rt2560.c revision 1.28.2.1 1 /* $NetBSD: rt2560.c,v 1.28.2.1 2017/03/20 06:57:28 pgoyette Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4
5 /*-
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
25 */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.28.2.1 2017/03/20 06:57:28 pgoyette Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_rssadapt.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/ic/rt2560reg.h>
63 #include <dev/ic/rt2560var.h>
64
65 #ifdef RAL_DEBUG
66 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
68 int rt2560_debug = 0;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n, x)
72 #endif
73
74 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
75 struct rt2560_tx_ring *, int);
76 static void rt2560_reset_tx_ring(struct rt2560_softc *,
77 struct rt2560_tx_ring *);
78 static void rt2560_free_tx_ring(struct rt2560_softc *,
79 struct rt2560_tx_ring *);
80 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
81 struct rt2560_rx_ring *, int);
82 static void rt2560_reset_rx_ring(struct rt2560_softc *,
83 struct rt2560_rx_ring *);
84 static void rt2560_free_rx_ring(struct rt2560_softc *,
85 struct rt2560_rx_ring *);
86 static struct ieee80211_node *
87 rt2560_node_alloc(struct ieee80211_node_table *);
88 static int rt2560_media_change(struct ifnet *);
89 static void rt2560_next_scan(void *);
90 static void rt2560_iter_func(void *, struct ieee80211_node *);
91 static void rt2560_update_rssadapt(void *);
92 static int rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
93 int);
94 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
95 static void rt2560_encryption_intr(struct rt2560_softc *);
96 static void rt2560_tx_intr(struct rt2560_softc *);
97 static void rt2560_prio_intr(struct rt2560_softc *);
98 static void rt2560_decryption_intr(struct rt2560_softc *);
99 static void rt2560_rx_intr(struct rt2560_softc *);
100 static void rt2560_beacon_expire(struct rt2560_softc *);
101 static void rt2560_wakeup_expire(struct rt2560_softc *);
102 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
103 static int rt2560_ack_rate(struct ieee80211com *, int);
104 static uint16_t rt2560_txtime(int, int, uint32_t);
105 static uint8_t rt2560_plcp_signal(int);
106 static void rt2560_setup_tx_desc(struct rt2560_softc *,
107 struct rt2560_tx_desc *, uint32_t, int, int, int,
108 bus_addr_t);
109 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
110 struct ieee80211_node *);
111 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
112 struct ieee80211_node *);
113 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
114 struct ieee80211_frame *, uint16_t);
115 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
116 struct ieee80211_node *);
117 static void rt2560_start(struct ifnet *);
118 static void rt2560_watchdog(struct ifnet *);
119 static int rt2560_reset(struct ifnet *);
120 static int rt2560_ioctl(struct ifnet *, u_long, void *);
121 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
122 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
123 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
124 static void rt2560_set_chan(struct rt2560_softc *,
125 struct ieee80211_channel *);
126 static void rt2560_disable_rf_tune(struct rt2560_softc *);
127 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
128 static void rt2560_update_plcp(struct rt2560_softc *);
129 static void rt2560_update_slot(struct ifnet *);
130 static void rt2560_set_basicrates(struct rt2560_softc *);
131 static void rt2560_update_led(struct rt2560_softc *, int, int);
132 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
133 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
134 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
135 static void rt2560_update_promisc(struct rt2560_softc *);
136 static void rt2560_set_txantenna(struct rt2560_softc *, int);
137 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
138 static const char *rt2560_get_rf(int);
139 static void rt2560_read_eeprom(struct rt2560_softc *);
140 static int rt2560_bbp_init(struct rt2560_softc *);
141 static int rt2560_init(struct ifnet *);
142 static void rt2560_stop(struct ifnet *, int);
143 static void rt2560_softintr(void *);
144
145 /*
146 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
147 */
148 static const struct ieee80211_rateset rt2560_rateset_11a =
149 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
150
151 static const struct ieee80211_rateset rt2560_rateset_11b =
152 { 4, { 2, 4, 11, 22 } };
153
154 static const struct ieee80211_rateset rt2560_rateset_11g =
155 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
156
157 /*
158 * Default values for MAC registers; values taken from the reference driver.
159 */
160 static const struct {
161 uint32_t reg;
162 uint32_t val;
163 } rt2560_def_mac[] = {
164 { RT2560_PSCSR0, 0x00020002 },
165 { RT2560_PSCSR1, 0x00000002 },
166 { RT2560_PSCSR2, 0x00020002 },
167 { RT2560_PSCSR3, 0x00000002 },
168 { RT2560_TIMECSR, 0x00003f21 },
169 { RT2560_CSR9, 0x00000780 },
170 { RT2560_CSR11, 0x07041483 },
171 { RT2560_CNT3, 0x00000000 },
172 { RT2560_TXCSR1, 0x07614562 },
173 { RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
174 { RT2560_ACKPCTCSR, 0x7038140a },
175 { RT2560_ARTCSR1, 0x1d21252d },
176 { RT2560_ARTCSR2, 0x1919191d },
177 { RT2560_RXCSR0, 0xffffffff },
178 { RT2560_RXCSR3, 0xb3aab3af },
179 { RT2560_PCICSR, 0x000003b8 },
180 { RT2560_PWRCSR0, 0x3f3b3100 },
181 { RT2560_GPIOCSR, 0x0000ff00 },
182 { RT2560_TESTCSR, 0x000000f0 },
183 { RT2560_PWRCSR1, 0x000001ff },
184 { RT2560_MACCSR0, 0x00213223 },
185 { RT2560_MACCSR1, 0x00235518 },
186 { RT2560_RLPWCSR, 0x00000040 },
187 { RT2560_RALINKCSR, 0x9a009a11 },
188 { RT2560_CSR7, 0xffffffff },
189 { RT2560_BBPCSR1, 0x82188200 },
190 { RT2560_TXACKCSR0, 0x00000020 },
191 { RT2560_SECCSR3, 0x0000e78f }
192 };
193
194 /*
195 * Default values for BBP registers; values taken from the reference driver.
