rt2560.c revision 1.19.4.2 1 /* $NetBSD: rt2560.c,v 1.19.4.2 2009/09/16 13:37:48 yamt Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4
5 /*-
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
25 */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.19.4.2 2009/09/16 13:37:48 yamt Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/callout.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_ether.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_rssadapt.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/ic/rt2560reg.h>
66 #include <dev/ic/rt2560var.h>
67
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pcidevs.h>
71
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
75 int rt2560_debug = 0;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80
81 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
82 struct rt2560_tx_ring *, int);
83 static void rt2560_reset_tx_ring(struct rt2560_softc *,
84 struct rt2560_tx_ring *);
85 static void rt2560_free_tx_ring(struct rt2560_softc *,
86 struct rt2560_tx_ring *);
87 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
88 struct rt2560_rx_ring *, int);
89 static void rt2560_reset_rx_ring(struct rt2560_softc *,
90 struct rt2560_rx_ring *);
91 static void rt2560_free_rx_ring(struct rt2560_softc *,
92 struct rt2560_rx_ring *);
93 static struct ieee80211_node *
94 rt2560_node_alloc(struct ieee80211_node_table *);
95 static int rt2560_media_change(struct ifnet *);
96 static void rt2560_next_scan(void *);
97 static void rt2560_iter_func(void *, struct ieee80211_node *);
98 static void rt2560_update_rssadapt(void *);
99 static int rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
100 int);
101 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
102 static void rt2560_encryption_intr(struct rt2560_softc *);
103 static void rt2560_tx_intr(struct rt2560_softc *);
104 static void rt2560_prio_intr(struct rt2560_softc *);
105 static void rt2560_decryption_intr(struct rt2560_softc *);
106 static void rt2560_rx_intr(struct rt2560_softc *);
107 static void rt2560_beacon_expire(struct rt2560_softc *);
108 static void rt2560_wakeup_expire(struct rt2560_softc *);
109 #if NBPFILTER > 0
110 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
111 #endif
112 static int rt2560_ack_rate(struct ieee80211com *, int);
113 static uint16_t rt2560_txtime(int, int, uint32_t);
114 static uint8_t rt2560_plcp_signal(int);
115 static void rt2560_setup_tx_desc(struct rt2560_softc *,
116 struct rt2560_tx_desc *, uint32_t, int, int, int,
117 bus_addr_t);
118 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
119 struct ieee80211_node *);
120 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
121 struct ieee80211_node *);
122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
123 struct ieee80211_frame *, uint16_t);
124 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
125 struct ieee80211_node *);
126 static void rt2560_start(struct ifnet *);
127 static void rt2560_watchdog(struct ifnet *);
128 static int rt2560_reset(struct ifnet *);
129 static int rt2560_ioctl(struct ifnet *, u_long, void *);
130 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
131 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
132 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
133 static void rt2560_set_chan(struct rt2560_softc *,
134 struct ieee80211_channel *);
135 static void rt2560_disable_rf_tune(struct rt2560_softc *);
136 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
137 static void rt2560_update_plcp(struct rt2560_softc *);
138 static void rt2560_update_slot(struct ifnet *);
139 static void rt2560_set_basicrates(struct rt2560_softc *);
140 static void rt2560_update_led(struct rt2560_softc *, int, int);
141 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
142 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
143 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
144 static void rt2560_update_promisc(struct rt2560_softc *);
145 static void rt2560_set_txantenna(struct rt2560_softc *, int);
146 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
147 static const char *rt2560_get_rf(int);
148 static void rt2560_read_eeprom(struct rt2560_softc *);
149 static int rt2560_bbp_init(struct rt2560_softc *);
150 static int rt2560_init(struct ifnet *);
151 static void rt2560_stop(struct ifnet *, int);
152
153 /*
154 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
155 */
156 static const struct ieee80211_rateset rt2560_rateset_11a =
157 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
158
159 static const struct ieee80211_rateset rt2560_rateset_11b =
160 { 4, { 2, 4, 11, 22 } };
161
162 static const struct ieee80211_rateset rt2560_rateset_11g =
163 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
164
165 /*
166 * Default values for MAC registers; values taken from the reference driver.
167 */
168 static const struct {
169 uint32_t reg;
170 uint32_t val;
171 } rt2560_def_mac[] = {
172 { RT2560_PSCSR0, 0x00020002 },
173 { RT2560_PSCSR1, 0x00000002 },
174 { RT2560_PSCSR2, 0x00020002 },
175 { RT2560_PSCSR3, 0x00000002 },
176 { RT2560_TIMECSR, 0x00003f21 },
177 { RT2560_CSR9, 0x00000780 },
178 { RT2560_CSR11, 0x07041483 },
179 { RT2560_CNT3, 0x00000000 },
180 { RT2560_TXCSR1, 0x07614562 },
181 { RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
182 { RT2560_ACKPCTCSR, 0x7038140a },
183 { RT2560_ARTCSR1, 0x1d21252d },
184 { RT2560_ARTCSR2, 0x1919191d },
185 { RT2560_RXCSR0, 0xffffffff },
186 { RT2560_RXCSR3, 0xb3aab3af },
187 { RT2560_PCICSR, 0x000003b8 },
188 { RT2560_PWRCSR0, 0x3f3b3100 },
189 { RT2560_GPIOCSR, 0x0000ff00 },
190 { RT2560_TESTCSR, 0x000000f0 },
191 { RT2560_PWRCSR1, 0x000001ff },
192 { RT2560_MACCSR0, 0x00213223 },
193 { RT2560_MACCSR1, 0x00235518 },
194 { RT2560_RLPWCSR, 0x00000040 },
195 { RT2560_RALINKCSR, 0x9a009a11 },
196 { RT2560_CSR7, 0xffffffff },
197 { RT2560_BBPCSR1, 0x82188200 },
198 { RT2560_TXACKCSR0, 0x00000020 },
199 { RT2560_SECCSR3, 0x0000e78f }
200 };
201
202 /*
203 * Default values for BBP registers; values taken from the reference driver.
204 */
205 static const struct {
206 uint8_t reg;
207 uint8_t val;
208 } rt2560_def_bbp[] = {
209 { 3, 0x02 },
210 { 4, 0x19 },
211 { 14, 0x1c },
212 { 15, 0x30 },
213 { 16, 0xac },
214 { 17, 0x48 },
215 { 18, 0x18 },
216 { 19, 0xff },
217 { 20, 0x1e },
218 { 21, 0x08 },
219 { 22, 0x08 },
220 { 23, 0x08 },
221 { 24, 0x80 },
222 { 25, 0x50 },
223 { 26, 0x08 },
224 { 27, 0x23 },
225 { 30, 0x10 },
226 { 31, 0x2b },
227 { 32, 0xb9 },
228 { 34, 0x12 },
229 { 35, 0x50 },
230 { 39, 0xc4 },
231 { 40, 0x02 },
232 { 41, 0x60 },
233 { 53, 0x10 },
234 { 54, 0x18 },
235 { 56, 0x08 },
236 { 57, 0x10 },
237 { 58, 0x08 },
238 { 61, 0x60 },
239 { 62, 0x10 },
240 { 75, 0xff }
241 };
242
243 /*
244 * Default values for RF register R2 indexed by channel numbers; values taken
245 * from the reference driver.
246 */
247 static const uint32_t rt2560_rf2522_r2[] = {
248 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
249 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
250 };
251
252 static const uint32_t rt2560_rf2523_r2[] = {
253 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
254 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
255 };
256
257 static const uint32_t rt2560_rf2524_r2[] = {
258 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
260 };
261
262 static const uint32_t rt2560_rf2525_r2[] = {
263 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
264 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
265 };
266
267 static const uint32_t rt2560_rf2525_hi_r2[] = {
268 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
269 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
270 };
271
272 static const uint32_t rt2560_rf2525e_r2[] = {
273 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
274 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
275 };
276
277 static const uint32_t rt2560_rf2526_hi_r2[] = {
278 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
279 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
280 };
281
282 static const uint32_t rt2560_rf2526_r2[] = {
283 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
284 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
285 };
286
287 /*
288 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
289 * values taken from the reference driver.
290 */
291 static const struct {
292 uint8_t chan;
293 uint32_t r1;
294 uint32_t r2;
295 uint32_t r4;
296 } rt2560_rf5222[] = {
297 { 1, 0x08808, 0x0044d, 0x00282 },
298 { 2, 0x08808, 0x0044e, 0x00282 },
299 { 3, 0x08808, 0x0044f, 0x00282 },
300 { 4, 0x08808, 0x00460, 0x00282 },
301 { 5, 0x08808, 0x00461, 0x00282 },
302 { 6, 0x08808, 0x00462, 0x00282 },
303 { 7, 0x08808, 0x00463, 0x00282 },
304 { 8, 0x08808, 0x00464, 0x00282 },
305 { 9, 0x08808, 0x00465, 0x00282 },
306 { 10, 0x08808, 0x00466, 0x00282 },
307 { 11, 0x08808, 0x00467, 0x00282 },
308 { 12, 0x08808, 0x00468, 0x00282 },
309 { 13, 0x08808, 0x00469, 0x00282 },
310 { 14, 0x08808, 0x0046b, 0x00286 },
311
312 { 36, 0x08804, 0x06225, 0x00287 },
313 { 40, 0x08804, 0x06226, 0x00287 },
314 { 44, 0x08804, 0x06227, 0x00287 },
315 { 48, 0x08804, 0x06228, 0x00287 },
316 { 52, 0x08804, 0x06229, 0x00287 },
317 { 56, 0x08804, 0x0622a, 0x00287 },
318 { 60, 0x08804, 0x0622b, 0x00287 },
319 { 64, 0x08804, 0x0622c, 0x00287 },
320
321 { 100, 0x08804, 0x02200, 0x00283 },
322 { 104, 0x08804, 0x02201, 0x00283 },
323 { 108, 0x08804, 0x02202, 0x00283 },
324 { 112, 0x08804, 0x02203, 0x00283 },
325 { 116, 0x08804, 0x02204, 0x00283 },
326 { 120, 0x08804, 0x02205, 0x00283 },
327 { 124, 0x08804, 0x02206, 0x00283 },
328 { 128, 0x08804, 0x02207, 0x00283 },
329 { 132, 0x08804, 0x02208, 0x00283 },
330 { 136, 0x08804, 0x02209, 0x00283 },
331 { 140, 0x08804, 0x0220a, 0x00283 },
332
333 { 149, 0x08808, 0x02429, 0x00281 },
334 { 153, 0x08808, 0x0242b, 0x00281 },
335 { 157, 0x08808, 0x0242d, 0x00281 },
336 { 161, 0x08808, 0x0242f, 0x00281 }
337 };
338
339 int
340 rt2560_attach(void *xsc, int id)
341 {
342 struct rt2560_softc *sc = xsc;
343 struct ieee80211com *ic = &sc->sc_ic;
344 struct ifnet *ifp = &sc->sc_if;
345 int error, i;
346
347 callout_init(&sc->scan_ch, 0);
348 callout_init(&sc->rssadapt_ch, 0);
349
350 /* retrieve RT2560 rev. no */
351 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
352
353 /* retrieve MAC address */
354 rt2560_get_macaddr(sc, ic->ic_myaddr);
355
356 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
357 ether_sprintf(ic->ic_myaddr));
358
359 /* retrieve RF rev. no and various other things from EEPROM */
360 rt2560_read_eeprom(sc);
361
362 aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
363 sc->asic_rev, rt2560_get_rf(sc->rf_rev));
364
365 /*
366 * Allocate Tx and Rx rings.
