rt2560.c revision 1.1.4.1 1 /* $NetBSD: rt2560.c,v 1.1.4.1 2006/07/13 17:49:23 gdamore Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4
5 /*-
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
25 */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.1.4.1 2006/07/13 17:49:23 gdamore Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/callout.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_ether.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_rssadapt.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/ic/rt2560reg.h>
66 #include <dev/ic/rt2560var.h>
67
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pcidevs.h>
71
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
75 int rt2560_debug = 0;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80
81 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
82 struct rt2560_tx_ring *, int);
83 static void rt2560_reset_tx_ring(struct rt2560_softc *,
84 struct rt2560_tx_ring *);
85 static void rt2560_free_tx_ring(struct rt2560_softc *,
86 struct rt2560_tx_ring *);
87 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
88 struct rt2560_rx_ring *, int);
89 static void rt2560_reset_rx_ring(struct rt2560_softc *,
90 struct rt2560_rx_ring *);
91 static void rt2560_free_rx_ring(struct rt2560_softc *,
92 struct rt2560_rx_ring *);
93 static struct ieee80211_node *
94 rt2560_node_alloc(struct ieee80211_node_table *);
95 static int rt2560_media_change(struct ifnet *);
96 static void rt2560_next_scan(void *);
97 static void rt2560_iter_func(void *, struct ieee80211_node *);
98 static void rt2560_update_rssadapt(void *);
99 static int rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
100 int);
101 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
102 static void rt2560_encryption_intr(struct rt2560_softc *);
103 static void rt2560_tx_intr(struct rt2560_softc *);
104 static void rt2560_prio_intr(struct rt2560_softc *);
105 static void rt2560_decryption_intr(struct rt2560_softc *);
106 static void rt2560_rx_intr(struct rt2560_softc *);
107 static void rt2560_beacon_expire(struct rt2560_softc *);
108 static void rt2560_wakeup_expire(struct rt2560_softc *);
109 #if NBPFILTER > 0
110 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
111 #endif
112 static int rt2560_ack_rate(struct ieee80211com *, int);
113 static uint16_t rt2560_txtime(int, int, uint32_t);
114 static uint8_t rt2560_plcp_signal(int);
115 static void rt2560_setup_tx_desc(struct rt2560_softc *,
116 struct rt2560_tx_desc *, uint32_t, int, int, int,
117 bus_addr_t);
118 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
119 struct ieee80211_node *);
120 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
121 struct ieee80211_node *);
122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
123 struct ieee80211_frame *, uint16_t);
124 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
125 struct ieee80211_node *);
126 static void rt2560_start(struct ifnet *);
127 static void rt2560_watchdog(struct ifnet *);
128 static int rt2560_reset(struct ifnet *);
129 static int rt2560_ioctl(struct ifnet *, u_long, caddr_t);
130 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
131 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
132 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
133 static void rt2560_set_chan(struct rt2560_softc *,
134 struct ieee80211_channel *);
135 static void rt2560_disable_rf_tune(struct rt2560_softc *);
136 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
137 static void rt2560_update_plcp(struct rt2560_softc *);
138 static void rt2560_update_slot(struct ifnet *);
139 static void rt2560_set_basicrates(struct rt2560_softc *);
140 static void rt2560_update_led(struct rt2560_softc *, int, int);
141 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
142 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
143 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
144 static void rt2560_update_promisc(struct rt2560_softc *);
145 static void rt2560_set_txantenna(struct rt2560_softc *, int);
146 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
147 static const char *rt2560_get_rf(int);
148 static void rt2560_read_eeprom(struct rt2560_softc *);
149 static int rt2560_bbp_init(struct rt2560_softc *);
150 static int rt2560_init(struct ifnet *);
151 static void rt2560_stop(void *);
152
153 /*
154 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
155 */
156 static const struct ieee80211_rateset rt2560_rateset_11a =
157 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
158
159 static const struct ieee80211_rateset rt2560_rateset_11b =
160 { 4, { 2, 4, 11, 22 } };
161
162 static const struct ieee80211_rateset rt2560_rateset_11g =
163 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
164
165 /*
166 * Default values for MAC registers; values taken from the reference driver.
167 */
168 static const struct {
169 uint32_t reg;
170 uint32_t val;
171 } rt2560_def_mac[] = {
172 { RT2560_PSCSR0, 0x00020002 },
173 { RT2560_PSCSR1, 0x00000002 },
174 { RT2560_PSCSR2, 0x00020002 },
175 { RT2560_PSCSR3, 0x00000002 },
176 { RT2560_TIMECSR, 0x00003f21 },
177 { RT2560_CSR9, 0x00000780 },
178 { RT2560_CSR11, 0x07041483 },
179 { RT2560_CNT3, 0x00000000 },
180 { RT2560_TXCSR1, 0x07614562 },
181 { RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
182 { RT2560_ACKPCTCSR, 0x7038140a },
183 { RT2560_ARTCSR1, 0x1d21252d },
184 { RT2560_ARTCSR2, 0x1919191d },
185 { RT2560_RXCSR0, 0xffffffff },
186 { RT2560_RXCSR3, 0xb3aab3af },
187 { RT2560_PCICSR, 0x000003b8 },
188 { RT2560_PWRCSR0, 0x3f3b3100 },
189 { RT2560_GPIOCSR, 0x0000ff00 },
190 { RT2560_TESTCSR, 0x000000f0 },
191 { RT2560_PWRCSR1, 0x000001ff },
192 { RT2560_MACCSR0, 0x00213223 },
193 { RT2560_MACCSR1, 0x00235518 },
194 { RT2560_RLPWCSR, 0x00000040 },
195 { RT2560_RALINKCSR, 0x9a009a11 },
196 { RT2560_CSR7, 0xffffffff },
197 { RT2560_BBPCSR1, 0x82188200 },
198 { RT2560_TXACKCSR0, 0x00000020 },
199 { RT2560_SECCSR3, 0x0000e78f }
200 };
201
202 /*
203 * Default values for BBP registers; values taken from the reference driver.
204 */
205 static const struct {
206 uint8_t reg;
207 uint8_t val;
208 } rt2560_def_bbp[] = {
209 { 3, 0x02 },
210 { 4, 0x19 },
211 { 14, 0x1c },
212 { 15, 0x30 },
213 { 16, 0xac },
214 { 17, 0x48 },
215 { 18, 0x18 },
216 { 19, 0xff },
217 { 20, 0x1e },
218 { 21, 0x08 },
219 { 22, 0x08 },
220 { 23, 0x08 },
221 { 24, 0x80 },
222 { 25, 0x50 },
223 { 26, 0x08 },
224 { 27, 0x23 },
225 { 30, 0x10 },
226 { 31, 0x2b },
227 { 32, 0xb9 },
228 { 34, 0x12 },
229 { 35, 0x50 },
230 { 39, 0xc4 },
231 { 40, 0x02 },
232 { 41, 0x60 },
233 { 53, 0x10 },
234 { 54, 0x18 },
235 { 56, 0x08 },
236 { 57, 0x10 },
237 { 58, 0x08 },
238 { 61, 0x60 },
239 { 62, 0x10 },
240 { 75, 0xff }
241 };
242
243 /*
244 * Default values for RF register R2 indexed by channel numbers; values taken
245 * from the reference driver.
246 */
247 static const uint32_t rt2560_rf2522_r2[] = {
248 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
249 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
250 };
251
252 static const uint32_t rt2560_rf2523_r2[] = {
253 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
254 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
255 };
256
257 static const uint32_t rt2560_rf2524_r2[] = {
258 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
260 };
261
262 static const uint32_t rt2560_rf2525_r2[] = {
263 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
264 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
265 };
266
267 static const uint32_t rt2560_rf2525_hi_r2[] = {
268 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
269 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
270 };
271
272 static const uint32_t rt2560_rf2525e_r2[] = {
273 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
274 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
275 };
276
277 static const uint32_t rt2560_rf2526_hi_r2[] = {
278 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
279 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
280 };
281
282 static const uint32_t rt2560_rf2526_r2[] = {
283 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
284 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
285 };
286
287 /*
288 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
289 * values taken from the reference driver.
290 */
291 static const struct {
292 uint8_t chan;
293 uint32_t r1;
294 uint32_t r2;
295 uint32_t r4;
296 } rt2560_rf5222[] = {
297 { 1, 0x08808, 0x0044d, 0x00282 },
298 { 2, 0x08808, 0x0044e, 0x00282 },
299 { 3, 0x08808, 0x0044f, 0x00282 },
300 { 4, 0x08808, 0x00460, 0x00282 },
301 { 5, 0x08808, 0x00461, 0x00282 },
302 { 6, 0x08808, 0x00462, 0x00282 },
303 { 7, 0x08808, 0x00463, 0x00282 },
304 { 8, 0x08808, 0x00464, 0x00282 },
305 { 9, 0x08808, 0x00465, 0x00282 },
306 { 10, 0x08808, 0x00466, 0x00282 },
307 { 11, 0x08808, 0x00467, 0x00282 },
308 { 12, 0x08808, 0x00468, 0x00282 },
309 { 13, 0x08808, 0x00469, 0x00282 },
310 { 14, 0x08808, 0x0046b, 0x00286 },
311
312 { 36, 0x08804, 0x06225, 0x00287 },
313 { 40, 0x08804, 0x06226, 0x00287 },
314 { 44, 0x08804, 0x06227, 0x00287 },
315 { 48, 0x08804, 0x06228, 0x00287 },
316 { 52, 0x08804, 0x06229, 0x00287 },
317 { 56, 0x08804, 0x0622a, 0x00287 },
318 { 60, 0x08804, 0x0622b, 0x00287 },
319 { 64, 0x08804, 0x0622c, 0x00287 },
320
321 { 100, 0x08804, 0x02200, 0x00283 },
322 { 104, 0x08804, 0x02201, 0x00283 },
323 { 108, 0x08804, 0x02202, 0x00283 },
324 { 112, 0x08804, 0x02203, 0x00283 },
325 { 116, 0x08804, 0x02204, 0x00283 },
326 { 120, 0x08804, 0x02205, 0x00283 },
327 { 124, 0x08804, 0x02206, 0x00283 },
328 { 128, 0x08804, 0x02207, 0x00283 },
329 { 132, 0x08804, 0x02208, 0x00283 },
330 { 136, 0x08804, 0x02209, 0x00283 },
331 { 140, 0x08804, 0x0220a, 0x00283 },
332
333 { 149, 0x08808, 0x02429, 0x00281 },
334 { 153, 0x08808, 0x0242b, 0x00281 },
335 { 157, 0x08808, 0x0242d, 0x00281 },
336 { 161, 0x08808, 0x0242f, 0x00281 }
337 };
338
339 int
340 rt2560_attach(void *xsc, int id)
341 {
342 struct rt2560_softc *sc = xsc;
343 struct ieee80211com *ic = &sc->sc_ic;
344 struct ifnet *ifp = &sc->sc_if;
345 int error, i;
346
347 callout_init(&sc->scan_ch);
348 callout_init(&sc->rssadapt_ch);
349
350 /* retrieve RT2560 rev. no */
351 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
352
353 /* retrieve MAC address */
354 rt2560_get_macaddr(sc, ic->ic_myaddr);
355
356 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
357 ether_sprintf(ic->ic_myaddr));
358
359 /* retrieve RF rev. no and various other things from EEPROM */
360 rt2560_read_eeprom(sc);
361
362 aprint_normal("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
363 sc->sc_dev.dv_xname, sc->asic_rev, rt2560_get_rf(sc->rf_rev));
364
365 /*
366 * Allocate Tx and Rx rings.
