Home | History | Annotate | Line # | Download | only in ic
rt2560.c revision 1.24.8.1
      1 /*	$NetBSD: rt2560.c,v 1.24.8.1 2012/04/17 00:07:36 yamt Exp $	*/
      2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
      3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
      4 
      5 /*-
      6  * Copyright (c) 2005, 2006
      7  *	Damien Bergamini <damien.bergamini (at) free.fr>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*-
     23  * Ralink Technology RT2560 chipset driver
     24  * http://www.ralinktech.com/
     25  */
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.24.8.1 2012/04/17 00:07:36 yamt Exp $");
     28 
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/callout.h>
     38 #include <sys/conf.h>
     39 #include <sys/device.h>
     40 
     41 #include <sys/bus.h>
     42 #include <machine/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <net/bpf.h>
     46 #include <net/if.h>
     47 #include <net/if_arp.h>
     48 #include <net/if_dl.h>
     49 #include <net/if_media.h>
     50 #include <net/if_types.h>
     51 #include <net/if_ether.h>
     52 
     53 #include <netinet/in.h>
     54 #include <netinet/in_systm.h>
     55 #include <netinet/in_var.h>
     56 #include <netinet/ip.h>
     57 
     58 #include <net80211/ieee80211_var.h>
     59 #include <net80211/ieee80211_rssadapt.h>
     60 #include <net80211/ieee80211_radiotap.h>
     61 
     62 #include <dev/ic/rt2560reg.h>
     63 #include <dev/ic/rt2560var.h>
     64 
     65 #ifdef RAL_DEBUG
     66 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
     67 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
     68 int rt2560_debug = 0;
     69 #else
     70 #define DPRINTF(x)
     71 #define DPRINTFN(n, x)
     72 #endif
     73 
     74 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
     75 		    struct rt2560_tx_ring *, int);
     76 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
     77 		    struct rt2560_tx_ring *);
     78 static void	rt2560_free_tx_ring(struct rt2560_softc *,
     79 		    struct rt2560_tx_ring *);
     80 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
     81 		    struct rt2560_rx_ring *, int);
     82 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
     83 		    struct rt2560_rx_ring *);
     84 static void	rt2560_free_rx_ring(struct rt2560_softc *,
     85 		    struct rt2560_rx_ring *);
     86 static struct ieee80211_node *
     87 		rt2560_node_alloc(struct ieee80211_node_table *);
     88 static int	rt2560_media_change(struct ifnet *);
     89 static void	rt2560_next_scan(void *);
     90 static void	rt2560_iter_func(void *, struct ieee80211_node *);
     91 static void	rt2560_update_rssadapt(void *);
     92 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
     93     		    int);
     94 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
     95 static void	rt2560_encryption_intr(struct rt2560_softc *);
     96 static void	rt2560_tx_intr(struct rt2560_softc *);
     97 static void	rt2560_prio_intr(struct rt2560_softc *);
     98 static void	rt2560_decryption_intr(struct rt2560_softc *);
     99 static void	rt2560_rx_intr(struct rt2560_softc *);
    100 static void	rt2560_beacon_expire(struct rt2560_softc *);
    101 static void	rt2560_wakeup_expire(struct rt2560_softc *);
    102 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
    103 static int	rt2560_ack_rate(struct ieee80211com *, int);
    104 static uint16_t	rt2560_txtime(int, int, uint32_t);
    105 static uint8_t	rt2560_plcp_signal(int);
    106 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
    107 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
    108 		    bus_addr_t);
    109 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
    110 		    struct ieee80211_node *);
    111 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
    112 		    struct ieee80211_node *);
    113 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
    114 		    struct ieee80211_frame *, uint16_t);
    115 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
    116 		    struct ieee80211_node *);
    117 static void	rt2560_start(struct ifnet *);
    118 static void	rt2560_watchdog(struct ifnet *);
    119 static int	rt2560_reset(struct ifnet *);
    120 static int	rt2560_ioctl(struct ifnet *, u_long, void *);
    121 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
    122 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
    123 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
    124 static void	rt2560_set_chan(struct rt2560_softc *,
    125 		    struct ieee80211_channel *);
    126 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
    127 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
    128 static void	rt2560_update_plcp(struct rt2560_softc *);
    129 static void	rt2560_update_slot(struct ifnet *);
    130 static void	rt2560_set_basicrates(struct rt2560_softc *);
    131 static void	rt2560_update_led(struct rt2560_softc *, int, int);
    132 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
    133 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
    134 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
    135 static void	rt2560_update_promisc(struct rt2560_softc *);
    136 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
    137 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
    138 static const char *rt2560_get_rf(int);
    139 static void	rt2560_read_eeprom(struct rt2560_softc *);
    140 static int	rt2560_bbp_init(struct rt2560_softc *);
    141 static int	rt2560_init(struct ifnet *);
    142 static void	rt2560_stop(struct ifnet *, int);
    143 
    144 /*
    145  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    146  */
    147 static const struct ieee80211_rateset rt2560_rateset_11a =
    148 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    149 
    150 static const struct ieee80211_rateset rt2560_rateset_11b =
    151 	{ 4, { 2, 4, 11, 22 } };
    152 
    153 static const struct ieee80211_rateset rt2560_rateset_11g =
    154 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    155 
    156 /*
    157  * Default values for MAC registers; values taken from the reference driver.
    158  */
    159 static const struct {
    160 	uint32_t	reg;
    161 	uint32_t	val;
    162 } rt2560_def_mac[] = {
    163 	{ RT2560_PSCSR0,      0x00020002 },
    164 	{ RT2560_PSCSR1,      0x00000002 },
    165 	{ RT2560_PSCSR2,      0x00020002 },
    166 	{ RT2560_PSCSR3,      0x00000002 },
    167 	{ RT2560_TIMECSR,     0x00003f21 },
    168 	{ RT2560_CSR9,        0x00000780 },
    169 	{ RT2560_CSR11,       0x07041483 },
    170 	{ RT2560_CNT3,        0x00000000 },
    171 	{ RT2560_TXCSR1,      0x07614562 },
    172 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
    173 	{ RT2560_ACKPCTCSR,   0x7038140a },
    174 	{ RT2560_ARTCSR1,     0x1d21252d },
    175 	{ RT2560_ARTCSR2,     0x1919191d },
    176 	{ RT2560_RXCSR0,      0xffffffff },
    177 	{ RT2560_RXCSR3,      0xb3aab3af },
    178 	{ RT2560_PCICSR,      0x000003b8 },
    179 	{ RT2560_PWRCSR0,     0x3f3b3100 },
    180 	{ RT2560_GPIOCSR,     0x0000ff00 },
    181 	{ RT2560_TESTCSR,     0x000000f0 },
    182 	{ RT2560_PWRCSR1,     0x000001ff },
    183 	{ RT2560_MACCSR0,     0x00213223 },
    184 	{ RT2560_MACCSR1,     0x00235518 },
    185 	{ RT2560_RLPWCSR,     0x00000040 },
    186 	{ RT2560_RALINKCSR,   0x9a009a11 },
    187 	{ RT2560_CSR7,        0xffffffff },
    188 	{ RT2560_BBPCSR1,     0x82188200 },
    189 	{ RT2560_TXACKCSR0,   0x00000020 },
    190 	{ RT2560_SECCSR3,     0x0000e78f }
    191 };
    192 
    193 /*
    194  * Default values for BBP registers; values taken from the reference driver.
    195  */
    196 static const struct {
    197 	uint8_t	reg;
    198 	uint8_t	val;
    199 } rt2560_def_bbp[] = {
    200 	{  3, 0x02 },
    201 	{  4, 0x19 },
    202 	{ 14, 0x1c },
    203 	{ 15, 0x30 },
    204 	{ 16, 0xac },
    205 	{ 17, 0x48 },
    206 	{ 18, 0x18 },
    207 	{ 19, 0xff },
    208 	{ 20, 0x1e },
    209 	{ 21, 0x08 },
    210 	{ 22, 0x08 },
    211 	{ 23, 0x08 },
    212 	{ 24, 0x80 },
    213 	{ 25, 0x50 },
    214 	{ 26, 0x08 },
    215 	{ 27, 0x23 },
    216 	{ 30, 0x10 },
    217 	{ 31, 0x2b },
    218 	{ 32, 0xb9 },
    219 	{ 34, 0x12 },
    220 	{ 35, 0x50 },
    221 	{ 39, 0xc4 },
    222 	{ 40, 0x02 },
    223 	{ 41, 0x60 },
    224 	{ 53, 0x10 },
    225 	{ 54, 0x18 },
    226 	{ 56, 0x08 },
    227 	{ 57, 0x10 },
    228 	{ 58, 0x08 },
    229 	{ 61, 0x60 },
    230 	{ 62, 0x10 },
    231 	{ 75, 0xff }
    232 };
    233 
    234 /*
    235  * Default values for RF register R2 indexed by channel numbers; values taken
    236  * from the reference driver.
    237  */
    238 static const uint32_t rt2560_rf2522_r2[] = {
    239 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
    240 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
    241 };
    242 
    243 static const uint32_t rt2560_rf2523_r2[] = {
    244 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    245 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    246 };
    247 
    248 static const uint32_t rt2560_rf2524_r2[] = {
    249 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    250 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    251 };
    252 
    253 static const uint32_t rt2560_rf2525_r2[] = {
    254 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
    255 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
    256 };
    257 
    258 static const uint32_t rt2560_rf2525_hi_r2[] = {
    259 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
    260 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
    261 };
    262 
    263 static const uint32_t rt2560_rf2525e_r2[] = {
    264 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
    265 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
    266 };
    267 
    268 static const uint32_t rt2560_rf2526_hi_r2[] = {
    269 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
    270 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
    271 };
    272 
    273 static const uint32_t rt2560_rf2526_r2[] = {
    274 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
    275 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
    276 };
    277 
    278 /*
    279  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
    280  * values taken from the reference driver.