367 */
368 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
369 if (error != 0) {
370 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring\n)");
371 goto fail1;
372 }
373
374 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
375 if (error != 0) {
376 aprint_error_dev(&sc->sc_dev, "could not allocate ATIM ring\n");
377 goto fail2;
378 }
379
380 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
381 if (error != 0) {
382 aprint_error_dev(&sc->sc_dev, "could not allocate Prio ring\n");
383 goto fail3;
384 }
385
386 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
387 if (error != 0) {
388 aprint_error_dev(&sc->sc_dev, "could not allocate Beacon ring\n");
389 goto fail4;
390 }
391
392 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
393 if (error != 0) {
394 aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
395 goto fail5;
396 }
397
398 ifp->if_softc = sc;
399 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
400 ifp->if_init = rt2560_init;
401 ifp->if_stop = rt2560_stop;
402 ifp->if_ioctl = rt2560_ioctl;
403 ifp->if_start = rt2560_start;
404 ifp->if_watchdog = rt2560_watchdog;
405 IFQ_SET_READY(&ifp->if_snd);
406 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
407
408 ic->ic_ifp = ifp;
409 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
410 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
411 ic->ic_state = IEEE80211_S_INIT;
412
413 /* set device capabilities */
414 ic->ic_caps =
415 IEEE80211_C_IBSS | /* IBSS mode supported */
416 IEEE80211_C_MONITOR | /* monitor mode supported */
417 IEEE80211_C_HOSTAP | /* HostAp mode supported */
418 IEEE80211_C_TXPMGT | /* tx power management */
419 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
420 IEEE80211_C_SHSLOT | /* short slot time supported */
421 IEEE80211_C_WPA; /* 802.11i */
422
423 if (sc->rf_rev == RT2560_RF_5222) {
424 /* set supported .11a rates */
425 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
426
427 /* set supported .11a channels */
428 for (i = 36; i <= 64; i += 4) {
429 ic->ic_channels[i].ic_freq =
430 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 }
433 for (i = 100; i <= 140; i += 4) {
434 ic->ic_channels[i].ic_freq =
435 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 }
438 for (i = 149; i <= 161; i += 4) {
439 ic->ic_channels[i].ic_freq =
440 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
441 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
442 }
443 }
444
445 /* set supported .11b and .11g rates */
446 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
447 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
448
449 /* set supported .11b and .11g channels (1 through 14) */
450 for (i = 1; i <= 14; i++) {
451 ic->ic_channels[i].ic_freq =
452 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
453 ic->ic_channels[i].ic_flags =
454 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
455 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
456 }
457
458 if_attach(ifp);
459 ieee80211_ifattach(ic);
460 ic->ic_node_alloc = rt2560_node_alloc;
461 ic->ic_updateslot = rt2560_update_slot;
462 ic->ic_reset = rt2560_reset;
463
464 /* override state transition machine */
465 sc->sc_newstate = ic->ic_newstate;
466 ic->ic_newstate = rt2560_newstate;
467 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
468
469 #if NBPFILTER > 0
470 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
471 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
472 #endif
473
474 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
475 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
476 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
477
478 sc->sc_txtap_len = sizeof sc->sc_txtapu;
479 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
480 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
481
482
483 sc->dwelltime = 200;
484
485 ieee80211_announce(ic);
486
487 if (pmf_device_register(&sc->sc_dev, NULL, NULL))
488 pmf_class_network_register(&sc->sc_dev, ifp);
489 else
490 aprint_error_dev(&sc->sc_dev,
491 "couldn't establish power handler\n");
492
493 return 0;
494
495 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
496 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
497 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
498 fail2: rt2560_free_tx_ring(sc, &sc->txq);
499 fail1:
500 return ENXIO;
501 }
502
503
504 int
505 rt2560_detach(void *xsc)
506 {
507 struct rt2560_softc *sc = xsc;
508 struct ifnet *ifp = &sc->sc_if;
509
510 callout_stop(&sc->scan_ch);
511 callout_stop(&sc->rssadapt_ch);
512
513 pmf_device_deregister(&sc->sc_dev);
514
515 rt2560_stop(ifp, 1);
516
517 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
518 if_detach(ifp);
519
520 rt2560_free_tx_ring(sc, &sc->txq);
521 rt2560_free_tx_ring(sc, &sc->atimq);
522 rt2560_free_tx_ring(sc, &sc->prioq);
523 rt2560_free_tx_ring(sc, &sc->bcnq);
524 rt2560_free_rx_ring(sc, &sc->rxq);
525
526 return 0;
527 }
528
529 int
530 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
531 int count)
532 {
533 int i, nsegs, error;
534
535 ring->count = count;
536 ring->queued = 0;
537 ring->cur = ring->next = 0;
538 ring->cur_encrypt = ring->next_encrypt = 0;
539
540 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
541 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
542 if (error != 0) {
543 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
544 goto fail;
545 }
546
547 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
548 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
549 if (error != 0) {
550 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
551 goto fail;
552 }
553
554 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
555 count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
556 BUS_DMA_NOWAIT);
557 if (error != 0) {
558 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
559 goto fail;
560 }
561
562 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
563 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
564 if (error != 0) {
565 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
566 goto fail;
567 }
568
569 memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
570 ring->physaddr = ring->map->dm_segs->ds_addr;
571
572 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
573 M_NOWAIT);
574 if (ring->data == NULL) {
575 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
576 error = ENOMEM;
577 goto fail;
578 }
579
580 memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
581 for (i = 0; i < count; i++) {
582 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
583 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
584 &ring->data[i].map);
585 if (error != 0) {
586 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
587 goto fail;
588 }
589 }
590
591 return 0;
592
593 fail: rt2560_free_tx_ring(sc, ring);
594 return error;
595 }
596
597 void
598 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
599 {
600 struct rt2560_tx_desc *desc;
601 struct rt2560_tx_data *data;
602 int i;
603
604 for (i = 0; i < ring->count; i++) {
605 desc = &ring->desc[i];
606 data = &ring->data[i];
607
608 if (data->m != NULL) {
609 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
610 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
611 bus_dmamap_unload(sc->sc_dmat, data->map);
612 m_freem(data->m);
613 data->m = NULL;
614 }
615
616 if (data->ni != NULL) {
617 ieee80211_free_node(data->ni);
618 data->ni = NULL;
619 }
620
621 desc->flags = 0;
622 }
623
624 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
625 BUS_DMASYNC_PREWRITE);
626
627 ring->queued = 0;
628 ring->cur = ring->next = 0;
629 ring->cur_encrypt = ring->next_encrypt = 0;
630 }
631
632 void
633 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
634 {
635 struct rt2560_tx_data *data;
636 int i;
637
638 if (ring->desc != NULL) {
639 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
640 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
641 bus_dmamap_unload(sc->sc_dmat, ring->map);
642 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
643 ring->count * RT2560_TX_DESC_SIZE);
644 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
645 }
646
647 if (ring->data != NULL) {
648 for (i = 0; i < ring->count; i++) {
649 data = &ring->data[i];
650
651 if (data->m != NULL) {
652 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
653 data->map->dm_mapsize,
654 BUS_DMASYNC_POSTWRITE);
655 bus_dmamap_unload(sc->sc_dmat, data->map);
656 m_freem(data->m);
657 }
658
659 if (data->ni != NULL)
660 ieee80211_free_node(data->ni);
661
662
663 if (data->map != NULL)
664 bus_dmamap_destroy(sc->sc_dmat, data->map);
665 }
666 free(ring->data, M_DEVBUF);
667 }
668 }
669
670 int
671 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
672 int count)
673 {
674 struct rt2560_rx_desc *desc;
675 struct rt2560_rx_data *data;
676 int i, nsegs, error;
677
678 ring->count = count;
679 ring->cur = ring->next = 0;
680 ring->cur_decrypt = 0;
681
682 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
683 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
684 if (error != 0) {
685 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
686 goto fail;
687 }
688
689 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
690 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
691 if (error != 0) {
692 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
693 goto fail;
694 }
695
696 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
697 count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
698 BUS_DMA_NOWAIT);
699 if (error != 0) {
700 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
701 goto fail;
702 }
703
704 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
705 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
706 if (error != 0) {
707 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
708 goto fail;
709 }
710
711 memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
712 ring->physaddr = ring->map->dm_segs->ds_addr;
713
714 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
715 M_NOWAIT);
716 if (ring->data == NULL) {
717 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
718 error = ENOMEM;
719 goto fail;
720 }
721
722 /*
723 * Pre-allocate Rx buffers and populate Rx ring.
