc->sc_ic;
   1492 	struct rt2560_tx_data *data;
   1493 
   1494 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
   1495 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
   1496 		return;
   1497 
   1498 	data = &sc->bcnq.data[sc->bcnq.next];
   1499 
   1500 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1501 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1502 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1503 
   1504 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
   1505 
   1506 #if NBPFILTER > 0
   1507 	if (ic->ic_rawbpf != NULL)
   1508 		bpf_mtap(ic->ic_rawbpf, data->m);
   1509 #endif
   1510 	rt2560_tx_bcn(sc, data->m, data->ni);
   1511 
   1512 	DPRINTFN(15, ("beacon expired\n"));
   1513 
   1514 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
   1515 }
   1516 
   1517 static void
   1518 rt2560_wakeup_expire(struct rt2560_softc *sc)
   1519 {
   1520 	DPRINTFN(15, ("wakeup expired\n"));
   1521 }
   1522 
   1523 int
   1524 rt2560_intr(void *arg)
   1525 {
   1526 	struct rt2560_softc *sc = arg;
   1527 	struct ifnet *ifp = &sc->sc_if;
   1528 	uint32_t r;
   1529 
   1530 	/* disable interrupts */
   1531 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   1532 
   1533 	/* don't re-enable interrupts if we're shutting down */
   1534 	if (!(ifp->if_flags & IFF_RUNNING))
   1535 		return 0;
   1536 
   1537 	r = RAL_READ(sc, RT2560_CSR7);
   1538 	RAL_WRITE(sc, RT2560_CSR7, r);
   1539 
   1540 	if (r & RT2560_BEACON_EXPIRE)
   1541 		rt2560_beacon_expire(sc);
   1542 
   1543 	if (r & RT2560_WAKEUP_EXPIRE)
   1544 		rt2560_wakeup_expire(sc);
   1545 
   1546 	if (r & RT2560_ENCRYPTION_DONE)
   1547 		rt2560_encryption_intr(sc);
   1548 
   1549 	if (r & RT2560_TX_DONE)
   1550 		rt2560_tx_intr(sc);
   1551 
   1552 	if (r & RT2560_PRIO_DONE)
   1553 		rt2560_prio_intr(sc);
   1554 
   1555 	if (r & RT2560_DECRYPTION_DONE)
   1556 		rt2560_decryption_intr(sc);
   1557 
   1558 	if (r & RT2560_RX_DONE)
   1559 		rt2560_rx_intr(sc);
   1560 
   1561 	/* re-enable interrupts */
   1562 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   1563 
   1564 	return 1;
   1565 }
   1566 
   1567 /* quickly determine if a given rate is CCK or OFDM */
   1568 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1569 
   1570 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
   1571 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
   1572 
   1573 #define RAL_SIFS		10	/* us */
   1574 
   1575 #define RT2560_RXTX_TURNAROUND	10	/* us */
   1576 
   1577 /*
   1578  * This function is only used by the Rx radiotap code. It returns the rate at
   1579  * which a given frame was received.
   1580  */
   1581 #if NBPFILTER > 0
   1582 static uint8_t
   1583 rt2560_rxrate(struct rt2560_rx_desc *desc)
   1584 {
   1585 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
   1586 		/* reverse function of rt2560_plcp_signal */
   1587 		switch (desc->rate) {
   1588 		case 0xb:	return 12;
   1589 		case 0xf:	return 18;
   1590 		case 0xa:	return 24;
   1591 		case 0xe:	return 36;
   1592 		case 0x9:	return 48;
   1593 		case 0xd:	return 72;
   1594 		case 0x8:	return 96;
   1595 		case 0xc:	return 108;
   1596 		}
   1597 	} else {
   1598 		if (desc->rate == 10)
   1599 			return 2;
   1600 		if (desc->rate == 20)
   1601 			return 4;
   1602 		if (desc->rate == 55)
   1603 			return 11;
   1604 		if (desc->rate == 110)
   1605 			return 22;
   1606 	}
   1607 	return 2;	/* should not get there */
   1608 }
   1609 #endif
   1610 
   1611 /*
   1612  * Return the expected ack rate for a frame transmitted at rate `rate'.
   1613  * XXX: this should depend on the destination node basic rate set.
   1614  */
   1615 static int
   1616 rt2560_ack_rate(struct ieee80211com *ic, int rate)
   1617 {
   1618 	switch (rate) {
   1619 	/* CCK rates */
   1620 	case 2:
   1621 		return 2;
   1622 	case 4:
   1623 	case 11:
   1624 	case 22:
   1625 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
   1626 
   1627 	/* OFDM rates */
   1628 	case 12:
   1629 	case 18:
   1630 		return 12;
   1631 	case 24:
   1632 	case 36:
   1633 		return 24;
   1634 	case 48:
   1635 	case 72:
   1636 	case 96:
   1637 	case 108:
   1638 		return 48;
   1639 	}
   1640 
   1641 	/* default to 1Mbps */
   1642 	return 2;
   1643 }
   1644 
   1645 /*
   1646  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1647  * The function automatically determines the operating mode depending on the
   1648  * given rate. `flags' indicates whether short preamble is in use or not.
