Home | History | Annotate | Line # | Download | only in ic
rt2560.c revision 1.22.2.1
      1 /*	$NetBSD: rt2560.c,v 1.22.2.1 2010/04/30 14:43:20 uebayasi Exp $	*/
      2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
      3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
      4 
      5 /*-
      6  * Copyright (c) 2005, 2006
      7  *	Damien Bergamini <damien.bergamini (at) free.fr>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*-
     23  * Ralink Technology RT2560 chipset driver
     24  * http://www.ralinktech.com/
     25  */
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.22.2.1 2010/04/30 14:43:20 uebayasi Exp $");
     28 
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/callout.h>
     38 #include <sys/conf.h>
     39 #include <sys/device.h>
     40 
     41 #include <sys/bus.h>
     42 #include <machine/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <net/bpf.h>
     46 #include <net/if.h>
     47 #include <net/if_arp.h>
     48 #include <net/if_dl.h>
     49 #include <net/if_media.h>
     50 #include <net/if_types.h>
     51 #include <net/if_ether.h>
     52 
     53 #include <netinet/in.h>
     54 #include <netinet/in_systm.h>
     55 #include <netinet/in_var.h>
     56 #include <netinet/ip.h>
     57 
     58 #include <net80211/ieee80211_var.h>
     59 #include <net80211/ieee80211_rssadapt.h>
     60 #include <net80211/ieee80211_radiotap.h>
     61 
     62 #include <dev/ic/rt2560reg.h>
     63 #include <dev/ic/rt2560var.h>
     64 
     65 #include <dev/pci/pcireg.h>
     66 #include <dev/pci/pcivar.h>
     67 #include <dev/pci/pcidevs.h>
     68 
     69 #ifdef RAL_DEBUG
     70 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
     71 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
     72 int rt2560_debug = 0;
     73 #else
     74 #define DPRINTF(x)
     75 #define DPRINTFN(n, x)
     76 #endif
     77 
     78 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
     79 		    struct rt2560_tx_ring *, int);
     80 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
     81 		    struct rt2560_tx_ring *);
     82 static void	rt2560_free_tx_ring(struct rt2560_softc *,
     83 		    struct rt2560_tx_ring *);
     84 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
     85 		    struct rt2560_rx_ring *, int);
     86 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
     87 		    struct rt2560_rx_ring *);
     88 static void	rt2560_free_rx_ring(struct rt2560_softc *,
     89 		    struct rt2560_rx_ring *);
     90 static struct ieee80211_node *
     91 		rt2560_node_alloc(struct ieee80211_node_table *);
     92 static int	rt2560_media_change(struct ifnet *);
     93 static void	rt2560_next_scan(void *);
     94 static void	rt2560_iter_func(void *, struct ieee80211_node *);
     95 static void	rt2560_update_rssadapt(void *);
     96 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
     97     		    int);
     98 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
     99 static void	rt2560_encryption_intr(struct rt2560_softc *);
    100 static void	rt2560_tx_intr(struct rt2560_softc *);
    101 static void	rt2560_prio_intr(struct rt2560_softc *);
    102 static void	rt2560_decryption_intr(struct rt2560_softc *);
    103 static void	rt2560_rx_intr(struct rt2560_softc *);
    104 static void	rt2560_beacon_expire(struct rt2560_softc *);
    105 static void	rt2560_wakeup_expire(struct rt2560_softc *);
    106 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
    107 static int	rt2560_ack_rate(struct ieee80211com *, int);
    108 static uint16_t	rt2560_txtime(int, int, uint32_t);
    109 static uint8_t	rt2560_plcp_signal(int);
    110 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
    111 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
    112 		    bus_addr_t);
    113 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
    114 		    struct ieee80211_node *);
    115 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
    116 		    struct ieee80211_node *);
    117 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
    118 		    struct ieee80211_frame *, uint16_t);
    119 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
    120 		    struct ieee80211_node *);
    121 static void	rt2560_start(struct ifnet *);
    122 static void	rt2560_watchdog(struct ifnet *);
    123 static int	rt2560_reset(struct ifnet *);
    124 static int	rt2560_ioctl(struct ifnet *, u_long, void *);
    125 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
    126 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
    127 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
    128 static void	rt2560_set_chan(struct rt2560_softc *,
    129 		    struct ieee80211_channel *);
    130 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
    131 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
    132 static void	rt2560_update_plcp(struct rt2560_softc *);
    133 static void	rt2560_update_slot(struct ifnet *);
    134 static void	rt2560_set_basicrates(struct rt2560_softc *);
    135 static void	rt2560_update_led(struct rt2560_softc *, int, int);
    136 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
    137 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
    138 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
    139 static void	rt2560_update_promisc(struct rt2560_softc *);
    140 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
    141 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
    142 static const char *rt2560_get_rf(int);
    143 static void	rt2560_read_eeprom(struct rt2560_softc *);
    144 static int	rt2560_bbp_init(struct rt2560_softc *);
    145 static int	rt2560_init(struct ifnet *);
    146 static void	rt2560_stop(struct ifnet *, int);
    147 
    148 /*
    149  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    150  */
    151 static const struct ieee80211_rateset rt2560_rateset_11a =
    152 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    153 
    154 static const struct ieee80211_rateset rt2560_rateset_11b =
    155 	{ 4, { 2, 4, 11, 22 } };
    156 
    157 static const struct ieee80211_rateset rt2560_rateset_11g =
    158 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    159 
    160 /*
    161  * Default values for MAC registers; values taken from the reference driver.
    162  */
    163 static const struct {
    164 	uint32_t	reg;
    165 	uint32_t	val;
    166 } rt2560_def_mac[] = {
    167 	{ RT2560_PSCSR0,      0x00020002 },
    168 	{ RT2560_PSCSR1,      0x00000002 },
    169 	{ RT2560_PSCSR2,      0x00020002 },
    170 	{ RT2560_PSCSR3,      0x00000002 },
    171 	{ RT2560_TIMECSR,     0x00003f21 },
    172 	{ RT2560_CSR9,        0x00000780 },
    173 	{ RT2560_CSR11,       0x07041483 },
    174 	{ RT2560_CNT3,        0x00000000 },
    175 	{ RT2560_TXCSR1,      0x07614562 },
    176 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
    177 	{ RT2560_ACKPCTCSR,   0x7038140a },
    178 	{ RT2560_ARTCSR1,     0x1d21252d },
    179 	{ RT2560_ARTCSR2,     0x1919191d },
    180 	{ RT2560_RXCSR0,      0xffffffff },
    181 	{ RT2560_RXCSR3,      0xb3aab3af },
    182 	{ RT2560_PCICSR,      0x000003b8 },
    183 	{ RT2560_PWRCSR0,     0x3f3b3100 },
    184 	{ RT2560_GPIOCSR,     0x0000ff00 },
    185 	{ RT2560_TESTCSR,     0x000000f0 },
    186 	{ RT2560_PWRCSR1,     0x000001ff },
    187 	{ RT2560_MACCSR0,     0x00213223 },
    188 	{ RT2560_MACCSR1,     0x00235518 },
    189 	{ RT2560_RLPWCSR,     0x00000040 },
    190 	{ RT2560_RALINKCSR,   0x9a009a11 },
    191 	{ RT2560_CSR7,        0xffffffff },
    192 	{ RT2560_BBPCSR1,     0x82188200 },
    193 	{ RT2560_TXACKCSR0,   0x00000020 },
    194 	{ RT2560_SECCSR3,     0x0000e78f }
    195 };
    196 
    197 /*
    198  * Default values for BBP registers; values taken from the reference driver.
    199  */
    200 static const struct {
    201 	uint8_t	reg;
    202 	uint8_t	val;
    203 } rt2560_def_bbp[] = {
    204 	{  3, 0x02 },
    205 	{  4, 0x19 },
    206 	{ 14, 0x1c },
    207 	{ 15, 0x30 },
    208 	{ 16, 0xac },
    209 	{ 17, 0x48 },
    210 	{ 18, 0x18 },
    211 	{ 19, 0xff },
    212 	{ 20, 0x1e },
    213 	{ 21, 0x08 },
    214 	{ 22, 0x08 },
    215 	{ 23, 0x08 },
    216 	{ 24, 0x80 },
    217 	{ 25, 0x50 },
    218 	{ 26, 0x08 },
    219 	{ 27, 0x23 },
    220 	{ 30, 0x10 },
    221 	{ 31, 0x2b },
    222 	{ 32, 0xb9 },
    223 	{ 34, 0x12 },
    224 	{ 35, 0x50 },
    225 	{ 39, 0xc4 },
    226 	{ 40, 0x02 },
    227 	{ 41, 0x60 },
    228 	{ 53, 0x10 },
    229 	{ 54, 0x18 },
    230 	{ 56, 0x08 },
    231 	{ 57, 0x10 },
    232 	{ 58, 0x08 },
    233 	{ 61, 0x60 },
    234 	{ 62, 0x10 },
    235 	{ 75, 0xff }
    236 };
    237 
    238 /*
    239  * Default values for RF register R2 indexed by channel numbers; values taken
    240  * from the reference driver.
    241  */
    242 static const uint32_t rt2560_rf2522_r2[] = {
    243 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
    244 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
    245 };
    246 
    247 static const uint32_t rt2560_rf2523_r2[] = {
    248 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    249 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    250 };
    251 
    252 static const uint32_t rt2560_rf2524_r2[] = {
    253 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    254 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    255 };
    256 
    257 static const uint32_t rt2560_rf2525_r2[] = {
    258 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
    259 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
    260 };
    261 
    262 static const uint32_t rt2560_rf2525_hi_r2[] = {
    263 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
    264 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
    265 };
    266 
    267 static const uint32_t rt2560_rf2525e_r2[] = {
    268 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
    269 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
    270 };
    271 
    272 static const uint32_t rt2560_rf2526_hi_r2[] = {
    273 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
    274 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
    275 };
    276 
    277 static const uint32_t rt2560_rf2526_r2[] = {
    278 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
    279 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
    280 };
    281 
    282 /*
    283  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
    284  * values taken from the reference driver.