724 */
725 memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
726 for (i = 0; i < count; i++) {
727 desc = &sc->rxq.desc[i];
728 data = &sc->rxq.data[i];
729
730 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
731 0, BUS_DMA_NOWAIT, &data->map);
732 if (error != 0) {
733 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
734 goto fail;
735 }
736
737 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
738 if (data->m == NULL) {
739 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
740 error = ENOMEM;
741 goto fail;
742 }
743
744 MCLGET(data->m, M_DONTWAIT);
745 if (!(data->m->m_flags & M_EXT)) {
746 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
747 error = ENOMEM;
748 goto fail;
749 }
750
751 error = bus_dmamap_load(sc->sc_dmat, data->map,
752 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
753 if (error != 0) {
754 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
755 goto fail;
756 }
757
758 desc->flags = htole32(RT2560_RX_BUSY);
759 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
760 }
761
762 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
763 BUS_DMASYNC_PREWRITE);
764
765 return 0;
766
767 fail: rt2560_free_rx_ring(sc, ring);
768 return error;
769 }
770
771 void
772 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
773 {
774 int i;
775
776 for (i = 0; i < ring->count; i++) {
777 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
778 ring->data[i].drop = 0;
779 }
780
781 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
782 BUS_DMASYNC_PREWRITE);
783
784 ring->cur = ring->next = 0;
785 ring->cur_decrypt = 0;
786 }
787
788 void
789 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
790 {
791 struct rt2560_rx_data *data;
792 int i;
793
794 if (ring->desc != NULL) {
795 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
796 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
797 bus_dmamap_unload(sc->sc_dmat, ring->map);
798 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
799 ring->count * RT2560_RX_DESC_SIZE);
800 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
801 }
802
803 if (ring->data != NULL) {
804 for (i = 0; i < ring->count; i++) {
805 data = &ring->data[i];
806
807 if (data->m != NULL) {
808 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
809 data->map->dm_mapsize,
810 BUS_DMASYNC_POSTREAD);
811 bus_dmamap_unload(sc->sc_dmat, data->map);
812 m_freem(data->m);
813 }
814
815 if (data->map != NULL)
816 bus_dmamap_destroy(sc->sc_dmat, data->map);
817 }
818 free(ring->data, M_DEVBUF);
819 }
820 }
821
822 struct ieee80211_node *
823 rt2560_node_alloc(struct ieee80211_node_table *nt)
824 {
825 struct rt2560_node *rn;
826
827 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
828 M_NOWAIT | M_ZERO);
829
830 return (rn != NULL) ? &rn->ni : NULL;
831 }
832
833 int
834 rt2560_media_change(struct ifnet *ifp)
835 {
836 int error;
837
838 error = ieee80211_media_change(ifp);
839 if (error != ENETRESET)
840 return error;
841
842 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843 rt2560_init(ifp);
844
845 return 0;
846 }
847
848 /*
849 * This function is called periodically (every 200ms) during scanning to
850 * switch from one channel to another.
851 */
852 void
853 rt2560_next_scan(void *arg)
854 {
855 struct rt2560_softc *sc = arg;
856 struct ieee80211com *ic = &sc->sc_ic;
857
858 if (ic->ic_state == IEEE80211_S_SCAN)
859 ieee80211_next_scan(ic);
860 }
861
862 /*
863 * This function is called for each neighbor node.
864 */
865 void
866 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
867 {
868 struct rt2560_node *rn = (struct rt2560_node *)ni;
869
870 ieee80211_rssadapt_updatestats(&rn->rssadapt);
871 }
872
873 /*
874 * This function is called periodically (every 100ms) in RUN state to update
875 * the rate adaptation statistics.
876 */
877 void
878 rt2560_update_rssadapt(void *arg)
879 {
880 struct rt2560_softc *sc = arg;
881 struct ieee80211com *ic = &sc->sc_ic;
882
883 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
884
885 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
886 }
887
888 int
889 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
890 {
891 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
892 enum ieee80211_state ostate;
893 struct ieee80211_node *ni;
894 struct mbuf *m;
895 int error = 0;
896
897 ostate = ic->ic_state;
898 callout_stop(&sc->scan_ch);
899
900 switch (nstate) {
901 case IEEE80211_S_INIT:
902 callout_stop(&sc->rssadapt_ch);
903
904 if (ostate == IEEE80211_S_RUN) {
905 /* abort TSF synchronization */
906 RAL_WRITE(sc, RT2560_CSR14, 0);
907
908 /* turn association led off */
909 rt2560_update_led(sc, 0, 0);
910 }
911 break;
912
913 case IEEE80211_S_SCAN:
914 rt2560_set_chan(sc, ic->ic_curchan);
915 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
916 rt2560_next_scan, sc);
917 break;
918
919 case IEEE80211_S_AUTH:
920 rt2560_set_chan(sc, ic->ic_curchan);
921 break;
922
923 case IEEE80211_S_ASSOC:
924 rt2560_set_chan(sc, ic->ic_curchan);
925 break;
926
927 case IEEE80211_S_RUN:
928 rt2560_set_chan(sc, ic->ic_curchan);
929
930 ni = ic->ic_bss;
931
932 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
933 rt2560_update_plcp(sc);
934 rt2560_set_basicrates(sc);
935 rt2560_set_bssid(sc, ni->ni_bssid);
936 }
937
938 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
939 ic->ic_opmode == IEEE80211_M_IBSS) {
940 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
941 if (m == NULL) {
942 aprint_error_dev(&sc->sc_dev, "could not allocate beacon\n");
943 error = ENOBUFS;
944 break;
945 }
946
947 ieee80211_ref_node(ni);
948 error = rt2560_tx_bcn(sc, m, ni);
949 if (error != 0)
950 break;
951 }
952
953 /* turn assocation led on */
954 rt2560_update_led(sc, 1, 0);
955
956 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
957 callout_reset(&sc->rssadapt_ch, hz / 10,
958 rt2560_update_rssadapt, sc);
959 rt2560_enable_tsf_sync(sc);
960 }
961 break;
962 }
963
964 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
965 }
966
967 /*
968 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
969 * 93C66).
970 */
971 uint16_t
972 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
973 {
974 uint32_t tmp;
975 uint16_t val;
976 int n;
977
978 /* clock C once before the first command */
979 RT2560_EEPROM_CTL(sc, 0);
980
981 RT2560_EEPROM_CTL(sc, RT2560_S);
982 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
983 RT2560_EEPROM_CTL(sc, RT2560_S);
984
985 /* write start bit (1) */
986 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
987 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
988
989 /* write READ opcode (10) */
990 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
991 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
992 RT2560_EEPROM_CTL(sc, RT2560_S);
993 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
994
995 /* write address (A5-A0 or A7-A0) */
996 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
997 for (; n >= 0; n--) {
998 RT2560_EEPROM_CTL(sc, RT2560_S |
999 (((addr >> n) & 1) << RT2560_SHIFT_D));
1000 RT2560_EEPROM_CTL(sc, RT2560_S |
1001 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1002 }
1003
1004 RT2560_EEPROM_CTL(sc, RT2560_S);
1005
1006 /* read data Q15-Q0 */
1007 val = 0;
1008 for (n = 15; n >= 0; n--) {
1009 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1010 tmp = RAL_READ(sc, RT2560_CSR21);
1011 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1012 RT2560_EEPROM_CTL(sc, RT2560_S);
1013 }
1014
1015 RT2560_EEPROM_CTL(sc, 0);
1016
1017 /* clear Chip Select and clock C */
1018 RT2560_EEPROM_CTL(sc, RT2560_S);
1019 RT2560_EEPROM_CTL(sc, 0);
1020 RT2560_EEPROM_CTL(sc, RT2560_C);
1021
1022 return val;
1023 }
1024
1025 /*
1026 * Some frames were processed by the hardware cipher engine and are ready for
1027 * transmission.