   1649  */
   1650 static uint16_t
   1651 rt2560_txtime(int len, int rate, uint32_t flags)
   1652 {
   1653 	uint16_t txtime;
   1654 
   1655 	if (RAL_RATE_IS_OFDM(rate)) {
   1656 		/* IEEE Std 802.11a-1999, pp. 37 */
   1657 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1658 		txtime = 16 + 4 + 4 * txtime + 6;
   1659 	} else {
   1660 		/* IEEE Std 802.11b-1999, pp. 28 */
   1661 		txtime = (16 * len + rate - 1) / rate;
   1662 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1663 			txtime +=  72 + 24;
   1664 		else
   1665 			txtime += 144 + 48;
   1666 	}
   1667 	return txtime;
   1668 }
   1669 
   1670 static uint8_t
   1671 rt2560_plcp_signal(int rate)
   1672 {
   1673 	switch (rate) {
   1674 	/* CCK rates (returned values are device-dependent) */
   1675 	case 2:		return 0x0;
   1676 	case 4:		return 0x1;
   1677 	case 11:	return 0x2;
   1678 	case 22:	return 0x3;
   1679 
   1680 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1681 	case 12:	return 0xb;
   1682 	case 18:	return 0xf;
   1683 	case 24:	return 0xa;
   1684 	case 36:	return 0xe;
   1685 	case 48:	return 0x9;
   1686 	case 72:	return 0xd;
   1687 	case 96:	return 0x8;
   1688 	case 108:	return 0xc;
   1689 
   1690 	/* unsupported rates (should not get there) */
   1691 	default:	return 0xff;
   1692 	}
   1693 }
   1694 
   1695 static void
   1696 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
   1697     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
   1698 {
   1699 	struct ieee80211com *ic = &sc->sc_ic;
   1700 	uint16_t plcp_length;
   1701 	int remainder;
   1702 
   1703 	desc->flags = htole32(flags);
   1704 	desc->flags |= htole32(len << 16);
   1705 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
   1706 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1707 
   1708 	desc->physaddr = htole32(physaddr);
   1709 	desc->wme = htole16(
   1710 	    RT2560_AIFSN(2) |
   1711 	    RT2560_LOGCWMIN(3) |
   1712 	    RT2560_LOGCWMAX(8));
   1713 
   1714 	/* setup PLCP fields */
   1715 	desc->plcp_signal  = rt2560_plcp_signal(rate);
   1716 	desc->plcp_service = 4;
   1717 
   1718 	len += IEEE80211_CRC_LEN;
   1719 	if (RAL_RATE_IS_OFDM(rate)) {
   1720 		desc->flags |= htole32(RT2560_TX_OFDM);
   1721 
   1722 		plcp_length = len & 0xfff;
   1723 		desc->plcp_length_hi = plcp_length >> 6;
   1724 		desc->plcp_length_lo = plcp_length & 0x3f;
   1725 	} else {
   1726 		plcp_length = (16 * len + rate - 1) / rate;
   1727 		if (rate == 22) {
   1728 			remainder = (16 * len) % 22;
   1729 			if (remainder != 0 && remainder < 7)
   1730 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
   1731 		}
   1732 		desc->plcp_length_hi = plcp_length >> 8;
   1733 		desc->plcp_length_lo = plcp_length & 0xff;
   1734 
   1735 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1736 			desc->plcp_signal |= 0x08;
   1737 	}
   1738 }
   1739 
   1740 static int
   1741 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
   1742     struct ieee80211_node *ni)
   1743 {
   1744 	struct rt2560_tx_desc *desc;
   1745 	struct rt2560_tx_data *data;
   1746 	int rate, error;
   1747 
   1748 	desc = &sc->bcnq.desc[sc->bcnq.cur];
   1749 	data = &sc->bcnq.data[sc->bcnq.cur];
   1750 
   1751 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1752 
   1753 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1754 	    BUS_DMA_NOWAIT);
   1755 	if (error != 0) {
   1756 		printf("%s: could not map mbuf (error %d)\n",
   1757 		    sc->sc_dev.dv_xname, error);
   1758 		m_freem(m0);
   1759 		return error;
   1760 	}
   1761 
   1762 	data->m = m0;
   1763 	data->ni = ni;
   1764 
   1765 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
   1766 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
   1767 	    data->map->dm_segs->ds_addr);
   1768 
   1769 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1770 	    BUS_DMASYNC_PREWRITE);
   1771 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
   1772 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1773 	    BUS_DMASYNC_PREWRITE);
   1774 
   1775 	return 0;
   1776 }
   1777 
   1778 static int
   1779 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
   1780     struct ieee80211_node *ni)
   1781 {
   1782 	struct ieee80211com *ic = &sc->sc_ic;
   1783 	struct rt2560_tx_desc *desc;
   1784 	struct rt2560_tx_data *data;
   1785 	struct ieee80211_frame *wh;
   1786 	uint16_t dur;
   1787 	uint32_t flags = 0;
   1788 	int rate, error;
   1789 
   1790 	desc = &sc->prioq.desc[sc->prioq.cur];
   1791 	data = &sc->prioq.data[sc->prioq.cur];
   1792 
   1793 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1794 
   1795 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1796 	    BUS_DMA_NOWAIT);
   1797 	if (error != 0) {
   1798 		printf("%s: could not map mbuf (error %d)\n",
   1799 		    sc->sc_dev.dv_xname, error);
   1800 		m_freem(m0);
   1801 		return error;
   1802 	}
   1803 
   1804 #if NBPFILTER > 0
   1805 	if (sc->sc_drvbpf != NULL) {
   1806 		struct mbuf mb;
   1807 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   1808 
   1809 		tap->wt_flags = 0;
   1810 		tap->wt_rate = rate;
   1811 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1812 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   1813 		tap->wt_antenna = sc->tx_ant;
   1814 
   1815 		M_COPY_PKTHDR(&mb, m0);
   1816 		mb.m_data = (caddr_t)tap;
   1817 		mb.m_len = sc->sc_txtap_len;
   1818 		mb.m_next = m0;
   1819 		mb.m_pkthdr.len += mb.m_len;
   1820 		bpf_mtap(sc->sc_drvbpf, &mb);
   1821 	}
   1822 #endif
   1823 
   1824 	data->m = m0;
   1825 	data->ni = ni;
   1826 
   1827 	wh = mtod(m0, struct ieee80211_frame *);
   1828 
   1829 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1830 		flags |= RT2560_TX_ACK;
   1831 
   1832 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
   1833 		    RAL_SIFS;
   1834 		*(uint16_t *)wh->i_dur = htole16(dur);
   1835 
   1836 		/* tell hardware to add timestamp for probe responses */
   1837 		if ((wh->i_fc[0] &
   1838 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1839 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1840 			flags |= RT2560_TX_TIMESTAMP;
   1841 	}
   1842 
   1843 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
   1844 	    data->map->dm_segs->ds_addr);
   1845 
   1846 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1847 	    BUS_DMASYNC_PREWRITE);
   1848 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1849 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1850 	    BUS_DMASYNC_PREWRITE);
   1851 
   1852 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
   1853 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
   1854 
   1855 	/* kick prio */
   1856 	sc->prioq.queued++;
   1857 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
   1858 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
   1859 
   1860 	return 0;
   1861 }
   1862 
   1863 /*
   1864  * Build a RTS control frame.