    285  */
    286 static const struct {
    287 	uint8_t		chan;
    288 	uint32_t	r1;
    289 	uint32_t	r2;
    290 	uint32_t	r4;
    291 } rt2560_rf5222[] = {
    292 	{   1, 0x08808, 0x0044d, 0x00282 },
    293 	{   2, 0x08808, 0x0044e, 0x00282 },
    294 	{   3, 0x08808, 0x0044f, 0x00282 },
    295 	{   4, 0x08808, 0x00460, 0x00282 },
    296 	{   5, 0x08808, 0x00461, 0x00282 },
    297 	{   6, 0x08808, 0x00462, 0x00282 },
    298 	{   7, 0x08808, 0x00463, 0x00282 },
    299 	{   8, 0x08808, 0x00464, 0x00282 },
    300 	{   9, 0x08808, 0x00465, 0x00282 },
    301 	{  10, 0x08808, 0x00466, 0x00282 },
    302 	{  11, 0x08808, 0x00467, 0x00282 },
    303 	{  12, 0x08808, 0x00468, 0x00282 },
    304 	{  13, 0x08808, 0x00469, 0x00282 },
    305 	{  14, 0x08808, 0x0046b, 0x00286 },
    306 
    307 	{  36, 0x08804, 0x06225, 0x00287 },
    308 	{  40, 0x08804, 0x06226, 0x00287 },
    309 	{  44, 0x08804, 0x06227, 0x00287 },
    310 	{  48, 0x08804, 0x06228, 0x00287 },
    311 	{  52, 0x08804, 0x06229, 0x00287 },
    312 	{  56, 0x08804, 0x0622a, 0x00287 },
    313 	{  60, 0x08804, 0x0622b, 0x00287 },
    314 	{  64, 0x08804, 0x0622c, 0x00287 },
    315 
    316 	{ 100, 0x08804, 0x02200, 0x00283 },
    317 	{ 104, 0x08804, 0x02201, 0x00283 },
    318 	{ 108, 0x08804, 0x02202, 0x00283 },
    319 	{ 112, 0x08804, 0x02203, 0x00283 },
    320 	{ 116, 0x08804, 0x02204, 0x00283 },
    321 	{ 120, 0x08804, 0x02205, 0x00283 },
    322 	{ 124, 0x08804, 0x02206, 0x00283 },
    323 	{ 128, 0x08804, 0x02207, 0x00283 },
    324 	{ 132, 0x08804, 0x02208, 0x00283 },
    325 	{ 136, 0x08804, 0x02209, 0x00283 },
    326 	{ 140, 0x08804, 0x0220a, 0x00283 },
    327 
    328 	{ 149, 0x08808, 0x02429, 0x00281 },
    329 	{ 153, 0x08808, 0x0242b, 0x00281 },
    330 	{ 157, 0x08808, 0x0242d, 0x00281 },
    331 	{ 161, 0x08808, 0x0242f, 0x00281 }
    332 };
    333 
    334 int
    335 rt2560_attach(void *xsc, int id)
    336 {
    337 	struct rt2560_softc *sc = xsc;
    338 	struct ieee80211com *ic = &sc->sc_ic;
    339 	struct ifnet *ifp = &sc->sc_if;
    340 	int error, i;
    341 
    342 	callout_init(&sc->scan_ch, 0);
    343 	callout_init(&sc->rssadapt_ch, 0);
    344 
    345 	/* retrieve RT2560 rev. no */
    346 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
    347 
    348 	/* retrieve MAC address */
    349 	rt2560_get_macaddr(sc, ic->ic_myaddr);
    350 
    351 	aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
    352 	    ether_sprintf(ic->ic_myaddr));
    353 
    354 	/* retrieve RF rev. no and various other things from EEPROM */
    355 	rt2560_read_eeprom(sc);
    356 
    357 	aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
    358 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
    359 
    360 	/*
    361 	 * Allocate Tx and Rx rings.
    362 	 */
    363 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
    364 	if (error != 0) {
    365 		aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring\n)");
    366 		goto fail1;
    367 	}
    368 
    369 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
    370 	if (error != 0) {
    371 		aprint_error_dev(&sc->sc_dev, "could not allocate ATIM ring\n");
    372 		goto fail2;
    373 	}
    374 
    375 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
    376 	if (error != 0) {
    377 		aprint_error_dev(&sc->sc_dev, "could not allocate Prio ring\n");
    378 		goto fail3;
    379 	}
    380 
    381 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
    382 	if (error != 0) {
    383 		aprint_error_dev(&sc->sc_dev, "could not allocate Beacon ring\n");
    384 		goto fail4;
    385 	}
    386 
    387 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
    388 	if (error != 0) {
    389 		aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
    390 		goto fail5;
    391 	}
    392 
    393 	ifp->if_softc = sc;
    394 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    395 	ifp->if_init = rt2560_init;
    396 	ifp->if_stop = rt2560_stop;
    397 	ifp->if_ioctl = rt2560_ioctl;
    398 	ifp->if_start = rt2560_start;
    399 	ifp->if_watchdog = rt2560_watchdog;
    400 	IFQ_SET_READY(&ifp->if_snd);
    401 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    402 
    403 	ic->ic_ifp = ifp;
    404 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    405 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    406 	ic->ic_state = IEEE80211_S_INIT;
    407 
    408 	/* set device capabilities */
    409 	ic->ic_caps =
    410 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    411 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    412 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    413 	    IEEE80211_C_TXPMGT |	/* tx power management */
    414 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    415 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    416 	    IEEE80211_C_WPA;		/* 802.11i */
    417 
    418 	if (sc->rf_rev == RT2560_RF_5222) {
    419 		/* set supported .11a rates */
    420 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
    421 
    422 		/* set supported .11a channels */
    423 		for (i = 36; i <= 64; i += 4) {
    424 			ic->ic_channels[i].ic_freq =
    425 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    426 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    427 		}
    428 		for (i = 100; i <= 140; i += 4) {
    429 			ic->ic_channels[i].ic_freq =
    430 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    431 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    432 		}
    433 		for (i = 149; i <= 161; i += 4) {
    434 			ic->ic_channels[i].ic_freq =
    435 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    436 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    437 		}
    438 	}
    439 
    440 	/* set supported .11b and .11g rates */
    441 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
    442 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
    443 
    444 	/* set supported .11b and .11g channels (1 through 14) */
    445 	for (i = 1; i <= 14; i++) {
    446 		ic->ic_channels[i].ic_freq =
    447 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    448 		ic->ic_channels[i].ic_flags =
    449 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    450 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    451 	}
    452 
    453 	if_attach(ifp);
    454 	ieee80211_ifattach(ic);
    455 	ic->ic_node_alloc = rt2560_node_alloc;
    456 	ic->ic_updateslot = rt2560_update_slot;
    457 	ic->ic_reset = rt2560_reset;
    458 
    459 	/* override state transition machine */
    460 	sc->sc_newstate = ic->ic_newstate;
    461 	ic->ic_newstate = rt2560_newstate;
    462 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
    463 
    464 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    465 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
    466 
    467 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    468 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    469 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
    470 
    471 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    472 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    473 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
    474 
    475 
    476 	sc->dwelltime = 200;
    477 
    478 	ieee80211_announce(ic);
    479 
    480 	if (pmf_device_register(&sc->sc_dev, NULL, NULL))
    481 		pmf_class_network_register(&sc->sc_dev, ifp);
    482 	else
    483 		aprint_error_dev(&sc->sc_dev,
    484 		    "couldn't establish power handler\n");
    485 
    486 	return 0;
    487 
    488 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
    489 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
    490 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
    491 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
    492 fail1:
    493 	return ENXIO;
    494 }
    495 
    496 
    497 int
    498 rt2560_detach(void *xsc)
    499 {
    500 	struct rt2560_softc *sc = xsc;
    501 	struct ifnet *ifp = &sc->sc_if;
    502 
    503 	callout_stop(&sc->scan_ch);
    504 	callout_stop(&sc->rssadapt_ch);
    505 
    506 	pmf_device_deregister(&sc->sc_dev);
    507 
    508 	rt2560_stop(ifp, 1);
    509 
    510 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
    511 	if_detach(ifp);
    512 
    513 	rt2560_free_tx_ring(sc, &sc->txq);
    514 	rt2560_free_tx_ring(sc, &sc->atimq);
    515 	rt2560_free_tx_ring(sc, &sc->prioq);
    516 	rt2560_free_tx_ring(sc, &sc->bcnq);
    517 	rt2560_free_rx_ring(sc, &sc->rxq);
    518 
    519 	return 0;
    520 }
    521 
    522 int
    523 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
    524     int count)
    525 {
    526 	int i, nsegs, error;
    527 
    528 	ring->count = count;
    529 	ring->queued = 0;
    530 	ring->cur = ring->next = 0;
    531 	ring->cur_encrypt = ring->next_encrypt = 0;
    532 
    533 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
    534 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    535 	if (error != 0) {
    536 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
    537 		goto fail;
    538 	}
    539 
    540 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
    541 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    542 	if (error != 0) {
    543 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
    544 		goto fail;
    545 	}
    546 
    547 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    548 	    count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
    549 	    BUS_DMA_NOWAIT);
    550 	if (error != 0) {
    551 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
    552 		goto fail;
    553 	}
    554 
    555 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    556 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    557 	if (error != 0) {
    558 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
    559 		goto fail;
    560 	}
    561 
    562 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
    563 	ring->physaddr = ring->map->dm_segs->ds_addr;
    564 
    565 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
    566 	    M_NOWAIT);
    567 	if (ring->data == NULL) {
    568 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
    569 		error = ENOMEM;
    570 		goto fail;
    571 	}
    572 
    573 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
    574 	for (i = 0; i < count; i++) {
    575 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    576 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
    577 		    &ring->data[i].map);
    578 		if (error != 0) {
    579 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
    580 			goto fail;
    581 		}
    582 	}
    583 
    584 	return 0;
    585 
    586 fail:	rt2560_free_tx_ring(sc, ring);
    587 	return error;
    588 }
    589 
    590 void
    591 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    592 {
    593 	struct rt2560_tx_desc *desc;
    594 	struct rt2560_tx_data *data;
    595 	int i;
    596 
    597 	for (i = 0; i < ring->count; i++) {
    598 		desc = &ring->desc[i];
    599 		data = &ring->data[i];
    600 
    601 		if (data->m != NULL) {
    602 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    603 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    604 			bus_dmamap_unload(sc->sc_dmat, data->map);
    605 			m_freem(data->m);
    606 			data->m = NULL;
    607 		}
    608 
    609 		if (data->ni != NULL) {
    610 			ieee80211_free_node(data->ni);
    611 			data->ni = NULL;
    612 		}
    613 
    614 		desc->flags = 0;
    615 	}
    616 
    617 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    618 	    BUS_DMASYNC_PREWRITE);
    619 
    620 	ring->queued = 0;
    621 	ring->cur = ring->next = 0;
    622 	ring->cur_encrypt = ring->next_encrypt = 0;
    623 }
    624 
    625 void
    626 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    627 {
    628 	struct rt2560_tx_data *data;
    629 	int i;
    630 
    631 	if (ring->desc != NULL) {
    632 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    633 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    634 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    635 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    636 		    ring->count * RT2560_TX_DESC_SIZE);
    637 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    638 	}
    639 
    640 	if (ring->data != NULL) {
    641 		for (i = 0; i < ring->count; i++) {
    642 			data = &ring->data[i];
    643 
    644 			if (data->m != NULL) {
    645 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    646 				    data->map->dm_mapsize,
    647 				    BUS_DMASYNC_POSTWRITE);
    648 				bus_dmamap_unload(sc->sc_dmat, data->map);
    649 				m_freem(data->m);
    650 			}
    651 
    652 			if (data->ni != NULL)
    653 				ieee80211_free_node(data->ni);
    654 
    655 
    656 			if (data->map != NULL)
    657 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    658 		}
    659 		free(ring->data, M_DEVBUF);
    660 	}
    661 }
    662 
    663 int
    664 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
    665     int count)
    666 {
    667 	struct rt2560_rx_desc *desc;
    668 	struct rt2560_rx_data *data;
    669 	int i, nsegs, error;
    670 
    671 	ring->count = count;
    672 	ring->cur = ring->next = 0;
    673 	ring->cur_decrypt = 0;
    674 
    675 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
    676 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    677 	if (error != 0) {
    678 		aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
    679 		goto fail;
    680 	}
    681 
    682 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
    683 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    684 	if (error != 0) {
    685 		aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
    686 		goto fail;
    687 	}
    688 
    689 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    690 	    count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
    691 	    BUS_DMA_NOWAIT);
    692 	if (error != 0) {
    693 		aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
    694 		goto fail;
    695 	}
    696 
    697 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    698 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    699 	if (error != 0) {
    700 		aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
    701 		goto fail;
    702 	}
    703 
    704 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
    705 	ring->physaddr = ring->map->dm_segs->ds_addr;
    706 
    707 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
    708 	    M_NOWAIT);
    709 	if (ring->data == NULL) {
    710 		aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
    711 		error = ENOMEM;
    712 		goto fail;
    713 	}
    714 
    715 	/*
    716 	 * Pre-allocate Rx buffers and populate Rx ring.