1028 */
1029 void
1030 rt2560_encryption_intr(struct rt2560_softc *sc)
1031 {
1032 struct rt2560_tx_desc *desc;
1033 int hw;
1034
1035 /* retrieve last descriptor index processed by cipher engine */
1036 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1037 RT2560_TX_DESC_SIZE;
1038
1039 for (; sc->txq.next_encrypt != hw;) {
1040 desc = &sc->txq.desc[sc->txq.next_encrypt];
1041
1042 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1043 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1044 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1045
1046 if (le32toh(desc->flags) &
1047 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1048 break;
1049
1050 /* for TKIP, swap eiv field to fix a bug in ASIC */
1051 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1052 RT2560_TX_CIPHER_TKIP)
1053 desc->eiv = bswap32(desc->eiv);
1054
1055 /* mark the frame ready for transmission */
1056 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1057
1058 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1059 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1060 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1061
1062 DPRINTFN(15, ("encryption done idx=%u\n",
1063 sc->txq.next_encrypt));
1064
1065 sc->txq.next_encrypt =
1066 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1067 }
1068
1069 /* kick Tx */
1070 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1071 }
1072
1073 void
1074 rt2560_tx_intr(struct rt2560_softc *sc)
1075 {
1076 struct ieee80211com *ic = &sc->sc_ic;
1077 struct ifnet *ifp = ic->ic_ifp;
1078 struct rt2560_tx_desc *desc;
1079 struct rt2560_tx_data *data;
1080 struct rt2560_node *rn;
1081
1082 for (;;) {
1083 desc = &sc->txq.desc[sc->txq.next];
1084 data = &sc->txq.data[sc->txq.next];
1085
1086 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1087 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1088 BUS_DMASYNC_POSTREAD);
1089
1090 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1091 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1092 !(le32toh(desc->flags) & RT2560_TX_VALID))
1093 break;
1094
1095 rn = (struct rt2560_node *)data->ni;
1096
1097 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1098 case RT2560_TX_SUCCESS:
1099 DPRINTFN(10, ("data frame sent successfully\n"));
1100 if (data->id.id_node != NULL) {
1101 ieee80211_rssadapt_raise_rate(ic,
1102 &rn->rssadapt, &data->id);
1103 }
1104 ifp->if_opackets++;
1105 break;
1106
1107 case RT2560_TX_SUCCESS_RETRY:
1108 DPRINTFN(9, ("data frame sent after %u retries\n",
1109 (le32toh(desc->flags) >> 5) & 0x7));
1110 ifp->if_opackets++;
1111 break;
1112
1113 case RT2560_TX_FAIL_RETRY:
1114 DPRINTFN(9, ("sending data frame failed (too much "
1115 "retries)\n"));
1116 if (data->id.id_node != NULL) {
1117 ieee80211_rssadapt_lower_rate(ic, data->ni,
1118 &rn->rssadapt, &data->id);
1119 }
1120 ifp->if_oerrors++;
1121 break;
1122
1123 case RT2560_TX_FAIL_INVALID:
1124 case RT2560_TX_FAIL_OTHER:
1125 default:
1126 aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n",
1127 le32toh(desc->flags));
1128 ifp->if_oerrors++;
1129 }
1130
1131 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1132 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1133 bus_dmamap_unload(sc->sc_dmat, data->map);
1134 m_freem(data->m);
1135 data->m = NULL;
1136 ieee80211_free_node(data->ni);
1137 data->ni = NULL;
1138
1139 /* descriptor is no longer valid */
1140 desc->flags &= ~htole32(RT2560_TX_VALID);
1141
1142 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1143 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1144 BUS_DMASYNC_PREWRITE);
1145
1146 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1147
1148 sc->txq.queued--;
1149 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1150 }
1151
1152 sc->sc_tx_timer = 0;
1153 ifp->if_flags &= ~IFF_OACTIVE;
1154 rt2560_start(ifp);
1155 }
1156
1157 void
1158 rt2560_prio_intr(struct rt2560_softc *sc)
1159 {
1160 struct ieee80211com *ic = &sc->sc_ic;
1161 struct ifnet *ifp = ic->ic_ifp;
1162 struct rt2560_tx_desc *desc;
1163 struct rt2560_tx_data *data;
1164
1165 for (;;) {
1166 desc = &sc->prioq.desc[sc->prioq.next];
1167 data = &sc->prioq.data[sc->prioq.next];
1168
1169 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1170 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1171 BUS_DMASYNC_POSTREAD);
1172
1173 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1174 !(le32toh(desc->flags) & RT2560_TX_VALID))
1175 break;
1176
1177 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1178 case RT2560_TX_SUCCESS:
1179 DPRINTFN(10, ("mgt frame sent successfully\n"));
1180 break;
1181
1182 case RT2560_TX_SUCCESS_RETRY:
1183 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1184 (le32toh(desc->flags) >> 5) & 0x7));
1185 break;
1186
1187 case RT2560_TX_FAIL_RETRY:
1188 DPRINTFN(9, ("sending mgt frame failed (too much "
1189 "retries)\n"));
1190 break;
1191
1192 case RT2560_TX_FAIL_INVALID:
1193 case RT2560_TX_FAIL_OTHER:
1194 default:
1195 aprint_error_dev(&sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1196 le32toh(desc->flags));
1197 }
1198
1199 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1200 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1201 bus_dmamap_unload(sc->sc_dmat, data->map);
1202 m_freem(data->m);
1203 data->m = NULL;
1204 ieee80211_free_node(data->ni);
1205 data->ni = NULL;
1206
1207 /* descriptor is no longer valid */
1208 desc->flags &= ~htole32(RT2560_TX_VALID);
1209
1210 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1211 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1212 BUS_DMASYNC_PREWRITE);
1213
1214 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1215
1216 sc->prioq.queued--;
1217 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1218 }
1219
1220 sc->sc_tx_timer = 0;
1221 ifp->if_flags &= ~IFF_OACTIVE;
1222 rt2560_start(ifp);
1223 }
1224
1225 /*
1226 * Some frames were processed by the hardware cipher engine and are ready for
1227 * transmission to the IEEE802.11 layer.
1228 */
1229 void
1230 rt2560_decryption_intr(struct rt2560_softc *sc)
1231 {
1232 struct ieee80211com *ic = &sc->sc_ic;
1233 struct ifnet *ifp = ic->ic_ifp;
1234 struct rt2560_rx_desc *desc;
1235 struct rt2560_rx_data *data;
1236 struct rt2560_node *rn;
1237 struct ieee80211_frame *wh;
1238 struct ieee80211_node *ni;
1239 struct mbuf *mnew, *m;
1240 int hw, error;
1241
1242 /* retrieve last decriptor index processed by cipher engine */
1243 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1244 RT2560_RX_DESC_SIZE;
1245
1246 for (; sc->rxq.cur_decrypt != hw;) {
1247 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1248 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1249
1250 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1251 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1252 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1253
1254 if (le32toh(desc->flags) &
1255 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1256 break;
1257
1258 if (data->drop) {
1259 ifp->if_ierrors++;
1260 goto skip;
1261 }
1262
1263 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1264 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1265 ifp->if_ierrors++;
1266 goto skip;
1267 }
1268
1269 /*
1270 * Try to allocate a new mbuf for this ring element and load it
1271 * before processing the current mbuf. If the ring element
1272 * cannot be loaded, drop the received packet and reuse the old
1273 * mbuf. In the unlikely case that the old mbuf can't be
1274 * reloaded either, explicitly panic.
1275 */
1276 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1277 if (mnew == NULL) {
1278 ifp->if_ierrors++;
1279 goto skip;
1280 }
1281
1282 MCLGET(mnew, M_DONTWAIT);
1283 if (!(mnew->m_flags & M_EXT)) {
1284 m_freem(mnew);
1285 ifp->if_ierrors++;
1286 goto skip;
1287 }
1288
1289 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1290 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1291 bus_dmamap_unload(sc->sc_dmat, data->map);
1292
1293 error = bus_dmamap_load(sc->sc_dmat, data->map,
1294 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1295 if (error != 0) {
1296 m_freem(mnew);
1297
1298 /* try to reload the old mbuf */
1299 error = bus_dmamap_load(sc->sc_dmat, data->map,
1300 mtod(data->m, void *), MCLBYTES, NULL,
1301 BUS_DMA_NOWAIT);
1302 if (error != 0) {
1303 /* very unlikely that it will fail... */
1304 panic("%s: could not load old rx mbuf",
1305 device_xname(&sc->sc_dev));
1306 }
1307 /* physical address may have changed */
1308 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1309 ifp->if_ierrors++;
1310 goto skip;
1311 }
1312
1313 /*
1314 * New mbuf successfully loaded, update Rx ring and continue
1315 * processing.
1316 */
1317 m = data->m;
1318 data->m = mnew;
1319 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1320
1321 /* finalize mbuf */
1322 m->m_pkthdr.rcvif = ifp;
1323 m->m_pkthdr.len = m->m_len =
1324 (le32toh(desc->flags) >> 16) & 0xfff;
1325
1326 #if NBPFILTER > 0
1327 if (sc->sc_drvbpf != NULL) {
1328 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1329 uint32_t tsf_lo, tsf_hi;
1330
1331 /* get timestamp (low and high 32 bits) */
1332 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1333 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1334
1335 tap->wr_tsf =
1336 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1337 tap->wr_flags = 0;
1338 tap->wr_rate = rt2560_rxrate(desc);
1339 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1340 tap->wr_chan_flags =
1341 htole16(ic->ic_ibss_chan->ic_flags);
1342 tap->wr_antenna = sc->rx_ant;
1343 tap->wr_antsignal = desc->rssi;
1344
1345 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1346 }
1347 #endif
1348
1349 wh = mtod(m, struct ieee80211_frame *);
1350 ni = ieee80211_find_rxnode(ic,
1351 (struct ieee80211_frame_min *)wh);
1352
1353 /* send the frame to the 802.11 layer */
1354 ieee80211_input(ic, m, ni, desc->rssi, 0);
1355
1356 /* give rssi to the rate adatation algorithm */
1357 rn = (struct rt2560_node *)ni;
1358 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1359
1360 /* node is no longer needed */
1361 ieee80211_free_node(ni);
1362
1363 skip: desc->flags = htole32(RT2560_RX_BUSY);
1364
1365 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1366 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1367 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1368
1369 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1370
1371 sc->rxq.cur_decrypt =
1372 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1373 }
1374
1375 /*
1376 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1377 * without calling if_start().
1378 */
1379 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1380 rt2560_start(ifp);
1381 }
1382
1383 /*
1384 * Some frames were received. Pass them to the hardware cipher engine before
1385 * sending them to the 802.11 layer.
1386 */
1387 void
1388 rt2560_rx_intr(struct rt2560_softc *sc)
1389 {
1390 struct rt2560_rx_desc *desc;
1391 struct rt2560_rx_data *data;
1392
1393 for (;;) {
1394 desc = &sc->rxq.desc[sc->rxq.cur];
1395 data = &sc->rxq.data[sc->rxq.cur];
1396
1397 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1398 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1399 BUS_DMASYNC_POSTREAD);
1400
1401 if (le32toh(desc->flags) &
1402 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1403 break;
1404
1405 data->drop = 0;
1406
1407 if (le32toh(desc->flags) &
1408 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1409 /*
1410 * This should not happen since we did not request
1411 * to receive those frames when we filled RXCSR0.
1412 */
1413 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1414 le32toh(desc->flags)));
1415 data->drop = 1;
1416 }
1417
1418 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1419 DPRINTFN(5, ("bad length\n"));
1420 data->drop = 1;
1421 }
1422
1423 /* mark the frame for decryption */
1424 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1425
1426 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1427 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1428 BUS_DMASYNC_PREWRITE);
1429
1430 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1431
1432 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1433 }
1434
1435 /* kick decrypt */
1436 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1437 }
1438
1439 /*
1440 * This function is called periodically in IBSS mode when a new beacon must be
1441 * sent out.