   1865  */
   1866 static struct mbuf *
   1867 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
   1868     uint16_t dur)
   1869 {
   1870 	struct ieee80211_frame_rts *rts;
   1871 	struct mbuf *m;
   1872 
   1873 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1874 	if (m == NULL) {
   1875 		sc->sc_ic.ic_stats.is_tx_nobuf++;
   1876 		printf("%s: could not allocate RTS frame\n",
   1877 		    sc->sc_dev.dv_xname);
   1878 		return NULL;
   1879 	}
   1880 
   1881 	rts = mtod(m, struct ieee80211_frame_rts *);
   1882 
   1883 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1884 	    IEEE80211_FC0_SUBTYPE_RTS;
   1885 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1886 	*(uint16_t *)rts->i_dur = htole16(dur);
   1887 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1888 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1889 
   1890 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
   1891 
   1892 	return m;
   1893 }
   1894 
   1895 static int
   1896 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
   1897     struct ieee80211_node *ni)
   1898 {
   1899 	struct ieee80211com *ic = &sc->sc_ic;
   1900 	struct rt2560_tx_desc *desc;
   1901 	struct rt2560_tx_data *data;
   1902 	struct rt2560_node *rn;
   1903 	struct ieee80211_rateset *rs;
   1904 	struct ieee80211_frame *wh;
   1905 	struct ieee80211_key *k;
   1906 	struct mbuf *mnew;
   1907 	uint16_t dur;
   1908 	uint32_t flags = 0;
   1909 	int rate, error;
   1910 
   1911 	wh = mtod(m0, struct ieee80211_frame *);
   1912 
   1913 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1914 		rs = &ic->ic_sup_rates[ic->ic_curmode];
   1915 		rate = rs->rs_rates[ic->ic_fixed_rate];
   1916 	} else {
   1917 		rs = &ni->ni_rates;
   1918 		rn = (struct rt2560_node *)ni;
   1919 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
   1920 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
   1921 		rate = rs->rs_rates[ni->ni_txrate];
   1922 	}
   1923 	rate &= IEEE80211_RATE_VAL;
   1924 
   1925 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1926 		k = ieee80211_crypto_encap(ic, ni, m0);
   1927 		if (k == NULL) {
   1928 			m_freem(m0);
   1929 			return ENOBUFS;
   1930 		}
   1931 
   1932 		/* packet header may have moved, reset our local pointer */
   1933 		wh = mtod(m0, struct ieee80211_frame *);
   1934 	}
   1935 
   1936 	/*
   1937 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
   1938 	 * for directed frames only when the length of the MPDU is greater
   1939 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
   1940 	 */
   1941 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1942 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
   1943 		struct mbuf *m;
   1944 		int rtsrate, ackrate;
   1945 
   1946 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1947 		ackrate = rt2560_ack_rate(ic, rate);
   1948 
   1949 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
   1950 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
   1951 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
   1952 		      3 * RAL_SIFS;
   1953 
   1954 		m = rt2560_get_rts(sc, wh, dur);
   1955 
   1956 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
   1957 		data = &sc->txq.data[sc->txq.cur_encrypt];
   1958 
   1959 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   1960 		    BUS_DMA_NOWAIT);
   1961 		if (error != 0) {
   1962 			printf("%s: could not map mbuf (error %d)\n",
   1963 			    sc->sc_dev.dv_xname, error);
   1964 			m_freem(m);
   1965 			m_freem(m0);
   1966 			return error;
   1967 		}
   1968 
   1969 		/* avoid multiple free() of the same node for each fragment */
   1970 		ieee80211_ref_node(ni);
   1971 
   1972 		data->m = m;
   1973 		data->ni = ni;
   1974 
   1975 		/* RTS frames are not taken into account for rssadapt */
   1976 		data->id.id_node = NULL;
   1977 
   1978 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
   1979 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
   1980 		    data->map->dm_segs->ds_addr);
   1981 
   1982 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1983 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1984 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1985 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
   1986 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1987 
   1988 		sc->txq.queued++;
   1989 		sc->txq.cur_encrypt =
   1990 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   1991 
   1992 		/*
   1993 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
   1994 		 * asynchronous data frame shall be transmitted after the CTS
   1995 		 * frame and a SIFS period.