    717 	 */
    718 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
    719 	for (i = 0; i < count; i++) {
    720 		desc = &sc->rxq.desc[i];
    721 		data = &sc->rxq.data[i];
    722 
    723 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    724 		    0, BUS_DMA_NOWAIT, &data->map);
    725 		if (error != 0) {
    726 			aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
    727 			goto fail;
    728 		}
    729 
    730 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    731 		if (data->m == NULL) {
    732 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
    733 			error = ENOMEM;
    734 			goto fail;
    735 		}
    736 
    737 		MCLGET(data->m, M_DONTWAIT);
    738 		if (!(data->m->m_flags & M_EXT)) {
    739 			aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
    740 			error = ENOMEM;
    741 			goto fail;
    742 		}
    743 
    744 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    745 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
    746 		if (error != 0) {
    747 			aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
    748 			goto fail;
    749 		}
    750 
    751 		desc->flags = htole32(RT2560_RX_BUSY);
    752 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
    753 	}
    754 
    755 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    756 	    BUS_DMASYNC_PREWRITE);
    757 
    758 	return 0;
    759 
    760 fail:	rt2560_free_rx_ring(sc, ring);
    761 	return error;
    762 }
    763 
    764 void
    765 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    766 {
    767 	int i;
    768 
    769 	for (i = 0; i < ring->count; i++) {
    770 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
    771 		ring->data[i].drop = 0;
    772 	}
    773 
    774 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    775 	    BUS_DMASYNC_PREWRITE);
    776 
    777 	ring->cur = ring->next = 0;
    778 	ring->cur_decrypt = 0;
    779 }
    780 
    781 void
    782 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    783 {
    784 	struct rt2560_rx_data *data;
    785 	int i;
    786 
    787 	if (ring->desc != NULL) {
    788 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    789 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    790 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    791 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    792 		    ring->count * RT2560_RX_DESC_SIZE);
    793 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    794 	}
    795 
    796 	if (ring->data != NULL) {
    797 		for (i = 0; i < ring->count; i++) {
    798 			data = &ring->data[i];
    799 
    800 			if (data->m != NULL) {
    801 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    802 				    data->map->dm_mapsize,
    803 				    BUS_DMASYNC_POSTREAD);
    804 				bus_dmamap_unload(sc->sc_dmat, data->map);
    805 				m_freem(data->m);
    806 			}
    807 
    808 			if (data->map != NULL)
    809 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    810 		}
    811 		free(ring->data, M_DEVBUF);
    812 	}
    813 }
    814 
    815 struct ieee80211_node *
    816 rt2560_node_alloc(struct ieee80211_node_table *nt)
    817 {
    818 	struct rt2560_node *rn;
    819 
    820 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
    821 	    M_NOWAIT | M_ZERO);
    822 
    823 	return (rn != NULL) ? &rn->ni : NULL;
    824 }
    825 
    826 int
    827 rt2560_media_change(struct ifnet *ifp)
    828 {
    829 	int error;
    830 
    831 	error = ieee80211_media_change(ifp);
    832 	if (error != ENETRESET)
    833 		return error;
    834 
    835 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    836 		rt2560_init(ifp);
    837 
    838 	return 0;
    839 }
    840 
    841 /*
    842  * This function is called periodically (every 200ms) during scanning to
    843  * switch from one channel to another.
    844  */
    845 void
    846 rt2560_next_scan(void *arg)
    847 {
    848 	struct rt2560_softc *sc = arg;
    849 	struct ieee80211com *ic = &sc->sc_ic;
    850 
    851 	if (ic->ic_state == IEEE80211_S_SCAN)
    852 		ieee80211_next_scan(ic);
    853 }
    854 
    855 /*
    856  * This function is called for each neighbor node.
    857  */
    858 void
    859 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
    860 {
    861 	struct rt2560_node *rn = (struct rt2560_node *)ni;
    862 
    863 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
    864 }
    865 
    866 /*
    867  * This function is called periodically (every 100ms) in RUN state to update
    868  * the rate adaptation statistics.
    869  */
    870 void
    871 rt2560_update_rssadapt(void *arg)
    872 {
    873 	struct rt2560_softc *sc = arg;
    874 	struct ieee80211com *ic = &sc->sc_ic;
    875 
    876 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
    877 
    878 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
    879 }
    880 
    881 int
    882 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    883 {
    884 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
    885 	enum ieee80211_state ostate;
    886 	struct ieee80211_node *ni;
    887 	struct mbuf *m;
    888 	int error = 0;
    889 
    890 	ostate = ic->ic_state;
    891 	callout_stop(&sc->scan_ch);
    892 
    893 	switch (nstate) {
    894 	case IEEE80211_S_INIT:
    895 		callout_stop(&sc->rssadapt_ch);
    896 
    897 		if (ostate == IEEE80211_S_RUN) {
    898 			/* abort TSF synchronization */
    899 			RAL_WRITE(sc, RT2560_CSR14, 0);
    900 
    901 			/* turn association led off */
    902 			rt2560_update_led(sc, 0, 0);
    903 		}
    904 		break;
    905 
    906 	case IEEE80211_S_SCAN:
    907 		rt2560_set_chan(sc, ic->ic_curchan);
    908 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
    909 		    rt2560_next_scan, sc);
    910 		break;
    911 
    912 	case IEEE80211_S_AUTH:
    913 		rt2560_set_chan(sc, ic->ic_curchan);
    914 		break;
    915 
    916 	case IEEE80211_S_ASSOC:
    917 		rt2560_set_chan(sc, ic->ic_curchan);
    918 		break;
    919 
    920 	case IEEE80211_S_RUN:
    921 		rt2560_set_chan(sc, ic->ic_curchan);
    922 
    923 		ni = ic->ic_bss;
    924 
    925 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    926 			rt2560_update_plcp(sc);
    927 			rt2560_set_basicrates(sc);
    928 			rt2560_set_bssid(sc, ni->ni_bssid);
    929 		}
    930 
    931 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    932 		    ic->ic_opmode == IEEE80211_M_IBSS) {
    933 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
    934 			if (m == NULL) {
    935 				aprint_error_dev(&sc->sc_dev, "could not allocate beacon\n");
    936 				error = ENOBUFS;
    937 				break;
    938 			}
    939 
    940 			ieee80211_ref_node(ni);
    941 			error = rt2560_tx_bcn(sc, m, ni);
    942 			if (error != 0)
    943 				break;
    944 		}
    945 
    946 		/* turn assocation led on */
    947 		rt2560_update_led(sc, 1, 0);
    948 
    949 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    950 			callout_reset(&sc->rssadapt_ch, hz / 10,
    951 			    rt2560_update_rssadapt, sc);
    952 			rt2560_enable_tsf_sync(sc);
    953 		}
    954 		break;
    955 	}
    956 
    957 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
    958 }
    959 
    960 /*
    961  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
    962  * 93C66).
    963  */
    964 uint16_t
    965 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
    966 {
    967 	uint32_t tmp;
    968 	uint16_t val;
    969 	int n;
    970 
    971 	/* clock C once before the first command */
    972 	RT2560_EEPROM_CTL(sc, 0);
    973 
    974 	RT2560_EEPROM_CTL(sc, RT2560_S);
    975 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
    976 	RT2560_EEPROM_CTL(sc, RT2560_S);
    977 
    978 	/* write start bit (1) */
    979 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
    980 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
    981 
    982 	/* write READ opcode (10) */
    983 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
    984 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
    985 	RT2560_EEPROM_CTL(sc, RT2560_S);
    986 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
    987 
    988 	/* write address (A5-A0 or A7-A0) */
    989 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
    990 	for (; n >= 0; n--) {
    991 		RT2560_EEPROM_CTL(sc, RT2560_S |
    992 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
    993 		RT2560_EEPROM_CTL(sc, RT2560_S |
    994 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
    995 	}
    996 
    997 	RT2560_EEPROM_CTL(sc, RT2560_S);
    998 
    999 	/* read data Q15-Q0 */
   1000 	val = 0;
   1001 	for (n = 15; n >= 0; n--) {
   1002 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
   1003 		tmp = RAL_READ(sc, RT2560_CSR21);
   1004 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
   1005 		RT2560_EEPROM_CTL(sc, RT2560_S);
   1006 	}
   1007 
   1008 	RT2560_EEPROM_CTL(sc, 0);
   1009 
   1010 	/* clear Chip Select and clock C */
   1011 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1012 	RT2560_EEPROM_CTL(sc, 0);
   1013 	RT2560_EEPROM_CTL(sc, RT2560_C);
   1014 
   1015 	return val;
   1016 }
   1017 
   1018 /*
   1019  * Some frames were processed by the hardware cipher engine and are ready for
   1020  * transmission.