1442 */
1443 static void
1444 rt2560_beacon_expire(struct rt2560_softc *sc)
1445 {
1446 struct ieee80211com *ic = &sc->sc_ic;
1447 struct rt2560_tx_data *data;
1448
1449 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1450 ic->ic_opmode != IEEE80211_M_HOSTAP)
1451 return;
1452
1453 data = &sc->bcnq.data[sc->bcnq.next];
1454
1455 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1456 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1457 bus_dmamap_unload(sc->sc_dmat, data->map);
1458
1459 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1460
1461 #if NBPFILTER > 0
1462 if (ic->ic_rawbpf != NULL)
1463 bpf_mtap(ic->ic_rawbpf, data->m);
1464 #endif
1465 rt2560_tx_bcn(sc, data->m, data->ni);
1466
1467 DPRINTFN(15, ("beacon expired\n"));
1468
1469 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1470 }
1471
1472 static void
1473 rt2560_wakeup_expire(struct rt2560_softc *sc)
1474 {
1475 DPRINTFN(15, ("wakeup expired\n"));
1476 }
1477
1478 int
1479 rt2560_intr(void *arg)
1480 {
1481 struct rt2560_softc *sc = arg;
1482 struct ifnet *ifp = &sc->sc_if;
1483 uint32_t r;
1484
1485 if (!device_is_active(&sc->sc_dev))
1486 return 0;
1487
1488 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1489 return 0; /* not for us */
1490
1491 /* disable interrupts */
1492 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1493
1494 /* acknowledge interrupts */
1495 RAL_WRITE(sc, RT2560_CSR7, r);
1496
1497 /* don't re-enable interrupts if we're shutting down */
1498 if (!(ifp->if_flags & IFF_RUNNING))
1499 return 0;
1500
1501 if (r & RT2560_BEACON_EXPIRE)
1502 rt2560_beacon_expire(sc);
1503
1504 if (r & RT2560_WAKEUP_EXPIRE)
1505 rt2560_wakeup_expire(sc);
1506
1507 if (r & RT2560_ENCRYPTION_DONE)
1508 rt2560_encryption_intr(sc);
1509
1510 if (r & RT2560_TX_DONE)
1511 rt2560_tx_intr(sc);
1512
1513 if (r & RT2560_PRIO_DONE)
1514 rt2560_prio_intr(sc);
1515
1516 if (r & RT2560_DECRYPTION_DONE)
1517 rt2560_decryption_intr(sc);
1518
1519 if (r & RT2560_RX_DONE)
1520 rt2560_rx_intr(sc);
1521
1522 /* re-enable interrupts */
1523 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1524
1525 return 1;
1526 }
1527
1528 /* quickly determine if a given rate is CCK or OFDM */
1529 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1530
1531 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1532 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1533
1534 #define RAL_SIFS 10 /* us */
1535
1536 #define RT2560_RXTX_TURNAROUND 10 /* us */
1537
1538 /*
1539 * This function is only used by the Rx radiotap code. It returns the rate at
1540 * which a given frame was received.
1541 */
1542 #if NBPFILTER > 0
1543 static uint8_t
1544 rt2560_rxrate(struct rt2560_rx_desc *desc)
1545 {
1546 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1547 /* reverse function of rt2560_plcp_signal */
1548 switch (desc->rate) {
1549 case 0xb: return 12;
1550 case 0xf: return 18;
1551 case 0xa: return 24;
1552 case 0xe: return 36;
1553 case 0x9: return 48;
1554 case 0xd: return 72;
1555 case 0x8: return 96;
1556 case 0xc: return 108;
1557 }
1558 } else {
1559 if (desc->rate == 10)
1560 return 2;
1561 if (desc->rate == 20)
1562 return 4;
1563 if (desc->rate == 55)
1564 return 11;
1565 if (desc->rate == 110)
1566 return 22;
1567 }
1568 return 2; /* should not get there */
1569 }
1570 #endif
1571
1572 /*
1573 * Return the expected ack rate for a frame transmitted at rate `rate'.
1574 * XXX: this should depend on the destination node basic rate set.
1575 */
1576 static int
1577 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1578 {
1579 switch (rate) {
1580 /* CCK rates */
1581 case 2:
1582 return 2;
1583 case 4:
1584 case 11:
1585 case 22:
1586 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1587
1588 /* OFDM rates */
1589 case 12:
1590 case 18:
1591 return 12;
1592 case 24:
1593 case 36:
1594 return 24;
1595 case 48:
1596 case 72:
1597 case 96:
1598 case 108:
1599 return 48;
1600 }
1601
1602 /* default to 1Mbps */
1603 return 2;
1604 }
1605
1606 /*
1607 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1608 * The function automatically determines the operating mode depending on the
1609 * given rate. `flags' indicates whether short preamble is in use or not.
1610 */
1611 static uint16_t
1612 rt2560_txtime(int len, int rate, uint32_t flags)
1613 {
1614 uint16_t txtime;
1615
1616 if (RAL_RATE_IS_OFDM(rate)) {
1617 /* IEEE Std 802.11a-1999, pp. 37 */
1618 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1619 txtime = 16 + 4 + 4 * txtime + 6;
1620 } else {
1621 /* IEEE Std 802.11b-1999, pp. 28 */
1622 txtime = (16 * len + rate - 1) / rate;
1623 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1624 txtime += 72 + 24;
1625 else
1626 txtime += 144 + 48;
1627 }
1628 return txtime;
1629 }
1630
1631 static uint8_t
1632 rt2560_plcp_signal(int rate)
1633 {
1634 switch (rate) {
1635 /* CCK rates (returned values are device-dependent) */
1636 case 2: return 0x0;
1637 case 4: return 0x1;
1638 case 11: return 0x2;
1639 case 22: return 0x3;
1640
1641 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1642 case 12: return 0xb;
1643 case 18: return 0xf;
1644 case 24: return 0xa;
1645 case 36: return 0xe;
1646 case 48: return 0x9;
1647 case 72: return 0xd;
1648 case 96: return 0x8;
1649 case 108: return 0xc;
1650
1651 /* unsupported rates (should not get there) */
1652 default: return 0xff;
1653 }
1654 }
1655
1656 static void
1657 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1658 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1659 {
1660 struct ieee80211com *ic = &sc->sc_ic;
1661 uint16_t plcp_length;
1662 int remainder;
1663
1664 desc->flags = htole32(flags);
1665 desc->flags |= htole32(len << 16);
1666 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1667 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1668
1669 desc->physaddr = htole32(physaddr);
1670 desc->wme = htole16(
1671 RT2560_AIFSN(2) |
1672 RT2560_LOGCWMIN(3) |
1673 RT2560_LOGCWMAX(8));
1674
1675 /* setup PLCP fields */
1676 desc->plcp_signal = rt2560_plcp_signal(rate);
1677 desc->plcp_service = 4;
1678
1679 len += IEEE80211_CRC_LEN;
1680 if (RAL_RATE_IS_OFDM(rate)) {
1681 desc->flags |= htole32(RT2560_TX_OFDM);
1682
1683 plcp_length = len & 0xfff;
1684 desc->plcp_length_hi = plcp_length >> 6;
1685 desc->plcp_length_lo = plcp_length & 0x3f;
1686 } else {
1687 plcp_length = (16 * len + rate - 1) / rate;
1688 if (rate == 22) {
1689 remainder = (16 * len) % 22;
1690 if (remainder != 0 && remainder < 7)
1691 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1692 }
1693 desc->plcp_length_hi = plcp_length >> 8;
1694 desc->plcp_length_lo = plcp_length & 0xff;
1695
1696 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1697 desc->plcp_signal |= 0x08;
1698 }
1699 }
1700
1701 static int
1702 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1703 struct ieee80211_node *ni)
1704 {
1705 struct rt2560_tx_desc *desc;
1706 struct rt2560_tx_data *data;
1707 int rate, error;
1708
1709 desc = &sc->bcnq.desc[sc->bcnq.cur];
1710 data = &sc->bcnq.data[sc->bcnq.cur];
1711
1712 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1713
1714 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1715 BUS_DMA_NOWAIT);
1716 if (error != 0) {
1717 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1718 error);
1719 m_freem(m0);
1720 return error;
1721 }
1722
1723 data->m = m0;
1724 data->ni = ni;
1725
1726 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1727 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1728 data->map->dm_segs->ds_addr);
1729
1730 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1731 BUS_DMASYNC_PREWRITE);
1732 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1733 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1734 BUS_DMASYNC_PREWRITE);
1735
1736 return 0;
1737 }
1738
1739 static int
1740 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1741 struct ieee80211_node *ni)
1742 {
1743 struct ieee80211com *ic = &sc->sc_ic;
1744 struct rt2560_tx_desc *desc;
1745 struct rt2560_tx_data *data;
1746 struct ieee80211_frame *wh;
1747 struct ieee80211_key *k;
1748 uint16_t dur;
1749 uint32_t flags = 0;
1750 int rate, error;
1751
1752 desc = &sc->prioq.desc[sc->prioq.cur];
1753 data = &sc->prioq.data[sc->prioq.cur];
1754
1755 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1756
1757 wh = mtod(m0, struct ieee80211_frame *);
1758
1759 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1760 k = ieee80211_crypto_encap(ic, ni, m0);
1761 if (k == NULL) {
1762 m_freem(m0);
1763 return ENOBUFS;
1764 }
1765
1766 /* packet header may have moved, reset our local pointer */
1767 wh = mtod(m0, struct ieee80211_frame *);
1768 }
1769
1770 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1771 BUS_DMA_NOWAIT);
1772 if (error != 0) {
1773 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1774 error);
1775 m_freem(m0);
1776 return error;
1777 }
1778
1779 #if NBPFILTER > 0
1780 if (sc->sc_drvbpf != NULL) {
1781 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1782
1783 tap->wt_flags = 0;
1784 tap->wt_rate = rate;
1785 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1786 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1787 tap->wt_antenna = sc->tx_ant;
1788
1789 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1790 }
1791 #endif
1792
1793 data->m = m0;
1794 data->ni = ni;
1795
1796 wh = mtod(m0, struct ieee80211_frame *);
1797
1798 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1799 flags |= RT2560_TX_ACK;
1800
1801 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1802 RAL_SIFS;
1803 *(uint16_t *)wh->i_dur = htole16(dur);
1804
1805 /* tell hardware to add timestamp for probe responses */
1806 if ((wh->i_fc[0] &
1807 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1808 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1809 flags |= RT2560_TX_TIMESTAMP;
1810 }
1811
1812 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1813 data->map->dm_segs->ds_addr);
1814
1815 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1816 BUS_DMASYNC_PREWRITE);
1817 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1818 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1819 BUS_DMASYNC_PREWRITE);
1820
1821 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1822 m0->m_pkthdr.len, sc->prioq.cur, rate));
1823
1824 /* kick prio */
1825 sc->prioq.queued++;
1826 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1827 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1828
1829 return 0;
1830 }
1831
1832 /*
1833 * Build a RTS control frame.