   1996 		 */
   1997 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
   1998 	}
   1999 
   2000 	data = &sc->txq.data[sc->txq.cur_encrypt];
   2001 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
   2002 
   2003 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2004 	    BUS_DMA_NOWAIT);
   2005 	if (error != 0 && error != EFBIG) {
   2006 		printf("%s: could not map mbuf (error %d)\n",
   2007 		    sc->sc_dev.dv_xname, error);
   2008 		m_freem(m0);
   2009 		return error;
   2010 	}
   2011 	if (error != 0) {
   2012 		/* too many fragments, linearize */
   2013 
   2014 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   2015 		if (mnew == NULL) {
   2016 			m_freem(m0);
   2017 			return ENOMEM;
   2018 		}
   2019 
   2020 		M_COPY_PKTHDR(mnew, m0);
   2021 		if (m0->m_pkthdr.len > MHLEN) {
   2022 			MCLGET(mnew, M_DONTWAIT);
   2023 			if (!(mnew->m_flags & M_EXT)) {
   2024 				m_freem(m0);
   2025 				m_freem(mnew);
   2026 				return ENOMEM;
   2027 			}
   2028 		}
   2029 
   2030 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
   2031 		m_freem(m0);
   2032 		mnew->m_len = mnew->m_pkthdr.len;
   2033 		m0 = mnew;
   2034 
   2035 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2036 		    BUS_DMA_NOWAIT);
   2037 		if (error != 0) {
   2038 			printf("%s: could not map mbuf (error %d)\n",
   2039 			    sc->sc_dev.dv_xname, error);
   2040 			m_freem(m0);
   2041 			return error;
   2042 		}
   2043 
   2044 		/* packet header have moved, reset our local pointer */
   2045 		wh = mtod(m0, struct ieee80211_frame *);
   2046 	}
   2047 
   2048 #if NBPFILTER > 0
   2049 	if (sc->sc_drvbpf != NULL) {
   2050 		struct mbuf mb;
   2051 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   2052 
   2053 		tap->wt_flags = 0;
   2054 		tap->wt_rate = rate;
   2055 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   2056 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   2057 		tap->wt_antenna = sc->tx_ant;
   2058 
   2059 		M_COPY_PKTHDR(&mb, m0);
   2060 		mb.m_data = (caddr_t)tap;
   2061 		mb.m_len = sc->sc_txtap_len;
   2062 		mb.m_next = m0;
   2063 		mb.m_pkthdr.len += mb.m_len;
   2064 		bpf_mtap(sc->sc_drvbpf, &mb);
   2065 
   2066 	}
   2067 #endif
   2068 
   2069 	data->m = m0;
   2070 	data->ni = ni;
   2071 
   2072 	/* remember link conditions for rate adaptation algorithm */
   2073 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   2074 		data->id.id_len = m0->m_pkthdr.len;
   2075 		data->id.id_rateidx = ni->ni_txrate;
   2076 		data->id.id_node = ni;
   2077 		data->id.id_rssi = ni->ni_rssi;
   2078 	} else
   2079 		data->id.id_node = NULL;
   2080 
   2081 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2082 		flags |= RT2560_TX_ACK;
   2083 
   2084 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
   2085 		    ic->ic_flags) + RAL_SIFS;
   2086 		*(uint16_t *)wh->i_dur = htole16(dur);
   2087 	}
   2088 
   2089 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
   2090 	    data->map->dm_segs->ds_addr);
   2091 
   2092 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2093 	    BUS_DMASYNC_PREWRITE);
   2094 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   2095 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   2096 	    BUS_DMASYNC_PREWRITE);
   2097 
   2098 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
   2099 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
   2100 
   2101 	/* kick encrypt */
   2102 	sc->txq.queued++;
   2103 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   2104 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
   2105 
   2106 	return 0;
   2107 }
   2108 
   2109 static void
   2110 rt2560_start(struct ifnet *ifp)
   2111 {
   2112 	struct rt2560_softc *sc = ifp->if_softc;
   2113 	struct ieee80211com *ic = &sc->sc_ic;
   2114 	struct mbuf *m0;
   2115 	struct ieee80211_node *ni;
   2116 	struct ether_header *eh;
   2117 
   2118 	/*
   2119 	 * net80211 may still try to send management frames even if the
   2120 	 * IFF_RUNNING flag is not set...
   2121 	 */
   2122 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2123 		return;
   2124 
   2125 	for (;;) {
   2126 		IF_POLL(&ic->ic_mgtq, m0);
   2127 		if (m0 != NULL) {
   2128 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
   2129 				ifp->if_flags |= IFF_OACTIVE;
   2130 				break;
   2131 			}
   2132 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   2133 			if (m0 == NULL)
   2134 				break;
   2135 
   2136 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   2137 			m0->m_pkthdr.rcvif = NULL;
   2138 #if NBPFILTER > 0
   2139 			if (ic->ic_rawbpf != NULL)
   2140 				bpf_mtap(ic->ic_rawbpf, m0);
   2141 #endif
   2142 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
   2143 				break;
   2144 
   2145 		} else {
   2146 			if (ic->ic_state != IEEE80211_S_RUN)
   2147 				break;
   2148 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2149 			if (m0 == NULL)
   2150 				break;
   2151 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
   2152 				ifp->if_flags |= IFF_OACTIVE;
   2153 				break;
   2154 			}
   2155 
   2156 			if (m0->m_len < sizeof (struct ether_header) &&
   2157 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
   2158                                 continue;
   2159 
   2160 			eh = mtod(m0, struct ether_header *);
   2161 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2162 			if (ni == NULL) {
   2163 				m_freem(m0);
   2164 				continue;
   2165 			}
   2166 #if NBPFILTER > 0
   2167 			if (ifp->if_bpf != NULL)
   2168 				bpf_mtap(ifp->if_bpf, m0);
   2169 #endif
   2170 
   2171 			m0 = ieee80211_encap(ic, m0, ni);
   2172 			if (m0 == NULL) {
   2173 				ieee80211_free_node(ni);
   2174 				continue;
   2175                         }
   2176 
   2177 #if NBPFILTER > 0
   2178 			if (ic->ic_rawbpf != NULL)
   2179 				bpf_mtap(ic->ic_rawbpf, m0);
   2180 
   2181 #endif
   2182 			if (rt2560_tx_data(sc, m0, ni) != 0) {
   2183 				ieee80211_free_node(ni);
   2184 				ifp->if_oerrors++;
   2185 				break;
   2186 			}
   2187 		}
   2188 
   2189 		sc->sc_tx_timer = 5;
   2190 		ifp->if_timer = 1;
   2191 	}
   2192 }
   2193 
   2194 static void
   2195 rt2560_watchdog(struct ifnet *ifp)
   2196 {
   2197 	struct rt2560_softc *sc = ifp->if_softc;
   2198 
   2199 	ifp->if_timer = 0;
   2200 
   2201 	if (sc->sc_tx_timer > 0) {
   2202 		if (--sc->sc_tx_timer == 0) {
   2203 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   2204 			rt2560_init(ifp);
   2205 			ifp->if_oerrors++;
   2206 			return;
   2207 		}
   2208 		ifp->if_timer = 1;
   2209 	}
   2210 
   2211 	ieee80211_watchdog(&sc->sc_ic);
   2212 }
   2213 
   2214 /*
   2215  * This function allows for fast channel switching in monitor mode (used by
   2216  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
   2217  * generate a new beacon frame.