   1021  */
   1022 void
   1023 rt2560_encryption_intr(struct rt2560_softc *sc)
   1024 {
   1025 	struct rt2560_tx_desc *desc;
   1026 	int hw;
   1027 
   1028 	/* retrieve last descriptor index processed by cipher engine */
   1029 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
   1030 	    RT2560_TX_DESC_SIZE;
   1031 
   1032 	for (; sc->txq.next_encrypt != hw;) {
   1033 		desc = &sc->txq.desc[sc->txq.next_encrypt];
   1034 
   1035 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1036 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1037 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1038 
   1039 		if (le32toh(desc->flags) &
   1040 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
   1041 			break;
   1042 
   1043 		/* for TKIP, swap eiv field to fix a bug in ASIC */
   1044 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
   1045 		    RT2560_TX_CIPHER_TKIP)
   1046 			desc->eiv = bswap32(desc->eiv);
   1047 
   1048 		/* mark the frame ready for transmission */
   1049 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1050 
   1051 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1052 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1053 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1054 
   1055 		DPRINTFN(15, ("encryption done idx=%u\n",
   1056 		    sc->txq.next_encrypt));
   1057 
   1058 		sc->txq.next_encrypt =
   1059 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
   1060 	}
   1061 
   1062 	/* kick Tx */
   1063 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
   1064 }
   1065 
   1066 void
   1067 rt2560_tx_intr(struct rt2560_softc *sc)
   1068 {
   1069 	struct ieee80211com *ic = &sc->sc_ic;
   1070 	struct ifnet *ifp = ic->ic_ifp;
   1071 	struct rt2560_tx_desc *desc;
   1072 	struct rt2560_tx_data *data;
   1073 	struct rt2560_node *rn;
   1074 
   1075 	for (;;) {
   1076 		desc = &sc->txq.desc[sc->txq.next];
   1077 		data = &sc->txq.data[sc->txq.next];
   1078 
   1079 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1080 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1081 		    BUS_DMASYNC_POSTREAD);
   1082 
   1083 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1084 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
   1085 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1086 			break;
   1087 
   1088 		rn = (struct rt2560_node *)data->ni;
   1089 
   1090 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1091 		case RT2560_TX_SUCCESS:
   1092 			DPRINTFN(10, ("data frame sent successfully\n"));
   1093 			if (data->id.id_node != NULL) {
   1094 				ieee80211_rssadapt_raise_rate(ic,
   1095 				    &rn->rssadapt, &data->id);
   1096 			}
   1097 			ifp->if_opackets++;
   1098 			break;
   1099 
   1100 		case RT2560_TX_SUCCESS_RETRY:
   1101 			DPRINTFN(9, ("data frame sent after %u retries\n",
   1102 			    (le32toh(desc->flags) >> 5) & 0x7));
   1103 			ifp->if_opackets++;
   1104 			break;
   1105 
   1106 		case RT2560_TX_FAIL_RETRY:
   1107 			DPRINTFN(9, ("sending data frame failed (too much "
   1108 			    "retries)\n"));
   1109 			if (data->id.id_node != NULL) {
   1110 				ieee80211_rssadapt_lower_rate(ic, data->ni,
   1111 				    &rn->rssadapt, &data->id);
   1112 			}
   1113 			ifp->if_oerrors++;
   1114 			break;
   1115 
   1116 		case RT2560_TX_FAIL_INVALID:
   1117 		case RT2560_TX_FAIL_OTHER:
   1118 		default:
   1119 			aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n",
   1120 			    le32toh(desc->flags));
   1121 			ifp->if_oerrors++;
   1122 		}
   1123 
   1124 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1125 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1126 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1127 		m_freem(data->m);
   1128 		data->m = NULL;
   1129 		ieee80211_free_node(data->ni);
   1130 		data->ni = NULL;
   1131 
   1132 		/* descriptor is no longer valid */
   1133 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1134 
   1135 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1136 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1137 		    BUS_DMASYNC_PREWRITE);
   1138 
   1139 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
   1140 
   1141 		sc->txq.queued--;
   1142 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
   1143 	}
   1144 
   1145 	sc->sc_tx_timer = 0;
   1146 	ifp->if_flags &= ~IFF_OACTIVE;
   1147 	rt2560_start(ifp);
   1148 }
   1149 
   1150 void
   1151 rt2560_prio_intr(struct rt2560_softc *sc)
   1152 {
   1153 	struct ieee80211com *ic = &sc->sc_ic;
   1154 	struct ifnet *ifp = ic->ic_ifp;
   1155 	struct rt2560_tx_desc *desc;
   1156 	struct rt2560_tx_data *data;
   1157 
   1158 	for (;;) {
   1159 		desc = &sc->prioq.desc[sc->prioq.next];
   1160 		data = &sc->prioq.data[sc->prioq.next];
   1161 
   1162 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1163 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1164 		    BUS_DMASYNC_POSTREAD);
   1165 
   1166 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1167 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1168 			break;
   1169 
   1170 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1171 		case RT2560_TX_SUCCESS:
   1172 			DPRINTFN(10, ("mgt frame sent successfully\n"));
   1173 			break;
   1174 
   1175 		case RT2560_TX_SUCCESS_RETRY:
   1176 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
   1177 			    (le32toh(desc->flags) >> 5) & 0x7));
   1178 			break;
   1179 
   1180 		case RT2560_TX_FAIL_RETRY:
   1181 			DPRINTFN(9, ("sending mgt frame failed (too much "
   1182 			    "retries)\n"));
   1183 			break;
   1184 
   1185 		case RT2560_TX_FAIL_INVALID:
   1186 		case RT2560_TX_FAIL_OTHER:
   1187 		default:
   1188 			aprint_error_dev(&sc->sc_dev, "sending mgt frame failed 0x%08x\n",
   1189 			    le32toh(desc->flags));
   1190 		}
   1191 
   1192 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1193 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1194 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1195 		m_freem(data->m);
   1196 		data->m = NULL;
   1197 		ieee80211_free_node(data->ni);
   1198 		data->ni = NULL;
   1199 
   1200 		/* descriptor is no longer valid */
   1201 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1202 
   1203 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1204 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1205 		    BUS_DMASYNC_PREWRITE);
   1206 
   1207 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
   1208 
   1209 		sc->prioq.queued--;
   1210 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
   1211 	}
   1212 
   1213 	sc->sc_tx_timer = 0;
   1214 	ifp->if_flags &= ~IFF_OACTIVE;
   1215 	rt2560_start(ifp);
   1216 }
   1217 
   1218 /*
   1219  * Some frames were processed by the hardware cipher engine and are ready for
   1220  * transmission to the IEEE802.11 layer.
   1221  */
   1222 void
   1223 rt2560_decryption_intr(struct rt2560_softc *sc)
   1224 {
   1225 	struct ieee80211com *ic = &sc->sc_ic;
   1226 	struct ifnet *ifp = ic->ic_ifp;
   1227 	struct rt2560_rx_desc *desc;
   1228 	struct rt2560_rx_data *data;
   1229 	struct rt2560_node *rn;
   1230 	struct ieee80211_frame *wh;
   1231 	struct ieee80211_node *ni;
   1232 	struct mbuf *mnew, *m;
   1233 	int hw, error;
   1234 
   1235 	/* retrieve last decriptor index processed by cipher engine */
   1236 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
   1237 	    RT2560_RX_DESC_SIZE;
   1238 
   1239 	for (; sc->rxq.cur_decrypt != hw;) {
   1240 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
   1241 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
   1242 
   1243 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1244 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1245 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1246 
   1247 		if (le32toh(desc->flags) &
   1248 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1249 			break;
   1250 
   1251 		if (data->drop) {
   1252 			ifp->if_ierrors++;
   1253 			goto skip;
   1254 		}
   1255 
   1256 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
   1257 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
   1258 			ifp->if_ierrors++;
   1259 			goto skip;
   1260 		}
   1261 
   1262 		/*
   1263 		 * Try to allocate a new mbuf for this ring element and load it
   1264 		 * before processing the current mbuf.  If the ring element
   1265 		 * cannot be loaded, drop the received packet and reuse the old
   1266 		 * mbuf.  In the unlikely case that the old mbuf can't be
   1267 		 * reloaded either, explicitly panic.
   1268 		 */
   1269 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1270 		if (mnew == NULL) {
   1271 			ifp->if_ierrors++;
   1272 			goto skip;
   1273 		}
   1274 
   1275 		MCLGET(mnew, M_DONTWAIT);
   1276 		if (!(mnew->m_flags & M_EXT)) {
   1277 			m_freem(mnew);
   1278 			ifp->if_ierrors++;
   1279 			goto skip;
   1280 		}
   1281 
   1282 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1283 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1284 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1285 
   1286 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1287 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
   1288 		if (error != 0) {
   1289 			m_freem(mnew);
   1290 
   1291 			/* try to reload the old mbuf */
   1292 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1293 			    mtod(data->m, void *), MCLBYTES, NULL,
   1294 			    BUS_DMA_NOWAIT);
   1295 			if (error != 0) {
   1296 				/* very unlikely that it will fail... */
   1297 				panic("%s: could not load old rx mbuf",
   1298 				    device_xname(&sc->sc_dev));
   1299 			}
   1300 			/* physical address may have changed */
   1301 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1302 			ifp->if_ierrors++;
   1303 			goto skip;
   1304 		}
   1305 
   1306 		/*
   1307 		 * New mbuf successfully loaded, update Rx ring and continue
   1308 		 * processing.
   1309 		 */
   1310 		m = data->m;
   1311 		data->m = mnew;
   1312 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1313 
   1314 		/* finalize mbuf */
   1315 		m->m_pkthdr.rcvif = ifp;
   1316 		m->m_pkthdr.len = m->m_len =
   1317 		    (le32toh(desc->flags) >> 16) & 0xfff;
   1318 
   1319 		if (sc->sc_drvbpf != NULL) {
   1320 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
   1321 			uint32_t tsf_lo, tsf_hi;
   1322 
   1323 			/* get timestamp (low and high 32 bits) */
   1324 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
   1325 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
   1326 
   1327 			tap->wr_tsf =
   1328 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
   1329 			tap->wr_flags = 0;
   1330 			tap->wr_rate = rt2560_rxrate(desc);
   1331 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1332 			tap->wr_chan_flags =
   1333 			    htole16(ic->ic_ibss_chan->ic_flags);
   1334 			tap->wr_antenna = sc->rx_ant;
   1335 			tap->wr_antsignal = desc->rssi;
   1336 
   1337 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1338 		}
   1339 
   1340 		wh = mtod(m, struct ieee80211_frame *);
   1341 		ni = ieee80211_find_rxnode(ic,
   1342 		    (struct ieee80211_frame_min *)wh);
   1343 
   1344 		/* send the frame to the 802.11 layer */
   1345 		ieee80211_input(ic, m, ni, desc->rssi, 0);
   1346 
   1347 		/* give rssi to the rate adatation algorithm */
   1348 		rn = (struct rt2560_node *)ni;
   1349 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
   1350 
   1351 		/* node is no longer needed */
   1352 		ieee80211_free_node(ni);
   1353 
   1354 skip:		desc->flags = htole32(RT2560_RX_BUSY);
   1355 
   1356 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1357 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1358 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1359 
   1360 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
   1361 
   1362 		sc->rxq.cur_decrypt =
   1363 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
   1364 	}
   1365 
   1366 	/*
   1367 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
   1368 	 * without calling if_start().
   1369 	 */
   1370 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
   1371 		rt2560_start(ifp);
   1372 }
   1373 
   1374 /*
   1375  * Some frames were received. Pass them to the hardware cipher engine before
   1376  * sending them to the 802.11 layer.
   1377  */
   1378 void
   1379 rt2560_rx_intr(struct rt2560_softc *sc)
   1380 {
   1381 	struct rt2560_rx_desc *desc;
   1382 	struct rt2560_rx_data *data;
   1383 
   1384 	for (;;) {
   1385 		desc = &sc->rxq.desc[sc->rxq.cur];
   1386 		data = &sc->rxq.data[sc->rxq.cur];
   1387 
   1388 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1389 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1390 		    BUS_DMASYNC_POSTREAD);
   1391 
   1392 		if (le32toh(desc->flags) &
   1393 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1394 			break;
   1395 
   1396 		data->drop = 0;
   1397 
   1398 		if (le32toh(desc->flags) &
   1399 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
   1400 			/*
   1401 			 * This should not happen since we did not request
   1402 			 * to receive those frames when we filled RXCSR0.
   1403 			 */
   1404 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
   1405 			    le32toh(desc->flags)));
   1406 			data->drop = 1;
   1407 		}
   1408 
   1409 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
   1410 			DPRINTFN(5, ("bad length\n"));
   1411 			data->drop = 1;
   1412 		}
   1413 
   1414 		/* mark the frame for decryption */
   1415 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
   1416 
   1417 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1418 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1419 		    BUS_DMASYNC_PREWRITE);
   1420 
   1421 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
   1422 
   1423 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
   1424 	}
   1425 
   1426 	/* kick decrypt */
   1427 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
   1428 }
   1429 
   1430 /*
   1431  * This function is called periodically in IBSS mode when a new beacon must be
   1432  * sent out.