1834 */
1835 static struct mbuf *
1836 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1837 uint16_t dur)
1838 {
1839 struct ieee80211_frame_rts *rts;
1840 struct mbuf *m;
1841
1842 MGETHDR(m, M_DONTWAIT, MT_DATA);
1843 if (m == NULL) {
1844 sc->sc_ic.ic_stats.is_tx_nobuf++;
1845 aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1846 return NULL;
1847 }
1848
1849 rts = mtod(m, struct ieee80211_frame_rts *);
1850
1851 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1852 IEEE80211_FC0_SUBTYPE_RTS;
1853 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1854 *(uint16_t *)rts->i_dur = htole16(dur);
1855 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1856 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1857
1858 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1859
1860 return m;
1861 }
1862
1863 static int
1864 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1865 struct ieee80211_node *ni)
1866 {
1867 struct ieee80211com *ic = &sc->sc_ic;
1868 struct rt2560_tx_desc *desc;
1869 struct rt2560_tx_data *data;
1870 struct rt2560_node *rn;
1871 struct ieee80211_rateset *rs;
1872 struct ieee80211_frame *wh;
1873 struct ieee80211_key *k;
1874 struct mbuf *mnew;
1875 uint16_t dur;
1876 uint32_t flags = 0;
1877 int rate, error;
1878
1879 wh = mtod(m0, struct ieee80211_frame *);
1880
1881 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1882 rs = &ic->ic_sup_rates[ic->ic_curmode];
1883 rate = rs->rs_rates[ic->ic_fixed_rate];
1884 } else {
1885 rs = &ni->ni_rates;
1886 rn = (struct rt2560_node *)ni;
1887 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1888 wh, m0->m_pkthdr.len, -1, NULL, 0);
1889 rate = rs->rs_rates[ni->ni_txrate];
1890 }
1891 rate &= IEEE80211_RATE_VAL;
1892
1893 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1894 k = ieee80211_crypto_encap(ic, ni, m0);
1895 if (k == NULL) {
1896 m_freem(m0);
1897 return ENOBUFS;
1898 }
1899
1900 /* packet header may have moved, reset our local pointer */
1901 wh = mtod(m0, struct ieee80211_frame *);
1902 }
1903
1904 /*
1905 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1906 * for directed frames only when the length of the MPDU is greater
1907 * than the length threshold indicated by [...]" ic_rtsthreshold.
1908 */
1909 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1910 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1911 struct mbuf *m;
1912 int rtsrate, ackrate;
1913
1914 rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1915 ackrate = rt2560_ack_rate(ic, rate);
1916
1917 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1918 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1919 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1920 3 * RAL_SIFS;
1921
1922 m = rt2560_get_rts(sc, wh, dur);
1923
1924 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1925 data = &sc->txq.data[sc->txq.cur_encrypt];
1926
1927 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1928 BUS_DMA_NOWAIT);
1929 if (error != 0) {
1930 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1931 error);
1932 m_freem(m);
1933 m_freem(m0);
1934 return error;
1935 }
1936
1937 /* avoid multiple free() of the same node for each fragment */
1938 ieee80211_ref_node(ni);
1939
1940 data->m = m;
1941 data->ni = ni;
1942
1943 /* RTS frames are not taken into account for rssadapt */
1944 data->id.id_node = NULL;
1945
1946 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1947 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1948 data->map->dm_segs->ds_addr);
1949
1950 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1951 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1952 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1953 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1954 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1955
1956 sc->txq.queued++;
1957 sc->txq.cur_encrypt =
1958 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1959
1960 /*
1961 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1962 * asynchronous data frame shall be transmitted after the CTS
1963 * frame and a SIFS period.
1964 */
1965 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1966 }
1967
1968 data = &sc->txq.data[sc->txq.cur_encrypt];
1969 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1970
1971 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1972 BUS_DMA_NOWAIT);
1973 if (error != 0 && error != EFBIG) {
1974 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1975 error);
1976 m_freem(m0);
1977 return error;
1978 }
1979 if (error != 0) {
1980 /* too many fragments, linearize */
1981
1982 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1983 if (mnew == NULL) {
1984 m_freem(m0);
1985 return ENOMEM;
1986 }
1987
1988 M_COPY_PKTHDR(mnew, m0);
1989 if (m0->m_pkthdr.len > MHLEN) {
1990 MCLGET(mnew, M_DONTWAIT);
1991 if (!(mnew->m_flags & M_EXT)) {
1992 m_freem(m0);
1993 m_freem(mnew);
1994 return ENOMEM;
1995 }
1996 }
1997
1998 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1999 m_freem(m0);
2000 mnew->m_len = mnew->m_pkthdr.len;
2001 m0 = mnew;
2002
2003 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2004 BUS_DMA_NOWAIT);
2005 if (error != 0) {
2006 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
2007 error);
2008 m_freem(m0);
2009 return error;
2010 }
2011
2012 /* packet header have moved, reset our local pointer */
2013 wh = mtod(m0, struct ieee80211_frame *);
2014 }
2015
2016 #if NBPFILTER > 0
2017 if (sc->sc_drvbpf != NULL) {
2018 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2019
2020 tap->wt_flags = 0;
2021 tap->wt_rate = rate;
2022 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2023 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2024 tap->wt_antenna = sc->tx_ant;
2025
2026 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2027 }
2028 #endif
2029
2030 data->m = m0;
2031 data->ni = ni;
2032
2033 /* remember link conditions for rate adaptation algorithm */
2034 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2035 data->id.id_len = m0->m_pkthdr.len;
2036 data->id.id_rateidx = ni->ni_txrate;
2037 data->id.id_node = ni;
2038 data->id.id_rssi = ni->ni_rssi;
2039 } else
2040 data->id.id_node = NULL;
2041
2042 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2043 flags |= RT2560_TX_ACK;
2044
2045 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2046 ic->ic_flags) + RAL_SIFS;
2047 *(uint16_t *)wh->i_dur = htole16(dur);
2048 }
2049
2050 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2051 data->map->dm_segs->ds_addr);
2052
2053 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2054 BUS_DMASYNC_PREWRITE);
2055 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2056 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2057 BUS_DMASYNC_PREWRITE);
2058
2059 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2060 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2061
2062 /* kick encrypt */
2063 sc->txq.queued++;
2064 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2065 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2066
2067 return 0;
2068 }
2069
2070 static void
2071 rt2560_start(struct ifnet *ifp)
2072 {
2073 struct rt2560_softc *sc = ifp->if_softc;
2074 struct ieee80211com *ic = &sc->sc_ic;
2075 struct mbuf *m0;
2076 struct ieee80211_node *ni;
2077 struct ether_header *eh;
2078
2079 /*
2080 * net80211 may still try to send management frames even if the
2081 * IFF_RUNNING flag is not set...
2082 */
2083 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2084 return;
2085
2086 for (;;) {
2087 IF_POLL(&ic->ic_mgtq, m0);
2088 if (m0 != NULL) {
2089 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2090 ifp->if_flags |= IFF_OACTIVE;
2091 break;
2092 }
2093 IF_DEQUEUE(&ic->ic_mgtq, m0);
2094 if (m0 == NULL)
2095 break;
2096
2097 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2098 m0->m_pkthdr.rcvif = NULL;
2099 #if NBPFILTER > 0
2100 if (ic->ic_rawbpf != NULL)
2101 bpf_mtap(ic->ic_rawbpf, m0);
2102 #endif
2103 if (rt2560_tx_mgt(sc, m0, ni) != 0)
2104 break;
2105
2106 } else {
2107 if (ic->ic_state != IEEE80211_S_RUN)
2108 break;
2109 IFQ_DEQUEUE(&ifp->if_snd, m0);
2110 if (m0 == NULL)
2111 break;
2112 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2113 ifp->if_flags |= IFF_OACTIVE;
2114 break;
2115 }
2116
2117 if (m0->m_len < sizeof (struct ether_header) &&
2118 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2119 continue;
2120
2121 eh = mtod(m0, struct ether_header *);
2122 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2123 if (ni == NULL) {
2124 m_freem(m0);
2125 continue;
2126 }
2127 #if NBPFILTER > 0
2128 if (ifp->if_bpf != NULL)
2129 bpf_mtap(ifp->if_bpf, m0);
2130 #endif
2131
2132 m0 = ieee80211_encap(ic, m0, ni);
2133 if (m0 == NULL) {
2134 ieee80211_free_node(ni);
2135 continue;
2136 }
2137
2138 #if NBPFILTER > 0
2139 if (ic->ic_rawbpf != NULL)
2140 bpf_mtap(ic->ic_rawbpf, m0);
2141
2142 #endif
2143 if (rt2560_tx_data(sc, m0, ni) != 0) {
2144 ieee80211_free_node(ni);
2145 ifp->if_oerrors++;
2146 break;
2147 }
2148 }
2149
2150 sc->sc_tx_timer = 5;
2151 ifp->if_timer = 1;
2152 }
2153 }
2154
2155 static void
2156 rt2560_watchdog(struct ifnet *ifp)
2157 {
2158 struct rt2560_softc *sc = ifp->if_softc;
2159
2160 ifp->if_timer = 0;
2161
2162 if (sc->sc_tx_timer > 0) {
2163 if (--sc->sc_tx_timer == 0) {
2164 aprint_error_dev(&sc->sc_dev, "device timeout\n");
2165 rt2560_init(ifp);
2166 ifp->if_oerrors++;
2167 return;
2168 }
2169 ifp->if_timer = 1;
2170 }
2171
2172 ieee80211_watchdog(&sc->sc_ic);
2173 }
2174
2175 /*
2176 * This function allows for fast channel switching in monitor mode (used by
2177 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2178 * generate a new beacon frame.