    281  */
    282 static const struct {
    283 	uint8_t		chan;
    284 	uint32_t	r1;
    285 	uint32_t	r2;
    286 	uint32_t	r4;
    287 } rt2560_rf5222[] = {
    288 	{   1, 0x08808, 0x0044d, 0x00282 },
    289 	{   2, 0x08808, 0x0044e, 0x00282 },
    290 	{   3, 0x08808, 0x0044f, 0x00282 },
    291 	{   4, 0x08808, 0x00460, 0x00282 },
    292 	{   5, 0x08808, 0x00461, 0x00282 },
    293 	{   6, 0x08808, 0x00462, 0x00282 },
    294 	{   7, 0x08808, 0x00463, 0x00282 },
    295 	{   8, 0x08808, 0x00464, 0x00282 },
    296 	{   9, 0x08808, 0x00465, 0x00282 },
    297 	{  10, 0x08808, 0x00466, 0x00282 },
    298 	{  11, 0x08808, 0x00467, 0x00282 },
    299 	{  12, 0x08808, 0x00468, 0x00282 },
    300 	{  13, 0x08808, 0x00469, 0x00282 },
    301 	{  14, 0x08808, 0x0046b, 0x00286 },
    302 
    303 	{  36, 0x08804, 0x06225, 0x00287 },
    304 	{  40, 0x08804, 0x06226, 0x00287 },
    305 	{  44, 0x08804, 0x06227, 0x00287 },
    306 	{  48, 0x08804, 0x06228, 0x00287 },
    307 	{  52, 0x08804, 0x06229, 0x00287 },
    308 	{  56, 0x08804, 0x0622a, 0x00287 },
    309 	{  60, 0x08804, 0x0622b, 0x00287 },
    310 	{  64, 0x08804, 0x0622c, 0x00287 },
    311 
    312 	{ 100, 0x08804, 0x02200, 0x00283 },
    313 	{ 104, 0x08804, 0x02201, 0x00283 },
    314 	{ 108, 0x08804, 0x02202, 0x00283 },
    315 	{ 112, 0x08804, 0x02203, 0x00283 },
    316 	{ 116, 0x08804, 0x02204, 0x00283 },
    317 	{ 120, 0x08804, 0x02205, 0x00283 },
    318 	{ 124, 0x08804, 0x02206, 0x00283 },
    319 	{ 128, 0x08804, 0x02207, 0x00283 },
    320 	{ 132, 0x08804, 0x02208, 0x00283 },
    321 	{ 136, 0x08804, 0x02209, 0x00283 },
    322 	{ 140, 0x08804, 0x0220a, 0x00283 },
    323 
    324 	{ 149, 0x08808, 0x02429, 0x00281 },
    325 	{ 153, 0x08808, 0x0242b, 0x00281 },
    326 	{ 157, 0x08808, 0x0242d, 0x00281 },
    327 	{ 161, 0x08808, 0x0242f, 0x00281 }
    328 };
    329 
    330 int
    331 rt2560_attach(void *xsc, int id)
    332 {
    333 	struct rt2560_softc *sc = xsc;
    334 	struct ieee80211com *ic = &sc->sc_ic;
    335 	struct ifnet *ifp = &sc->sc_if;
    336 	int error, i;
    337 
    338 	callout_init(&sc->scan_ch, 0);
    339 	callout_init(&sc->rssadapt_ch, 0);
    340 
    341 	/* retrieve RT2560 rev. no */
    342 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
    343 
    344 	/* retrieve MAC address */
    345 	rt2560_get_macaddr(sc, ic->ic_myaddr);
    346 
    347 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
    348 	    ether_sprintf(ic->ic_myaddr));
    349 
    350 	/* retrieve RF rev. no and various other things from EEPROM */
    351 	rt2560_read_eeprom(sc);
    352 
    353 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
    354 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
    355 
    356 	/*
    357 	 * Allocate Tx and Rx rings.
    358 	 */
    359 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
    360 	if (error != 0) {
    361 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring\n)");
    362 		goto fail1;
    363 	}
    364 
    365 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
    366 	if (error != 0) {
    367 		aprint_error_dev(sc->sc_dev, "could not allocate ATIM ring\n");
    368 		goto fail2;
    369 	}
    370 
    371 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
    372 	if (error != 0) {
    373 		aprint_error_dev(sc->sc_dev, "could not allocate Prio ring\n");
    374 		goto fail3;
    375 	}
    376 
    377 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
    378 	if (error != 0) {
    379 		aprint_error_dev(sc->sc_dev, "could not allocate Beacon ring\n");
    380 		goto fail4;
    381 	}
    382 
    383 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
    384 	if (error != 0) {
    385 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
    386 		goto fail5;
    387 	}
    388 
    389 	ifp->if_softc = sc;
    390 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    391 	ifp->if_init = rt2560_init;
    392 	ifp->if_stop = rt2560_stop;
    393 	ifp->if_ioctl = rt2560_ioctl;
    394 	ifp->if_start = rt2560_start;
    395 	ifp->if_watchdog = rt2560_watchdog;
    396 	IFQ_SET_READY(&ifp->if_snd);
    397 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    398 
    399 	ic->ic_ifp = ifp;
    400 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    401 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    402 	ic->ic_state = IEEE80211_S_INIT;
    403 
    404 	/* set device capabilities */
    405 	ic->ic_caps =
    406 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    407 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    408 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    409 	    IEEE80211_C_TXPMGT |	/* tx power management */
    410 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    411 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    412 	    IEEE80211_C_WPA;		/* 802.11i */
    413 
    414 	if (sc->rf_rev == RT2560_RF_5222) {
    415 		/* set supported .11a rates */
    416 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
    417 
    418 		/* set supported .11a channels */
    419 		for (i = 36; i <= 64; i += 4) {
    420 			ic->ic_channels[i].ic_freq =
    421 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    422 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    423 		}
    424 		for (i = 100; i <= 140; i += 4) {
    425 			ic->ic_channels[i].ic_freq =
    426 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    427 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    428 		}
    429 		for (i = 149; i <= 161; i += 4) {
    430 			ic->ic_channels[i].ic_freq =
    431 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    432 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    433 		}
    434 	}
    435 
    436 	/* set supported .11b and .11g rates */
    437 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
    438 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
    439 
    440 	/* set supported .11b and .11g channels (1 through 14) */
    441 	for (i = 1; i <= 14; i++) {
    442 		ic->ic_channels[i].ic_freq =
    443 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    444 		ic->ic_channels[i].ic_flags =
    445 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    446 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    447 	}
    448 
    449 	if_attach(ifp);
    450 	ieee80211_ifattach(ic);
    451 	ic->ic_node_alloc = rt2560_node_alloc;
    452 	ic->ic_updateslot = rt2560_update_slot;
    453 	ic->ic_reset = rt2560_reset;
    454 
    455 	/* override state transition machine */
    456 	sc->sc_newstate = ic->ic_newstate;
    457 	ic->ic_newstate = rt2560_newstate;
    458 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
    459 
    460 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    461 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
    462 
    463 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    464 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    465 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
    466 
    467 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    468 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    469 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
    470 
    471 
    472 	sc->dwelltime = 200;
    473 
    474 	ieee80211_announce(ic);
    475 
    476 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    477 		pmf_class_network_register(sc->sc_dev, ifp);
    478 	else
    479 		aprint_error_dev(sc->sc_dev,
    480 		    "couldn't establish power handler\n");
    481 
    482 	return 0;
    483 
    484 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
    485 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
    486 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
    487 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
    488 fail1:
    489 	return ENXIO;
    490 }
    491 
    492 
    493 int
    494 rt2560_detach(void *xsc)
    495 {
    496 	struct rt2560_softc *sc = xsc;
    497 	struct ifnet *ifp = &sc->sc_if;
    498 
    499 	callout_stop(&sc->scan_ch);
    500 	callout_stop(&sc->rssadapt_ch);
    501 
    502 	pmf_device_deregister(sc->sc_dev);
    503 
    504 	rt2560_stop(ifp, 1);
    505 
    506 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
    507 	if_detach(ifp);
    508 
    509 	rt2560_free_tx_ring(sc, &sc->txq);
    510 	rt2560_free_tx_ring(sc, &sc->atimq);
    511 	rt2560_free_tx_ring(sc, &sc->prioq);
    512 	rt2560_free_tx_ring(sc, &sc->bcnq);
    513 	rt2560_free_rx_ring(sc, &sc->rxq);
    514 
    515 	return 0;
    516 }
    517 
    518 int
    519 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
    520     int count)
    521 {
    522 	int i, nsegs, error;
    523 
    524 	ring->count = count;
    525 	ring->queued = 0;
    526 	ring->cur = ring->next = 0;
    527 	ring->cur_encrypt = ring->next_encrypt = 0;
    528 
    529 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
    530 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    531 	if (error != 0) {
    532 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    533 		goto fail;
    534 	}
    535 
    536 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
    537 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    538 	if (error != 0) {
    539 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    540 		goto fail;
    541 	}
    542 
    543 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    544 	    count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
    545 	    BUS_DMA_NOWAIT);
    546 	if (error != 0) {
    547 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    548 		goto fail;
    549 	}
    550 
    551 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    552 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    553 	if (error != 0) {
    554 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    555 		goto fail;
    556 	}
    557 
    558 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
    559 	ring->physaddr = ring->map->dm_segs->ds_addr;
    560 
    561 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
    562 	    M_NOWAIT);
    563 	if (ring->data == NULL) {
    564 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    565 		error = ENOMEM;
    566 		goto fail;
    567 	}
    568 
    569 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
    570 	for (i = 0; i < count; i++) {
    571 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    572 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
    573 		    &ring->data[i].map);
    574 		if (error != 0) {
    575 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    576 			goto fail;
    577 		}
    578 	}
    579 
    580 	return 0;
    581 
    582 fail:	rt2560_free_tx_ring(sc, ring);
    583 	return error;
    584 }
    585 
    586 void
    587 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    588 {
    589 	struct rt2560_tx_desc *desc;
    590 	struct rt2560_tx_data *data;
    591 	int i;
    592 
    593 	for (i = 0; i < ring->count; i++) {
    594 		desc = &ring->desc[i];
    595 		data = &ring->data[i];
    596 
    597 		if (data->m != NULL) {
    598 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    599 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    600 			bus_dmamap_unload(sc->sc_dmat, data->map);
    601 			m_freem(data->m);
    602 			data->m = NULL;
    603 		}
    604 
    605 		if (data->ni != NULL) {
    606 			ieee80211_free_node(data->ni);
    607 			data->ni = NULL;
    608 		}
    609 
    610 		desc->flags = 0;
    611 	}
    612 
    613 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    614 	    BUS_DMASYNC_PREWRITE);
    615 
    616 	ring->queued = 0;
    617 	ring->cur = ring->next = 0;
    618 	ring->cur_encrypt = ring->next_encrypt = 0;
    619 }
    620 
    621 void
    622 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    623 {
    624 	struct rt2560_tx_data *data;
    625 	int i;
    626 
    627 	if (ring->desc != NULL) {
    628 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    629 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    630 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    631 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    632 		    ring->count * RT2560_TX_DESC_SIZE);
    633 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    634 	}
    635 
    636 	if (ring->data != NULL) {
    637 		for (i = 0; i < ring->count; i++) {
    638 			data = &ring->data[i];
    639 
    640 			if (data->m != NULL) {
    641 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    642 				    data->map->dm_mapsize,
    643 				    BUS_DMASYNC_POSTWRITE);
    644 				bus_dmamap_unload(sc->sc_dmat, data->map);
    645 				m_freem(data->m);
    646 			}
    647 
    648 			if (data->ni != NULL)
    649 				ieee80211_free_node(data->ni);
    650 
    651 
    652 			if (data->map != NULL)
    653 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    654 		}
    655 		free(ring->data, M_DEVBUF);
    656 	}
    657 }
    658 
    659 int
    660 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
    661     int count)
    662 {
    663 	struct rt2560_rx_desc *desc;
    664 	struct rt2560_rx_data *data;
    665 	int i, nsegs, error;
    666 
    667 	ring->count = count;
    668 	ring->cur = ring->next = 0;
    669 	ring->cur_decrypt = 0;
    670 
    671 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
    672 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    673 	if (error != 0) {
    674 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    675 		goto fail;
    676 	}
    677 
    678 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
    679 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    680 	if (error != 0) {
    681 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    682 		goto fail;
    683 	}
    684 
    685 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    686 	    count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
    687 	    BUS_DMA_NOWAIT);
    688 	if (error != 0) {
    689 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    690 		goto fail;
    691 	}
    692 
    693 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    694 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    695 	if (error != 0) {
    696 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    697 		goto fail;
    698 	}
    699 
    700 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
    701 	ring->physaddr = ring->map->dm_segs->ds_addr;
    702 
    703 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
    704 	    M_NOWAIT);
    705 	if (ring->data == NULL) {
    706 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    707 		error = ENOMEM;
    708 		goto fail;
    709 	}
    710 
    711 	/*
    712 	 * Pre-allocate Rx buffers and populate Rx ring.