   1433  */
   1434 static void
   1435 rt2560_beacon_expire(struct rt2560_softc *sc)
   1436 {
   1437 	struct ieee80211com *ic = &sc->sc_ic;
   1438 	struct rt2560_tx_data *data;
   1439 
   1440 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
   1441 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
   1442 		return;
   1443 
   1444 	data = &sc->bcnq.data[sc->bcnq.next];
   1445 
   1446 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1447 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1448 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1449 
   1450 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
   1451 
   1452 	bpf_mtap3(ic->ic_rawbpf, data->m);
   1453 	rt2560_tx_bcn(sc, data->m, data->ni);
   1454 
   1455 	DPRINTFN(15, ("beacon expired\n"));
   1456 
   1457 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
   1458 }
   1459 
   1460 static void
   1461 rt2560_wakeup_expire(struct rt2560_softc *sc)
   1462 {
   1463 	DPRINTFN(15, ("wakeup expired\n"));
   1464 }
   1465 
   1466 int
   1467 rt2560_intr(void *arg)
   1468 {
   1469 	struct rt2560_softc *sc = arg;
   1470 	struct ifnet *ifp = &sc->sc_if;
   1471 	uint32_t r;
   1472 
   1473 	if (!device_is_active(&sc->sc_dev))
   1474 		return 0;
   1475 
   1476 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
   1477 		return 0;       /* not for us */
   1478 
   1479 	/* disable interrupts */
   1480 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   1481 
   1482 	/* acknowledge interrupts */
   1483 	RAL_WRITE(sc, RT2560_CSR7, r);
   1484 
   1485 	/* don't re-enable interrupts if we're shutting down */
   1486 	if (!(ifp->if_flags & IFF_RUNNING))
   1487 		return 0;
   1488 
   1489 	if (r & RT2560_BEACON_EXPIRE)
   1490 		rt2560_beacon_expire(sc);
   1491 
   1492 	if (r & RT2560_WAKEUP_EXPIRE)
   1493 		rt2560_wakeup_expire(sc);
   1494 
   1495 	if (r & RT2560_ENCRYPTION_DONE)
   1496 		rt2560_encryption_intr(sc);
   1497 
   1498 	if (r & RT2560_TX_DONE)
   1499 		rt2560_tx_intr(sc);
   1500 
   1501 	if (r & RT2560_PRIO_DONE)
   1502 		rt2560_prio_intr(sc);
   1503 
   1504 	if (r & RT2560_DECRYPTION_DONE)
   1505 		rt2560_decryption_intr(sc);
   1506 
   1507 	if (r & RT2560_RX_DONE)
   1508 		rt2560_rx_intr(sc);
   1509 
   1510 	/* re-enable interrupts */
   1511 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   1512 
   1513 	return 1;
   1514 }
   1515 
   1516 /* quickly determine if a given rate is CCK or OFDM */
   1517 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1518 
   1519 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
   1520 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
   1521 
   1522 #define RAL_SIFS		10	/* us */
   1523 
   1524 #define RT2560_RXTX_TURNAROUND	10	/* us */
   1525 
   1526 /*
   1527  * This function is only used by the Rx radiotap code. It returns the rate at
   1528  * which a given frame was received.
   1529  */
   1530 static uint8_t
   1531 rt2560_rxrate(struct rt2560_rx_desc *desc)
   1532 {
   1533 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
   1534 		/* reverse function of rt2560_plcp_signal */
   1535 		switch (desc->rate) {
   1536 		case 0xb:	return 12;
   1537 		case 0xf:	return 18;
   1538 		case 0xa:	return 24;
   1539 		case 0xe:	return 36;
   1540 		case 0x9:	return 48;
   1541 		case 0xd:	return 72;
   1542 		case 0x8:	return 96;
   1543 		case 0xc:	return 108;
   1544 		}
   1545 	} else {
   1546 		if (desc->rate == 10)
   1547 			return 2;
   1548 		if (desc->rate == 20)
   1549 			return 4;
   1550 		if (desc->rate == 55)
   1551 			return 11;
   1552 		if (desc->rate == 110)
   1553 			return 22;
   1554 	}
   1555 	return 2;	/* should not get there */
   1556 }
   1557 
   1558 /*
   1559  * Return the expected ack rate for a frame transmitted at rate `rate'.
   1560  * XXX: this should depend on the destination node basic rate set.
   1561  */
   1562 static int
   1563 rt2560_ack_rate(struct ieee80211com *ic, int rate)
   1564 {
   1565 	switch (rate) {
   1566 	/* CCK rates */
   1567 	case 2:
   1568 		return 2;
   1569 	case 4:
   1570 	case 11:
   1571 	case 22:
   1572 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
   1573 
   1574 	/* OFDM rates */
   1575 	case 12:
   1576 	case 18:
   1577 		return 12;
   1578 	case 24:
   1579 	case 36:
   1580 		return 24;
   1581 	case 48:
   1582 	case 72:
   1583 	case 96:
   1584 	case 108:
   1585 		return 48;
   1586 	}
   1587 
   1588 	/* default to 1Mbps */
   1589 	return 2;
   1590 }
   1591 
   1592 /*
   1593  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1594  * The function automatically determines the operating mode depending on the
   1595  * given rate. `flags' indicates whether short preamble is in use or not.
   1596  */
   1597 static uint16_t
   1598 rt2560_txtime(int len, int rate, uint32_t flags)
   1599 {
   1600 	uint16_t txtime;
   1601 
   1602 	if (RAL_RATE_IS_OFDM(rate)) {
   1603 		/* IEEE Std 802.11a-1999, pp. 37 */
   1604 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1605 		txtime = 16 + 4 + 4 * txtime + 6;
   1606 	} else {
   1607 		/* IEEE Std 802.11b-1999, pp. 28 */
   1608 		txtime = (16 * len + rate - 1) / rate;
   1609 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1610 			txtime +=  72 + 24;
   1611 		else
   1612 			txtime += 144 + 48;
   1613 	}
   1614 	return txtime;
   1615 }
   1616 
   1617 static uint8_t
   1618 rt2560_plcp_signal(int rate)
   1619 {
   1620 	switch (rate) {
   1621 	/* CCK rates (returned values are device-dependent) */
   1622 	case 2:		return 0x0;
   1623 	case 4:		return 0x1;
   1624 	case 11:	return 0x2;
   1625 	case 22:	return 0x3;
   1626 
   1627 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1628 	case 12:	return 0xb;
   1629 	case 18:	return 0xf;
   1630 	case 24:	return 0xa;
   1631 	case 36:	return 0xe;
   1632 	case 48:	return 0x9;
   1633 	case 72:	return 0xd;
   1634 	case 96:	return 0x8;
   1635 	case 108:	return 0xc;
   1636 
   1637 	/* unsupported rates (should not get there) */
   1638 	default:	return 0xff;
   1639 	}
   1640 }
   1641 
   1642 static void
   1643 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
   1644     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
   1645 {
   1646 	struct ieee80211com *ic = &sc->sc_ic;
   1647 	uint16_t plcp_length;
   1648 	int remainder;
   1649 
   1650 	desc->flags = htole32(flags);
   1651 	desc->flags |= htole32(len << 16);
   1652 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
   1653 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1654 
   1655 	desc->physaddr = htole32(physaddr);
   1656 	desc->wme = htole16(
   1657 	    RT2560_AIFSN(2) |
   1658 	    RT2560_LOGCWMIN(3) |
   1659 	    RT2560_LOGCWMAX(8));
   1660 
   1661 	/* setup PLCP fields */
   1662 	desc->plcp_signal  = rt2560_plcp_signal(rate);
   1663 	desc->plcp_service = 4;
   1664 
   1665 	len += IEEE80211_CRC_LEN;
   1666 	if (RAL_RATE_IS_OFDM(rate)) {
   1667 		desc->flags |= htole32(RT2560_TX_OFDM);
   1668 
   1669 		plcp_length = len & 0xfff;
   1670 		desc->plcp_length_hi = plcp_length >> 6;
   1671 		desc->plcp_length_lo = plcp_length & 0x3f;
   1672 	} else {
   1673 		plcp_length = (16 * len + rate - 1) / rate;
   1674 		if (rate == 22) {
   1675 			remainder = (16 * len) % 22;
   1676 			if (remainder != 0 && remainder < 7)
   1677 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
   1678 		}
   1679 		desc->plcp_length_hi = plcp_length >> 8;
   1680 		desc->plcp_length_lo = plcp_length & 0xff;
   1681 
   1682 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1683 			desc->plcp_signal |= 0x08;
   1684 	}
   1685 }
   1686 
   1687 static int
   1688 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
   1689     struct ieee80211_node *ni)
   1690 {
   1691 	struct rt2560_tx_desc *desc;
   1692 	struct rt2560_tx_data *data;
   1693 	int rate, error;
   1694 
   1695 	desc = &sc->bcnq.desc[sc->bcnq.cur];
   1696 	data = &sc->bcnq.data[sc->bcnq.cur];
   1697 
   1698 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1699 
   1700 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1701 	    BUS_DMA_NOWAIT);
   1702 	if (error != 0) {
   1703 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
   1704 		    error);
   1705 		m_freem(m0);
   1706 		return error;
   1707 	}
   1708 
   1709 	data->m = m0;
   1710 	data->ni = ni;
   1711 
   1712 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
   1713 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
   1714 	    data->map->dm_segs->ds_addr);
   1715 
   1716 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1717 	    BUS_DMASYNC_PREWRITE);
   1718 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
   1719 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1720 	    BUS_DMASYNC_PREWRITE);
   1721 
   1722 	return 0;
   1723 }
   1724 
   1725 static int
   1726 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
   1727     struct ieee80211_node *ni)
   1728 {
   1729 	struct ieee80211com *ic = &sc->sc_ic;
   1730 	struct rt2560_tx_desc *desc;
   1731 	struct rt2560_tx_data *data;
   1732 	struct ieee80211_frame *wh;
   1733 	struct ieee80211_key *k;
   1734 	uint16_t dur;
   1735 	uint32_t flags = 0;
   1736 	int rate, error;
   1737 
   1738 	desc = &sc->prioq.desc[sc->prioq.cur];
   1739 	data = &sc->prioq.data[sc->prioq.cur];
   1740 
   1741 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1742 
   1743 	wh = mtod(m0, struct ieee80211_frame *);
   1744 
   1745 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1746 		k = ieee80211_crypto_encap(ic, ni, m0);
   1747 		if (k == NULL) {
   1748 			m_freem(m0);
   1749 			return ENOBUFS;
   1750 		}
   1751 
   1752 		/* packet header may have moved, reset our local pointer */
   1753 		wh = mtod(m0, struct ieee80211_frame *);
   1754 	}
   1755 
   1756 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1757 	    BUS_DMA_NOWAIT);
   1758 	if (error != 0) {
   1759 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
   1760 		    error);
   1761 		m_freem(m0);
   1762 		return error;
   1763 	}
   1764 
   1765 	if (sc->sc_drvbpf != NULL) {
   1766 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   1767 
   1768 		tap->wt_flags = 0;
   1769 		tap->wt_rate = rate;
   1770 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1771 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   1772 		tap->wt_antenna = sc->tx_ant;
   1773 
   1774 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1775 	}
   1776 
   1777 	data->m = m0;
   1778 	data->ni = ni;
   1779 
   1780 	wh = mtod(m0, struct ieee80211_frame *);
   1781 
   1782 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1783 		flags |= RT2560_TX_ACK;
   1784 
   1785 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
   1786 		    RAL_SIFS;
   1787 		*(uint16_t *)wh->i_dur = htole16(dur);
   1788 
   1789 		/* tell hardware to add timestamp for probe responses */
   1790 		if ((wh->i_fc[0] &
   1791 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1792 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1793 			flags |= RT2560_TX_TIMESTAMP;
   1794 	}
   1795 
   1796 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
   1797 	    data->map->dm_segs->ds_addr);
   1798 
   1799 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1800 	    BUS_DMASYNC_PREWRITE);
   1801 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1802 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1803 	    BUS_DMASYNC_PREWRITE);
   1804 
   1805 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
   1806 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
   1807 
   1808 	/* kick prio */
   1809 	sc->prioq.queued++;
   1810 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
   1811 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
   1812 
   1813 	return 0;
   1814 }
   1815 
   1816 /*
   1817  * Build a RTS control frame.