367 */
368 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
369 if (error != 0) {
370 aprint_error("%s: could not allocate Tx ring\n)",
371 sc->sc_dev.dv_xname);
372 goto fail1;
373 }
374
375 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
376 if (error != 0) {
377 aprint_error("%s: could not allocate ATIM ring\n",
378 sc->sc_dev.dv_xname);
379 goto fail2;
380 }
381
382 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
383 if (error != 0) {
384 aprint_error("%s: could not allocate Prio ring\n",
385 sc->sc_dev.dv_xname);
386 goto fail3;
387 }
388
389 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
390 if (error != 0) {
391 aprint_error("%s: could not allocate Beacon ring\n",
392 sc->sc_dev.dv_xname);
393 goto fail4;
394 }
395
396 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
397 if (error != 0) {
398 aprint_error("%s: could not allocate Rx ring\n",
399 sc->sc_dev.dv_xname);
400 goto fail5;
401 }
402
403 ifp->if_softc = sc;
404 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
405 ifp->if_init = rt2560_init;
406 ifp->if_ioctl = rt2560_ioctl;
407 ifp->if_start = rt2560_start;
408 ifp->if_watchdog = rt2560_watchdog;
409 IFQ_SET_READY(&ifp->if_snd);
410 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
411
412 ic->ic_ifp = ifp;
413 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
414 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
415 ic->ic_state = IEEE80211_S_INIT;
416
417 /* set device capabilities */
418 ic->ic_caps =
419 IEEE80211_C_IBSS | /* IBSS mode supported */
420 IEEE80211_C_MONITOR | /* monitor mode supported */
421 IEEE80211_C_HOSTAP | /* HostAp mode supported */
422 IEEE80211_C_TXPMGT | /* tx power management */
423 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
424 IEEE80211_C_SHSLOT | /* short slot time supported */
425 IEEE80211_C_WPA; /* 802.11i */
426
427 if (sc->rf_rev == RT2560_RF_5222) {
428 /* set supported .11a rates */
429 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
430
431 /* set supported .11a channels */
432 for (i = 36; i <= 64; i += 4) {
433 ic->ic_channels[i].ic_freq =
434 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
435 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
436 }
437 for (i = 100; i <= 140; i += 4) {
438 ic->ic_channels[i].ic_freq =
439 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
440 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
441 }
442 for (i = 149; i <= 161; i += 4) {
443 ic->ic_channels[i].ic_freq =
444 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
445 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
446 }
447 }
448
449 /* set supported .11b and .11g rates */
450 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
451 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
452
453 /* set supported .11b and .11g channels (1 through 14) */
454 for (i = 1; i <= 14; i++) {
455 ic->ic_channels[i].ic_freq =
456 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
457 ic->ic_channels[i].ic_flags =
458 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
459 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
460 }
461
462 if_attach(ifp);
463 ieee80211_ifattach(ic);
464 ic->ic_node_alloc = rt2560_node_alloc;
465 ic->ic_updateslot = rt2560_update_slot;
466 ic->ic_reset = rt2560_reset;
467
468 /* override state transition machine */
469 sc->sc_newstate = ic->ic_newstate;
470 ic->ic_newstate = rt2560_newstate;
471 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
472
473 #if NBPFILTER > 0
474 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
475 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
476 #endif
477
478 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
479 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
480 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
481
482 sc->sc_txtap_len = sizeof sc->sc_txtapu;
483 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
484 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
485
486
487 sc->dwelltime = 200;
488
489 ieee80211_announce(ic);
490
491 return 0;
492
493 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
494 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
495 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
496 fail2: rt2560_free_tx_ring(sc, &sc->txq);
497 fail1:
498 return ENXIO;
499 }
500
501
502 int
503 rt2560_detach(void *xsc)
504 {
505 struct rt2560_softc *sc = xsc;
506 struct ifnet *ifp = &sc->sc_if;
507
508 callout_stop(&sc->scan_ch);
509 callout_stop(&sc->rssadapt_ch);
510
511 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
512 if_detach(ifp);
513
514 rt2560_free_tx_ring(sc, &sc->txq);
515 rt2560_free_tx_ring(sc, &sc->atimq);
516 rt2560_free_tx_ring(sc, &sc->prioq);
517 rt2560_free_tx_ring(sc, &sc->bcnq);
518 rt2560_free_rx_ring(sc, &sc->rxq);
519
520 return 0;
521 }
522
523 int
524 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
525 int count)
526 {
527 int i, nsegs, error;
528
529 ring->count = count;
530 ring->queued = 0;
531 ring->cur = ring->next = 0;
532 ring->cur_encrypt = ring->next_encrypt = 0;
533
534 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
535 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
536 if (error != 0) {
537 printf("%s: could not create desc DMA map\n",
538 sc->sc_dev.dv_xname);
539 goto fail;
540 }
541
542 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
543 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
544 if (error != 0) {
545 printf("%s: could not allocate DMA memory\n",
546 sc->sc_dev.dv_xname);
547 goto fail;
548 }
549
550 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
551 count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
552 BUS_DMA_NOWAIT);
553 if (error != 0) {
554 printf("%s: could not map desc DMA memory\n",
555 sc->sc_dev.dv_xname);
556 goto fail;
557 }
558
559 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
560 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
561 if (error != 0) {
562 printf("%s: could not load desc DMA map\n",
563 sc->sc_dev.dv_xname);
564 goto fail;
565 }
566
567 memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
568 ring->physaddr = ring->map->dm_segs->ds_addr;
569
570 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
571 M_NOWAIT);
572 if (ring->data == NULL) {
573 printf("%s: could not allocate soft data\n",
574 sc->sc_dev.dv_xname);
575 error = ENOMEM;
576 goto fail;
577 }
578
579 memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
580 for (i = 0; i < count; i++) {
581 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
582 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
583 &ring->data[i].map);
584 if (error != 0) {
585 printf("%s: could not create DMA map\n",
586 sc->sc_dev.dv_xname);
587 goto fail;
588 }
589 }
590
591 return 0;
592
593 fail: rt2560_free_tx_ring(sc, ring);
594 return error;
595 }
596
597 void
598 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
599 {
600 struct rt2560_tx_desc *desc;
601 struct rt2560_tx_data *data;
602 int i;
603
604 for (i = 0; i < ring->count; i++) {
605 desc = &ring->desc[i];
606 data = &ring->data[i];
607
608 if (data->m != NULL) {
609 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
610 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
611 bus_dmamap_unload(sc->sc_dmat, data->map);
612 m_freem(data->m);
613 data->m = NULL;
614 }
615
616 if (data->ni != NULL) {
617 ieee80211_free_node(data->ni);
618 data->ni = NULL;
619 }
620
621 desc->flags = 0;
622 }
623
624 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
625 BUS_DMASYNC_PREWRITE);
626
627 ring->queued = 0;
628 ring->cur = ring->next = 0;
629 ring->cur_encrypt = ring->next_encrypt = 0;
630 }
631
632 void
633 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
634 {
635 struct rt2560_tx_data *data;
636 int i;
637
638 if (ring->desc != NULL) {
639 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
640 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
641 bus_dmamap_unload(sc->sc_dmat, ring->map);
642 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
643 ring->count * RT2560_TX_DESC_SIZE);
644 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
645 }
646
647 if (ring->data != NULL) {
648 for (i = 0; i < ring->count; i++) {
649 data = &ring->data[i];
650
651 if (data->m != NULL) {
652 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
653 data->map->dm_mapsize,
654 BUS_DMASYNC_POSTWRITE);
655 bus_dmamap_unload(sc->sc_dmat, data->map);
656 m_freem(data->m);
657 }
658
659 if (data->ni != NULL)
660 ieee80211_free_node(data->ni);
661
662
663 if (data->map != NULL)
664 bus_dmamap_destroy(sc->sc_dmat, data->map);
665 }
666 free(ring->data, M_DEVBUF);
667 }
668 }
669
670 int
671 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
672 int count)
673 {
674 struct rt2560_rx_desc *desc;
675 struct rt2560_rx_data *data;
676 int i, nsegs, error;
677
678 ring->count = count;
679 ring->cur = ring->next = 0;
680 ring->cur_decrypt = 0;
681
682 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
683 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
684 if (error != 0) {
685 printf("%s: could not create desc DMA map\n",
686 sc->sc_dev.dv_xname);
687 goto fail;
688 }
689
690 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
691 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
692 if (error != 0) {
693 printf("%s: could not allocate DMA memory\n",
694 sc->sc_dev.dv_xname);
695 goto fail;
696 }
697
698 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
699 count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
700 BUS_DMA_NOWAIT);
701 if (error != 0) {
702 printf("%s: could not map desc DMA memory\n",
703 sc->sc_dev.dv_xname);
704 goto fail;
705 }
706
707 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
708 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
709 if (error != 0) {
710 printf("%s: could not load desc DMA map\n",
711 sc->sc_dev.dv_xname);
712 goto fail;
713 }
714
715 memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
716 ring->physaddr = ring->map->dm_segs->ds_addr;
717
718 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
719 M_NOWAIT);
720 if (ring->data == NULL) {
721 printf("%s: could not allocate soft data\n",
722 sc->sc_dev.dv_xname);
723 error = ENOMEM;
724 goto fail;
725 }
726
727 /*
728 * Pre-allocate Rx buffers and populate Rx ring.