2179 */
2180 static int
2181 rt2560_reset(struct ifnet *ifp)
2182 {
2183 struct rt2560_softc *sc = ifp->if_softc;
2184 struct ieee80211com *ic = &sc->sc_ic;
2185
2186 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2187 return ENETRESET;
2188
2189 rt2560_set_chan(sc, ic->ic_curchan);
2190
2191 return 0;
2192 }
2193
2194 int
2195 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2196 {
2197 struct rt2560_softc *sc = ifp->if_softc;
2198 struct ieee80211com *ic = &sc->sc_ic;
2199 int s, error = 0;
2200
2201 s = splnet();
2202
2203 switch (cmd) {
2204 case SIOCSIFFLAGS:
2205 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2206 break;
2207 if (ifp->if_flags & IFF_UP) {
2208 if (ifp->if_flags & IFF_RUNNING)
2209 rt2560_update_promisc(sc);
2210 else
2211 rt2560_init(ifp);
2212 } else {
2213 if (ifp->if_flags & IFF_RUNNING)
2214 rt2560_stop(ifp, 1);
2215 }
2216 break;
2217
2218 case SIOCADDMULTI:
2219 case SIOCDELMULTI:
2220 /* XXX no h/w multicast filter? --dyoung */
2221 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2222 error = 0;
2223 break;
2224
2225 case SIOCS80211CHANNEL:
2226 /*
2227 * This allows for fast channel switching in monitor mode
2228 * (used by kismet). In IBSS mode, we must explicitly reset
2229 * the interface to generate a new beacon frame.
2230 */
2231 error = ieee80211_ioctl(ic, cmd, data);
2232 if (error == ENETRESET &&
2233 ic->ic_opmode == IEEE80211_M_MONITOR) {
2234 rt2560_set_chan(sc, ic->ic_ibss_chan);
2235 error = 0;
2236 }
2237 break;
2238
2239 default:
2240 error = ieee80211_ioctl(ic, cmd, data);
2241 }
2242
2243 if (error == ENETRESET) {
2244 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2245 (IFF_UP | IFF_RUNNING))
2246 rt2560_init(ifp);
2247 error = 0;
2248 }
2249
2250 splx(s);
2251
2252 return error;
2253 }
2254
2255 static void
2256 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2257 {
2258 uint32_t tmp;
2259 int ntries;
2260
2261 for (ntries = 0; ntries < 100; ntries++) {
2262 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2263 break;
2264 DELAY(1);
2265 }
2266 if (ntries == 100) {
2267 aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
2268 return;
2269 }
2270
2271 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2272 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2273
2274 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2275 }
2276
2277 static uint8_t
2278 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2279 {
2280 uint32_t val;
2281 int ntries;
2282
2283 val = RT2560_BBP_BUSY | reg << 8;
2284 RAL_WRITE(sc, RT2560_BBPCSR, val);
2285
2286 for (ntries = 0; ntries < 100; ntries++) {
2287 val = RAL_READ(sc, RT2560_BBPCSR);
2288 if (!(val & RT2560_BBP_BUSY))
2289 return val & 0xff;
2290 DELAY(1);
2291 }
2292
2293 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2294 return 0;
2295 }
2296
2297 static void
2298 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2299 {
2300 uint32_t tmp;
2301 int ntries;
2302
2303 for (ntries = 0; ntries < 100; ntries++) {
2304 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2305 break;
2306 DELAY(1);
2307 }
2308 if (ntries == 100) {
2309 aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2310 return;
2311 }
2312
2313 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2314 (reg & 0x3);
2315 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2316
2317 /* remember last written value in sc */
2318 sc->rf_regs[reg] = val;
2319
2320 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2321 }
2322
2323 static void
2324 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2325 {
2326 struct ieee80211com *ic = &sc->sc_ic;
2327 uint8_t power, tmp;
2328 u_int i, chan;
2329
2330 chan = ieee80211_chan2ieee(ic, c);
2331 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2332 return;
2333
2334 if (IEEE80211_IS_CHAN_2GHZ(c))
2335 power = min(sc->txpow[chan - 1], 31);
2336 else
2337 power = 31;
2338
2339 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2340
2341 switch (sc->rf_rev) {
2342 case RT2560_RF_2522:
2343 rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2344 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2345 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2346 break;
2347
2348 case RT2560_RF_2523:
2349 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2350 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2351 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2352 rt2560_rf_write(sc, RT2560_RF4,
2353 (chan == 14) ? 0x00280 : 0x00286);
2354 break;
2355
2356 case RT2560_RF_2524:
2357 rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2358 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2359 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2360 rt2560_rf_write(sc, RT2560_RF4,
2361 (chan == 14) ? 0x00280 : 0x00286);
2362 break;
2363
2364 case RT2560_RF_2525:
2365 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2366 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2367 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2368 rt2560_rf_write(sc, RT2560_RF4,
2369 (chan == 14) ? 0x00280 : 0x00286);
2370
2371 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2372 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2373 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2374 rt2560_rf_write(sc, RT2560_RF4,
2375 (chan == 14) ? 0x00280 : 0x00286);
2376 break;
2377
2378 case RT2560_RF_2525E:
2379 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2380 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2381 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2382 rt2560_rf_write(sc, RT2560_RF4,
2383 (chan == 14) ? 0x00286 : 0x00282);
2384 break;
2385
2386 case RT2560_RF_2526:
2387 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2388 rt2560_rf_write(sc, RT2560_RF4,
2389 (chan & 1) ? 0x00386 : 0x00381);
2390 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2391
2392 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2393 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2394 rt2560_rf_write(sc, RT2560_RF4,
2395 (chan & 1) ? 0x00386 : 0x00381);
2396 break;
2397
2398 /* dual-band RF */
2399 case RT2560_RF_5222:
2400 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2401
2402 rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2403 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2404 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2405 rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2406 break;
2407 }
2408
2409 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2410 ic->ic_state != IEEE80211_S_SCAN) {
2411 /* set Japan filter bit for channel 14 */
2412 tmp = rt2560_bbp_read(sc, 70);
2413
2414 tmp &= ~RT2560_JAPAN_FILTER;
2415 if (chan == 14)
2416 tmp |= RT2560_JAPAN_FILTER;
2417
2418 rt2560_bbp_write(sc, 70, tmp);
2419
2420 DELAY(1000); /* RF needs a 1ms delay here */
2421 rt2560_disable_rf_tune(sc);
2422
2423 /* clear CRC errors */
2424 RAL_READ(sc, RT2560_CNT0);
2425 }
2426 }
2427
2428 /*
2429 * Disable RF auto-tuning.
2430 */
2431 static void
2432 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2433 {
2434 uint32_t tmp;
2435
2436 if (sc->rf_rev != RT2560_RF_2523) {
2437 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2438 rt2560_rf_write(sc, RT2560_RF1, tmp);
2439 }
2440
2441 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2442 rt2560_rf_write(sc, RT2560_RF3, tmp);
2443
2444 DPRINTFN(2, ("disabling RF autotune\n"));
2445 }
2446
2447 /*
2448 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2449 * synchronization.
2450 */
2451 static void
2452 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2453 {
2454 struct ieee80211com *ic = &sc->sc_ic;
2455 uint16_t logcwmin, preload;
2456 uint32_t tmp;
2457
2458 /* first, disable TSF synchronization */
2459 RAL_WRITE(sc, RT2560_CSR14, 0);
2460
2461 tmp = 16 * ic->ic_bss->ni_intval;
2462 RAL_WRITE(sc, RT2560_CSR12, tmp);
2463
2464 RAL_WRITE(sc, RT2560_CSR13, 0);
2465
2466 logcwmin = 5;
2467 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2468 tmp = logcwmin << 16 | preload;
2469 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2470
2471 /* finally, enable TSF synchronization */
2472 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2473 if (ic->ic_opmode == IEEE80211_M_STA)
2474 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2475 else
2476 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2477 RT2560_ENABLE_BEACON_GENERATOR;
2478 RAL_WRITE(sc, RT2560_CSR14, tmp);
2479
2480 DPRINTF(("enabling TSF synchronization\n"));
2481 }
2482
2483 static void
2484 rt2560_update_plcp(struct rt2560_softc *sc)
2485 {
2486 struct ieee80211com *ic = &sc->sc_ic;
2487
2488 /* no short preamble for 1Mbps */
2489 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2490
2491 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2492 /* values taken from the reference driver */
2493 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2494 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2495 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2496 } else {
2497 /* same values as above or'ed 0x8 */
2498 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2499 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2500 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2501 }
2502
2503 DPRINTF(("updating PLCP for %s preamble\n",
2504 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2505 }
2506
2507 /*
2508 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2509 * know how these values are computed.