   2218  */
   2219 static int
   2220 rt2560_reset(struct ifnet *ifp)
   2221 {
   2222 	struct rt2560_softc *sc = ifp->if_softc;
   2223 	struct ieee80211com *ic = &sc->sc_ic;
   2224 
   2225 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   2226 		return ENETRESET;
   2227 
   2228 	rt2560_set_chan(sc, ic->ic_curchan);
   2229 
   2230 	return 0;
   2231 }
   2232 
   2233 int
   2234 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   2235 {
   2236 	struct rt2560_softc *sc = ifp->if_softc;
   2237 	struct ieee80211com *ic = &sc->sc_ic;
   2238 	struct ifreq *ifr;
   2239 	int s, error = 0;
   2240 
   2241 	s = splnet();
   2242 
   2243 	switch (cmd) {
   2244 	case SIOCSIFFLAGS:
   2245 		if (ifp->if_flags & IFF_UP) {
   2246 			if (ifp->if_flags & IFF_RUNNING)
   2247 				rt2560_update_promisc(sc);
   2248 			else
   2249 				rt2560_init(ifp);
   2250 		} else {
   2251 			if (ifp->if_flags & IFF_RUNNING)
   2252 				rt2560_stop(sc);
   2253 		}
   2254 		break;
   2255 
   2256 	case SIOCADDMULTI:
   2257 	case SIOCDELMULTI:
   2258 		ifr = (struct ifreq *)data;
   2259 		error = (cmd == SIOCADDMULTI) ?
   2260 		    ether_addmulti(ifr, &sc->sc_ec) :
   2261 		    ether_delmulti(ifr, &sc->sc_ec);
   2262 
   2263 		if (error == ENETRESET)
   2264 			error = 0;
   2265 		break;
   2266 
   2267 	case SIOCS80211CHANNEL:
   2268 		/*
   2269 		 * This allows for fast channel switching in monitor mode
   2270 		 * (used by kismet). In IBSS mode, we must explicitly reset
   2271 		 * the interface to generate a new beacon frame.
   2272 		 */
   2273 		error = ieee80211_ioctl(ic, cmd, data);
   2274 		if (error == ENETRESET &&
   2275 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
   2276 			rt2560_set_chan(sc, ic->ic_ibss_chan);
   2277 			error = 0;
   2278 		}
   2279 		break;
   2280 
   2281 	default:
   2282 		error = ieee80211_ioctl(ic, cmd, data);
   2283 	}
   2284 
   2285 	if (error == ENETRESET) {
   2286 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   2287 		    (IFF_UP | IFF_RUNNING))
   2288 			rt2560_init(ifp);
   2289 		error = 0;
   2290 	}
   2291 
   2292 	splx(s);
   2293 
   2294 	return error;
   2295 }
   2296 
   2297 static void
   2298 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
   2299 {
   2300 	uint32_t tmp;
   2301 	int ntries;
   2302 
   2303 	for (ntries = 0; ntries < 100; ntries++) {
   2304 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
   2305 			break;
   2306 		DELAY(1);
   2307 	}
   2308 	if (ntries == 100) {
   2309 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
   2310 		return;
   2311 	}
   2312 
   2313 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
   2314 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
   2315 
   2316 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
   2317 }
   2318 
   2319 static uint8_t
   2320 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
   2321 {
   2322 	uint32_t val;
   2323 	int ntries;
   2324 
   2325 	val = RT2560_BBP_BUSY | reg << 8;
   2326 	RAL_WRITE(sc, RT2560_BBPCSR, val);
   2327 
   2328 	for (ntries = 0; ntries < 100; ntries++) {
   2329 		val = RAL_READ(sc, RT2560_BBPCSR);
   2330 		if (!(val & RT2560_BBP_BUSY))
   2331 			return val & 0xff;
   2332 		DELAY(1);
   2333 	}
   2334 
   2335 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
   2336 	return 0;
   2337 }
   2338 
   2339 static void
   2340 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
   2341 {
   2342 	uint32_t tmp;
   2343 	int ntries;
   2344 
   2345 	for (ntries = 0; ntries < 100; ntries++) {
   2346 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
   2347 			break;
   2348 		DELAY(1);
   2349 	}
   2350 	if (ntries == 100) {
   2351 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
   2352 		return;
   2353 	}
   2354 
   2355 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
   2356 	    (reg & 0x3);
   2357 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
   2358 
   2359 	/* remember last written value in sc */
   2360 	sc->rf_regs[reg] = val;
   2361 
   2362 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
   2363 }
   2364 
   2365 static void
   2366 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
   2367 {
   2368 	struct ieee80211com *ic = &sc->sc_ic;
   2369 	uint8_t power, tmp;
   2370 	u_int i, chan;
   2371 
   2372 	chan = ieee80211_chan2ieee(ic, c);
   2373 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   2374 		return;
   2375 
   2376 	if (IEEE80211_IS_CHAN_2GHZ(c))
   2377 		power = min(sc->txpow[chan - 1], 31);
   2378 	else
   2379 		power = 31;
   2380 
   2381 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
   2382 
   2383 	switch (sc->rf_rev) {
   2384 	case RT2560_RF_2522:
   2385 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
   2386 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
   2387 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2388 		break;
   2389 
   2390 	case RT2560_RF_2523:
   2391 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2392 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
   2393 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
   2394 		rt2560_rf_write(sc, RT2560_RF4,
   2395 		    (chan == 14) ? 0x00280 : 0x00286);
   2396 		break;
   2397 
   2398 	case RT2560_RF_2524:
   2399 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
   2400 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