729 */
730 memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
731 for (i = 0; i < count; i++) {
732 desc = &sc->rxq.desc[i];
733 data = &sc->rxq.data[i];
734
735 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
736 0, BUS_DMA_NOWAIT, &data->map);
737 if (error != 0) {
738 printf("%s: could not create DMA map\n",
739 sc->sc_dev.dv_xname);
740 goto fail;
741 }
742
743 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
744 if (data->m == NULL) {
745 printf("%s: could not allocate rx mbuf\n",
746 sc->sc_dev.dv_xname);
747 error = ENOMEM;
748 goto fail;
749 }
750
751 MCLGET(data->m, M_DONTWAIT);
752 if (!(data->m->m_flags & M_EXT)) {
753 printf("%s: could not allocate rx mbuf cluster\n",
754 sc->sc_dev.dv_xname);
755 error = ENOMEM;
756 goto fail;
757 }
758
759 error = bus_dmamap_load(sc->sc_dmat, data->map,
760 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
761 if (error != 0) {
762 printf("%s: could not load rx buf DMA map",
763 sc->sc_dev.dv_xname);
764 goto fail;
765 }
766
767 desc->flags = htole32(RT2560_RX_BUSY);
768 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
769 }
770
771 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
772 BUS_DMASYNC_PREWRITE);
773
774 return 0;
775
776 fail: rt2560_free_rx_ring(sc, ring);
777 return error;
778 }
779
780 void
781 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
782 {
783 int i;
784
785 for (i = 0; i < ring->count; i++) {
786 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
787 ring->data[i].drop = 0;
788 }
789
790 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
791 BUS_DMASYNC_PREWRITE);
792
793 ring->cur = ring->next = 0;
794 ring->cur_decrypt = 0;
795 }
796
797 void
798 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
799 {
800 struct rt2560_rx_data *data;
801 int i;
802
803 if (ring->desc != NULL) {
804 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
805 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
806 bus_dmamap_unload(sc->sc_dmat, ring->map);
807 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
808 ring->count * RT2560_RX_DESC_SIZE);
809 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
810 }
811
812 if (ring->data != NULL) {
813 for (i = 0; i < ring->count; i++) {
814 data = &ring->data[i];
815
816 if (data->m != NULL) {
817 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
818 data->map->dm_mapsize,
819 BUS_DMASYNC_POSTREAD);
820 bus_dmamap_unload(sc->sc_dmat, data->map);
821 m_freem(data->m);
822 }
823
824 if (data->map != NULL)
825 bus_dmamap_destroy(sc->sc_dmat, data->map);
826 }
827 free(ring->data, M_DEVBUF);
828 }
829 }
830
831 struct ieee80211_node *
832 rt2560_node_alloc(struct ieee80211_node_table *nt)
833 {
834 struct rt2560_node *rn;
835
836 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
837 M_NOWAIT | M_ZERO);
838
839 return (rn != NULL) ? &rn->ni : NULL;
840 }
841
842 int
843 rt2560_media_change(struct ifnet *ifp)
844 {
845 int error;
846
847 error = ieee80211_media_change(ifp);
848 if (error != ENETRESET)
849 return error;
850
851 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
852 rt2560_init(ifp);
853
854 return 0;
855 }
856
857 /*
858 * This function is called periodically (every 200ms) during scanning to
859 * switch from one channel to another.
860 */
861 void
862 rt2560_next_scan(void *arg)
863 {
864 struct rt2560_softc *sc = arg;
865 struct ieee80211com *ic = &sc->sc_ic;
866
867 if (ic->ic_state == IEEE80211_S_SCAN)
868 ieee80211_next_scan(ic);
869 }
870
871 /*
872 * This function is called for each neighbor node.
873 */
874 void
875 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
876 {
877 struct rt2560_node *rn = (struct rt2560_node *)ni;
878
879 ieee80211_rssadapt_updatestats(&rn->rssadapt);
880 }
881
882 /*
883 * This function is called periodically (every 100ms) in RUN state to update
884 * the rate adaptation statistics.
885 */
886 void
887 rt2560_update_rssadapt(void *arg)
888 {
889 struct rt2560_softc *sc = arg;
890 struct ieee80211com *ic = &sc->sc_ic;
891
892 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
893
894 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
895 }
896
897 int
898 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
899 {
900 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
901 enum ieee80211_state ostate;
902 struct ieee80211_node *ni;
903 struct mbuf *m;
904 int error = 0;
905
906 ostate = ic->ic_state;
907 callout_stop(&sc->scan_ch);
908
909 switch (nstate) {
910 case IEEE80211_S_INIT:
911 callout_stop(&sc->rssadapt_ch);
912
913 if (ostate == IEEE80211_S_RUN) {
914 /* abort TSF synchronization */
915 RAL_WRITE(sc, RT2560_CSR14, 0);
916
917 /* turn association led off */
918 rt2560_update_led(sc, 0, 0);
919 }
920 break;
921
922 case IEEE80211_S_SCAN:
923 rt2560_set_chan(sc, ic->ic_curchan);
924 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
925 rt2560_next_scan, sc);
926 break;
927
928 case IEEE80211_S_AUTH:
929 rt2560_set_chan(sc, ic->ic_curchan);
930 break;
931
932 case IEEE80211_S_ASSOC:
933 rt2560_set_chan(sc, ic->ic_curchan);
934 break;
935
936 case IEEE80211_S_RUN:
937 rt2560_set_chan(sc, ic->ic_curchan);
938
939 ni = ic->ic_bss;
940
941 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
942 rt2560_update_plcp(sc);
943 rt2560_set_basicrates(sc);
944 rt2560_set_bssid(sc, ni->ni_bssid);
945 }
946
947 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
948 ic->ic_opmode == IEEE80211_M_IBSS) {
949 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
950 if (m == NULL) {
951 printf("%s: could not allocate beacon\n",
952 sc->sc_dev.dv_xname);
953 error = ENOBUFS;
954 break;
955 }
956
957 ieee80211_ref_node(ni);
958 error = rt2560_tx_bcn(sc, m, ni);
959 if (error != 0)
960 break;
961 }
962
963 /* turn assocation led on */
964 rt2560_update_led(sc, 1, 0);
965
966 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
967 callout_reset(&sc->rssadapt_ch, hz / 10,
968 rt2560_update_rssadapt, sc);
969 rt2560_enable_tsf_sync(sc);
970 }
971 break;
972 }
973
974 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
975 }
976
977 /*
978 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
979 * 93C66).
980 */
981 uint16_t
982 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
983 {
984 uint32_t tmp;
985 uint16_t val;
986 int n;
987
988 /* clock C once before the first command */
989 RT2560_EEPROM_CTL(sc, 0);
990
991 RT2560_EEPROM_CTL(sc, RT2560_S);
992 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
993 RT2560_EEPROM_CTL(sc, RT2560_S);
994
995 /* write start bit (1) */
996 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
997 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
998
999 /* write READ opcode (10) */
1000 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1001 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1002 RT2560_EEPROM_CTL(sc, RT2560_S);
1003 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1004
1005 /* write address (A5-A0 or A7-A0) */
1006 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1007 for (; n >= 0; n--) {
1008 RT2560_EEPROM_CTL(sc, RT2560_S |
1009 (((addr >> n) & 1) << RT2560_SHIFT_D));
1010 RT2560_EEPROM_CTL(sc, RT2560_S |
1011 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1012 }
1013
1014 RT2560_EEPROM_CTL(sc, RT2560_S);
1015
1016 /* read data Q15-Q0 */
1017 val = 0;
1018 for (n = 15; n >= 0; n--) {
1019 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1020 tmp = RAL_READ(sc, RT2560_CSR21);
1021 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1022 RT2560_EEPROM_CTL(sc, RT2560_S);
1023 }
1024
1025 RT2560_EEPROM_CTL(sc, 0);
1026
1027 /* clear Chip Select and clock C */
1028 RT2560_EEPROM_CTL(sc, RT2560_S);
1029 RT2560_EEPROM_CTL(sc, 0);
1030 RT2560_EEPROM_CTL(sc, RT2560_C);
1031
1032 return val;
1033 }
1034
1035 /*
1036 * Some frames were processed by the hardware cipher engine and are ready for
1037 * transmission.