2510 */
2511 static void
2512 rt2560_update_slot(struct ifnet *ifp)
2513 {
2514 struct rt2560_softc *sc = ifp->if_softc;
2515 struct ieee80211com *ic = &sc->sc_ic;
2516 uint8_t slottime;
2517 uint16_t sifs, pifs, difs, eifs;
2518 uint32_t tmp;
2519
2520 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2521
2522 /* define the MAC slot boundaries */
2523 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2524 pifs = sifs + slottime;
2525 difs = sifs + 2 * slottime;
2526 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2527
2528 tmp = RAL_READ(sc, RT2560_CSR11);
2529 tmp = (tmp & ~0x1f00) | slottime << 8;
2530 RAL_WRITE(sc, RT2560_CSR11, tmp);
2531
2532 tmp = pifs << 16 | sifs;
2533 RAL_WRITE(sc, RT2560_CSR18, tmp);
2534
2535 tmp = eifs << 16 | difs;
2536 RAL_WRITE(sc, RT2560_CSR19, tmp);
2537
2538 DPRINTF(("setting slottime to %uus\n", slottime));
2539 }
2540
2541 static void
2542 rt2560_set_basicrates(struct rt2560_softc *sc)
2543 {
2544 struct ieee80211com *ic = &sc->sc_ic;
2545
2546 /* update basic rate set */
2547 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2548 /* 11b basic rates: 1, 2Mbps */
2549 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2550 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2551 /* 11a basic rates: 6, 12, 24Mbps */
2552 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2553 } else {
2554 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2555 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2556 }
2557 }
2558
2559 static void
2560 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2561 {
2562 uint32_t tmp;
2563
2564 /* set ON period to 70ms and OFF period to 30ms */
2565 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2566 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2567 }
2568
2569 static void
2570 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2571 {
2572 uint32_t tmp;
2573
2574 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2575 RAL_WRITE(sc, RT2560_CSR5, tmp);
2576
2577 tmp = bssid[4] | bssid[5] << 8;
2578 RAL_WRITE(sc, RT2560_CSR6, tmp);
2579
2580 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2581 }
2582
2583 static void
2584 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2585 {
2586 uint32_t tmp;
2587
2588 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2589 RAL_WRITE(sc, RT2560_CSR3, tmp);
2590
2591 tmp = addr[4] | addr[5] << 8;
2592 RAL_WRITE(sc, RT2560_CSR4, tmp);
2593
2594 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2595 }
2596
2597 static void
2598 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2599 {
2600 uint32_t tmp;
2601
2602 tmp = RAL_READ(sc, RT2560_CSR3);
2603 addr[0] = tmp & 0xff;
2604 addr[1] = (tmp >> 8) & 0xff;
2605 addr[2] = (tmp >> 16) & 0xff;
2606 addr[3] = (tmp >> 24);
2607
2608 tmp = RAL_READ(sc, RT2560_CSR4);
2609 addr[4] = tmp & 0xff;
2610 addr[5] = (tmp >> 8) & 0xff;
2611 }
2612
2613 static void
2614 rt2560_update_promisc(struct rt2560_softc *sc)
2615 {
2616 struct ifnet *ifp = &sc->sc_if;
2617 uint32_t tmp;
2618
2619 tmp = RAL_READ(sc, RT2560_RXCSR0);
2620
2621 tmp &= ~RT2560_DROP_NOT_TO_ME;
2622 if (!(ifp->if_flags & IFF_PROMISC))
2623 tmp |= RT2560_DROP_NOT_TO_ME;
2624
2625 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2626
2627 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2628 "entering" : "leaving"));
2629 }
2630
2631 static void
2632 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2633 {
2634 uint32_t tmp;
2635 uint8_t tx;
2636
2637 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2638 if (antenna == 1)
2639 tx |= RT2560_BBP_ANTA;
2640 else if (antenna == 2)
2641 tx |= RT2560_BBP_ANTB;
2642 else
2643 tx |= RT2560_BBP_DIVERSITY;
2644
2645 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2646 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2647 sc->rf_rev == RT2560_RF_5222)
2648 tx |= RT2560_BBP_FLIPIQ;
2649
2650 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2651
2652 /* update values for CCK and OFDM in BBPCSR1 */
2653 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2654 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2655 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2656 }
2657
2658 static void
2659 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2660 {
2661 uint8_t rx;
2662
2663 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2664 if (antenna == 1)
2665 rx |= RT2560_BBP_ANTA;
2666 else if (antenna == 2)
2667 rx |= RT2560_BBP_ANTB;
2668 else
2669 rx |= RT2560_BBP_DIVERSITY;
2670
2671 /* need to force no I/Q flip for RF 2525e and 2526 */
2672 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2673 rx &= ~RT2560_BBP_FLIPIQ;
2674
2675 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2676 }
2677
2678 static const char *
2679 rt2560_get_rf(int rev)
2680 {
2681 switch (rev) {
2682 case RT2560_RF_2522: return "RT2522";
2683 case RT2560_RF_2523: return "RT2523";
2684 case RT2560_RF_2524: return "RT2524";
2685 case RT2560_RF_2525: return "RT2525";
2686 case RT2560_RF_2525E: return "RT2525e";
2687 case RT2560_RF_2526: return "RT2526";
2688 case RT2560_RF_5222: return "RT5222";
2689 default: return "unknown";
2690 }
2691 }
2692
2693 static void
2694 rt2560_read_eeprom(struct rt2560_softc *sc)
2695 {
2696 uint16_t val;
2697 int i;
2698
2699 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2700 sc->rf_rev = (val >> 11) & 0x1f;
2701 sc->hw_radio = (val >> 10) & 0x1;
2702 sc->led_mode = (val >> 6) & 0x7;
2703 sc->rx_ant = (val >> 4) & 0x3;
2704 sc->tx_ant = (val >> 2) & 0x3;
2705 sc->nb_ant = val & 0x3;
2706
2707 /* read default values for BBP registers */
2708 for (i = 0; i < 16; i++) {
2709 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2710 sc->bbp_prom[i].reg = val >> 8;
2711 sc->bbp_prom[i].val = val & 0xff;
2712 }
2713
2714 /* read Tx power for all b/g channels */
2715 for (i = 0; i < 14 / 2; i++) {
2716 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2717 sc->txpow[i * 2] = val >> 8;
2718 sc->txpow[i * 2 + 1] = val & 0xff;
2719 }
2720 }
2721
2722 static int
2723 rt2560_bbp_init(struct rt2560_softc *sc)
2724 {
2725 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2726 int i, ntries;
2727
2728 /* wait for BBP to be ready */
2729 for (ntries = 0; ntries < 100; ntries++) {
2730 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2731 break;
2732 DELAY(1);
2733 }
2734 if (ntries == 100) {
2735 aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2736 return EIO;
2737 }
2738
2739 /* initialize BBP registers to default values */
2740 for (i = 0; i < N(rt2560_def_bbp); i++) {
2741 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2742 rt2560_def_bbp[i].val);
2743 }
2744 #if 0
2745 /* initialize BBP registers to values stored in EEPROM */
2746 for (i = 0; i < 16; i++) {
2747 if (sc->bbp_prom[i].reg == 0xff)
2748 continue;
2749 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2750 }
2751 #endif
2752
2753 return 0;
2754 #undef N
2755 }
2756
2757 static int
2758 rt2560_init(struct ifnet *ifp)
2759 {
2760 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2761 struct rt2560_softc *sc = ifp->if_softc;
2762 struct ieee80211com *ic = &sc->sc_ic;
2763 uint32_t tmp;
2764 int i;
2765
2766 /* for CardBus, power on the socket */
2767 if (!(sc->sc_flags & RT2560_ENABLED)) {
2768 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2769 aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2770 return EIO;
2771 }
2772 sc->sc_flags |= RT2560_ENABLED;
2773 }
2774
2775 rt2560_stop(ifp, 1);
2776
2777 /* setup tx rings */
2778 tmp = RT2560_PRIO_RING_COUNT << 24 |
2779 RT2560_ATIM_RING_COUNT << 16 |
2780 RT2560_TX_RING_COUNT << 8 |
2781 RT2560_TX_DESC_SIZE;
2782
2783 /* rings _must_ be initialized in this _exact_ order! */
2784 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2785 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2786 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2787 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2788 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2789
2790 /* setup rx ring */
2791 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2792
2793 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2794 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2795
2796 /* initialize MAC registers to default values */
2797 for (i = 0; i < N(rt2560_def_mac); i++)
2798 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2799
2800 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2801 rt2560_set_macaddr(sc, ic->ic_myaddr);
2802
2803 /* set basic rate set (will be updated later) */
2804 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2805
2806 rt2560_update_slot(ifp);
2807 rt2560_update_plcp(sc);
2808 rt2560_update_led(sc, 0, 0);
2809
2810 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2811 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2812
2813 if (rt2560_bbp_init(sc) != 0) {
2814 rt2560_stop(ifp, 1);
2815 return EIO;
2816 }
2817
2818 rt2560_set_txantenna(sc, 1);
2819 rt2560_set_rxantenna(sc, 1);
2820
2821 /* set default BSS channel */
2822 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2823 rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2824
2825 /* kick Rx */
2826 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2827 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2828 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2829 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2830 tmp |= RT2560_DROP_TODS;
2831 if (!(ifp->if_flags & IFF_PROMISC))
2832 tmp |= RT2560_DROP_NOT_TO_ME;
2833 }
2834 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2835
2836 /* clear old FCS and Rx FIFO errors */
2837 RAL_READ(sc, RT2560_CNT0);
2838 RAL_READ(sc, RT2560_CNT4);
2839
2840 /* clear any pending interrupts */
2841 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2842
2843 /* enable interrupts */
2844 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2845
2846 ifp->if_flags &= ~IFF_OACTIVE;
2847 ifp->if_flags |= IFF_RUNNING;
2848
2849 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2850 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2851 else
2852 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2853
2854 return 0;
2855 #undef N
2856 }
2857
2858 static void
2859 rt2560_stop(struct ifnet *ifp, int disable)
2860 {
2861 struct rt2560_softc *sc = ifp->if_softc;
2862 struct ieee80211com *ic = &sc->sc_ic;
2863
2864 sc->sc_tx_timer = 0;
2865 ifp->if_timer = 0;
2866 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2867
2868 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2869
2870 /* abort Tx */
2871 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2872
2873 /* disable Rx */
2874 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2875
2876 /* reset ASIC (and thus, BBP) */
2877 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2878 RAL_WRITE(sc, RT2560_CSR1, 0);
2879
2880 /* disable interrupts */
2881 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2882
2883 /* clear any pending interrupt */
2884 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2885
2886 /* reset Tx and Rx rings */
2887 rt2560_reset_tx_ring(sc, &sc->txq);
2888 rt2560_reset_tx_ring(sc, &sc->atimq);
2889 rt2560_reset_tx_ring(sc, &sc->prioq);
2890 rt2560_reset_tx_ring(sc, &sc->bcnq);
2891 rt2560_reset_rx_ring(sc, &sc->rxq);
2892
2893 }
2894