   1818  */
   1819 static struct mbuf *
   1820 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
   1821     uint16_t dur)
   1822 {
   1823 	struct ieee80211_frame_rts *rts;
   1824 	struct mbuf *m;
   1825 
   1826 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1827 	if (m == NULL) {
   1828 		sc->sc_ic.ic_stats.is_tx_nobuf++;
   1829 		aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
   1830 		return NULL;
   1831 	}
   1832 
   1833 	rts = mtod(m, struct ieee80211_frame_rts *);
   1834 
   1835 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1836 	    IEEE80211_FC0_SUBTYPE_RTS;
   1837 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1838 	*(uint16_t *)rts->i_dur = htole16(dur);
   1839 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1840 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1841 
   1842 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
   1843 
   1844 	return m;
   1845 }
   1846 
   1847 static int
   1848 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
   1849     struct ieee80211_node *ni)
   1850 {
   1851 	struct ieee80211com *ic = &sc->sc_ic;
   1852 	struct rt2560_tx_desc *desc;
   1853 	struct rt2560_tx_data *data;
   1854 	struct rt2560_node *rn;
   1855 	struct ieee80211_rateset *rs;
   1856 	struct ieee80211_frame *wh;
   1857 	struct ieee80211_key *k;
   1858 	struct mbuf *mnew;
   1859 	uint16_t dur;
   1860 	uint32_t flags = 0;
   1861 	int rate, error;
   1862 
   1863 	wh = mtod(m0, struct ieee80211_frame *);
   1864 
   1865 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1866 		rs = &ic->ic_sup_rates[ic->ic_curmode];
   1867 		rate = rs->rs_rates[ic->ic_fixed_rate];
   1868 	} else {
   1869 		rs = &ni->ni_rates;
   1870 		rn = (struct rt2560_node *)ni;
   1871 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
   1872 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
   1873 		rate = rs->rs_rates[ni->ni_txrate];
   1874 	}
   1875 	rate &= IEEE80211_RATE_VAL;
   1876 
   1877 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1878 		k = ieee80211_crypto_encap(ic, ni, m0);
   1879 		if (k == NULL) {
   1880 			m_freem(m0);
   1881 			return ENOBUFS;
   1882 		}
   1883 
   1884 		/* packet header may have moved, reset our local pointer */
   1885 		wh = mtod(m0, struct ieee80211_frame *);
   1886 	}
   1887 
   1888 	/*
   1889 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
   1890 	 * for directed frames only when the length of the MPDU is greater
   1891 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
   1892 	 */
   1893 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1894 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
   1895 		struct mbuf *m;
   1896 		int rtsrate, ackrate;
   1897 
   1898 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1899 		ackrate = rt2560_ack_rate(ic, rate);
   1900 
   1901 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
   1902 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
   1903 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
   1904 		      3 * RAL_SIFS;
   1905 
   1906 		m = rt2560_get_rts(sc, wh, dur);
   1907 
   1908 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
   1909 		data = &sc->txq.data[sc->txq.cur_encrypt];
   1910 
   1911 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   1912 		    BUS_DMA_NOWAIT);
   1913 		if (error != 0) {
   1914 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
   1915 			    error);
   1916 			m_freem(m);
   1917 			m_freem(m0);
   1918 			return error;
   1919 		}
   1920 
   1921 		/* avoid multiple free() of the same node for each fragment */
   1922 		ieee80211_ref_node(ni);
   1923 
   1924 		data->m = m;
   1925 		data->ni = ni;
   1926 
   1927 		/* RTS frames are not taken into account for rssadapt */
   1928 		data->id.id_node = NULL;
   1929 
   1930 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
   1931 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
   1932 		    data->map->dm_segs->ds_addr);
   1933 
   1934 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1935 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1936 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1937 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
   1938 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1939 
   1940 		sc->txq.queued++;
   1941 		sc->txq.cur_encrypt =
   1942 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   1943 
   1944 		/*
   1945 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
   1946 		 * asynchronous data frame shall be transmitted after the CTS
   1947 		 * frame and a SIFS period.
   1948 		 */
   1949 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
   1950 	}
   1951 
   1952 	data = &sc->txq.data[sc->txq.cur_encrypt];
   1953 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
   1954 
   1955 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1956 	    BUS_DMA_NOWAIT);
   1957 	if (error != 0 && error != EFBIG) {
   1958 		aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
   1959 		    error);
   1960 		m_freem(m0);
   1961 		return error;
   1962 	}
   1963 	if (error != 0) {
   1964 		/* too many fragments, linearize */
   1965 
   1966 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1967 		if (mnew == NULL) {
   1968 			m_freem(m0);
   1969 			return ENOMEM;
   1970 		}
   1971 
   1972 		M_COPY_PKTHDR(mnew, m0);
   1973 		if (m0->m_pkthdr.len > MHLEN) {
   1974 			MCLGET(mnew, M_DONTWAIT);
   1975 			if (!(mnew->m_flags & M_EXT)) {
   1976 				m_freem(m0);
   1977 				m_freem(mnew);
   1978 				return ENOMEM;
   1979 			}
   1980 		}
   1981 
   1982 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1983 		m_freem(m0);
   1984 		mnew->m_len = mnew->m_pkthdr.len;
   1985 		m0 = mnew;
   1986 
   1987 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1988 		    BUS_DMA_NOWAIT);
   1989 		if (error != 0) {
   1990 			aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
   1991 			    error);
   1992 			m_freem(m0);
   1993 			return error;
   1994 		}
   1995 
   1996 		/* packet header have moved, reset our local pointer */
   1997 		wh = mtod(m0, struct ieee80211_frame *);
   1998 	}
   1999 
   2000 	if (sc->sc_drvbpf != NULL) {
   2001 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   2002 
   2003 		tap->wt_flags = 0;
   2004 		tap->wt_rate = rate;
   2005 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   2006 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   2007 		tap->wt_antenna = sc->tx_ant;
   2008 
   2009 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   2010 	}
   2011 
   2012 	data->m = m0;
   2013 	data->ni = ni;
   2014 
   2015 	/* remember link conditions for rate adaptation algorithm */
   2016 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   2017 		data->id.id_len = m0->m_pkthdr.len;
   2018 		data->id.id_rateidx = ni->ni_txrate;
   2019 		data->id.id_node = ni;
   2020 		data->id.id_rssi = ni->ni_rssi;
   2021 	} else
   2022 		data->id.id_node = NULL;
   2023 
   2024 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2025 		flags |= RT2560_TX_ACK;
   2026 
   2027 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
   2028 		    ic->ic_flags) + RAL_SIFS;
   2029 		*(uint16_t *)wh->i_dur = htole16(dur);
   2030 	}
   2031 
   2032 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
   2033 	    data->map->dm_segs->ds_addr);
   2034 
   2035 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2036 	    BUS_DMASYNC_PREWRITE);
   2037 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   2038 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   2039 	    BUS_DMASYNC_PREWRITE);
   2040 
   2041 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
   2042 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
   2043 
   2044 	/* kick encrypt */
   2045 	sc->txq.queued++;
   2046 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   2047 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
   2048 
   2049 	return 0;
   2050 }
   2051 
   2052 static void
   2053 rt2560_start(struct ifnet *ifp)
   2054 {
   2055 	struct rt2560_softc *sc = ifp->if_softc;
   2056 	struct ieee80211com *ic = &sc->sc_ic;
   2057 	struct mbuf *m0;
   2058 	struct ieee80211_node *ni;
   2059 	struct ether_header *eh;
   2060 
   2061 	/*
   2062 	 * net80211 may still try to send management frames even if the
   2063 	 * IFF_RUNNING flag is not set...
   2064 	 */
   2065 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2066 		return;
   2067 
   2068 	for (;;) {
   2069 		IF_POLL(&ic->ic_mgtq, m0);
   2070 		if (m0 != NULL) {
   2071 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
   2072 				ifp->if_flags |= IFF_OACTIVE;
   2073 				break;
   2074 			}
   2075 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   2076 			if (m0 == NULL)
   2077 				break;
   2078 
   2079 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   2080 			m0->m_pkthdr.rcvif = NULL;
   2081 			bpf_mtap3(ic->ic_rawbpf, m0);
   2082 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
   2083 				break;
   2084 
   2085 		} else {
   2086 			if (ic->ic_state != IEEE80211_S_RUN)
   2087 				break;
   2088 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2089 			if (m0 == NULL)
   2090 				break;
   2091 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
   2092 				ifp->if_flags |= IFF_OACTIVE;
   2093 				break;
   2094 			}
   2095 
   2096 			if (m0->m_len < sizeof (struct ether_header) &&
   2097 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
   2098                                 continue;
   2099 
   2100 			eh = mtod(m0, struct ether_header *);
   2101 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2102 			if (ni == NULL) {
   2103 				m_freem(m0);
   2104 				continue;
   2105 			}
   2106 			bpf_mtap(ifp, m0);
   2107 
   2108 			m0 = ieee80211_encap(ic, m0, ni);
   2109 			if (m0 == NULL) {
   2110 				ieee80211_free_node(ni);
   2111 				continue;
   2112                         }
   2113 
   2114 			bpf_mtap3(ic->ic_rawbpf, m0);
   2115 
   2116 			if (rt2560_tx_data(sc, m0, ni) != 0) {
   2117 				ieee80211_free_node(ni);
   2118 				ifp->if_oerrors++;
   2119 				break;
   2120 			}
   2121 		}
   2122 
   2123 		sc->sc_tx_timer = 5;
   2124 		ifp->if_timer = 1;
   2125 	}
   2126 }
   2127 
   2128 static void
   2129 rt2560_watchdog(struct ifnet *ifp)
   2130 {
   2131 	struct rt2560_softc *sc = ifp->if_softc;
   2132 
   2133 	ifp->if_timer = 0;
   2134 
   2135 	if (sc->sc_tx_timer > 0) {
   2136 		if (--sc->sc_tx_timer == 0) {
   2137 			aprint_error_dev(&sc->sc_dev, "device timeout\n");
   2138 			rt2560_init(ifp);
   2139 			ifp->if_oerrors++;
   2140 			return;
   2141 		}
   2142 		ifp->if_timer = 1;
   2143 	}
   2144 
   2145 	ieee80211_watchdog(&sc->sc_ic);
   2146 }
   2147 
   2148 /*
   2149  * This function allows for fast channel switching in monitor mode (used by
   2150  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
   2151  * generate a new beacon frame.