1038 */
1039 void
1040 rt2560_encryption_intr(struct rt2560_softc *sc)
1041 {
1042 struct rt2560_tx_desc *desc;
1043 int hw;
1044
1045 /* retrieve last descriptor index processed by cipher engine */
1046 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1047 RT2560_TX_DESC_SIZE;
1048
1049 for (; sc->txq.next_encrypt != hw;) {
1050 desc = &sc->txq.desc[sc->txq.next_encrypt];
1051
1052 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1053 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1054 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1055
1056 if (le32toh(desc->flags) &
1057 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1058 break;
1059
1060 /* for TKIP, swap eiv field to fix a bug in ASIC */
1061 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1062 RT2560_TX_CIPHER_TKIP)
1063 desc->eiv = bswap32(desc->eiv);
1064
1065 /* mark the frame ready for transmission */
1066 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1067
1068 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1069 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1070 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1071
1072 DPRINTFN(15, ("encryption done idx=%u\n",
1073 sc->txq.next_encrypt));
1074
1075 sc->txq.next_encrypt =
1076 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1077 }
1078
1079 /* kick Tx */
1080 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1081 }
1082
1083 void
1084 rt2560_tx_intr(struct rt2560_softc *sc)
1085 {
1086 struct ieee80211com *ic = &sc->sc_ic;
1087 struct ifnet *ifp = ic->ic_ifp;
1088 struct rt2560_tx_desc *desc;
1089 struct rt2560_tx_data *data;
1090 struct rt2560_node *rn;
1091
1092 for (;;) {
1093 desc = &sc->txq.desc[sc->txq.next];
1094 data = &sc->txq.data[sc->txq.next];
1095
1096 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1097 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1098 BUS_DMASYNC_POSTREAD);
1099
1100 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1101 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1102 !(le32toh(desc->flags) & RT2560_TX_VALID))
1103 break;
1104
1105 rn = (struct rt2560_node *)data->ni;
1106
1107 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1108 case RT2560_TX_SUCCESS:
1109 DPRINTFN(10, ("data frame sent successfully\n"));
1110 if (data->id.id_node != NULL) {
1111 ieee80211_rssadapt_raise_rate(ic,
1112 &rn->rssadapt, &data->id);
1113 }
1114 ifp->if_opackets++;
1115 break;
1116
1117 case RT2560_TX_SUCCESS_RETRY:
1118 DPRINTFN(9, ("data frame sent after %u retries\n",
1119 (le32toh(desc->flags) >> 5) & 0x7));
1120 ifp->if_opackets++;
1121 break;
1122
1123 case RT2560_TX_FAIL_RETRY:
1124 DPRINTFN(9, ("sending data frame failed (too much "
1125 "retries)\n"));
1126 if (data->id.id_node != NULL) {
1127 ieee80211_rssadapt_lower_rate(ic, data->ni,
1128 &rn->rssadapt, &data->id);
1129 }
1130 ifp->if_oerrors++;
1131 break;
1132
1133 case RT2560_TX_FAIL_INVALID:
1134 case RT2560_TX_FAIL_OTHER:
1135 default:
1136 printf("%s: sending data frame failed 0x%08x\n",
1137 sc->sc_dev.dv_xname, le32toh(desc->flags));
1138 ifp->if_oerrors++;
1139 }
1140
1141 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1142 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1143 bus_dmamap_unload(sc->sc_dmat, data->map);
1144 m_freem(data->m);
1145 data->m = NULL;
1146 ieee80211_free_node(data->ni);
1147 data->ni = NULL;
1148
1149 /* descriptor is no longer valid */
1150 desc->flags &= ~htole32(RT2560_TX_VALID);
1151
1152 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1153 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1154 BUS_DMASYNC_PREWRITE);
1155
1156 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1157
1158 sc->txq.queued--;
1159 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1160 }
1161
1162 sc->sc_tx_timer = 0;
1163 ifp->if_flags &= ~IFF_OACTIVE;
1164 rt2560_start(ifp);
1165 }
1166
1167 void
1168 rt2560_prio_intr(struct rt2560_softc *sc)
1169 {
1170 struct ieee80211com *ic = &sc->sc_ic;
1171 struct ifnet *ifp = ic->ic_ifp;
1172 struct rt2560_tx_desc *desc;
1173 struct rt2560_tx_data *data;
1174
1175 for (;;) {
1176 desc = &sc->prioq.desc[sc->prioq.next];
1177 data = &sc->prioq.data[sc->prioq.next];
1178
1179 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1180 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1181 BUS_DMASYNC_POSTREAD);
1182
1183 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1184 !(le32toh(desc->flags) & RT2560_TX_VALID))
1185 break;
1186
1187 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1188 case RT2560_TX_SUCCESS:
1189 DPRINTFN(10, ("mgt frame sent successfully\n"));
1190 break;
1191
1192 case RT2560_TX_SUCCESS_RETRY:
1193 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1194 (le32toh(desc->flags) >> 5) & 0x7));
1195 break;
1196
1197 case RT2560_TX_FAIL_RETRY:
1198 DPRINTFN(9, ("sending mgt frame failed (too much "
1199 "retries)\n"));
1200 break;
1201
1202 case RT2560_TX_FAIL_INVALID:
1203 case RT2560_TX_FAIL_OTHER:
1204 default:
1205 printf("%s: sending mgt frame failed 0x%08x\n",
1206 sc->sc_dev.dv_xname, le32toh(desc->flags));
1207 }
1208
1209 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1210 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1211 bus_dmamap_unload(sc->sc_dmat, data->map);
1212 m_freem(data->m);
1213 data->m = NULL;
1214 ieee80211_free_node(data->ni);
1215 data->ni = NULL;
1216
1217 /* descriptor is no longer valid */
1218 desc->flags &= ~htole32(RT2560_TX_VALID);
1219
1220 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1221 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1222 BUS_DMASYNC_PREWRITE);
1223
1224 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1225
1226 sc->prioq.queued--;
1227 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1228 }
1229
1230 sc->sc_tx_timer = 0;
1231 ifp->if_flags &= ~IFF_OACTIVE;
1232 rt2560_start(ifp);
1233 }
1234
1235 /*
1236 * Some frames were processed by the hardware cipher engine and are ready for
1237 * transmission to the IEEE802.11 layer.
1238 */
1239 void
1240 rt2560_decryption_intr(struct rt2560_softc *sc)
1241 {
1242 struct ieee80211com *ic = &sc->sc_ic;
1243 struct ifnet *ifp = ic->ic_ifp;
1244 struct rt2560_rx_desc *desc;
1245 struct rt2560_rx_data *data;
1246 struct rt2560_node *rn;
1247 struct ieee80211_frame *wh;
1248 struct ieee80211_node *ni;
1249 struct mbuf *mnew, *m;
1250 int hw, error;
1251
1252 /* retrieve last decriptor index processed by cipher engine */
1253 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1254 RT2560_RX_DESC_SIZE;
1255
1256 for (; sc->rxq.cur_decrypt != hw;) {
1257 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1258 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1259
1260 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1261 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1262 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1263
1264 if (le32toh(desc->flags) &
1265 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1266 break;
1267
1268 if (data->drop) {
1269 ifp->if_ierrors++;
1270 goto skip;
1271 }
1272
1273 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1274 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1275 ifp->if_ierrors++;
1276 goto skip;
1277 }
1278
1279 /*
1280 * Try to allocate a new mbuf for this ring element and load it
1281 * before processing the current mbuf. If the ring element
1282 * cannot be loaded, drop the received packet and reuse the old
1283 * mbuf. In the unlikely case that the old mbuf can't be
1284 * reloaded either, explicitly panic.
1285 */
1286 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1287 if (mnew == NULL) {
1288 ifp->if_ierrors++;
1289 goto skip;
1290 }
1291
1292 MCLGET(mnew, M_DONTWAIT);
1293 if (!(mnew->m_flags & M_EXT)) {
1294 m_freem(mnew);
1295 ifp->if_ierrors++;
1296 goto skip;
1297 }
1298
1299 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1300 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1301 bus_dmamap_unload(sc->sc_dmat, data->map);
1302
1303 error = bus_dmamap_load(sc->sc_dmat, data->map,
1304 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1305 if (error != 0) {
1306 m_freem(mnew);
1307
1308 /* try to reload the old mbuf */
1309 error = bus_dmamap_load(sc->sc_dmat, data->map,
1310 mtod(data->m, void *), MCLBYTES, NULL,
1311 BUS_DMA_NOWAIT);
1312 if (error != 0) {
1313 /* very unlikely that it will fail... */
1314 panic("%s: could not load old rx mbuf",
1315 sc->sc_dev.dv_xname);
1316 }
1317 ifp->if_ierrors++;
1318 goto skip;
1319 }
1320
1321 /*
1322 * New mbuf successfully loaded, update Rx ring and continue
1323 * processing.
1324 */
1325 m = data->m;
1326 data->m = mnew;
1327 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1328
1329 /* finalize mbuf */
1330 m->m_pkthdr.rcvif = ifp;
1331 m->m_pkthdr.len = m->m_len =
1332 (le32toh(desc->flags) >> 16) & 0xfff;
1333
1334 #if NBPFILTER > 0
1335 if (sc->sc_drvbpf != NULL) {
1336 struct mbuf mb;
1337 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1338 uint32_t tsf_lo, tsf_hi;
1339
1340 /* get timestamp (low and high 32 bits) */
1341 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1342 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1343
1344 tap->wr_tsf =
1345 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1346 tap->wr_flags = 0;
1347 tap->wr_rate = rt2560_rxrate(desc);
1348 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1349 tap->wr_chan_flags =
1350 htole16(ic->ic_ibss_chan->ic_flags);
1351 tap->wr_antenna = sc->rx_ant;
1352 tap->wr_antsignal = desc->rssi;
1353
1354 M_COPY_PKTHDR(&mb, m);
1355 mb.m_data = (caddr_t)tap;
1356 mb.m_len = sc->sc_txtap_len;
1357 mb.m_next = m;
1358 mb.m_pkthdr.len += mb.m_len;
1359 bpf_mtap(sc->sc_drvbpf, &mb);
1360 }
1361 #endif
1362
1363 wh = mtod(m, struct ieee80211_frame *);
1364 ni = ieee80211_find_rxnode(ic,
1365 (struct ieee80211_frame_min *)wh);
1366
1367 /* send the frame to the 802.11 layer */
1368 ieee80211_input(ic, m, ni, desc->rssi, 0);
1369
1370 /* give rssi to the rate adatation algorithm */
1371 rn = (struct rt2560_node *)ni;
1372 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1373
1374 /* node is no longer needed */
1375 ieee80211_free_node(ni);
1376
1377 skip: desc->flags = htole32(RT2560_RX_BUSY);
1378
1379 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1380 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1381 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1382
1383 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1384
1385 sc->rxq.cur_decrypt =
1386 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1387 }
1388
1389 /*
1390 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1391 * without calling if_start().
1392 */
1393 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1394 rt2560_start(ifp);
1395 }
1396
1397 /*
1398 * Some frames were received. Pass them to the hardware cipher engine before
1399 * sending them to the 802.11 layer.
1400 */
1401 void
1402 rt2560_rx_intr(struct rt2560_softc *sc)
1403 {
1404 struct rt2560_rx_desc *desc;
1405 struct rt2560_rx_data *data;
1406
1407 for (;;) {
1408 desc = &sc->rxq.desc[sc->rxq.cur];
1409 data = &sc->rxq.data[sc->rxq.cur];
1410
1411 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1412 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1413 BUS_DMASYNC_POSTREAD);
1414
1415 if (le32toh(desc->flags) &
1416 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1417 break;
1418
1419 data->drop = 0;
1420
1421 if (le32toh(desc->flags) &
1422 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1423 /*
1424 * This should not happen since we did not request
1425 * to receive those frames when we filled RXCSR0.
1426 */
1427 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1428 le32toh(desc->flags)));
1429 data->drop = 1;
1430 }
1431
1432 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1433 DPRINTFN(5, ("bad length\n"));
1434 data->drop = 1;
1435 }
1436
1437 /* mark the frame for decryption */
1438 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1439
1440 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1441 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1442 BUS_DMASYNC_PREWRITE);
1443
1444 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1445
1446 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1447 }
1448
1449 /* kick decrypt */
1450 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1451 }
1452
1453 #if 0
1454 void
1455 rt2560_shutdown(void *xsc)
1456 {
1457 struct rt2560_softc *sc = xsc;
1458
1459 rt2560_stop(sc);
1460 }
1461
1462 void
1463 rt2560_suspend(void *xsc)
1464 {
1465 struct rt2560_softc *sc = xsc;
1466
1467 rt2560_stop(sc);
1468 }
1469
1470 void
1471 rt2560_resume(void *xsc)
1472 {
1473 struct rt2560_softc *sc = xsc;
1474 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1475
1476 if (ifp->if_flags & IFF_UP) {
1477 ifp->if_init(ifp->if_softc);
1478 if (ifp->if_flags & IFF_RUNNING)
1479 ifp->if_start(ifp);
1480 }
1481 }
1482
1483 #endif
1484 /*
1485 * This function is called periodically in IBSS mode when a new beacon must be
1486 * sent out.