   2401 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2402 		rt2560_rf_write(sc, RT2560_RF4,
   2403 		    (chan == 14) ? 0x00280 : 0x00286);
   2404 		break;
   2405 
   2406 	case RT2560_RF_2525:
   2407 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2408 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
   2409 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2410 		rt2560_rf_write(sc, RT2560_RF4,
   2411 		    (chan == 14) ? 0x00280 : 0x00286);
   2412 
   2413 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2414 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
   2415 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2416 		rt2560_rf_write(sc, RT2560_RF4,
   2417 		    (chan == 14) ? 0x00280 : 0x00286);
   2418 		break;
   2419 
   2420 	case RT2560_RF_2525E:
   2421 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2422 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
   2423 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2424 		rt2560_rf_write(sc, RT2560_RF4,
   2425 		    (chan == 14) ? 0x00286 : 0x00282);
   2426 		break;
   2427 
   2428 	case RT2560_RF_2526:
   2429 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
   2430 		rt2560_rf_write(sc, RT2560_RF4,
   2431 		   (chan & 1) ? 0x00386 : 0x00381);
   2432 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2433 
   2434 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
   2435 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2436 		rt2560_rf_write(sc, RT2560_RF4,
   2437 		    (chan & 1) ? 0x00386 : 0x00381);
   2438 		break;
   2439 
   2440 	/* dual-band RF */
   2441 	case RT2560_RF_5222:
   2442 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
   2443 
   2444 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
   2445 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
   2446 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2447 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
   2448 		break;
   2449 	}
   2450 
   2451 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
   2452 	    ic->ic_state != IEEE80211_S_SCAN) {
   2453 		/* set Japan filter bit for channel 14 */
   2454 		tmp = rt2560_bbp_read(sc, 70);
   2455 
   2456 		tmp &= ~RT2560_JAPAN_FILTER;
   2457 		if (chan == 14)
   2458 			tmp |= RT2560_JAPAN_FILTER;
   2459 
   2460 		rt2560_bbp_write(sc, 70, tmp);
   2461 
   2462 		DELAY(1000); /* RF needs a 1ms delay here */
   2463 		rt2560_disable_rf_tune(sc);
   2464 
   2465 		/* clear CRC errors */
   2466 		RAL_READ(sc, RT2560_CNT0);
   2467 	}
   2468 }
   2469 
   2470 /*
   2471  * Disable RF auto-tuning.
   2472  */
   2473 static void
   2474 rt2560_disable_rf_tune(struct rt2560_softc *sc)
   2475 {
   2476 	uint32_t tmp;
   2477 
   2478 	if (sc->rf_rev != RT2560_RF_2523) {
   2479 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
   2480 		rt2560_rf_write(sc, RT2560_RF1, tmp);
   2481 	}
   2482 
   2483 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
   2484 	rt2560_rf_write(sc, RT2560_RF3, tmp);
   2485 
   2486 	DPRINTFN(2, ("disabling RF autotune\n"));
   2487 }
   2488 
   2489 /*
   2490  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
   2491  * synchronization.
   2492  */
   2493 static void
   2494 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
   2495 {
   2496 	struct ieee80211com *ic = &sc->sc_ic;
   2497 	uint16_t logcwmin, preload;
   2498 	uint32_t tmp;
   2499 
   2500 	/* first, disable TSF synchronization */
   2501 	RAL_WRITE(sc, RT2560_CSR14, 0);
   2502 
   2503 	tmp = 16 * ic->ic_bss->ni_intval;
   2504 	RAL_WRITE(sc, RT2560_CSR12, tmp);
   2505 
   2506 	RAL_WRITE(sc, RT2560_CSR13, 0);
   2507 
   2508 	logcwmin = 5;
   2509 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
   2510 	tmp = logcwmin << 16 | preload;
   2511 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
   2512 
   2513 	/* finally, enable TSF synchronization */
   2514 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
   2515 	if (ic->ic_opmode == IEEE80211_M_STA)
   2516 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
   2517 	else
   2518 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
   2519 		       RT2560_ENABLE_BEACON_GENERATOR;
   2520 	RAL_WRITE(sc, RT2560_CSR14, tmp);
   2521 
   2522 	DPRINTF(("enabling TSF synchronization\n"));
   2523 }
   2524 
   2525 static void
   2526 rt2560_update_plcp(struct rt2560_softc *sc)
   2527 {
   2528 	struct ieee80211com *ic = &sc->sc_ic;
   2529 
   2530 	/* no short preamble for 1Mbps */
   2531 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
   2532 
   2533 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
   2534 		/* values taken from the reference driver */
   2535 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
   2536 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
   2537 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
   2538 	} else {
   2539 		/* same values as above or'ed 0x8 */
   2540 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
   2541 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
   2542 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
   2543 	}
   2544 
   2545 	DPRINTF(("updating PLCP for %s preamble\n",
   2546 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
   2547 }
   2548 
   2549 /*
   2550  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
   2551  * know how these values are computed.