    713 	 */
    714 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
    715 	for (i = 0; i < count; i++) {
    716 		desc = &sc->rxq.desc[i];
    717 		data = &sc->rxq.data[i];
    718 
    719 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    720 		    0, BUS_DMA_NOWAIT, &data->map);
    721 		if (error != 0) {
    722 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    723 			goto fail;
    724 		}
    725 
    726 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    727 		if (data->m == NULL) {
    728 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    729 			error = ENOMEM;
    730 			goto fail;
    731 		}
    732 
    733 		MCLGET(data->m, M_DONTWAIT);
    734 		if (!(data->m->m_flags & M_EXT)) {
    735 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
    736 			error = ENOMEM;
    737 			goto fail;
    738 		}
    739 
    740 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    741 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
    742 		if (error != 0) {
    743 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
    744 			goto fail;
    745 		}
    746 
    747 		desc->flags = htole32(RT2560_RX_BUSY);
    748 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
    749 	}
    750 
    751 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    752 	    BUS_DMASYNC_PREWRITE);
    753 
    754 	return 0;
    755 
    756 fail:	rt2560_free_rx_ring(sc, ring);
    757 	return error;
    758 }
    759 
    760 void
    761 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    762 {
    763 	int i;
    764 
    765 	for (i = 0; i < ring->count; i++) {
    766 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
    767 		ring->data[i].drop = 0;
    768 	}
    769 
    770 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    771 	    BUS_DMASYNC_PREWRITE);
    772 
    773 	ring->cur = ring->next = 0;
    774 	ring->cur_decrypt = 0;
    775 }
    776 
    777 void
    778 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    779 {
    780 	struct rt2560_rx_data *data;
    781 	int i;
    782 
    783 	if (ring->desc != NULL) {
    784 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    785 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    786 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    787 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    788 		    ring->count * RT2560_RX_DESC_SIZE);
    789 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    790 	}
    791 
    792 	if (ring->data != NULL) {
    793 		for (i = 0; i < ring->count; i++) {
    794 			data = &ring->data[i];
    795 
    796 			if (data->m != NULL) {
    797 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    798 				    data->map->dm_mapsize,
    799 				    BUS_DMASYNC_POSTREAD);
    800 				bus_dmamap_unload(sc->sc_dmat, data->map);
    801 				m_freem(data->m);
    802 			}
    803 
    804 			if (data->map != NULL)
    805 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    806 		}
    807 		free(ring->data, M_DEVBUF);
    808 	}
    809 }
    810 
    811 struct ieee80211_node *
    812 rt2560_node_alloc(struct ieee80211_node_table *nt)
    813 {
    814 	struct rt2560_node *rn;
    815 
    816 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
    817 	    M_NOWAIT | M_ZERO);
    818 
    819 	return (rn != NULL) ? &rn->ni : NULL;
    820 }
    821 
    822 int
    823 rt2560_media_change(struct ifnet *ifp)
    824 {
    825 	int error;
    826 
    827 	error = ieee80211_media_change(ifp);
    828 	if (error != ENETRESET)
    829 		return error;
    830 
    831 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    832 		rt2560_init(ifp);
    833 
    834 	return 0;
    835 }
    836 
    837 /*
    838  * This function is called periodically (every 200ms) during scanning to
    839  * switch from one channel to another.
    840  */
    841 void
    842 rt2560_next_scan(void *arg)
    843 {
    844 	struct rt2560_softc *sc = arg;
    845 	struct ieee80211com *ic = &sc->sc_ic;
    846 
    847 	if (ic->ic_state == IEEE80211_S_SCAN)
    848 		ieee80211_next_scan(ic);
    849 }
    850 
    851 /*
    852  * This function is called for each neighbor node.
    853  */
    854 void
    855 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
    856 {
    857 	struct rt2560_node *rn = (struct rt2560_node *)ni;
    858 
    859 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
    860 }
    861 
    862 /*
    863  * This function is called periodically (every 100ms) in RUN state to update
    864  * the rate adaptation statistics.
    865  */
    866 void
    867 rt2560_update_rssadapt(void *arg)
    868 {
    869 	struct rt2560_softc *sc = arg;
    870 	struct ieee80211com *ic = &sc->sc_ic;
    871 
    872 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
    873 
    874 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
    875 }
    876 
    877 int
    878 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    879 {
    880 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
    881 	enum ieee80211_state ostate;
    882 	struct ieee80211_node *ni;
    883 	struct mbuf *m;
    884 	int error = 0;
    885 
    886 	ostate = ic->ic_state;
    887 	callout_stop(&sc->scan_ch);
    888 
    889 	switch (nstate) {
    890 	case IEEE80211_S_INIT:
    891 		callout_stop(&sc->rssadapt_ch);
    892 
    893 		if (ostate == IEEE80211_S_RUN) {
    894 			/* abort TSF synchronization */
    895 			RAL_WRITE(sc, RT2560_CSR14, 0);
    896 
    897 			/* turn association led off */
    898 			rt2560_update_led(sc, 0, 0);
    899 		}
    900 		break;
    901 
    902 	case IEEE80211_S_SCAN:
    903 		rt2560_set_chan(sc, ic->ic_curchan);
    904 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
    905 		    rt2560_next_scan, sc);
    906 		break;
    907 
    908 	case IEEE80211_S_AUTH:
    909 		rt2560_set_chan(sc, ic->ic_curchan);
    910 		break;
    911 
    912 	case IEEE80211_S_ASSOC:
    913 		rt2560_set_chan(sc, ic->ic_curchan);
    914 		break;
    915 
    916 	case IEEE80211_S_RUN:
    917 		rt2560_set_chan(sc, ic->ic_curchan);
    918 
    919 		ni = ic->ic_bss;
    920 
    921 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    922 			rt2560_update_plcp(sc);
    923 			rt2560_set_basicrates(sc);
    924 			rt2560_set_bssid(sc, ni->ni_bssid);
    925 		}
    926 
    927 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    928 		    ic->ic_opmode == IEEE80211_M_IBSS) {
    929 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
    930 			if (m == NULL) {
    931 				aprint_error_dev(sc->sc_dev, "could not allocate beacon\n");
    932 				error = ENOBUFS;
    933 				break;
    934 			}
    935 
    936 			ieee80211_ref_node(ni);
    937 			error = rt2560_tx_bcn(sc, m, ni);
    938 			if (error != 0)
    939 				break;
    940 		}
    941 
    942 		/* turn assocation led on */
    943 		rt2560_update_led(sc, 1, 0);
    944 
    945 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    946 			callout_reset(&sc->rssadapt_ch, hz / 10,
    947 			    rt2560_update_rssadapt, sc);
    948 			rt2560_enable_tsf_sync(sc);
    949 		}
    950 		break;
    951 	}
    952 
    953 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
    954 }
    955 
    956 /*
    957  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
    958  * 93C66).
    959  */
    960 uint16_t
    961 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
    962 {
    963 	uint32_t tmp;
    964 	uint16_t val;
    965 	int n;
    966 
    967 	/* clock C once before the first command */
    968 	RT2560_EEPROM_CTL(sc, 0);
    969 
    970 	RT2560_EEPROM_CTL(sc, RT2560_S);
    971 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
    972 	RT2560_EEPROM_CTL(sc, RT2560_S);
    973 
    974 	/* write start bit (1) */
    975 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
    976 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
    977 
    978 	/* write READ opcode (10) */
    979 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
    980 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
    981 	RT2560_EEPROM_CTL(sc, RT2560_S);
    982 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
    983 
    984 	/* write address (A5-A0 or A7-A0) */
    985 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
    986 	for (; n >= 0; n--) {
    987 		RT2560_EEPROM_CTL(sc, RT2560_S |
    988 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
    989 		RT2560_EEPROM_CTL(sc, RT2560_S |
    990 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
    991 	}
    992 
    993 	RT2560_EEPROM_CTL(sc, RT2560_S);
    994 
    995 	/* read data Q15-Q0 */
    996 	val = 0;
    997 	for (n = 15; n >= 0; n--) {
    998 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
    999 		tmp = RAL_READ(sc, RT2560_CSR21);
   1000 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
   1001 		RT2560_EEPROM_CTL(sc, RT2560_S);
   1002 	}
   1003 
   1004 	RT2560_EEPROM_CTL(sc, 0);
   1005 
   1006 	/* clear Chip Select and clock C */
   1007 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1008 	RT2560_EEPROM_CTL(sc, 0);
   1009 	RT2560_EEPROM_CTL(sc, RT2560_C);
   1010 
   1011 	return val;
   1012 }
   1013 
   1014 /*
   1015  * Some frames were processed by the hardware cipher engine and are ready for
   1016  * transmission.