1487 */
1488 static void
1489 rt2560_beacon_expire(struct rt2560_softc *sc)
1490 {
1491 struct ieee80211com *ic = &sc->sc_ic;
1492 struct rt2560_tx_data *data;
1493
1494 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1495 ic->ic_opmode != IEEE80211_M_HOSTAP)
1496 return;
1497
1498 data = &sc->bcnq.data[sc->bcnq.next];
1499
1500 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1501 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1502 bus_dmamap_unload(sc->sc_dmat, data->map);
1503
1504 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1505
1506 #if NBPFILTER > 0
1507 if (ic->ic_rawbpf != NULL)
1508 bpf_mtap(ic->ic_rawbpf, data->m);
1509 #endif
1510 rt2560_tx_bcn(sc, data->m, data->ni);
1511
1512 DPRINTFN(15, ("beacon expired\n"));
1513
1514 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1515 }
1516
1517 static void
1518 rt2560_wakeup_expire(struct rt2560_softc *sc)
1519 {
1520 DPRINTFN(15, ("wakeup expired\n"));
1521 }
1522
1523 int
1524 rt2560_intr(void *arg)
1525 {
1526 struct rt2560_softc *sc = arg;
1527 struct ifnet *ifp = &sc->sc_if;
1528 uint32_t r;
1529
1530 /* disable interrupts */
1531 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1532
1533 /* don't re-enable interrupts if we're shutting down */
1534 if (!(ifp->if_flags & IFF_RUNNING))
1535 return 0;
1536
1537 r = RAL_READ(sc, RT2560_CSR7);
1538 RAL_WRITE(sc, RT2560_CSR7, r);
1539
1540 if (r & RT2560_BEACON_EXPIRE)
1541 rt2560_beacon_expire(sc);
1542
1543 if (r & RT2560_WAKEUP_EXPIRE)
1544 rt2560_wakeup_expire(sc);
1545
1546 if (r & RT2560_ENCRYPTION_DONE)
1547 rt2560_encryption_intr(sc);
1548
1549 if (r & RT2560_TX_DONE)
1550 rt2560_tx_intr(sc);
1551
1552 if (r & RT2560_PRIO_DONE)
1553 rt2560_prio_intr(sc);
1554
1555 if (r & RT2560_DECRYPTION_DONE)
1556 rt2560_decryption_intr(sc);
1557
1558 if (r & RT2560_RX_DONE)
1559 rt2560_rx_intr(sc);
1560
1561 /* re-enable interrupts */
1562 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1563
1564 return 1;
1565 }
1566
1567 /* quickly determine if a given rate is CCK or OFDM */
1568 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1569
1570 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1571 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1572
1573 #define RAL_SIFS 10 /* us */
1574
1575 #define RT2560_RXTX_TURNAROUND 10 /* us */
1576
1577 /*
1578 * This function is only used by the Rx radiotap code. It returns the rate at
1579 * which a given frame was received.
1580 */
1581 #if NBPFILTER > 0
1582 static uint8_t
1583 rt2560_rxrate(struct rt2560_rx_desc *desc)
1584 {
1585 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1586 /* reverse function of rt2560_plcp_signal */
1587 switch (desc->rate) {
1588 case 0xb: return 12;
1589 case 0xf: return 18;
1590 case 0xa: return 24;
1591 case 0xe: return 36;
1592 case 0x9: return 48;
1593 case 0xd: return 72;
1594 case 0x8: return 96;
1595 case 0xc: return 108;
1596 }
1597 } else {
1598 if (desc->rate == 10)
1599 return 2;
1600 if (desc->rate == 20)
1601 return 4;
1602 if (desc->rate == 55)
1603 return 11;
1604 if (desc->rate == 110)
1605 return 22;
1606 }
1607 return 2; /* should not get there */
1608 }
1609 #endif
1610
1611 /*
1612 * Return the expected ack rate for a frame transmitted at rate `rate'.
1613 * XXX: this should depend on the destination node basic rate set.
1614 */
1615 static int
1616 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1617 {
1618 switch (rate) {
1619 /* CCK rates */
1620 case 2:
1621 return 2;
1622 case 4:
1623 case 11:
1624 case 22:
1625 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1626
1627 /* OFDM rates */
1628 case 12:
1629 case 18:
1630 return 12;
1631 case 24:
1632 case 36:
1633 return 24;
1634 case 48:
1635 case 72:
1636 case 96:
1637 case 108:
1638 return 48;
1639 }
1640
1641 /* default to 1Mbps */
1642 return 2;
1643 }
1644
1645 /*
1646 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1647 * The function automatically determines the operating mode depending on the
1648 * given rate. `flags' indicates whether short preamble is in use or not.
1649 */
1650 static uint16_t
1651 rt2560_txtime(int len, int rate, uint32_t flags)
1652 {
1653 uint16_t txtime;
1654
1655 if (RAL_RATE_IS_OFDM(rate)) {
1656 /* IEEE Std 802.11a-1999, pp. 37 */
1657 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1658 txtime = 16 + 4 + 4 * txtime + 6;
1659 } else {
1660 /* IEEE Std 802.11b-1999, pp. 28 */
1661 txtime = (16 * len + rate - 1) / rate;
1662 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1663 txtime += 72 + 24;
1664 else
1665 txtime += 144 + 48;
1666 }
1667 return txtime;
1668 }
1669
1670 static uint8_t
1671 rt2560_plcp_signal(int rate)
1672 {
1673 switch (rate) {
1674 /* CCK rates (returned values are device-dependent) */
1675 case 2: return 0x0;
1676 case 4: return 0x1;
1677 case 11: return 0x2;
1678 case 22: return 0x3;
1679
1680 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1681 case 12: return 0xb;
1682 case 18: return 0xf;
1683 case 24: return 0xa;
1684 case 36: return 0xe;
1685 case 48: return 0x9;
1686 case 72: return 0xd;
1687 case 96: return 0x8;
1688 case 108: return 0xc;
1689
1690 /* unsupported rates (should not get there) */
1691 default: return 0xff;
1692 }
1693 }
1694
1695 static void
1696 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1697 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1698 {
1699 struct ieee80211com *ic = &sc->sc_ic;
1700 uint16_t plcp_length;
1701 int remainder;
1702
1703 desc->flags = htole32(flags);
1704 desc->flags |= htole32(len << 16);
1705 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1706 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1707
1708 desc->physaddr = htole32(physaddr);
1709 desc->wme = htole16(
1710 RT2560_AIFSN(2) |
1711 RT2560_LOGCWMIN(3) |
1712 RT2560_LOGCWMAX(8));
1713
1714 /* setup PLCP fields */
1715 desc->plcp_signal = rt2560_plcp_signal(rate);
1716 desc->plcp_service = 4;
1717
1718 len += IEEE80211_CRC_LEN;
1719 if (RAL_RATE_IS_OFDM(rate)) {
1720 desc->flags |= htole32(RT2560_TX_OFDM);
1721
1722 plcp_length = len & 0xfff;
1723 desc->plcp_length_hi = plcp_length >> 6;
1724 desc->plcp_length_lo = plcp_length & 0x3f;
1725 } else {
1726 plcp_length = (16 * len + rate - 1) / rate;
1727 if (rate == 22) {
1728 remainder = (16 * len) % 22;
1729 if (remainder != 0 && remainder < 7)
1730 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1731 }
1732 desc->plcp_length_hi = plcp_length >> 8;
1733 desc->plcp_length_lo = plcp_length & 0xff;
1734
1735 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1736 desc->plcp_signal |= 0x08;
1737 }
1738 }
1739
1740 static int
1741 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1742 struct ieee80211_node *ni)
1743 {
1744 struct rt2560_tx_desc *desc;
1745 struct rt2560_tx_data *data;
1746 int rate, error;
1747
1748 desc = &sc->bcnq.desc[sc->bcnq.cur];
1749 data = &sc->bcnq.data[sc->bcnq.cur];
1750
1751 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1752
1753 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1754 BUS_DMA_NOWAIT);
1755 if (error != 0) {
1756 printf("%s: could not map mbuf (error %d)\n",
1757 sc->sc_dev.dv_xname, error);
1758 m_freem(m0);
1759 return error;
1760 }
1761
1762 data->m = m0;
1763 data->ni = ni;
1764
1765 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1766 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1767 data->map->dm_segs->ds_addr);
1768
1769 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1770 BUS_DMASYNC_PREWRITE);
1771 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1772 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1773 BUS_DMASYNC_PREWRITE);
1774
1775 return 0;
1776 }
1777
1778 static int
1779 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1780 struct ieee80211_node *ni)
1781 {
1782 struct ieee80211com *ic = &sc->sc_ic;
1783 struct rt2560_tx_desc *desc;
1784 struct rt2560_tx_data *data;
1785 struct ieee80211_frame *wh;
1786 uint16_t dur;
1787 uint32_t flags = 0;
1788 int rate, error;
1789
1790 desc = &sc->prioq.desc[sc->prioq.cur];
1791 data = &sc->prioq.data[sc->prioq.cur];
1792
1793 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1794
1795 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1796 BUS_DMA_NOWAIT);
1797 if (error != 0) {
1798 printf("%s: could not map mbuf (error %d)\n",
1799 sc->sc_dev.dv_xname, error);
1800 m_freem(m0);
1801 return error;
1802 }
1803
1804 #if NBPFILTER > 0
1805 if (sc->sc_drvbpf != NULL) {
1806 struct mbuf mb;
1807 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1808
1809 tap->wt_flags = 0;
1810 tap->wt_rate = rate;
1811 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1812 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1813 tap->wt_antenna = sc->tx_ant;
1814
1815 M_COPY_PKTHDR(&mb, m0);
1816 mb.m_data = (caddr_t)tap;
1817 mb.m_len = sc->sc_txtap_len;
1818 mb.m_next = m0;
1819 mb.m_pkthdr.len += mb.m_len;
1820 bpf_mtap(sc->sc_drvbpf, &mb);
1821 }
1822 #endif
1823
1824 data->m = m0;
1825 data->ni = ni;
1826
1827 wh = mtod(m0, struct ieee80211_frame *);
1828
1829 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1830 flags |= RT2560_TX_ACK;
1831
1832 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1833 RAL_SIFS;
1834 *(uint16_t *)wh->i_dur = htole16(dur);
1835
1836 /* tell hardware to add timestamp for probe responses */
1837 if ((wh->i_fc[0] &
1838 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1839 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1840 flags |= RT2560_TX_TIMESTAMP;
1841 }
1842
1843 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1844 data->map->dm_segs->ds_addr);
1845
1846 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1847 BUS_DMASYNC_PREWRITE);
1848 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1849 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1850 BUS_DMASYNC_PREWRITE);
1851
1852 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1853 m0->m_pkthdr.len, sc->prioq.cur, rate));
1854
1855 /* kick prio */
1856 sc->prioq.queued++;
1857 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1858 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1859
1860 return 0;
1861 }
1862
1863 /*
1864 * Build a RTS control frame.