   2552  */
   2553 static void
   2554 rt2560_update_slot(struct ifnet *ifp)
   2555 {
   2556 	struct rt2560_softc *sc = ifp->if_softc;
   2557 	struct ieee80211com *ic = &sc->sc_ic;
   2558 	uint8_t slottime;
   2559 	uint16_t sifs, pifs, difs, eifs;
   2560 	uint32_t tmp;
   2561 
   2562 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   2563 
   2564 	/* define the MAC slot boundaries */
   2565 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
   2566 	pifs = sifs + slottime;
   2567 	difs = sifs + 2 * slottime;
   2568 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
   2569 
   2570 	tmp = RAL_READ(sc, RT2560_CSR11);
   2571 	tmp = (tmp & ~0x1f00) | slottime << 8;
   2572 	RAL_WRITE(sc, RT2560_CSR11, tmp);
   2573 
   2574 	tmp = pifs << 16 | sifs;
   2575 	RAL_WRITE(sc, RT2560_CSR18, tmp);
   2576 
   2577 	tmp = eifs << 16 | difs;
   2578 	RAL_WRITE(sc, RT2560_CSR19, tmp);
   2579 
   2580 	DPRINTF(("setting slottime to %uus\n", slottime));
   2581 }
   2582 
   2583 static void
   2584 rt2560_set_basicrates(struct rt2560_softc *sc)
   2585 {
   2586 	struct ieee80211com *ic = &sc->sc_ic;
   2587 
   2588 	/* update basic rate set */
   2589 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   2590 		/* 11b basic rates: 1, 2Mbps */
   2591 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
   2592 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
   2593 		/* 11a basic rates: 6, 12, 24Mbps */
   2594 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
   2595 	} else {
   2596 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
   2597 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
   2598 	}
   2599 }
   2600 
   2601 static void
   2602 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
   2603 {
   2604 	uint32_t tmp;
   2605 
   2606 	/* set ON period to 70ms and OFF period to 30ms */
   2607 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
   2608 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
   2609 }
   2610 
   2611 static void
   2612 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
   2613 {
   2614 	uint32_t tmp;
   2615 
   2616 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   2617 	RAL_WRITE(sc, RT2560_CSR5, tmp);
   2618 
   2619 	tmp = bssid[4] | bssid[5] << 8;
   2620 	RAL_WRITE(sc, RT2560_CSR6, tmp);
   2621 
   2622 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
   2623 }
   2624 
   2625 static void
   2626 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2627 {
   2628 	uint32_t tmp;
   2629 
   2630 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   2631 	RAL_WRITE(sc, RT2560_CSR3, tmp);
   2632 
   2633 	tmp = addr[4] | addr[5] << 8;
   2634 	RAL_WRITE(sc, RT2560_CSR4, tmp);
   2635 
   2636 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
   2637 }
   2638 
   2639 static void
   2640 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2641 {
   2642 	uint32_t tmp;
   2643 
   2644 	tmp = RAL_READ(sc, RT2560_CSR3);
   2645 	addr[0] = tmp & 0xff;
   2646 	addr[1] = (tmp >>  8) & 0xff;
   2647 	addr[2] = (tmp >> 16) & 0xff;
   2648 	addr[3] = (tmp >> 24);
   2649 
   2650 	tmp = RAL_READ(sc, RT2560_CSR4);
   2651 	addr[4] = tmp & 0xff;
   2652 	addr[5] = (tmp >> 8) & 0xff;
   2653 }
   2654 
   2655 static void
   2656 rt2560_update_promisc(struct rt2560_softc *sc)
   2657 {
   2658 	struct ifnet *ifp = &sc->sc_if;
   2659 	uint32_t tmp;
   2660 
   2661 	tmp = RAL_READ(sc, RT2560_RXCSR0);
   2662 
   2663 	tmp &= ~RT2560_DROP_NOT_TO_ME;
   2664 	if (!(ifp->if_flags & IFF_PROMISC))
   2665 		tmp |= RT2560_DROP_NOT_TO_ME;
   2666 
   2667 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2668 
   2669 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   2670 	    "entering" : "leaving"));
   2671 }
   2672 
   2673 static void
   2674 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
   2675 {
   2676 	uint32_t tmp;
   2677 	uint8_t tx;
   2678 
   2679 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
   2680 	if (antenna == 1)
   2681 		tx |= RT2560_BBP_ANTA;
   2682 	else if (antenna == 2)
   2683 		tx |= RT2560_BBP_ANTB;
   2684 	else
   2685 		tx |= RT2560_BBP_DIVERSITY;
   2686 
   2687 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
   2688 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
   2689 	    sc->rf_rev == RT2560_RF_5222)
   2690 		tx |= RT2560_BBP_FLIPIQ;
   2691 
   2692 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
   2693 
   2694 	/* update values for CCK and OFDM in BBPCSR1 */
   2695 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
   2696 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
   2697 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
   2698 }
   2699 
   2700 static void
   2701 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
   2702 {
   2703 	uint8_t rx;
   2704 
   2705 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
   2706 	if (antenna == 1)
   2707 		rx |= RT2560_BBP_ANTA;
   2708 	else if (antenna == 2)
   2709 		rx |= RT2560_BBP_ANTB;
   2710 	else
   2711 		rx |= RT2560_BBP_DIVERSITY;
   2712 
   2713 	/* need to force no I/Q flip for RF 2525e and 2526 */
   2714 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
   2715 		rx &= ~RT2560_BBP_FLIPIQ;
   2716 
   2717 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
   2718 }
   2719 
   2720 static const char *
   2721 rt2560_get_rf(int rev)
   2722 {
   2723 	switch (rev) {
   2724 	case RT2560_RF_2522:	return "RT2522";
   2725 	case RT2560_RF_2523:	return "RT2523";
   2726 	case RT2560_RF_2524:	return "RT2524";
   2727 	case RT2560_RF_2525:	return "RT2525";
   2728 	case RT2560_RF_2525E:	return "RT2525e";
   2729 	case RT2560_RF_2526:	return "RT2526";
   2730 	case RT2560_RF_5222:	return "RT5222";
   2731 	default:		return "unknown";
   2732 	}
   2733 }
   2734 
   2735 static void
   2736 rt2560_read_eeprom(struct rt2560_softc *sc)
   2737 {
   2738 	uint16_t val;
   2739 	int i;
   2740 
   2741 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
   2742 	sc->rf_rev =   (val >> 11) & 0x1f;
   2743 	sc->hw_radio = (val >> 10) & 0x1;
   2744 	sc->led_mode = (val >> 6)  & 0x7;
   2745 	sc->rx_ant =   (val >> 4)  & 0x3;
   2746 	sc->tx_ant =   (val >> 2)  & 0x3;
   2747 	sc->nb_ant =   val & 0x3;
   2748 
   2749 	/* read default values for BBP registers */
   2750 	for (i = 0; i < 16; i++) {