   1017  */
   1018 void
   1019 rt2560_encryption_intr(struct rt2560_softc *sc)
   1020 {
   1021 	struct rt2560_tx_desc *desc;
   1022 	int hw;
   1023 
   1024 	/* retrieve last descriptor index processed by cipher engine */
   1025 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
   1026 	    RT2560_TX_DESC_SIZE;
   1027 
   1028 	for (; sc->txq.next_encrypt != hw;) {
   1029 		desc = &sc->txq.desc[sc->txq.next_encrypt];
   1030 
   1031 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1032 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1033 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1034 
   1035 		if (le32toh(desc->flags) &
   1036 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
   1037 			break;
   1038 
   1039 		/* for TKIP, swap eiv field to fix a bug in ASIC */
   1040 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
   1041 		    RT2560_TX_CIPHER_TKIP)
   1042 			desc->eiv = bswap32(desc->eiv);
   1043 
   1044 		/* mark the frame ready for transmission */
   1045 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1046 
   1047 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1048 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1049 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1050 
   1051 		DPRINTFN(15, ("encryption done idx=%u\n",
   1052 		    sc->txq.next_encrypt));
   1053 
   1054 		sc->txq.next_encrypt =
   1055 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
   1056 	}
   1057 
   1058 	/* kick Tx */
   1059 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
   1060 }
   1061 
   1062 void
   1063 rt2560_tx_intr(struct rt2560_softc *sc)
   1064 {
   1065 	struct ieee80211com *ic = &sc->sc_ic;
   1066 	struct ifnet *ifp = ic->ic_ifp;
   1067 	struct rt2560_tx_desc *desc;
   1068 	struct rt2560_tx_data *data;
   1069 	struct rt2560_node *rn;
   1070 
   1071 	for (;;) {
   1072 		desc = &sc->txq.desc[sc->txq.next];
   1073 		data = &sc->txq.data[sc->txq.next];
   1074 
   1075 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1076 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1077 		    BUS_DMASYNC_POSTREAD);
   1078 
   1079 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1080 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
   1081 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1082 			break;
   1083 
   1084 		rn = (struct rt2560_node *)data->ni;
   1085 
   1086 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1087 		case RT2560_TX_SUCCESS:
   1088 			DPRINTFN(10, ("data frame sent successfully\n"));
   1089 			if (data->id.id_node != NULL) {
   1090 				ieee80211_rssadapt_raise_rate(ic,
   1091 				    &rn->rssadapt, &data->id);
   1092 			}
   1093 			ifp->if_opackets++;
   1094 			break;
   1095 
   1096 		case RT2560_TX_SUCCESS_RETRY:
   1097 			DPRINTFN(9, ("data frame sent after %u retries\n",
   1098 			    (le32toh(desc->flags) >> 5) & 0x7));
   1099 			ifp->if_opackets++;
   1100 			break;
   1101 
   1102 		case RT2560_TX_FAIL_RETRY:
   1103 			DPRINTFN(9, ("sending data frame failed (too much "
   1104 			    "retries)\n"));
   1105 			if (data->id.id_node != NULL) {
   1106 				ieee80211_rssadapt_lower_rate(ic, data->ni,
   1107 				    &rn->rssadapt, &data->id);
   1108 			}
   1109 			ifp->if_oerrors++;
   1110 			break;
   1111 
   1112 		case RT2560_TX_FAIL_INVALID:
   1113 		case RT2560_TX_FAIL_OTHER:
   1114 		default:
   1115 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n",
   1116 			    le32toh(desc->flags));
   1117 			ifp->if_oerrors++;
   1118 		}
   1119 
   1120 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1121 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1122 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1123 		m_freem(data->m);
   1124 		data->m = NULL;
   1125 		ieee80211_free_node(data->ni);
   1126 		data->ni = NULL;
   1127 
   1128 		/* descriptor is no longer valid */
   1129 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1130 
   1131 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1132 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1133 		    BUS_DMASYNC_PREWRITE);
   1134 
   1135 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
   1136 
   1137 		sc->txq.queued--;
   1138 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
   1139 	}
   1140 
   1141 	sc->sc_tx_timer = 0;
   1142 	ifp->if_flags &= ~IFF_OACTIVE;
   1143 	rt2560_start(ifp);
   1144 }
   1145 
   1146 void
   1147 rt2560_prio_intr(struct rt2560_softc *sc)
   1148 {
   1149 	struct ieee80211com *ic = &sc->sc_ic;
   1150 	struct ifnet *ifp = ic->ic_ifp;
   1151 	struct rt2560_tx_desc *desc;
   1152 	struct rt2560_tx_data *data;
   1153 
   1154 	for (;;) {
   1155 		desc = &sc->prioq.desc[sc->prioq.next];
   1156 		data = &sc->prioq.data[sc->prioq.next];
   1157 
   1158 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1159 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1160 		    BUS_DMASYNC_POSTREAD);
   1161 
   1162 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1163 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1164 			break;
   1165 
   1166 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1167 		case RT2560_TX_SUCCESS:
   1168 			DPRINTFN(10, ("mgt frame sent successfully\n"));
   1169 			break;
   1170 
   1171 		case RT2560_TX_SUCCESS_RETRY:
   1172 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
   1173 			    (le32toh(desc->flags) >> 5) & 0x7));
   1174 			break;
   1175 
   1176 		case RT2560_TX_FAIL_RETRY:
   1177 			DPRINTFN(9, ("sending mgt frame failed (too much "
   1178 			    "retries)\n"));
   1179 			break;
   1180 
   1181 		case RT2560_TX_FAIL_INVALID:
   1182 		case RT2560_TX_FAIL_OTHER:
   1183 		default:
   1184 			aprint_error_dev(sc->sc_dev, "sending mgt frame failed 0x%08x\n",
   1185 			    le32toh(desc->flags));
   1186 		}
   1187 
   1188 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1189 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1190 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1191 		m_freem(data->m);
   1192 		data->m = NULL;
   1193 		ieee80211_free_node(data->ni);
   1194 		data->ni = NULL;
   1195 
   1196 		/* descriptor is no longer valid */
   1197 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1198 
   1199 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1200 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1201 		    BUS_DMASYNC_PREWRITE);
   1202 
   1203 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
   1204 
   1205 		sc->prioq.queued--;
   1206 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
   1207 	}
   1208 
   1209 	sc->sc_tx_timer = 0;
   1210 	ifp->if_flags &= ~IFF_OACTIVE;
   1211 	rt2560_start(ifp);
   1212 }
   1213 
   1214 /*
   1215  * Some frames were processed by the hardware cipher engine and are ready for
   1216  * transmission to the IEEE802.11 layer.
   1217  */
   1218 void
   1219 rt2560_decryption_intr(struct rt2560_softc *sc)
   1220 {
   1221 	struct ieee80211com *ic = &sc->sc_ic;
   1222 	struct ifnet *ifp = ic->ic_ifp;
   1223 	struct rt2560_rx_desc *desc;
   1224 	struct rt2560_rx_data *data;
   1225 	struct rt2560_node *rn;
   1226 	struct ieee80211_frame *wh;
   1227 	struct ieee80211_node *ni;
   1228 	struct mbuf *mnew, *m;
   1229 	int hw, error;
   1230 
   1231 	/* retrieve last decriptor index processed by cipher engine */
   1232 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
   1233 	    RT2560_RX_DESC_SIZE;
   1234 
   1235 	for (; sc->rxq.cur_decrypt != hw;) {
   1236 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
   1237 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
   1238 
   1239 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1240 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1241 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1242 
   1243 		if (le32toh(desc->flags) &
   1244 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1245 			break;
   1246 
   1247 		if (data->drop) {
   1248 			ifp->if_ierrors++;
   1249 			goto skip;
   1250 		}
   1251 
   1252 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
   1253 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
   1254 			ifp->if_ierrors++;
   1255 			goto skip;
   1256 		}
   1257 
   1258 		/*
   1259 		 * Try to allocate a new mbuf for this ring element and load it
   1260 		 * before processing the current mbuf.  If the ring element
   1261 		 * cannot be loaded, drop the received packet and reuse the old
   1262 		 * mbuf.  In the unlikely case that the old mbuf can't be
   1263 		 * reloaded either, explicitly panic.
   1264 		 */
   1265 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1266 		if (mnew == NULL) {
   1267 			ifp->if_ierrors++;
   1268 			goto skip;
   1269 		}
   1270 
   1271 		MCLGET(mnew, M_DONTWAIT);
   1272 		if (!(mnew->m_flags & M_EXT)) {
   1273 			m_freem(mnew);
   1274 			ifp->if_ierrors++;
   1275 			goto skip;
   1276 		}
   1277 
   1278 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1279 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1280 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1281 
   1282 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1283 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
   1284 		if (error != 0) {
   1285 			m_freem(mnew);
   1286 
   1287 			/* try to reload the old mbuf */
   1288 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1289 			    mtod(data->m, void *), MCLBYTES, NULL,
   1290 			    BUS_DMA_NOWAIT);
   1291 			if (error != 0) {
   1292 				/* very unlikely that it will fail... */
   1293 				panic("%s: could not load old rx mbuf",
   1294 				    device_xname(sc->sc_dev));
   1295 			}
   1296 			/* physical address may have changed */
   1297 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1298 			ifp->if_ierrors++;
   1299 			goto skip;
   1300 		}
   1301 
   1302 		/*
   1303 		 * New mbuf successfully loaded, update Rx ring and continue
   1304 		 * processing.
   1305 		 */
   1306 		m = data->m;
   1307 		data->m = mnew;
   1308 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1309 
   1310 		/* finalize mbuf */
   1311 		m->m_pkthdr.rcvif = ifp;
   1312 		m->m_pkthdr.len = m->m_len =
   1313 		    (le32toh(desc->flags) >> 16) & 0xfff;
   1314 
   1315 		if (sc->sc_drvbpf != NULL) {
   1316 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
   1317 			uint32_t tsf_lo, tsf_hi;
   1318 
   1319 			/* get timestamp (low and high 32 bits) */
   1320 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
   1321 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
   1322 
   1323 			tap->wr_tsf =
   1324 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
   1325 			tap->wr_flags = 0;
   1326 			tap->wr_rate = rt2560_rxrate(desc);
   1327 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1328 			tap->wr_chan_flags =
   1329 			    htole16(ic->ic_ibss_chan->ic_flags);
   1330 			tap->wr_antenna = sc->rx_ant;
   1331 			tap->wr_antsignal = desc->rssi;
   1332 
   1333 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1334 		}
   1335 
   1336 		wh = mtod(m, struct ieee80211_frame *);
   1337 		ni = ieee80211_find_rxnode(ic,
   1338 		    (struct ieee80211_frame_min *)wh);
   1339 
   1340 		/* send the frame to the 802.11 layer */
   1341 		ieee80211_input(ic, m, ni, desc->rssi, 0);
   1342 
   1343 		/* give rssi to the rate adatation algorithm */
   1344 		rn = (struct rt2560_node *)ni;
   1345 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
   1346 
   1347 		/* node is no longer needed */
   1348 		ieee80211_free_node(ni);
   1349 
   1350 skip:		desc->flags = htole32(RT2560_RX_BUSY);
   1351 
   1352 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1353 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1354 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1355 
   1356 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
   1357 
   1358 		sc->rxq.cur_decrypt =
   1359 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
   1360 	}
   1361 
   1362 	/*
   1363 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
   1364 	 * without calling if_start().
   1365 	 */
   1366 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
   1367 		rt2560_start(ifp);
   1368 }
   1369 
   1370 /*
   1371  * Some frames were received. Pass them to the hardware cipher engine before
   1372  * sending them to the 802.11 layer.
   1373  */
   1374 void
   1375 rt2560_rx_intr(struct rt2560_softc *sc)
   1376 {
   1377 	struct rt2560_rx_desc *desc;
   1378 	struct rt2560_rx_data *data;
   1379 
   1380 	for (;;) {
   1381 		desc = &sc->rxq.desc[sc->rxq.cur];
   1382 		data = &sc->rxq.data[sc->rxq.cur];
   1383 
   1384 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1385 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1386 		    BUS_DMASYNC_POSTREAD);
   1387 
   1388 		if (le32toh(desc->flags) &
   1389 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1390 			break;
   1391 
   1392 		data->drop = 0;
   1393 
   1394 		if (le32toh(desc->flags) &
   1395 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
   1396 			/*
   1397 			 * This should not happen since we did not request
   1398 			 * to receive those frames when we filled RXCSR0.
   1399 			 */
   1400 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
   1401 			    le32toh(desc->flags)));
   1402 			data->drop = 1;
   1403 		}
   1404 
   1405 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
   1406 			DPRINTFN(5, ("bad length\n"));
   1407 			data->drop = 1;
   1408 		}
   1409 
   1410 		/* mark the frame for decryption */
   1411 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
   1412 
   1413 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1414 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1415 		    BUS_DMASYNC_PREWRITE);
   1416 
   1417 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
   1418 
   1419 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
   1420 	}
   1421 
   1422 	/* kick decrypt */
   1423 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
   1424 }
   1425 
   1426 /*
   1427  * This function is called periodically in IBSS mode when a new beacon must be
   1428  * sent out.