1865 */
1866 static struct mbuf *
1867 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1868 uint16_t dur)
1869 {
1870 struct ieee80211_frame_rts *rts;
1871 struct mbuf *m;
1872
1873 MGETHDR(m, M_DONTWAIT, MT_DATA);
1874 if (m == NULL) {
1875 sc->sc_ic.ic_stats.is_tx_nobuf++;
1876 printf("%s: could not allocate RTS frame\n",
1877 sc->sc_dev.dv_xname);
1878 return NULL;
1879 }
1880
1881 rts = mtod(m, struct ieee80211_frame_rts *);
1882
1883 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1884 IEEE80211_FC0_SUBTYPE_RTS;
1885 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1886 *(uint16_t *)rts->i_dur = htole16(dur);
1887 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1888 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1889
1890 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1891
1892 return m;
1893 }
1894
1895 static int
1896 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1897 struct ieee80211_node *ni)
1898 {
1899 struct ieee80211com *ic = &sc->sc_ic;
1900 struct rt2560_tx_desc *desc;
1901 struct rt2560_tx_data *data;
1902 struct rt2560_node *rn;
1903 struct ieee80211_rateset *rs;
1904 struct ieee80211_frame *wh;
1905 struct ieee80211_key *k;
1906 struct mbuf *mnew;
1907 uint16_t dur;
1908 uint32_t flags = 0;
1909 int rate, error;
1910
1911 wh = mtod(m0, struct ieee80211_frame *);
1912
1913 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1914 rs = &ic->ic_sup_rates[ic->ic_curmode];
1915 rate = rs->rs_rates[ic->ic_fixed_rate];
1916 } else {
1917 rs = &ni->ni_rates;
1918 rn = (struct rt2560_node *)ni;
1919 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1920 wh, m0->m_pkthdr.len, -1, NULL, 0);
1921 rate = rs->rs_rates[ni->ni_txrate];
1922 }
1923 rate &= IEEE80211_RATE_VAL;
1924
1925 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1926 k = ieee80211_crypto_encap(ic, ni, m0);
1927 if (k == NULL) {
1928 m_freem(m0);
1929 return ENOBUFS;
1930 }
1931
1932 /* packet header may have moved, reset our local pointer */
1933 wh = mtod(m0, struct ieee80211_frame *);
1934 }
1935
1936 /*
1937 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1938 * for directed frames only when the length of the MPDU is greater
1939 * than the length threshold indicated by [...]" ic_rtsthreshold.
1940 */
1941 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1942 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1943 struct mbuf *m;
1944 int rtsrate, ackrate;
1945
1946 rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1947 ackrate = rt2560_ack_rate(ic, rate);
1948
1949 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1950 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1951 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1952 3 * RAL_SIFS;
1953
1954 m = rt2560_get_rts(sc, wh, dur);
1955
1956 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1957 data = &sc->txq.data[sc->txq.cur_encrypt];
1958
1959 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1960 BUS_DMA_NOWAIT);
1961 if (error != 0) {
1962 printf("%s: could not map mbuf (error %d)\n",
1963 sc->sc_dev.dv_xname, error);
1964 m_freem(m);
1965 m_freem(m0);
1966 return error;
1967 }
1968
1969 /* avoid multiple free() of the same node for each fragment */
1970 ieee80211_ref_node(ni);
1971
1972 data->m = m;
1973 data->ni = ni;
1974
1975 /* RTS frames are not taken into account for rssadapt */
1976 data->id.id_node = NULL;
1977
1978 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1979 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1980 data->map->dm_segs->ds_addr);
1981
1982 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1983 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1984 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1985 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1986 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1987
1988 sc->txq.queued++;
1989 sc->txq.cur_encrypt =
1990 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1991
1992 /*
1993 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1994 * asynchronous data frame shall be transmitted after the CTS
1995 * frame and a SIFS period.
1996 */
1997 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1998 }
1999
2000 data = &sc->txq.data[sc->txq.cur_encrypt];
2001 desc = &sc->txq.desc[sc->txq.cur_encrypt];
2002
2003 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2004 BUS_DMA_NOWAIT);
2005 if (error != 0 && error != EFBIG) {
2006 printf("%s: could not map mbuf (error %d)\n",
2007 sc->sc_dev.dv_xname, error);
2008 m_freem(m0);
2009 return error;
2010 }
2011 if (error != 0) {
2012 /* too many fragments, linearize */
2013
2014 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2015 if (mnew == NULL) {
2016 m_freem(m0);
2017 return ENOMEM;
2018 }
2019
2020 M_COPY_PKTHDR(mnew, m0);
2021 if (m0->m_pkthdr.len > MHLEN) {
2022 MCLGET(mnew, M_DONTWAIT);
2023 if (!(mnew->m_flags & M_EXT)) {
2024 m_freem(m0);
2025 m_freem(mnew);
2026 return ENOMEM;
2027 }
2028 }
2029
2030 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
2031 m_freem(m0);
2032 mnew->m_len = mnew->m_pkthdr.len;
2033 m0 = mnew;
2034
2035 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2036 BUS_DMA_NOWAIT);
2037 if (error != 0) {
2038 printf("%s: could not map mbuf (error %d)\n",
2039 sc->sc_dev.dv_xname, error);
2040 m_freem(m0);
2041 return error;
2042 }
2043
2044 /* packet header have moved, reset our local pointer */
2045 wh = mtod(m0, struct ieee80211_frame *);
2046 }
2047
2048 #if NBPFILTER > 0
2049 if (sc->sc_drvbpf != NULL) {
2050 struct mbuf mb;
2051 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2052
2053 tap->wt_flags = 0;
2054 tap->wt_rate = rate;
2055 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2056 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2057 tap->wt_antenna = sc->tx_ant;
2058
2059 M_COPY_PKTHDR(&mb, m0);
2060 mb.m_data = (caddr_t)tap;
2061 mb.m_len = sc->sc_txtap_len;
2062 mb.m_next = m0;
2063 mb.m_pkthdr.len += mb.m_len;
2064 bpf_mtap(sc->sc_drvbpf, &mb);
2065
2066 }
2067 #endif
2068
2069 data->m = m0;
2070 data->ni = ni;
2071
2072 /* remember link conditions for rate adaptation algorithm */
2073 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2074 data->id.id_len = m0->m_pkthdr.len;
2075 data->id.id_rateidx = ni->ni_txrate;
2076 data->id.id_node = ni;
2077 data->id.id_rssi = ni->ni_rssi;
2078 } else
2079 data->id.id_node = NULL;
2080
2081 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2082 flags |= RT2560_TX_ACK;
2083
2084 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2085 ic->ic_flags) + RAL_SIFS;
2086 *(uint16_t *)wh->i_dur = htole16(dur);
2087 }
2088
2089 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2090 data->map->dm_segs->ds_addr);
2091
2092 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2093 BUS_DMASYNC_PREWRITE);
2094 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2095 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2096 BUS_DMASYNC_PREWRITE);
2097
2098 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2099 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2100
2101 /* kick encrypt */
2102 sc->txq.queued++;
2103 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2104 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2105
2106 return 0;
2107 }
2108
2109 static void
2110 rt2560_start(struct ifnet *ifp)
2111 {
2112 struct rt2560_softc *sc = ifp->if_softc;
2113 struct ieee80211com *ic = &sc->sc_ic;
2114 struct mbuf *m0;
2115 struct ieee80211_node *ni;
2116 struct ether_header *eh;
2117
2118 /*
2119 * net80211 may still try to send management frames even if the
2120 * IFF_RUNNING flag is not set...
2121 */
2122 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2123 return;
2124
2125 for (;;) {
2126 IF_POLL(&ic->ic_mgtq, m0);
2127 if (m0 != NULL) {
2128 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2129 ifp->if_flags |= IFF_OACTIVE;
2130 break;
2131 }
2132 IF_DEQUEUE(&ic->ic_mgtq, m0);
2133 if (m0 == NULL)
2134 break;
2135
2136 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2137 m0->m_pkthdr.rcvif = NULL;
2138 #if NBPFILTER > 0
2139 if (ic->ic_rawbpf != NULL)
2140 bpf_mtap(ic->ic_rawbpf, m0);
2141 #endif
2142 if (rt2560_tx_mgt(sc, m0, ni) != 0)
2143 break;
2144
2145 } else {
2146 if (ic->ic_state != IEEE80211_S_RUN)
2147 break;
2148 IFQ_DEQUEUE(&ifp->if_snd, m0);
2149 if (m0 == NULL)
2150 break;
2151 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2152 ifp->if_flags |= IFF_OACTIVE;
2153 break;
2154 }
2155
2156 if (m0->m_len < sizeof (struct ether_header) &&
2157 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2158 continue;
2159
2160 eh = mtod(m0, struct ether_header *);
2161 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2162 if (ni == NULL) {
2163 m_freem(m0);
2164 continue;
2165 }
2166 #if NBPFILTER > 0
2167 if (ifp->if_bpf != NULL)
2168 bpf_mtap(ifp->if_bpf, m0);
2169 #endif
2170
2171 m0 = ieee80211_encap(ic, m0, ni);
2172 if (m0 == NULL) {
2173 ieee80211_free_node(ni);
2174 continue;
2175 }
2176
2177 #if NBPFILTER > 0
2178 if (ic->ic_rawbpf != NULL)
2179 bpf_mtap(ic->ic_rawbpf, m0);
2180
2181 #endif
2182 if (rt2560_tx_data(sc, m0, ni) != 0) {
2183 ieee80211_free_node(ni);
2184 ifp->if_oerrors++;
2185 break;
2186 }
2187 }
2188
2189 sc->sc_tx_timer = 5;
2190 ifp->if_timer = 1;
2191 }
2192 }
2193
2194 static void
2195 rt2560_watchdog(struct ifnet *ifp)
2196 {
2197 struct rt2560_softc *sc = ifp->if_softc;
2198
2199 ifp->if_timer = 0;
2200
2201 if (sc->sc_tx_timer > 0) {
2202 if (--sc->sc_tx_timer == 0) {
2203 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2204 rt2560_init(ifp);
2205 ifp->if_oerrors++;
2206 return;
2207 }
2208 ifp->if_timer = 1;
2209 }
2210
2211 ieee80211_watchdog(&sc->sc_ic);
2212 }
2213
2214 /*
2215 * This function allows for fast channel switching in monitor mode (used by
2216 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2217 * generate a new beacon frame.