   2751 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
   2752 		sc->bbp_prom[i].reg = val >> 8;
   2753 		sc->bbp_prom[i].val = val & 0xff;
   2754 	}
   2755 
   2756 	/* read Tx power for all b/g channels */
   2757 	for (i = 0; i < 14 / 2; i++) {
   2758 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
   2759 		sc->txpow[i * 2] = val >> 8;
   2760 		sc->txpow[i * 2 + 1] = val & 0xff;
   2761 	}
   2762 }
   2763 
   2764 static int
   2765 rt2560_bbp_init(struct rt2560_softc *sc)
   2766 {
   2767 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2768 	int i, ntries;
   2769 
   2770 	/* wait for BBP to be ready */
   2771 	for (ntries = 0; ntries < 100; ntries++) {
   2772 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
   2773 			break;
   2774 		DELAY(1);
   2775 	}
   2776 	if (ntries == 100) {
   2777 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
   2778 		return EIO;
   2779 	}
   2780 
   2781 	/* initialize BBP registers to default values */
   2782 	for (i = 0; i < N(rt2560_def_bbp); i++) {
   2783 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
   2784 		    rt2560_def_bbp[i].val);
   2785 	}
   2786 #if 0
   2787 	/* initialize BBP registers to values stored in EEPROM */
   2788 	for (i = 0; i < 16; i++) {
   2789 		if (sc->bbp_prom[i].reg == 0xff)
   2790 			continue;
   2791 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   2792 	}
   2793 #endif
   2794 
   2795 	return 0;
   2796 #undef N
   2797 }
   2798 
   2799 static int
   2800 rt2560_init(struct ifnet *ifp)
   2801 {
   2802 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2803 	struct rt2560_softc *sc = ifp->if_softc;
   2804 	struct ieee80211com *ic = &sc->sc_ic;
   2805 	uint32_t tmp;
   2806 	int i;
   2807 
   2808 	/* for CardBus, power on the socket */
   2809 	if (!(sc->sc_flags & RT2560_ENABLED)) {
   2810 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
   2811 			printf("%s: could not enable device\n",
   2812 			    sc->sc_dev.dv_xname);
   2813 			return EIO;
   2814 		}
   2815 		sc->sc_flags |= RT2560_ENABLED;
   2816 	}
   2817 
   2818 	rt2560_stop(sc);
   2819 
   2820 	/* setup tx rings */
   2821 	tmp = RT2560_PRIO_RING_COUNT << 24 |
   2822 	      RT2560_ATIM_RING_COUNT << 16 |
   2823 	      RT2560_TX_RING_COUNT   <<  8 |
   2824 	      RT2560_TX_DESC_SIZE;
   2825 
   2826 	/* rings _must_ be initialized in this _exact_ order! */
   2827 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
   2828 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
   2829 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
   2830 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
   2831 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
   2832 
   2833 	/* setup rx ring */
   2834 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
   2835 
   2836 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
   2837 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
   2838 
   2839 	/* initialize MAC registers to default values */
   2840 	for (i = 0; i < N(rt2560_def_mac); i++)
   2841 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
   2842 
   2843 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
   2844 	rt2560_set_macaddr(sc, ic->ic_myaddr);
   2845 
   2846 	/* set basic rate set (will be updated later) */
   2847 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
   2848 
   2849 	rt2560_set_txantenna(sc, 1);
   2850 	rt2560_set_rxantenna(sc, 1);
   2851 	rt2560_update_slot(ifp);
   2852 	rt2560_update_plcp(sc);
   2853 	rt2560_update_led(sc, 0, 0);
   2854 
   2855 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2856 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
   2857 
   2858 	if (rt2560_bbp_init(sc) != 0) {
   2859 		rt2560_stop(sc);
   2860 		return EIO;
   2861 	}
   2862 
   2863 	/* set default BSS channel */
   2864 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
   2865 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
   2866 
   2867 	/* kick Rx */
   2868 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
   2869 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2870 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
   2871 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2872 			tmp |= RT2560_DROP_TODS;
   2873 		if (!(ifp->if_flags & IFF_PROMISC))
   2874 			tmp |= RT2560_DROP_NOT_TO_ME;
   2875 	}
   2876 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2877 
   2878 	/* clear old FCS and Rx FIFO errors */
   2879 	RAL_READ(sc, RT2560_CNT0);
   2880 	RAL_READ(sc, RT2560_CNT4);
   2881 
   2882 	/* clear any pending interrupts */
   2883 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2884 
   2885 	/* enable interrupts */
   2886 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   2887 
   2888 	ifp->if_flags &= ~IFF_OACTIVE;
   2889 	ifp->if_flags |= IFF_RUNNING;
   2890 
   2891 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2892 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2893 	else
   2894 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2895 
   2896 	return 0;
   2897 #undef N
   2898 }
   2899 
   2900 static void
   2901 rt2560_stop(void *priv)
   2902 {
   2903 	struct rt2560_softc *sc = priv;
   2904 	struct ieee80211com *ic = &sc->sc_ic;
   2905 	struct ifnet *ifp = ic->ic_ifp;
   2906 
   2907 	sc->sc_tx_timer = 0;
   2908 	ifp->if_timer = 0;
   2909 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2910 
   2911 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2912 
   2913 	/* abort Tx */
   2914 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
   2915 
   2916 	/* disable Rx */
   2917 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
   2918 
   2919 	/* reset ASIC (and thus, BBP) */
   2920 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2921 	RAL_WRITE(sc, RT2560_CSR1, 0);
   2922 
   2923 	/* disable interrupts */
   2924 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   2925 
   2926 	/* clear any pending interrupt */
   2927 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2928 
   2929 	/* reset Tx and Rx rings */
   2930 	rt2560_reset_tx_ring(sc, &sc->txq);
   2931 	rt2560_reset_tx_ring(sc, &sc->atimq);
   2932 	rt2560_reset_tx_ring(sc, &sc->prioq);
   2933 	rt2560_reset_tx_ring(sc, &sc->bcnq);
   2934 	rt2560_reset_rx_ring(sc, &sc->rxq);
   2935 
   2936 }
   2937