   1429  */
   1430 static void
   1431 rt2560_beacon_expire(struct rt2560_softc *sc)
   1432 {
   1433 	struct ieee80211com *ic = &sc->sc_ic;
   1434 	struct rt2560_tx_data *data;
   1435 
   1436 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
   1437 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
   1438 		return;
   1439 
   1440 	data = &sc->bcnq.data[sc->bcnq.next];
   1441 
   1442 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1443 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1444 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1445 
   1446 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
   1447 
   1448 	bpf_mtap3(ic->ic_rawbpf, data->m);
   1449 	rt2560_tx_bcn(sc, data->m, data->ni);
   1450 
   1451 	DPRINTFN(15, ("beacon expired\n"));
   1452 
   1453 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
   1454 }
   1455 
   1456 static void
   1457 rt2560_wakeup_expire(struct rt2560_softc *sc)
   1458 {
   1459 	DPRINTFN(15, ("wakeup expired\n"));
   1460 }
   1461 
   1462 int
   1463 rt2560_intr(void *arg)
   1464 {
   1465 	struct rt2560_softc *sc = arg;
   1466 	struct ifnet *ifp = &sc->sc_if;
   1467 	uint32_t r;
   1468 
   1469 	if (!device_is_active(sc->sc_dev))
   1470 		return 0;
   1471 
   1472 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
   1473 		return 0;       /* not for us */
   1474 
   1475 	/* disable interrupts */
   1476 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   1477 
   1478 	/* acknowledge interrupts */
   1479 	RAL_WRITE(sc, RT2560_CSR7, r);
   1480 
   1481 	/* don't re-enable interrupts if we're shutting down */
   1482 	if (!(ifp->if_flags & IFF_RUNNING))
   1483 		return 0;
   1484 
   1485 	if (r & RT2560_BEACON_EXPIRE)
   1486 		rt2560_beacon_expire(sc);
   1487 
   1488 	if (r & RT2560_WAKEUP_EXPIRE)
   1489 		rt2560_wakeup_expire(sc);
   1490 
   1491 	if (r & RT2560_ENCRYPTION_DONE)
   1492 		rt2560_encryption_intr(sc);
   1493 
   1494 	if (r & RT2560_TX_DONE)
   1495 		rt2560_tx_intr(sc);
   1496 
   1497 	if (r & RT2560_PRIO_DONE)
   1498 		rt2560_prio_intr(sc);
   1499 
   1500 	if (r & RT2560_DECRYPTION_DONE)
   1501 		rt2560_decryption_intr(sc);
   1502 
   1503 	if (r & RT2560_RX_DONE)
   1504 		rt2560_rx_intr(sc);
   1505 
   1506 	/* re-enable interrupts */
   1507 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   1508 
   1509 	return 1;
   1510 }
   1511 
   1512 /* quickly determine if a given rate is CCK or OFDM */
   1513 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1514 
   1515 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
   1516 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
   1517 
   1518 #define RAL_SIFS		10	/* us */
   1519 
   1520 #define RT2560_RXTX_TURNAROUND	10	/* us */
   1521 
   1522 /*
   1523  * This function is only used by the Rx radiotap code. It returns the rate at
   1524  * which a given frame was received.
   1525  */
   1526 static uint8_t
   1527 rt2560_rxrate(struct rt2560_rx_desc *desc)
   1528 {
   1529 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
   1530 		/* reverse function of rt2560_plcp_signal */
   1531 		switch (desc->rate) {
   1532 		case 0xb:	return 12;
   1533 		case 0xf:	return 18;
   1534 		case 0xa:	return 24;
   1535 		case 0xe:	return 36;
   1536 		case 0x9:	return 48;
   1537 		case 0xd:	return 72;
   1538 		case 0x8:	return 96;
   1539 		case 0xc:	return 108;
   1540 		}
   1541 	} else {
   1542 		if (desc->rate == 10)
   1543 			return 2;
   1544 		if (desc->rate == 20)
   1545 			return 4;
   1546 		if (desc->rate == 55)
   1547 			return 11;
   1548 		if (desc->rate == 110)
   1549 			return 22;
   1550 	}
   1551 	return 2;	/* should not get there */
   1552 }
   1553 
   1554 /*
   1555  * Return the expected ack rate for a frame transmitted at rate `rate'.
   1556  * XXX: this should depend on the destination node basic rate set.
   1557  */
   1558 static int
   1559 rt2560_ack_rate(struct ieee80211com *ic, int rate)
   1560 {
   1561 	switch (rate) {
   1562 	/* CCK rates */
   1563 	case 2:
   1564 		return 2;
   1565 	case 4:
   1566 	case 11:
   1567 	case 22:
   1568 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
   1569 
   1570 	/* OFDM rates */
   1571 	case 12:
   1572 	case 18:
   1573 		return 12;
   1574 	case 24:
   1575 	case 36:
   1576 		return 24;
   1577 	case 48:
   1578 	case 72:
   1579 	case 96:
   1580 	case 108:
   1581 		return 48;
   1582 	}
   1583 
   1584 	/* default to 1Mbps */
   1585 	return 2;
   1586 }
   1587 
   1588 /*
   1589  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1590  * The function automatically determines the operating mode depending on the
   1591  * given rate. `flags' indicates whether short preamble is in use or not.
   1592  */
   1593 static uint16_t
   1594 rt2560_txtime(int len, int rate, uint32_t flags)
   1595 {
   1596 	uint16_t txtime;
   1597 
   1598 	if (RAL_RATE_IS_OFDM(rate)) {
   1599 		/* IEEE Std 802.11a-1999, pp. 37 */
   1600 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1601 		txtime = 16 + 4 + 4 * txtime + 6;
   1602 	} else {
   1603 		/* IEEE Std 802.11b-1999, pp. 28 */
   1604 		txtime = (16 * len + rate - 1) / rate;
   1605 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1606 			txtime +=  72 + 24;
   1607 		else
   1608 			txtime += 144 + 48;
   1609 	}
   1610 	return txtime;
   1611 }
   1612 
   1613 static uint8_t
   1614 rt2560_plcp_signal(int rate)
   1615 {
   1616 	switch (rate) {
   1617 	/* CCK rates (returned values are device-dependent) */
   1618 	case 2:		return 0x0;
   1619 	case 4:		return 0x1;
   1620 	case 11:	return 0x2;
   1621 	case 22:	return 0x3;
   1622 
   1623 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1624 	case 12:	return 0xb;
   1625 	case 18:	return 0xf;
   1626 	case 24:	return 0xa;
   1627 	case 36:	return 0xe;
   1628 	case 48:	return 0x9;
   1629 	case 72:	return 0xd;
   1630 	case 96:	return 0x8;
   1631 	case 108:	return 0xc;
   1632 
   1633 	/* unsupported rates (should not get there) */
   1634 	default:	return 0xff;
   1635 	}
   1636 }
   1637 
   1638 static void
   1639 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
   1640     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
   1641 {
   1642 	struct ieee80211com *ic = &sc->sc_ic;
   1643 	uint16_t plcp_length;
   1644 	int remainder;
   1645 
   1646 	desc->flags = htole32(flags);
   1647 	desc->flags |= htole32(len << 16);
   1648 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
   1649 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1650 
   1651 	desc->physaddr = htole32(physaddr);
   1652 	desc->wme = htole16(
   1653 	    RT2560_AIFSN(2) |
   1654 	    RT2560_LOGCWMIN(3) |
   1655 	    RT2560_LOGCWMAX(8));
   1656 
   1657 	/* setup PLCP fields */
   1658 	desc->plcp_signal  = rt2560_plcp_signal(rate);
   1659 	desc->plcp_service = 4;
   1660 
   1661 	len += IEEE80211_CRC_LEN;
   1662 	if (RAL_RATE_IS_OFDM(rate)) {
   1663 		desc->flags |= htole32(RT2560_TX_OFDM);
   1664 
   1665 		plcp_length = len & 0xfff;
   1666 		desc->plcp_length_hi = plcp_length >> 6;
   1667 		desc->plcp_length_lo = plcp_length & 0x3f;
   1668 	} else {
   1669 		plcp_length = (16 * len + rate - 1) / rate;
   1670 		if (rate == 22) {
   1671 			remainder = (16 * len) % 22;
   1672 			if (remainder != 0 && remainder < 7)
   1673 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
   1674 		}
   1675 		desc->plcp_length_hi = plcp_length >> 8;
   1676 		desc->plcp_length_lo = plcp_length & 0xff;
   1677 
   1678 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1679 			desc->plcp_signal |= 0x08;
   1680 	}
   1681 }
   1682 
   1683 static int
   1684 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
   1685     struct ieee80211_node *ni)
   1686 {
   1687 	struct rt2560_tx_desc *desc;
   1688 	struct rt2560_tx_data *data;
   1689 	int rate, error;
   1690 
   1691 	desc = &sc->bcnq.desc[sc->bcnq.cur];
   1692 	data = &sc->bcnq.data[sc->bcnq.cur];
   1693 
   1694 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1695 
   1696 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1697 	    BUS_DMA_NOWAIT);
   1698 	if (error != 0) {
   1699 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1700 		    error);
   1701 		m_freem(m0);
   1702 		return error;
   1703 	}
   1704 
   1705 	data->m = m0;
   1706 	data->ni = ni;
   1707 
   1708 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
   1709 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
   1710 	    data->map->dm_segs->ds_addr);
   1711 
   1712 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1713 	    BUS_DMASYNC_PREWRITE);
   1714 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
   1715 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1716 	    BUS_DMASYNC_PREWRITE);
   1717 
   1718 	return 0;
   1719 }
   1720 
   1721 static int
   1722 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
   1723     struct ieee80211_node *ni)
   1724 {
   1725 	struct ieee80211com *ic = &sc->sc_ic;
   1726 	struct rt2560_tx_desc *desc;
   1727 	struct rt2560_tx_data *data;
   1728 	struct ieee80211_frame *wh;
   1729 	struct ieee80211_key *k;
   1730 	uint16_t dur;
   1731 	uint32_t flags = 0;
   1732 	int rate, error;
   1733 
   1734 	desc = &sc->prioq.desc[sc->prioq.cur];
   1735 	data = &sc->prioq.data[sc->prioq.cur];
   1736 
   1737 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1738 
   1739 	wh = mtod(m0, struct ieee80211_frame *);
   1740 
   1741 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1742 		k = ieee80211_crypto_encap(ic, ni, m0);
   1743 		if (k == NULL) {
   1744 			m_freem(m0);
   1745 			return ENOBUFS;
   1746 		}
   1747 
   1748 		/* packet header may have moved, reset our local pointer */
   1749 		wh = mtod(m0, struct ieee80211_frame *);
   1750 	}
   1751 
   1752 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1753 	    BUS_DMA_NOWAIT);
   1754 	if (error != 0) {
   1755 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1756 		    error);
   1757 		m_freem(m0);
   1758 		return error;
   1759 	}
   1760 
   1761 	if (sc->sc_drvbpf != NULL) {
   1762 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   1763 
   1764 		tap->wt_flags = 0;
   1765 		tap->wt_rate = rate;
   1766 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1767 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   1768 		tap->wt_antenna = sc->tx_ant;
   1769 
   1770 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1771 	}
   1772 
   1773 	data->m = m0;
   1774 	data->ni = ni;
   1775 
   1776 	wh = mtod(m0, struct ieee80211_frame *);
   1777 
   1778 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1779 		flags |= RT2560_TX_ACK;
   1780 
   1781 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
   1782 		    RAL_SIFS;
   1783 		*(uint16_t *)wh->i_dur = htole16(dur);
   1784 
   1785 		/* tell hardware to add timestamp for probe responses */
   1786 		if ((wh->i_fc[0] &
   1787 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1788 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1789 			flags |= RT2560_TX_TIMESTAMP;
   1790 	}
   1791 
   1792 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
   1793 	    data->map->dm_segs->ds_addr);
   1794 
   1795 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1796 	    BUS_DMASYNC_PREWRITE);
   1797 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1798 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1799 	    BUS_DMASYNC_PREWRITE);
   1800 
   1801 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
   1802 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
   1803 
   1804 	/* kick prio */
   1805 	sc->prioq.queued++;
   1806 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
   1807 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
   1808 
   1809 	return 0;
   1810 }
   1811 
   1812 /*
   1813  * Build a RTS control frame.