2218 */
2219 static int
2220 rt2560_reset(struct ifnet *ifp)
2221 {
2222 struct rt2560_softc *sc = ifp->if_softc;
2223 struct ieee80211com *ic = &sc->sc_ic;
2224
2225 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2226 return ENETRESET;
2227
2228 rt2560_set_chan(sc, ic->ic_curchan);
2229
2230 return 0;
2231 }
2232
2233 int
2234 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2235 {
2236 struct rt2560_softc *sc = ifp->if_softc;
2237 struct ieee80211com *ic = &sc->sc_ic;
2238 struct ifreq *ifr;
2239 int s, error = 0;
2240
2241 s = splnet();
2242
2243 switch (cmd) {
2244 case SIOCSIFFLAGS:
2245 if (ifp->if_flags & IFF_UP) {
2246 if (ifp->if_flags & IFF_RUNNING)
2247 rt2560_update_promisc(sc);
2248 else
2249 rt2560_init(ifp);
2250 } else {
2251 if (ifp->if_flags & IFF_RUNNING)
2252 rt2560_stop(sc);
2253 }
2254 break;
2255
2256 case SIOCADDMULTI:
2257 case SIOCDELMULTI:
2258 ifr = (struct ifreq *)data;
2259 error = (cmd == SIOCADDMULTI) ?
2260 ether_addmulti(ifr, &sc->sc_ec) :
2261 ether_delmulti(ifr, &sc->sc_ec);
2262
2263 if (error == ENETRESET)
2264 error = 0;
2265 break;
2266
2267 case SIOCS80211CHANNEL:
2268 /*
2269 * This allows for fast channel switching in monitor mode
2270 * (used by kismet). In IBSS mode, we must explicitly reset
2271 * the interface to generate a new beacon frame.
2272 */
2273 error = ieee80211_ioctl(ic, cmd, data);
2274 if (error == ENETRESET &&
2275 ic->ic_opmode == IEEE80211_M_MONITOR) {
2276 rt2560_set_chan(sc, ic->ic_ibss_chan);
2277 error = 0;
2278 }
2279 break;
2280
2281 default:
2282 error = ieee80211_ioctl(ic, cmd, data);
2283 }
2284
2285 if (error == ENETRESET) {
2286 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2287 (IFF_UP | IFF_RUNNING))
2288 rt2560_init(ifp);
2289 error = 0;
2290 }
2291
2292 splx(s);
2293
2294 return error;
2295 }
2296
2297 static void
2298 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2299 {
2300 uint32_t tmp;
2301 int ntries;
2302
2303 for (ntries = 0; ntries < 100; ntries++) {
2304 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2305 break;
2306 DELAY(1);
2307 }
2308 if (ntries == 100) {
2309 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2310 return;
2311 }
2312
2313 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2314 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2315
2316 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2317 }
2318
2319 static uint8_t
2320 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2321 {
2322 uint32_t val;
2323 int ntries;
2324
2325 val = RT2560_BBP_BUSY | reg << 8;
2326 RAL_WRITE(sc, RT2560_BBPCSR, val);
2327
2328 for (ntries = 0; ntries < 100; ntries++) {
2329 val = RAL_READ(sc, RT2560_BBPCSR);
2330 if (!(val & RT2560_BBP_BUSY))
2331 return val & 0xff;
2332 DELAY(1);
2333 }
2334
2335 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2336 return 0;
2337 }
2338
2339 static void
2340 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2341 {
2342 uint32_t tmp;
2343 int ntries;
2344
2345 for (ntries = 0; ntries < 100; ntries++) {
2346 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2347 break;
2348 DELAY(1);
2349 }
2350 if (ntries == 100) {
2351 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2352 return;
2353 }
2354
2355 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2356 (reg & 0x3);
2357 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2358
2359 /* remember last written value in sc */
2360 sc->rf_regs[reg] = val;
2361
2362 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2363 }
2364
2365 static void
2366 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2367 {
2368 struct ieee80211com *ic = &sc->sc_ic;
2369 uint8_t power, tmp;
2370 u_int i, chan;
2371
2372 chan = ieee80211_chan2ieee(ic, c);
2373 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2374 return;
2375
2376 if (IEEE80211_IS_CHAN_2GHZ(c))
2377 power = min(sc->txpow[chan - 1], 31);
2378 else
2379 power = 31;
2380
2381 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2382
2383 switch (sc->rf_rev) {
2384 case RT2560_RF_2522:
2385 rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2386 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2387 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2388 break;
2389
2390 case RT2560_RF_2523:
2391 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2392 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2393 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2394 rt2560_rf_write(sc, RT2560_RF4,
2395 (chan == 14) ? 0x00280 : 0x00286);
2396 break;
2397
2398 case RT2560_RF_2524:
2399 rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2400 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2401 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2402 rt2560_rf_write(sc, RT2560_RF4,
2403 (chan == 14) ? 0x00280 : 0x00286);
2404 break;
2405
2406 case RT2560_RF_2525:
2407 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2408 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2409 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2410 rt2560_rf_write(sc, RT2560_RF4,
2411 (chan == 14) ? 0x00280 : 0x00286);
2412
2413 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2414 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2415 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2416 rt2560_rf_write(sc, RT2560_RF4,
2417 (chan == 14) ? 0x00280 : 0x00286);
2418 break;
2419
2420 case RT2560_RF_2525E:
2421 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2422 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2423 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2424 rt2560_rf_write(sc, RT2560_RF4,
2425 (chan == 14) ? 0x00286 : 0x00282);
2426 break;
2427
2428 case RT2560_RF_2526:
2429 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2430 rt2560_rf_write(sc, RT2560_RF4,
2431 (chan & 1) ? 0x00386 : 0x00381);
2432 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2433
2434 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2435 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2436 rt2560_rf_write(sc, RT2560_RF4,
2437 (chan & 1) ? 0x00386 : 0x00381);
2438 break;
2439
2440 /* dual-band RF */
2441 case RT2560_RF_5222:
2442 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2443
2444 rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2445 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2446 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2447 rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2448 break;
2449 }
2450
2451 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2452 ic->ic_state != IEEE80211_S_SCAN) {
2453 /* set Japan filter bit for channel 14 */
2454 tmp = rt2560_bbp_read(sc, 70);
2455
2456 tmp &= ~RT2560_JAPAN_FILTER;
2457 if (chan == 14)
2458 tmp |= RT2560_JAPAN_FILTER;
2459
2460 rt2560_bbp_write(sc, 70, tmp);
2461
2462 DELAY(1000); /* RF needs a 1ms delay here */
2463 rt2560_disable_rf_tune(sc);
2464
2465 /* clear CRC errors */
2466 RAL_READ(sc, RT2560_CNT0);
2467 }
2468 }
2469
2470 /*
2471 * Disable RF auto-tuning.
2472 */
2473 static void
2474 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2475 {
2476 uint32_t tmp;
2477
2478 if (sc->rf_rev != RT2560_RF_2523) {
2479 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2480 rt2560_rf_write(sc, RT2560_RF1, tmp);
2481 }
2482
2483 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2484 rt2560_rf_write(sc, RT2560_RF3, tmp);
2485
2486 DPRINTFN(2, ("disabling RF autotune\n"));
2487 }
2488
2489 /*
2490 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2491 * synchronization.
2492 */
2493 static void
2494 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2495 {
2496 struct ieee80211com *ic = &sc->sc_ic;
2497 uint16_t logcwmin, preload;
2498 uint32_t tmp;
2499
2500 /* first, disable TSF synchronization */
2501 RAL_WRITE(sc, RT2560_CSR14, 0);
2502
2503 tmp = 16 * ic->ic_bss->ni_intval;
2504 RAL_WRITE(sc, RT2560_CSR12, tmp);
2505
2506 RAL_WRITE(sc, RT2560_CSR13, 0);
2507
2508 logcwmin = 5;
2509 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2510 tmp = logcwmin << 16 | preload;
2511 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2512
2513 /* finally, enable TSF synchronization */
2514 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2515 if (ic->ic_opmode == IEEE80211_M_STA)
2516 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2517 else
2518 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2519 RT2560_ENABLE_BEACON_GENERATOR;
2520 RAL_WRITE(sc, RT2560_CSR14, tmp);
2521
2522 DPRINTF(("enabling TSF synchronization\n"));
2523 }
2524
2525 static void
2526 rt2560_update_plcp(struct rt2560_softc *sc)
2527 {
2528 struct ieee80211com *ic = &sc->sc_ic;
2529
2530 /* no short preamble for 1Mbps */
2531 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2532
2533 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2534 /* values taken from the reference driver */
2535 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2536 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2537 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2538 } else {
2539 /* same values as above or'ed 0x8 */
2540 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2541 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2542 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2543 }
2544
2545 DPRINTF(("updating PLCP for %s preamble\n",
2546 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2547 }
2548
2549 /*
2550 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2551 * know how these values are computed.