   2152  */
   2153 static int
   2154 rt2560_reset(struct ifnet *ifp)
   2155 {
   2156 	struct rt2560_softc *sc = ifp->if_softc;
   2157 	struct ieee80211com *ic = &sc->sc_ic;
   2158 
   2159 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   2160 		return ENETRESET;
   2161 
   2162 	rt2560_set_chan(sc, ic->ic_curchan);
   2163 
   2164 	return 0;
   2165 }
   2166 
   2167 int
   2168 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2169 {
   2170 	struct rt2560_softc *sc = ifp->if_softc;
   2171 	struct ieee80211com *ic = &sc->sc_ic;
   2172 	int s, error = 0;
   2173 
   2174 	s = splnet();
   2175 
   2176 	switch (cmd) {
   2177 	case SIOCSIFFLAGS:
   2178 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2179 			break;
   2180 		if (ifp->if_flags & IFF_UP) {
   2181 			if (ifp->if_flags & IFF_RUNNING)
   2182 				rt2560_update_promisc(sc);
   2183 			else
   2184 				rt2560_init(ifp);
   2185 		} else {
   2186 			if (ifp->if_flags & IFF_RUNNING)
   2187 				rt2560_stop(ifp, 1);
   2188 		}
   2189 		break;
   2190 
   2191 	case SIOCADDMULTI:
   2192 	case SIOCDELMULTI:
   2193 		/* XXX no h/w multicast filter? --dyoung */
   2194 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
   2195 			error = 0;
   2196 		break;
   2197 
   2198 	case SIOCS80211CHANNEL:
   2199 		/*
   2200 		 * This allows for fast channel switching in monitor mode
   2201 		 * (used by kismet). In IBSS mode, we must explicitly reset
   2202 		 * the interface to generate a new beacon frame.
   2203 		 */
   2204 		error = ieee80211_ioctl(ic, cmd, data);
   2205 		if (error == ENETRESET &&
   2206 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
   2207 			rt2560_set_chan(sc, ic->ic_ibss_chan);
   2208 			error = 0;
   2209 		}
   2210 		break;
   2211 
   2212 	default:
   2213 		error = ieee80211_ioctl(ic, cmd, data);
   2214 	}
   2215 
   2216 	if (error == ENETRESET) {
   2217 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   2218 		    (IFF_UP | IFF_RUNNING))
   2219 			rt2560_init(ifp);
   2220 		error = 0;
   2221 	}
   2222 
   2223 	splx(s);
   2224 
   2225 	return error;
   2226 }
   2227 
   2228 static void
   2229 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
   2230 {
   2231 	uint32_t tmp;
   2232 	int ntries;
   2233 
   2234 	for (ntries = 0; ntries < 100; ntries++) {
   2235 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
   2236 			break;
   2237 		DELAY(1);
   2238 	}
   2239 	if (ntries == 100) {
   2240 		aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
   2241 		return;
   2242 	}
   2243 
   2244 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
   2245 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
   2246 
   2247 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
   2248 }
   2249 
   2250 static uint8_t
   2251 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
   2252 {
   2253 	uint32_t val;
   2254 	int ntries;
   2255 
   2256 	val = RT2560_BBP_BUSY | reg << 8;
   2257 	RAL_WRITE(sc, RT2560_BBPCSR, val);
   2258 
   2259 	for (ntries = 0; ntries < 100; ntries++) {
   2260 		val = RAL_READ(sc, RT2560_BBPCSR);
   2261 		if (!(val & RT2560_BBP_BUSY))
   2262 			return val & 0xff;
   2263 		DELAY(1);
   2264 	}
   2265 
   2266 	aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
   2267 	return 0;
   2268 }
   2269 
   2270 static void
   2271 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
   2272 {
   2273 	uint32_t tmp;
   2274 	int ntries;
   2275 
   2276 	for (ntries = 0; ntries < 100; ntries++) {
   2277 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
   2278 			break;
   2279 		DELAY(1);
   2280 	}
   2281 	if (ntries == 100) {
   2282 		aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
   2283 		return;
   2284 	}
   2285 
   2286 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
   2287 	    (reg & 0x3);
   2288 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
   2289 
   2290 	/* remember last written value in sc */
   2291 	sc->rf_regs[reg] = val;
   2292 
   2293 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
   2294 }
   2295 
   2296 static void
   2297 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
   2298 {
   2299 	struct ieee80211com *ic = &sc->sc_ic;
   2300 	uint8_t power, tmp;
   2301 	u_int i, chan;
   2302 
   2303 	chan = ieee80211_chan2ieee(ic, c);
   2304 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   2305 		return;
   2306 
   2307 	if (IEEE80211_IS_CHAN_2GHZ(c))
   2308 		power = min(sc->txpow[chan - 1], 31);
   2309 	else
   2310 		power = 31;
   2311 
   2312 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
   2313 
   2314 	switch (sc->rf_rev) {
   2315 	case RT2560_RF_2522:
   2316 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
   2317 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
   2318 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2319 		break;
   2320 
   2321 	case RT2560_RF_2523:
   2322 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2323 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
   2324 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
   2325 		rt2560_rf_write(sc, RT2560_RF4,
   2326 		    (chan == 14) ? 0x00280 : 0x00286);
   2327 		break;
   2328 
   2329 	case RT2560_RF_2524:
   2330 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
   2331 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
   2332 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2333 		rt2560_rf_write(sc, RT2560_RF4,
   2334 		    (chan == 14) ? 0x00280 : 0x00286);
   2335 		break;
   2336 
   2337 	case RT2560_RF_2525:
   2338 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2339 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
   2340 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2341 		rt2560_rf_write(sc, RT2560_RF4,
   2342 		    (chan == 14) ? 0x00280 : 0x00286);
   2343 
   2344 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2345 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
   2346 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2347 		rt2560_rf_write(sc, RT2560_RF4,
   2348 		    (chan == 14) ? 0x00280 : 0x00286);
   2349 		break;
   2350 
   2351 	case RT2560_RF_2525E:
   2352 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2353 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
   2354 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2355 		rt2560_rf_write(sc, RT2560_RF4,
   2356 		    (chan == 14) ? 0x00286 : 0x00282);
   2357 		break;
   2358 
   2359 	case RT2560_RF_2526:
   2360 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
   2361 		rt2560_rf_write(sc, RT2560_RF4,
   2362 		   (chan & 1) ? 0x00386 : 0x00381);
   2363 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2364 
   2365 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
   2366 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2367 		rt2560_rf_write(sc, RT2560_RF4,
   2368 		    (chan & 1) ? 0x00386 : 0x00381);
   2369 		break;
   2370 
   2371 	/* dual-band RF */
   2372 	case RT2560_RF_5222:
   2373 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
   2374 
   2375 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
   2376 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
   2377 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2378 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
   2379 		break;
   2380 	}
   2381 
   2382 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
   2383 	    ic->ic_state != IEEE80211_S_SCAN) {
   2384 		/* set Japan filter bit for channel 14 */
   2385 		tmp = rt2560_bbp_read(sc, 70);
   2386 
   2387 		tmp &= ~RT2560_JAPAN_FILTER;
   2388 		if (chan == 14)
   2389 			tmp |= RT2560_JAPAN_FILTER;
   2390 
   2391 		rt2560_bbp_write(sc, 70, tmp);
   2392 
   2393 		DELAY(1000); /* RF needs a 1ms delay here */
   2394 		rt2560_disable_rf_tune(sc);
   2395 
   2396 		/* clear CRC errors */
   2397 		RAL_READ(sc, RT2560_CNT0);
   2398 	}
   2399 }
   2400 
   2401 /*
   2402  * Disable RF auto-tuning.
   2403  */
   2404 static void
   2405 rt2560_disable_rf_tune(struct rt2560_softc *sc)
   2406 {
   2407 	uint32_t tmp;
   2408 
   2409 	if (sc->rf_rev != RT2560_RF_2523) {
   2410 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
   2411 		rt2560_rf_write(sc, RT2560_RF1, tmp);
   2412 	}
   2413 
   2414 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
   2415 	rt2560_rf_write(sc, RT2560_RF3, tmp);
   2416 
   2417 	DPRINTFN(2, ("disabling RF autotune\n"));
   2418 }
   2419 
   2420 /*
   2421  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
   2422  * synchronization.
   2423  */
   2424 static void
   2425 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
   2426 {
   2427 	struct ieee80211com *ic = &sc->sc_ic;
   2428 	uint16_t logcwmin, preload;
   2429 	uint32_t tmp;
   2430 
   2431 	/* first, disable TSF synchronization */
   2432 	RAL_WRITE(sc, RT2560_CSR14, 0);
   2433 
   2434 	tmp = 16 * ic->ic_bss->ni_intval;
   2435 	RAL_WRITE(sc, RT2560_CSR12, tmp);
   2436 
   2437 	RAL_WRITE(sc, RT2560_CSR13, 0);
   2438 
   2439 	logcwmin = 5;
   2440 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
   2441 	tmp = logcwmin << 16 | preload;
   2442 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
   2443 
   2444 	/* finally, enable TSF synchronization */
   2445 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
   2446 	if (ic->ic_opmode == IEEE80211_M_STA)
   2447 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
   2448 	else
   2449 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
   2450 		       RT2560_ENABLE_BEACON_GENERATOR;
   2451 	RAL_WRITE(sc, RT2560_CSR14, tmp);
   2452 
   2453 	DPRINTF(("enabling TSF synchronization\n"));
   2454 }
   2455 
   2456 static void
   2457 rt2560_update_plcp(struct rt2560_softc *sc)
   2458 {
   2459 	struct ieee80211com *ic = &sc->sc_ic;
   2460 
   2461 	/* no short preamble for 1Mbps */
   2462 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
   2463 
   2464 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
   2465 		/* values taken from the reference driver */
   2466 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
   2467 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
   2468 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
   2469 	} else {
   2470 		/* same values as above or'ed 0x8 */
   2471 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
   2472 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
   2473 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
   2474 	}
   2475 
   2476 	DPRINTF(("updating PLCP for %s preamble\n",
   2477 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
   2478 }
   2479 
   2480 /*
   2481  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
   2482  * know how these values are computed.