   1814  */
   1815 static struct mbuf *
   1816 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
   1817     uint16_t dur)
   1818 {
   1819 	struct ieee80211_frame_rts *rts;
   1820 	struct mbuf *m;
   1821 
   1822 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1823 	if (m == NULL) {
   1824 		sc->sc_ic.ic_stats.is_tx_nobuf++;
   1825 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
   1826 		return NULL;
   1827 	}
   1828 
   1829 	rts = mtod(m, struct ieee80211_frame_rts *);
   1830 
   1831 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1832 	    IEEE80211_FC0_SUBTYPE_RTS;
   1833 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1834 	*(uint16_t *)rts->i_dur = htole16(dur);
   1835 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1836 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1837 
   1838 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
   1839 
   1840 	return m;
   1841 }
   1842 
   1843 static int
   1844 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
   1845     struct ieee80211_node *ni)
   1846 {
   1847 	struct ieee80211com *ic = &sc->sc_ic;
   1848 	struct rt2560_tx_desc *desc;
   1849 	struct rt2560_tx_data *data;
   1850 	struct rt2560_node *rn;
   1851 	struct ieee80211_rateset *rs;
   1852 	struct ieee80211_frame *wh;
   1853 	struct ieee80211_key *k;
   1854 	struct mbuf *mnew;
   1855 	uint16_t dur;
   1856 	uint32_t flags = 0;
   1857 	int rate, error;
   1858 
   1859 	wh = mtod(m0, struct ieee80211_frame *);
   1860 
   1861 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1862 		rs = &ic->ic_sup_rates[ic->ic_curmode];
   1863 		rate = rs->rs_rates[ic->ic_fixed_rate];
   1864 	} else {
   1865 		rs = &ni->ni_rates;
   1866 		rn = (struct rt2560_node *)ni;
   1867 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
   1868 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
   1869 		rate = rs->rs_rates[ni->ni_txrate];
   1870 	}
   1871 	rate &= IEEE80211_RATE_VAL;
   1872 
   1873 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1874 		k = ieee80211_crypto_encap(ic, ni, m0);
   1875 		if (k == NULL) {
   1876 			m_freem(m0);
   1877 			return ENOBUFS;
   1878 		}
   1879 
   1880 		/* packet header may have moved, reset our local pointer */
   1881 		wh = mtod(m0, struct ieee80211_frame *);
   1882 	}
   1883 
   1884 	/*
   1885 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
   1886 	 * for directed frames only when the length of the MPDU is greater
   1887 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
   1888 	 */
   1889 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1890 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
   1891 		struct mbuf *m;
   1892 		int rtsrate, ackrate;
   1893 
   1894 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1895 		ackrate = rt2560_ack_rate(ic, rate);
   1896 
   1897 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
   1898 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
   1899 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
   1900 		      3 * RAL_SIFS;
   1901 
   1902 		m = rt2560_get_rts(sc, wh, dur);
   1903 
   1904 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
   1905 		data = &sc->txq.data[sc->txq.cur_encrypt];
   1906 
   1907 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   1908 		    BUS_DMA_NOWAIT);
   1909 		if (error != 0) {
   1910 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1911 			    error);
   1912 			m_freem(m);
   1913 			m_freem(m0);
   1914 			return error;
   1915 		}
   1916 
   1917 		/* avoid multiple free() of the same node for each fragment */
   1918 		ieee80211_ref_node(ni);
   1919 
   1920 		data->m = m;
   1921 		data->ni = ni;
   1922 
   1923 		/* RTS frames are not taken into account for rssadapt */
   1924 		data->id.id_node = NULL;
   1925 
   1926 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
   1927 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
   1928 		    data->map->dm_segs->ds_addr);
   1929 
   1930 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1931 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1932 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1933 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
   1934 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1935 
   1936 		sc->txq.queued++;
   1937 		sc->txq.cur_encrypt =
   1938 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   1939 
   1940 		/*
   1941 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
   1942 		 * asynchronous data frame shall be transmitted after the CTS
   1943 		 * frame and a SIFS period.
   1944 		 */
   1945 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
   1946 	}
   1947 
   1948 	data = &sc->txq.data[sc->txq.cur_encrypt];
   1949 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
   1950 
   1951 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1952 	    BUS_DMA_NOWAIT);
   1953 	if (error != 0 && error != EFBIG) {
   1954 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1955 		    error);
   1956 		m_freem(m0);
   1957 		return error;
   1958 	}
   1959 	if (error != 0) {
   1960 		/* too many fragments, linearize */
   1961 
   1962 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1963 		if (mnew == NULL) {
   1964 			m_freem(m0);
   1965 			return ENOMEM;
   1966 		}
   1967 
   1968 		M_COPY_PKTHDR(mnew, m0);
   1969 		if (m0->m_pkthdr.len > MHLEN) {
   1970 			MCLGET(mnew, M_DONTWAIT);
   1971 			if (!(mnew->m_flags & M_EXT)) {
   1972 				m_freem(m0);
   1973 				m_freem(mnew);
   1974 				return ENOMEM;
   1975 			}
   1976 		}
   1977 
   1978 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1979 		m_freem(m0);
   1980 		mnew->m_len = mnew->m_pkthdr.len;
   1981 		m0 = mnew;
   1982 
   1983 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1984 		    BUS_DMA_NOWAIT);
   1985 		if (error != 0) {
   1986 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1987 			    error);
   1988 			m_freem(m0);
   1989 			return error;
   1990 		}
   1991 
   1992 		/* packet header have moved, reset our local pointer */
   1993 		wh = mtod(m0, struct ieee80211_frame *);
   1994 	}
   1995 
   1996 	if (sc->sc_drvbpf != NULL) {
   1997 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   1998 
   1999 		tap->wt_flags = 0;
   2000 		tap->wt_rate = rate;
   2001 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   2002 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   2003 		tap->wt_antenna = sc->tx_ant;
   2004 
   2005 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   2006 	}
   2007 
   2008 	data->m = m0;
   2009 	data->ni = ni;
   2010 
   2011 	/* remember link conditions for rate adaptation algorithm */
   2012 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   2013 		data->id.id_len = m0->m_pkthdr.len;
   2014 		data->id.id_rateidx = ni->ni_txrate;
   2015 		data->id.id_node = ni;
   2016 		data->id.id_rssi = ni->ni_rssi;
   2017 	} else
   2018 		data->id.id_node = NULL;
   2019 
   2020 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2021 		flags |= RT2560_TX_ACK;
   2022 
   2023 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
   2024 		    ic->ic_flags) + RAL_SIFS;
   2025 		*(uint16_t *)wh->i_dur = htole16(dur);
   2026 	}
   2027 
   2028 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
   2029 	    data->map->dm_segs->ds_addr);
   2030 
   2031 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2032 	    BUS_DMASYNC_PREWRITE);
   2033 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   2034 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   2035 	    BUS_DMASYNC_PREWRITE);
   2036 
   2037 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
   2038 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
   2039 
   2040 	/* kick encrypt */
   2041 	sc->txq.queued++;
   2042 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   2043 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
   2044 
   2045 	return 0;
   2046 }
   2047 
   2048 static void
   2049 rt2560_start(struct ifnet *ifp)
   2050 {
   2051 	struct rt2560_softc *sc = ifp->if_softc;
   2052 	struct ieee80211com *ic = &sc->sc_ic;
   2053 	struct mbuf *m0;
   2054 	struct ieee80211_node *ni;
   2055 	struct ether_header *eh;
   2056 
   2057 	/*
   2058 	 * net80211 may still try to send management frames even if the
   2059 	 * IFF_RUNNING flag is not set...
   2060 	 */
   2061 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2062 		return;
   2063 
   2064 	for (;;) {
   2065 		IF_POLL(&ic->ic_mgtq, m0);
   2066 		if (m0 != NULL) {
   2067 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
   2068 				ifp->if_flags |= IFF_OACTIVE;
   2069 				break;
   2070 			}
   2071 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   2072 			if (m0 == NULL)
   2073 				break;
   2074 
   2075 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   2076 			m0->m_pkthdr.rcvif = NULL;
   2077 			bpf_mtap3(ic->ic_rawbpf, m0);
   2078 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
   2079 				break;
   2080 
   2081 		} else {
   2082 			if (ic->ic_state != IEEE80211_S_RUN)
   2083 				break;
   2084 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2085 			if (m0 == NULL)
   2086 				break;
   2087 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
   2088 				ifp->if_flags |= IFF_OACTIVE;
   2089 				break;
   2090 			}
   2091 
   2092 			if (m0->m_len < sizeof (struct ether_header) &&
   2093 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
   2094                                 continue;
   2095 
   2096 			eh = mtod(m0, struct ether_header *);
   2097 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2098 			if (ni == NULL) {
   2099 				m_freem(m0);
   2100 				continue;
   2101 			}
   2102 			bpf_mtap(ifp, m0);
   2103 
   2104 			m0 = ieee80211_encap(ic, m0, ni);
   2105 			if (m0 == NULL) {
   2106 				ieee80211_free_node(ni);
   2107 				continue;
   2108                         }
   2109 
   2110 			bpf_mtap3(ic->ic_rawbpf, m0);
   2111 
   2112 			if (rt2560_tx_data(sc, m0, ni) != 0) {
   2113 				ieee80211_free_node(ni);
   2114 				ifp->if_oerrors++;
   2115 				break;
   2116 			}
   2117 		}
   2118 
   2119 		sc->sc_tx_timer = 5;
   2120 		ifp->if_timer = 1;
   2121 	}
   2122 }
   2123 
   2124 static void
   2125 rt2560_watchdog(struct ifnet *ifp)
   2126 {
   2127 	struct rt2560_softc *sc = ifp->if_softc;
   2128 
   2129 	ifp->if_timer = 0;
   2130 
   2131 	if (sc->sc_tx_timer > 0) {
   2132 		if (--sc->sc_tx_timer == 0) {
   2133 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2134 			rt2560_init(ifp);
   2135 			ifp->if_oerrors++;
   2136 			return;
   2137 		}
   2138 		ifp->if_timer = 1;
   2139 	}
   2140 
   2141 	ieee80211_watchdog(&sc->sc_ic);
   2142 }
   2143 
   2144 /*
   2145  * This function allows for fast channel switching in monitor mode (used by
   2146  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
   2147  * generate a new beacon frame.