2552 */
2553 static void
2554 rt2560_update_slot(struct ifnet *ifp)
2555 {
2556 struct rt2560_softc *sc = ifp->if_softc;
2557 struct ieee80211com *ic = &sc->sc_ic;
2558 uint8_t slottime;
2559 uint16_t sifs, pifs, difs, eifs;
2560 uint32_t tmp;
2561
2562 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2563
2564 /* define the MAC slot boundaries */
2565 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2566 pifs = sifs + slottime;
2567 difs = sifs + 2 * slottime;
2568 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2569
2570 tmp = RAL_READ(sc, RT2560_CSR11);
2571 tmp = (tmp & ~0x1f00) | slottime << 8;
2572 RAL_WRITE(sc, RT2560_CSR11, tmp);
2573
2574 tmp = pifs << 16 | sifs;
2575 RAL_WRITE(sc, RT2560_CSR18, tmp);
2576
2577 tmp = eifs << 16 | difs;
2578 RAL_WRITE(sc, RT2560_CSR19, tmp);
2579
2580 DPRINTF(("setting slottime to %uus\n", slottime));
2581 }
2582
2583 static void
2584 rt2560_set_basicrates(struct rt2560_softc *sc)
2585 {
2586 struct ieee80211com *ic = &sc->sc_ic;
2587
2588 /* update basic rate set */
2589 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2590 /* 11b basic rates: 1, 2Mbps */
2591 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2592 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2593 /* 11a basic rates: 6, 12, 24Mbps */
2594 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2595 } else {
2596 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2597 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2598 }
2599 }
2600
2601 static void
2602 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2603 {
2604 uint32_t tmp;
2605
2606 /* set ON period to 70ms and OFF period to 30ms */
2607 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2608 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2609 }
2610
2611 static void
2612 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2613 {
2614 uint32_t tmp;
2615
2616 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2617 RAL_WRITE(sc, RT2560_CSR5, tmp);
2618
2619 tmp = bssid[4] | bssid[5] << 8;
2620 RAL_WRITE(sc, RT2560_CSR6, tmp);
2621
2622 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2623 }
2624
2625 static void
2626 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2627 {
2628 uint32_t tmp;
2629
2630 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2631 RAL_WRITE(sc, RT2560_CSR3, tmp);
2632
2633 tmp = addr[4] | addr[5] << 8;
2634 RAL_WRITE(sc, RT2560_CSR4, tmp);
2635
2636 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2637 }
2638
2639 static void
2640 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2641 {
2642 uint32_t tmp;
2643
2644 tmp = RAL_READ(sc, RT2560_CSR3);
2645 addr[0] = tmp & 0xff;
2646 addr[1] = (tmp >> 8) & 0xff;
2647 addr[2] = (tmp >> 16) & 0xff;
2648 addr[3] = (tmp >> 24);
2649
2650 tmp = RAL_READ(sc, RT2560_CSR4);
2651 addr[4] = tmp & 0xff;
2652 addr[5] = (tmp >> 8) & 0xff;
2653 }
2654
2655 static void
2656 rt2560_update_promisc(struct rt2560_softc *sc)
2657 {
2658 struct ifnet *ifp = &sc->sc_if;
2659 uint32_t tmp;
2660
2661 tmp = RAL_READ(sc, RT2560_RXCSR0);
2662
2663 tmp &= ~RT2560_DROP_NOT_TO_ME;
2664 if (!(ifp->if_flags & IFF_PROMISC))
2665 tmp |= RT2560_DROP_NOT_TO_ME;
2666
2667 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2668
2669 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2670 "entering" : "leaving"));
2671 }
2672
2673 static void
2674 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2675 {
2676 uint32_t tmp;
2677 uint8_t tx;
2678
2679 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2680 if (antenna == 1)
2681 tx |= RT2560_BBP_ANTA;
2682 else if (antenna == 2)
2683 tx |= RT2560_BBP_ANTB;
2684 else
2685 tx |= RT2560_BBP_DIVERSITY;
2686
2687 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2688 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2689 sc->rf_rev == RT2560_RF_5222)
2690 tx |= RT2560_BBP_FLIPIQ;
2691
2692 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2693
2694 /* update values for CCK and OFDM in BBPCSR1 */
2695 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2696 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2697 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2698 }
2699
2700 static void
2701 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2702 {
2703 uint8_t rx;
2704
2705 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2706 if (antenna == 1)
2707 rx |= RT2560_BBP_ANTA;
2708 else if (antenna == 2)
2709 rx |= RT2560_BBP_ANTB;
2710 else
2711 rx |= RT2560_BBP_DIVERSITY;
2712
2713 /* need to force no I/Q flip for RF 2525e and 2526 */
2714 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2715 rx &= ~RT2560_BBP_FLIPIQ;
2716
2717 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2718 }
2719
2720 static const char *
2721 rt2560_get_rf(int rev)
2722 {
2723 switch (rev) {
2724 case RT2560_RF_2522: return "RT2522";
2725 case RT2560_RF_2523: return "RT2523";
2726 case RT2560_RF_2524: return "RT2524";
2727 case RT2560_RF_2525: return "RT2525";
2728 case RT2560_RF_2525E: return "RT2525e";
2729 case RT2560_RF_2526: return "RT2526";
2730 case RT2560_RF_5222: return "RT5222";
2731 default: return "unknown";
2732 }
2733 }
2734
2735 static void
2736 rt2560_read_eeprom(struct rt2560_softc *sc)
2737 {
2738 uint16_t val;
2739 int i;
2740
2741 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2742 sc->rf_rev = (val >> 11) & 0x1f;
2743 sc->hw_radio = (val >> 10) & 0x1;
2744 sc->led_mode = (val >> 6) & 0x7;
2745 sc->rx_ant = (val >> 4) & 0x3;
2746 sc->tx_ant = (val >> 2) & 0x3;
2747 sc->nb_ant = val & 0x3;
2748
2749 /* read default values for BBP registers */
2750 for (i = 0; i < 16; i++) {
2751 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2752 sc->bbp_prom[i].reg = val >> 8;
2753 sc->bbp_prom[i].val = val & 0xff;
2754 }
2755
2756 /* read Tx power for all b/g channels */
2757 for (i = 0; i < 14 / 2; i++) {
2758 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2759 sc->txpow[i * 2] = val >> 8;
2760 sc->txpow[i * 2 + 1] = val & 0xff;
2761 }
2762 }
2763
2764 static int
2765 rt2560_bbp_init(struct rt2560_softc *sc)
2766 {
2767 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2768 int i, ntries;
2769
2770 /* wait for BBP to be ready */
2771 for (ntries = 0; ntries < 100; ntries++) {
2772 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2773 break;
2774 DELAY(1);
2775 }
2776 if (ntries == 100) {
2777 printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2778 return EIO;
2779 }
2780
2781 /* initialize BBP registers to default values */
2782 for (i = 0; i < N(rt2560_def_bbp); i++) {
2783 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2784 rt2560_def_bbp[i].val);
2785 }
2786 #if 0
2787 /* initialize BBP registers to values stored in EEPROM */
2788 for (i = 0; i < 16; i++) {
2789 if (sc->bbp_prom[i].reg == 0xff)
2790 continue;
2791 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2792 }
2793 #endif
2794
2795 return 0;
2796 #undef N
2797 }
2798
2799 static int
2800 rt2560_init(struct ifnet *ifp)
2801 {
2802 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2803 struct rt2560_softc *sc = ifp->if_softc;
2804 struct ieee80211com *ic = &sc->sc_ic;
2805 uint32_t tmp;
2806 int i;
2807
2808 /* for CardBus, power on the socket */
2809 if (!(sc->sc_flags & RT2560_ENABLED)) {
2810 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2811 printf("%s: could not enable device\n",
2812 sc->sc_dev.dv_xname);
2813 return EIO;
2814 }
2815 sc->sc_flags |= RT2560_ENABLED;
2816 }
2817
2818 rt2560_stop(sc);
2819
2820 /* setup tx rings */
2821 tmp = RT2560_PRIO_RING_COUNT << 24 |
2822 RT2560_ATIM_RING_COUNT << 16 |
2823 RT2560_TX_RING_COUNT << 8 |
2824 RT2560_TX_DESC_SIZE;
2825
2826 /* rings _must_ be initialized in this _exact_ order! */
2827 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2828 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2829 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2830 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2831 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2832
2833 /* setup rx ring */
2834 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2835
2836 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2837 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2838
2839 /* initialize MAC registers to default values */
2840 for (i = 0; i < N(rt2560_def_mac); i++)
2841 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2842
2843 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2844 rt2560_set_macaddr(sc, ic->ic_myaddr);
2845
2846 /* set basic rate set (will be updated later) */
2847 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2848
2849 rt2560_set_txantenna(sc, 1);
2850 rt2560_set_rxantenna(sc, 1);
2851 rt2560_update_slot(ifp);
2852 rt2560_update_plcp(sc);
2853 rt2560_update_led(sc, 0, 0);
2854
2855 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2856 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2857
2858 if (rt2560_bbp_init(sc) != 0) {
2859 rt2560_stop(sc);
2860 return EIO;
2861 }
2862
2863 /* set default BSS channel */
2864 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2865 rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2866
2867 /* kick Rx */
2868 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2869 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2870 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2871 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2872 tmp |= RT2560_DROP_TODS;
2873 if (!(ifp->if_flags & IFF_PROMISC))
2874 tmp |= RT2560_DROP_NOT_TO_ME;
2875 }
2876 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2877
2878 /* clear old FCS and Rx FIFO errors */
2879 RAL_READ(sc, RT2560_CNT0);
2880 RAL_READ(sc, RT2560_CNT4);
2881
2882 /* clear any pending interrupts */
2883 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2884
2885 /* enable interrupts */
2886 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2887
2888 ifp->if_flags &= ~IFF_OACTIVE;
2889 ifp->if_flags |= IFF_RUNNING;
2890
2891 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2892 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2893 else
2894 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2895
2896 return 0;
2897 #undef N
2898 }
2899
2900 static void
2901 rt2560_stop(void *priv)
2902 {
2903 struct rt2560_softc *sc = priv;
2904 struct ieee80211com *ic = &sc->sc_ic;
2905 struct ifnet *ifp = ic->ic_ifp;
2906
2907 sc->sc_tx_timer = 0;
2908 ifp->if_timer = 0;
2909 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2910
2911 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2912
2913 /* abort Tx */
2914 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2915
2916 /* disable Rx */
2917 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2918
2919 /* reset ASIC (and thus, BBP) */
2920 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2921 RAL_WRITE(sc, RT2560_CSR1, 0);
2922
2923 /* disable interrupts */
2924 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2925
2926 /* clear any pending interrupt */
2927 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2928
2929 /* reset Tx and Rx rings */
2930 rt2560_reset_tx_ring(sc, &sc->txq);
2931 rt2560_reset_tx_ring(sc, &sc->atimq);
2932 rt2560_reset_tx_ring(sc, &sc->prioq);
2933 rt2560_reset_tx_ring(sc, &sc->bcnq);
2934 rt2560_reset_rx_ring(sc, &sc->rxq);
2935
2936 }
2937