   2483  */
   2484 static void
   2485 rt2560_update_slot(struct ifnet *ifp)
   2486 {
   2487 	struct rt2560_softc *sc = ifp->if_softc;
   2488 	struct ieee80211com *ic = &sc->sc_ic;
   2489 	uint8_t slottime;
   2490 	uint16_t sifs, pifs, difs, eifs;
   2491 	uint32_t tmp;
   2492 
   2493 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   2494 
   2495 	/* define the MAC slot boundaries */
   2496 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
   2497 	pifs = sifs + slottime;
   2498 	difs = sifs + 2 * slottime;
   2499 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
   2500 
   2501 	tmp = RAL_READ(sc, RT2560_CSR11);
   2502 	tmp = (tmp & ~0x1f00) | slottime << 8;
   2503 	RAL_WRITE(sc, RT2560_CSR11, tmp);
   2504 
   2505 	tmp = pifs << 16 | sifs;
   2506 	RAL_WRITE(sc, RT2560_CSR18, tmp);
   2507 
   2508 	tmp = eifs << 16 | difs;
   2509 	RAL_WRITE(sc, RT2560_CSR19, tmp);
   2510 
   2511 	DPRINTF(("setting slottime to %uus\n", slottime));
   2512 }
   2513 
   2514 static void
   2515 rt2560_set_basicrates(struct rt2560_softc *sc)
   2516 {
   2517 	struct ieee80211com *ic = &sc->sc_ic;
   2518 
   2519 	/* update basic rate set */
   2520 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   2521 		/* 11b basic rates: 1, 2Mbps */
   2522 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
   2523 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
   2524 		/* 11a basic rates: 6, 12, 24Mbps */
   2525 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
   2526 	} else {
   2527 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
   2528 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
   2529 	}
   2530 }
   2531 
   2532 static void
   2533 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
   2534 {
   2535 	uint32_t tmp;
   2536 
   2537 	/* set ON period to 70ms and OFF period to 30ms */
   2538 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
   2539 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
   2540 }
   2541 
   2542 static void
   2543 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
   2544 {
   2545 	uint32_t tmp;
   2546 
   2547 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   2548 	RAL_WRITE(sc, RT2560_CSR5, tmp);
   2549 
   2550 	tmp = bssid[4] | bssid[5] << 8;
   2551 	RAL_WRITE(sc, RT2560_CSR6, tmp);
   2552 
   2553 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
   2554 }
   2555 
   2556 static void
   2557 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2558 {
   2559 	uint32_t tmp;
   2560 
   2561 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   2562 	RAL_WRITE(sc, RT2560_CSR3, tmp);
   2563 
   2564 	tmp = addr[4] | addr[5] << 8;
   2565 	RAL_WRITE(sc, RT2560_CSR4, tmp);
   2566 
   2567 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
   2568 }
   2569 
   2570 static void
   2571 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2572 {
   2573 	uint32_t tmp;
   2574 
   2575 	tmp = RAL_READ(sc, RT2560_CSR3);
   2576 	addr[0] = tmp & 0xff;
   2577 	addr[1] = (tmp >>  8) & 0xff;
   2578 	addr[2] = (tmp >> 16) & 0xff;
   2579 	addr[3] = (tmp >> 24);
   2580 
   2581 	tmp = RAL_READ(sc, RT2560_CSR4);
   2582 	addr[4] = tmp & 0xff;
   2583 	addr[5] = (tmp >> 8) & 0xff;
   2584 }
   2585 
   2586 static void
   2587 rt2560_update_promisc(struct rt2560_softc *sc)
   2588 {
   2589 	struct ifnet *ifp = &sc->sc_if;
   2590 	uint32_t tmp;
   2591 
   2592 	tmp = RAL_READ(sc, RT2560_RXCSR0);
   2593 
   2594 	tmp &= ~RT2560_DROP_NOT_TO_ME;
   2595 	if (!(ifp->if_flags & IFF_PROMISC))
   2596 		tmp |= RT2560_DROP_NOT_TO_ME;
   2597 
   2598 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2599 
   2600 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   2601 	    "entering" : "leaving"));
   2602 }
   2603 
   2604 static void
   2605 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
   2606 {
   2607 	uint32_t tmp;
   2608 	uint8_t tx;
   2609 
   2610 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
   2611 	if (antenna == 1)
   2612 		tx |= RT2560_BBP_ANTA;
   2613 	else if (antenna == 2)
   2614 		tx |= RT2560_BBP_ANTB;
   2615 	else
   2616 		tx |= RT2560_BBP_DIVERSITY;
   2617 
   2618 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
   2619 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
   2620 	    sc->rf_rev == RT2560_RF_5222)
   2621 		tx |= RT2560_BBP_FLIPIQ;
   2622 
   2623 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
   2624 
   2625 	/* update values for CCK and OFDM in BBPCSR1 */
   2626 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
   2627 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
   2628 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
   2629 }
   2630 
   2631 static void
   2632 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
   2633 {
   2634 	uint8_t rx;
   2635 
   2636 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
   2637 	if (antenna == 1)
   2638 		rx |= RT2560_BBP_ANTA;
   2639 	else if (antenna == 2)
   2640 		rx |= RT2560_BBP_ANTB;
   2641 	else
   2642 		rx |= RT2560_BBP_DIVERSITY;
   2643 
   2644 	/* need to force no I/Q flip for RF 2525e and 2526 */
   2645 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
   2646 		rx &= ~RT2560_BBP_FLIPIQ;
   2647 
   2648 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
   2649 }
   2650 
   2651 static const char *
   2652 rt2560_get_rf(int rev)
   2653 {
   2654 	switch (rev) {
   2655 	case RT2560_RF_2522:	return "RT2522";
   2656 	case RT2560_RF_2523:	return "RT2523";
   2657 	case RT2560_RF_2524:	return "RT2524";
   2658 	case RT2560_RF_2525:	return "RT2525";
   2659 	case RT2560_RF_2525E:	return "RT2525e";
   2660 	case RT2560_RF_2526:	return "RT2526";
   2661 	case RT2560_RF_5222:	return "RT5222";
   2662 	default:		return "unknown";
   2663 	}
   2664 }
   2665 
   2666 static void
   2667 rt2560_read_eeprom(struct rt2560_softc *sc)
   2668 {
   2669 	uint16_t val;
   2670 	int i;
   2671 
   2672 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
   2673 	sc->rf_rev =   (val >> 11) & 0x1f;
   2674 	sc->hw_radio = (val >> 10) & 0x1;
   2675 	sc->led_mode = (val >> 6)  & 0x7;
   2676 	sc->rx_ant =   (val >> 4)  & 0x3;
   2677 	sc->tx_ant =   (val >> 2)  & 0x3;
   2678 	sc->nb_ant =   val & 0x3;
   2679 
   2680 	/* read default values for BBP registers */
   2681 	for (i = 0; i < 16; i++) {
   2682 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
   2683 		sc->bbp_prom[i].reg = val >> 8;
   2684 		sc->bbp_prom[i].val = val & 0xff;
   2685 	}
   2686 
   2687 	/* read Tx power for all b/g channels */
   2688 	for (i = 0; i < 14 / 2; i++) {
   2689 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
   2690 		sc->txpow[i * 2] = val >> 8;
   2691 		sc->txpow[i * 2 + 1] = val & 0xff;
   2692 	}
   2693 }
   2694 
   2695 static int
   2696 rt2560_bbp_init(struct rt2560_softc *sc)
   2697 {
   2698 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2699 	int i, ntries;
   2700 
   2701 	/* wait for BBP to be ready */
   2702 	for (ntries = 0; ntries < 100; ntries++) {
   2703 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
   2704 			break;
   2705 		DELAY(1);
   2706 	}
   2707 	if (ntries == 100) {
   2708 		aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
   2709 		return EIO;
   2710 	}
   2711 
   2712 	/* initialize BBP registers to default values */
   2713 	for (i = 0; i < N(rt2560_def_bbp); i++) {
   2714 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
   2715 		    rt2560_def_bbp[i].val);
   2716 	}
   2717 #if 0
   2718 	/* initialize BBP registers to values stored in EEPROM */
   2719 	for (i = 0; i < 16; i++) {
   2720 		if (sc->bbp_prom[i].reg == 0xff)
   2721 			continue;
   2722 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   2723 	}
   2724 #endif
   2725 
   2726 	return 0;
   2727 #undef N
   2728 }
   2729 
   2730 static int
   2731 rt2560_init(struct ifnet *ifp)
   2732 {
   2733 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2734 	struct rt2560_softc *sc = ifp->if_softc;
   2735 	struct ieee80211com *ic = &sc->sc_ic;
   2736 	uint32_t tmp;
   2737 	int i;
   2738 
   2739 	/* for CardBus, power on the socket */
   2740 	if (!(sc->sc_flags & RT2560_ENABLED)) {
   2741 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
   2742 			aprint_error_dev(&sc->sc_dev, "could not enable device\n");
   2743 			return EIO;
   2744 		}
   2745 		sc->sc_flags |= RT2560_ENABLED;
   2746 	}
   2747 
   2748 	rt2560_stop(ifp, 1);
   2749 
   2750 	/* setup tx rings */
   2751 	tmp = RT2560_PRIO_RING_COUNT << 24 |
   2752 	      RT2560_ATIM_RING_COUNT << 16 |
   2753 	      RT2560_TX_RING_COUNT   <<  8 |
   2754 	      RT2560_TX_DESC_SIZE;
   2755 
   2756 	/* rings _must_ be initialized in this _exact_ order! */
   2757 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
   2758 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
   2759 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
   2760 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
   2761 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
   2762 
   2763 	/* setup rx ring */
   2764 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
   2765 
   2766 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
   2767 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
   2768 
   2769 	/* initialize MAC registers to default values */
   2770 	for (i = 0; i < N(rt2560_def_mac); i++)
   2771 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
   2772 
   2773 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2774 	rt2560_set_macaddr(sc, ic->ic_myaddr);
   2775 
   2776 	/* set basic rate set (will be updated later) */
   2777 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
   2778 
   2779 	rt2560_update_slot(ifp);
   2780 	rt2560_update_plcp(sc);
   2781 	rt2560_update_led(sc, 0, 0);
   2782 
   2783 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2784 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
   2785 
   2786 	if (rt2560_bbp_init(sc) != 0) {
   2787 		rt2560_stop(ifp, 1);
   2788 		return EIO;
   2789 	}
   2790 
   2791 	rt2560_set_txantenna(sc, 1);
   2792 	rt2560_set_rxantenna(sc, 1);
   2793 
   2794 	/* set default BSS channel */
   2795 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
   2796 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
   2797 
   2798 	/* kick Rx */
   2799 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
   2800 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2801 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
   2802 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2803 			tmp |= RT2560_DROP_TODS;
   2804 		if (!(ifp->if_flags & IFF_PROMISC))
   2805 			tmp |= RT2560_DROP_NOT_TO_ME;
   2806 	}
   2807 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2808 
   2809 	/* clear old FCS and Rx FIFO errors */
   2810 	RAL_READ(sc, RT2560_CNT0);
   2811 	RAL_READ(sc, RT2560_CNT4);
   2812 
   2813 	/* clear any pending interrupts */
   2814 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2815 
   2816 	/* enable interrupts */
   2817 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   2818 
   2819 	ifp->if_flags &= ~IFF_OACTIVE;
   2820 	ifp->if_flags |= IFF_RUNNING;
   2821 
   2822 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2823 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2824 	else
   2825 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2826 
   2827 	return 0;
   2828 #undef N
   2829 }
   2830 
   2831 static void
   2832 rt2560_stop(struct ifnet *ifp, int disable)
   2833 {
   2834 	struct rt2560_softc *sc = ifp->if_softc;
   2835 	struct ieee80211com *ic = &sc->sc_ic;
   2836 
   2837 	sc->sc_tx_timer = 0;
   2838 	ifp->if_timer = 0;
   2839 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2840 
   2841 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2842 
   2843 	/* abort Tx */
   2844 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
   2845 
   2846 	/* disable Rx */
   2847 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
   2848 
   2849 	/* reset ASIC (and thus, BBP) */
   2850 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2851 	RAL_WRITE(sc, RT2560_CSR1, 0);
   2852 
   2853 	/* disable interrupts */
   2854 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   2855 
   2856 	/* clear any pending interrupt */
   2857 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2858 
   2859 	/* reset Tx and Rx rings */
   2860 	rt2560_reset_tx_ring(sc, &sc->txq);
   2861 	rt2560_reset_tx_ring(sc, &sc->atimq);
   2862 	rt2560_reset_tx_ring(sc, &sc->prioq);
   2863 	rt2560_reset_tx_ring(sc, &sc->bcnq);
   2864 	rt2560_reset_rx_ring(sc, &sc->rxq);
   2865 
   2866 }
   2867