   2148  */
   2149 static int
   2150 rt2560_reset(struct ifnet *ifp)
   2151 {
   2152 	struct rt2560_softc *sc = ifp->if_softc;
   2153 	struct ieee80211com *ic = &sc->sc_ic;
   2154 
   2155 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   2156 		return ENETRESET;
   2157 
   2158 	rt2560_set_chan(sc, ic->ic_curchan);
   2159 
   2160 	return 0;
   2161 }
   2162 
   2163 int
   2164 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2165 {
   2166 	struct rt2560_softc *sc = ifp->if_softc;
   2167 	struct ieee80211com *ic = &sc->sc_ic;
   2168 	int s, error = 0;
   2169 
   2170 	s = splnet();
   2171 
   2172 	switch (cmd) {
   2173 	case SIOCSIFFLAGS:
   2174 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2175 			break;
   2176 		if (ifp->if_flags & IFF_UP) {
   2177 			if (ifp->if_flags & IFF_RUNNING)
   2178 				rt2560_update_promisc(sc);
   2179 			else
   2180 				rt2560_init(ifp);
   2181 		} else {
   2182 			if (ifp->if_flags & IFF_RUNNING)
   2183 				rt2560_stop(ifp, 1);
   2184 		}
   2185 		break;
   2186 
   2187 	case SIOCADDMULTI:
   2188 	case SIOCDELMULTI:
   2189 		/* XXX no h/w multicast filter? --dyoung */
   2190 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
   2191 			error = 0;
   2192 		break;
   2193 
   2194 	case SIOCS80211CHANNEL:
   2195 		/*
   2196 		 * This allows for fast channel switching in monitor mode
   2197 		 * (used by kismet). In IBSS mode, we must explicitly reset
   2198 		 * the interface to generate a new beacon frame.
   2199 		 */
   2200 		error = ieee80211_ioctl(ic, cmd, data);
   2201 		if (error == ENETRESET &&
   2202 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
   2203 			rt2560_set_chan(sc, ic->ic_ibss_chan);
   2204 			error = 0;
   2205 		}
   2206 		break;
   2207 
   2208 	default:
   2209 		error = ieee80211_ioctl(ic, cmd, data);
   2210 	}
   2211 
   2212 	if (error == ENETRESET) {
   2213 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   2214 		    (IFF_UP | IFF_RUNNING))
   2215 			rt2560_init(ifp);
   2216 		error = 0;
   2217 	}
   2218 
   2219 	splx(s);
   2220 
   2221 	return error;
   2222 }
   2223 
   2224 static void
   2225 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
   2226 {
   2227 	uint32_t tmp;
   2228 	int ntries;
   2229 
   2230 	for (ntries = 0; ntries < 100; ntries++) {
   2231 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
   2232 			break;
   2233 		DELAY(1);
   2234 	}
   2235 	if (ntries == 100) {
   2236 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
   2237 		return;
   2238 	}
   2239 
   2240 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
   2241 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
   2242 
   2243 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
   2244 }
   2245 
   2246 static uint8_t
   2247 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
   2248 {
   2249 	uint32_t val;
   2250 	int ntries;
   2251 
   2252 	val = RT2560_BBP_BUSY | reg << 8;
   2253 	RAL_WRITE(sc, RT2560_BBPCSR, val);
   2254 
   2255 	for (ntries = 0; ntries < 100; ntries++) {
   2256 		val = RAL_READ(sc, RT2560_BBPCSR);
   2257 		if (!(val & RT2560_BBP_BUSY))
   2258 			return val & 0xff;
   2259 		DELAY(1);
   2260 	}
   2261 
   2262 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
   2263 	return 0;
   2264 }
   2265 
   2266 static void
   2267 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
   2268 {
   2269 	uint32_t tmp;
   2270 	int ntries;
   2271 
   2272 	for (ntries = 0; ntries < 100; ntries++) {
   2273 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
   2274 			break;
   2275 		DELAY(1);
   2276 	}
   2277 	if (ntries == 100) {
   2278 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
   2279 		return;
   2280 	}
   2281 
   2282 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
   2283 	    (reg & 0x3);
   2284 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
   2285 
   2286 	/* remember last written value in sc */
   2287 	sc->rf_regs[reg] = val;
   2288 
   2289 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
   2290 }
   2291 
   2292 static void
   2293 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
   2294 {
   2295 	struct ieee80211com *ic = &sc->sc_ic;
   2296 	uint8_t power, tmp;
   2297 	u_int i, chan;
   2298 
   2299 	chan = ieee80211_chan2ieee(ic, c);
   2300 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   2301 		return;
   2302 
   2303 	if (IEEE80211_IS_CHAN_2GHZ(c))
   2304 		power = min(sc->txpow[chan - 1], 31);
   2305 	else
   2306 		power = 31;
   2307 
   2308 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
   2309 
   2310 	switch (sc->rf_rev) {
   2311 	case RT2560_RF_2522:
   2312 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
   2313 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
   2314 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2315 		break;
   2316 
   2317 	case RT2560_RF_2523:
   2318 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2319 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
   2320 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
   2321 		rt2560_rf_write(sc, RT2560_RF4,
   2322 		    (chan == 14) ? 0x00280 : 0x00286);
   2323 		break;
   2324 
   2325 	case RT2560_RF_2524:
   2326 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
   2327 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
   2328 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2329 		rt2560_rf_write(sc, RT2560_RF4,
   2330 		    (chan == 14) ? 0x00280 : 0x00286);
   2331 		break;
   2332 
   2333 	case RT2560_RF_2525:
   2334 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2335 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
   2336 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2337 		rt2560_rf_write(sc, RT2560_RF4,
   2338 		    (chan == 14) ? 0x00280 : 0x00286);
   2339 
   2340 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2341 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
   2342 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2343 		rt2560_rf_write(sc, RT2560_RF4,
   2344 		    (chan == 14) ? 0x00280 : 0x00286);
   2345 		break;
   2346 
   2347 	case RT2560_RF_2525E:
   2348 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2349 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
   2350 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2351 		rt2560_rf_write(sc, RT2560_RF4,
   2352 		    (chan == 14) ? 0x00286 : 0x00282);
   2353 		break;
   2354 
   2355 	case RT2560_RF_2526:
   2356 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
   2357 		rt2560_rf_write(sc, RT2560_RF4,
   2358 		   (chan & 1) ? 0x00386 : 0x00381);
   2359 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2360 
   2361 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
   2362 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2363 		rt2560_rf_write(sc, RT2560_RF4,
   2364 		    (chan & 1) ? 0x00386 : 0x00381);
   2365 		break;
   2366 
   2367 	/* dual-band RF */
   2368 	case RT2560_RF_5222:
   2369 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
   2370 
   2371 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
   2372 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
   2373 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2374 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
   2375 		break;
   2376 	}
   2377 
   2378 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
   2379 	    ic->ic_state != IEEE80211_S_SCAN) {
   2380 		/* set Japan filter bit for channel 14 */
   2381 		tmp = rt2560_bbp_read(sc, 70);
   2382 
   2383 		tmp &= ~RT2560_JAPAN_FILTER;
   2384 		if (chan == 14)
   2385 			tmp |= RT2560_JAPAN_FILTER;
   2386 
   2387 		rt2560_bbp_write(sc, 70, tmp);
   2388 
   2389 		DELAY(1000); /* RF needs a 1ms delay here */
   2390 		rt2560_disable_rf_tune(sc);
   2391 
   2392 		/* clear CRC errors */
   2393 		RAL_READ(sc, RT2560_CNT0);
   2394 	}
   2395 }
   2396 
   2397 /*
   2398  * Disable RF auto-tuning.
   2399  */
   2400 static void
   2401 rt2560_disable_rf_tune(struct rt2560_softc *sc)
   2402 {
   2403 	uint32_t tmp;
   2404 
   2405 	if (sc->rf_rev != RT2560_RF_2523) {
   2406 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
   2407 		rt2560_rf_write(sc, RT2560_RF1, tmp);
   2408 	}
   2409 
   2410 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
   2411 	rt2560_rf_write(sc, RT2560_RF3, tmp);
   2412 
   2413 	DPRINTFN(2, ("disabling RF autotune\n"));
   2414 }
   2415 
   2416 /*
   2417  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
   2418  * synchronization.
   2419  */
   2420 static void
   2421 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
   2422 {
   2423 	struct ieee80211com *ic = &sc->sc_ic;
   2424 	uint16_t logcwmin, preload;
   2425 	uint32_t tmp;
   2426 
   2427 	/* first, disable TSF synchronization */
   2428 	RAL_WRITE(sc, RT2560_CSR14, 0);
   2429 
   2430 	tmp = 16 * ic->ic_bss->ni_intval;
   2431 	RAL_WRITE(sc, RT2560_CSR12, tmp);
   2432 
   2433 	RAL_WRITE(sc, RT2560_CSR13, 0);
   2434 
   2435 	logcwmin = 5;
   2436 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
   2437 	tmp = logcwmin << 16 | preload;
   2438 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
   2439 
   2440 	/* finally, enable TSF synchronization */
   2441 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
   2442 	if (ic->ic_opmode == IEEE80211_M_STA)
   2443 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
   2444 	else
   2445 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
   2446 		       RT2560_ENABLE_BEACON_GENERATOR;
   2447 	RAL_WRITE(sc, RT2560_CSR14, tmp);
   2448 
   2449 	DPRINTF(("enabling TSF synchronization\n"));
   2450 }
   2451 
   2452 static void
   2453 rt2560_update_plcp(struct rt2560_softc *sc)
   2454 {
   2455 	struct ieee80211com *ic = &sc->sc_ic;
   2456 
   2457 	/* no short preamble for 1Mbps */
   2458 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
   2459 
   2460 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
   2461 		/* values taken from the reference driver */
   2462 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
   2463 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
   2464 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
   2465 	} else {
   2466 		/* same values as above or'ed 0x8 */
   2467 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
   2468 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
   2469 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
   2470 	}
   2471 
   2472 	DPRINTF(("updating PLCP for %s preamble\n",
   2473 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
   2474 }
   2475 
   2476 /*
   2477  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
   2478  * know how these values are computed.
   2479  */
   2480 static void
   2481 rt2560_update_slot(struct ifnet *ifp)
   2482 {
   2483 	struct rt2560_softc *sc = ifp->if_softc;
   2484 	struct ieee80211com *ic = &sc->sc_ic;
   2485 	uint8_t slottime;
   2486 	uint16_t sifs, pifs, difs, eifs;
   2487 	uint32_t tmp;
   2488 
   2489 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   2490 
   2491 	/* define the MAC slot boundaries */
   2492 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
   2493 	pifs = sifs + slottime;
   2494 	difs = sifs + 2 * slottime;
   2495 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
   2496 
   2497 	tmp = RAL_READ(sc, RT2560_CSR11);
   2498 	tmp = (tmp & ~0x1f00) | slottime << 8;
   2499 	RAL_WRITE(sc, RT2560_CSR11, tmp);
   2500 
   2501 	tmp = pifs << 16 | sifs;
   2502 	RAL_WRITE(sc, RT2560_CSR18, tmp);
   2503 
   2504 	tmp = eifs << 16 | difs;
   2505 	RAL_WRITE(sc, RT2560_CSR19, tmp);
   2506 
   2507 	DPRINTF(("setting slottime to %uus\n", slottime));
   2508 }
   2509 
   2510 static void
   2511 rt2560_set_basicrates(struct rt2560_softc *sc)
   2512 {
   2513 	struct ieee80211com *ic = &sc->sc_ic;
   2514 
   2515 	/* update basic rate set */
   2516 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   2517 		/* 11b basic rates: 1, 2Mbps */
   2518 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
   2519 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
   2520 		/* 11a basic rates: 6, 12, 24Mbps */
   2521 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
   2522 	} else {
   2523 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
   2524 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
   2525 	}
   2526 }
   2527 
   2528 static void
   2529 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
   2530 {
   2531 	uint32_t tmp;
   2532 
   2533 	/* set ON period to 70ms and OFF period to 30ms */
   2534 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
   2535 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
   2536 }
   2537 
   2538 static void
   2539 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
   2540 {
   2541 	uint32_t tmp;
   2542 
   2543 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   2544 	RAL_WRITE(sc, RT2560_CSR5, tmp);
   2545 
   2546 	tmp = bssid[4] | bssid[5] << 8;
   2547 	RAL_WRITE(sc, RT2560_CSR6, tmp);
   2548 
   2549 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
   2550 }
   2551 
   2552 static void
   2553 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2554 {
   2555 	uint32_t tmp;
   2556 
   2557 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   2558 	RAL_WRITE(sc, RT2560_CSR3, tmp);
   2559 
   2560 	tmp = addr[4] | addr[5] << 8;
   2561 	RAL_WRITE(sc, RT2560_CSR4, tmp);
   2562 
   2563 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
   2564 }
   2565 
   2566 static void
   2567 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2568 {
   2569 	uint32_t tmp;
   2570 
   2571 	tmp = RAL_READ(sc, RT2560_CSR3);
   2572 	addr[0] = tmp & 0xff;
   2573 	addr[1] = (tmp >>  8) & 0xff;
   2574 	addr[2] = (tmp >> 16) & 0xff;
   2575 	addr[3] = (tmp >> 24);
   2576 
   2577 	tmp = RAL_READ(sc, RT2560_CSR4);
   2578 	addr[4] = tmp & 0xff;
   2579 	addr[5] = (tmp >> 8) & 0xff;
   2580 }
   2581 
   2582 static void
   2583 rt2560_update_promisc(struct rt2560_softc *sc)
   2584 {
   2585 	struct ifnet *ifp = &sc->sc_if;
   2586 	uint32_t tmp;
   2587 
   2588 	tmp = RAL_READ(sc, RT2560_RXCSR0);
   2589 
   2590 	tmp &= ~RT2560_DROP_NOT_TO_ME;
   2591 	if (!(ifp->if_flags & IFF_PROMISC))
   2592 		tmp |= RT2560_DROP_NOT_TO_ME;
   2593 
   2594 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2595 
   2596 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   2597 	    "entering" : "leaving"));
   2598 }
   2599 
   2600 static void
   2601 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
   2602 {
   2603 	uint32_t tmp;
   2604 	uint8_t tx;
   2605 
   2606 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
   2607 	if (antenna == 1)
   2608 		tx |= RT2560_BBP_ANTA;
   2609 	else if (antenna == 2)
   2610 		tx |= RT2560_BBP_ANTB;
   2611 	else
   2612 		tx |= RT2560_BBP_DIVERSITY;
   2613 
   2614 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
   2615 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
   2616 	    sc->rf_rev == RT2560_RF_5222)
   2617 		tx |= RT2560_BBP_FLIPIQ;
   2618 
   2619 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
   2620 
   2621 	/* update values for CCK and OFDM in BBPCSR1 */
   2622 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
   2623 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
   2624 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
   2625 }
   2626 
   2627 static void
   2628 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
   2629 {
   2630 	uint8_t rx;
   2631 
   2632 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
   2633 	if (antenna == 1)
   2634 		rx |= RT2560_BBP_ANTA;
   2635 	else if (antenna == 2)
   2636 		rx |= RT2560_BBP_ANTB;
   2637 	else
   2638 		rx |= RT2560_BBP_DIVERSITY;
   2639 
   2640 	/* need to force no I/Q flip for RF 2525e and 2526 */
   2641 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
   2642 		rx &= ~RT2560_BBP_FLIPIQ;
   2643 
   2644 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
   2645 }
   2646 
   2647 static const char *
   2648 rt2560_get_rf(int rev)
   2649 {
   2650 	switch (rev) {
   2651 	case RT2560_RF_2522:	return "RT2522";
   2652 	case RT2560_RF_2523:	return "RT2523";
   2653 	case RT2560_RF_2524:	return "RT2524";
   2654 	case RT2560_RF_2525:	return "RT2525";
   2655 	case RT2560_RF_2525E:	return "RT2525e";
   2656 	case RT2560_RF_2526:	return "RT2526";
   2657 	case RT2560_RF_5222:	return "RT5222";
   2658 	default:		return "unknown";
   2659 	}
   2660 }
   2661 
   2662 static void
   2663 rt2560_read_eeprom(struct rt2560_softc *sc)
   2664 {
   2665 	uint16_t val;
   2666 	int i;
   2667 
   2668 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
   2669 	sc->rf_rev =   (val >> 11) & 0x1f;
   2670 	sc->hw_radio = (val >> 10) & 0x1;
   2671 	sc->led_mode = (val >> 6)  & 0x7;
   2672 	sc->rx_ant =   (val >> 4)  & 0x3;
   2673 	sc->tx_ant =   (val >> 2)  & 0x3;
   2674 	sc->nb_ant =   val & 0x3;
   2675 
   2676 	/* read default values for BBP registers */
   2677 	for (i = 0; i < 16; i++) {
   2678 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
   2679 		sc->bbp_prom[i].reg = val >> 8;
   2680 		sc->bbp_prom[i].val = val & 0xff;
   2681 	}
   2682 
   2683 	/* read Tx power for all b/g channels */
   2684 	for (i = 0; i < 14 / 2; i++) {
   2685 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
   2686 		sc->txpow[i * 2] = val >> 8;
   2687 		sc->txpow[i * 2 + 1] = val & 0xff;
   2688 	}
   2689 }
   2690 
   2691 static int
   2692 rt2560_bbp_init(struct rt2560_softc *sc)
   2693 {
   2694 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2695 	int i, ntries;
   2696 
   2697 	/* wait for BBP to be ready */
   2698 	for (ntries = 0; ntries < 100; ntries++) {
   2699 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
   2700 			break;
   2701 		DELAY(1);
   2702 	}
   2703 	if (ntries == 100) {
   2704 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
   2705 		return EIO;
   2706 	}
   2707 
   2708 	/* initialize BBP registers to default values */
   2709 	for (i = 0; i < N(rt2560_def_bbp); i++) {
   2710 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
   2711 		    rt2560_def_bbp[i].val);
   2712 	}
   2713 #if 0
   2714 	/* initialize BBP registers to values stored in EEPROM */
   2715 	for (i = 0; i < 16; i++) {
   2716 		if (sc->bbp_prom[i].reg == 0xff)
   2717 			continue;
   2718 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   2719 	}
   2720 #endif
   2721 
   2722 	return 0;
   2723 #undef N
   2724 }
   2725 
   2726 static int
   2727 rt2560_init(struct ifnet *ifp)
   2728 {
   2729 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2730 	struct rt2560_softc *sc = ifp->if_softc;
   2731 	struct ieee80211com *ic = &sc->sc_ic;
   2732 	uint32_t tmp;
   2733 	int i;
   2734 
   2735 	/* for CardBus, power on the socket */
   2736 	if (!(sc->sc_flags & RT2560_ENABLED)) {
   2737 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
   2738 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
   2739 			return EIO;
   2740 		}
   2741 		sc->sc_flags |= RT2560_ENABLED;
   2742 	}
   2743 
   2744 	rt2560_stop(ifp, 1);
   2745 
   2746 	/* setup tx rings */
   2747 	tmp = RT2560_PRIO_RING_COUNT << 24 |
   2748 	      RT2560_ATIM_RING_COUNT << 16 |
   2749 	      RT2560_TX_RING_COUNT   <<  8 |
   2750 	      RT2560_TX_DESC_SIZE;
   2751 
   2752 	/* rings _must_ be initialized in this _exact_ order! */
   2753 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
   2754 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
   2755 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
   2756 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
   2757 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
   2758 
   2759 	/* setup rx ring */
   2760 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
   2761 
   2762 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
   2763 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
   2764 
   2765 	/* initialize MAC registers to default values */
   2766 	for (i = 0; i < N(rt2560_def_mac); i++)
   2767 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
   2768 
   2769 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2770 	rt2560_set_macaddr(sc, ic->ic_myaddr);
   2771 
   2772 	/* set basic rate set (will be updated later) */
   2773 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
   2774 
   2775 	rt2560_update_slot(ifp);
   2776 	rt2560_update_plcp(sc);
   2777 	rt2560_update_led(sc, 0, 0);
   2778 
   2779 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2780 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
   2781 
   2782 	if (rt2560_bbp_init(sc) != 0) {
   2783 		rt2560_stop(ifp, 1);
   2784 		return EIO;
   2785 	}
   2786 
   2787 	rt2560_set_txantenna(sc, 1);
   2788 	rt2560_set_rxantenna(sc, 1);
   2789 
   2790 	/* set default BSS channel */
   2791 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
   2792 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
   2793 
   2794 	/* kick Rx */
   2795 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
   2796 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2797 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
   2798 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2799 			tmp |= RT2560_DROP_TODS;
   2800 		if (!(ifp->if_flags & IFF_PROMISC))
   2801 			tmp |= RT2560_DROP_NOT_TO_ME;
   2802 	}
   2803 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2804 
   2805 	/* clear old FCS and Rx FIFO errors */
   2806 	RAL_READ(sc, RT2560_CNT0);
   2807 	RAL_READ(sc, RT2560_CNT4);
   2808 
   2809 	/* clear any pending interrupts */
   2810 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2811 
   2812 	/* enable interrupts */
   2813 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   2814 
   2815 	ifp->if_flags &= ~IFF_OACTIVE;
   2816 	ifp->if_flags |= IFF_RUNNING;
   2817 
   2818 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2819 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2820 	else
   2821 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2822 
   2823 	return 0;
   2824 #undef N
   2825 }
   2826 
   2827 static void
   2828 rt2560_stop(struct ifnet *ifp, int disable)
   2829 {
   2830 	struct rt2560_softc *sc = ifp->if_softc;
   2831 	struct ieee80211com *ic = &sc->sc_ic;
   2832 
   2833 	sc->sc_tx_timer = 0;
   2834 	ifp->if_timer = 0;
   2835 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2836 
   2837 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2838 
   2839 	/* abort Tx */
   2840 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
   2841 
   2842 	/* disable Rx */
   2843 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
   2844 
   2845 	/* reset ASIC (and thus, BBP) */
   2846 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2847 	RAL_WRITE(sc, RT2560_CSR1, 0);
   2848 
   2849 	/* disable interrupts */
   2850 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   2851 
   2852 	/* clear any pending interrupt */
   2853 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2854 
   2855 	/* reset Tx and Rx rings */
   2856 	rt2560_reset_tx_ring(sc, &sc->txq);
   2857 	rt2560_reset_tx_ring(sc, &sc->atimq);
   2858 	rt2560_reset_tx_ring(sc, &sc->prioq);
   2859 	rt2560_reset_tx_ring(sc, &sc->bcnq);
   2860 	rt2560_reset_rx_ring(sc, &sc->rxq);
   2861 
   2862 }
   2863