196 */
197 static const struct {
198 uint8_t reg;
199 uint8_t val;
200 } rt2560_def_bbp[] = {
201 { 3, 0x02 },
202 { 4, 0x19 },
203 { 14, 0x1c },
204 { 15, 0x30 },
205 { 16, 0xac },
206 { 17, 0x48 },
207 { 18, 0x18 },
208 { 19, 0xff },
209 { 20, 0x1e },
210 { 21, 0x08 },
211 { 22, 0x08 },
212 { 23, 0x08 },
213 { 24, 0x80 },
214 { 25, 0x50 },
215 { 26, 0x08 },
216 { 27, 0x23 },
217 { 30, 0x10 },
218 { 31, 0x2b },
219 { 32, 0xb9 },
220 { 34, 0x12 },
221 { 35, 0x50 },
222 { 39, 0xc4 },
223 { 40, 0x02 },
224 { 41, 0x60 },
225 { 53, 0x10 },
226 { 54, 0x18 },
227 { 56, 0x08 },
228 { 57, 0x10 },
229 { 58, 0x08 },
230 { 61, 0x60 },
231 { 62, 0x10 },
232 { 75, 0xff }
233 };
234
235 /*
236 * Default values for RF register R2 indexed by channel numbers; values taken
237 * from the reference driver.
238 */
239 static const uint32_t rt2560_rf2522_r2[] = {
240 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
241 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
242 };
243
244 static const uint32_t rt2560_rf2523_r2[] = {
245 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
246 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
247 };
248
249 static const uint32_t rt2560_rf2524_r2[] = {
250 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
251 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
252 };
253
254 static const uint32_t rt2560_rf2525_r2[] = {
255 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
256 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
257 };
258
259 static const uint32_t rt2560_rf2525_hi_r2[] = {
260 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
261 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
262 };
263
264 static const uint32_t rt2560_rf2525e_r2[] = {
265 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
266 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
267 };
268
269 static const uint32_t rt2560_rf2526_hi_r2[] = {
270 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
271 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
272 };
273
274 static const uint32_t rt2560_rf2526_r2[] = {
275 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
276 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
277 };
278
279 /*
280 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
281 * values taken from the reference driver.
282 */
283 static const struct {
284 uint8_t chan;
285 uint32_t r1;
286 uint32_t r2;
287 uint32_t r4;
288 } rt2560_rf5222[] = {
289 { 1, 0x08808, 0x0044d, 0x00282 },
290 { 2, 0x08808, 0x0044e, 0x00282 },
291 { 3, 0x08808, 0x0044f, 0x00282 },
292 { 4, 0x08808, 0x00460, 0x00282 },
293 { 5, 0x08808, 0x00461, 0x00282 },
294 { 6, 0x08808, 0x00462, 0x00282 },
295 { 7, 0x08808, 0x00463, 0x00282 },
296 { 8, 0x08808, 0x00464, 0x00282 },
297 { 9, 0x08808, 0x00465, 0x00282 },
298 { 10, 0x08808, 0x00466, 0x00282 },
299 { 11, 0x08808, 0x00467, 0x00282 },
300 { 12, 0x08808, 0x00468, 0x00282 },
301 { 13, 0x08808, 0x00469, 0x00282 },
302 { 14, 0x08808, 0x0046b, 0x00286 },
303
304 { 36, 0x08804, 0x06225, 0x00287 },
305 { 40, 0x08804, 0x06226, 0x00287 },
306 { 44, 0x08804, 0x06227, 0x00287 },
307 { 48, 0x08804, 0x06228, 0x00287 },
308 { 52, 0x08804, 0x06229, 0x00287 },
309 { 56, 0x08804, 0x0622a, 0x00287 },
310 { 60, 0x08804, 0x0622b, 0x00287 },
311 { 64, 0x08804, 0x0622c, 0x00287 },
312
313 { 100, 0x08804, 0x02200, 0x00283 },
314 { 104, 0x08804, 0x02201, 0x00283 },
315 { 108, 0x08804, 0x02202, 0x00283 },
316 { 112, 0x08804, 0x02203, 0x00283 },
317 { 116, 0x08804, 0x02204, 0x00283 },
318 { 120, 0x08804, 0x02205, 0x00283 },
319 { 124, 0x08804, 0x02206, 0x00283 },
320 { 128, 0x08804, 0x02207, 0x00283 },
321 { 132, 0x08804, 0x02208, 0x00283 },
322 { 136, 0x08804, 0x02209, 0x00283 },
323 { 140, 0x08804, 0x0220a, 0x00283 },
324
325 { 149, 0x08808, 0x02429, 0x00281 },
326 { 153, 0x08808, 0x0242b, 0x00281 },
327 { 157, 0x08808, 0x0242d, 0x00281 },
328 { 161, 0x08808, 0x0242f, 0x00281 }
329 };
330
331 int
332 rt2560_attach(void *xsc, int id)
333 {
334 struct rt2560_softc *sc = xsc;
335 struct ieee80211com *ic = &sc->sc_ic;
336 struct ifnet *ifp = &sc->sc_if;
337 int error, i;
338
339 callout_init(&sc->scan_ch, 0);
340 callout_init(&sc->rssadapt_ch, 0);
341
342 /* retrieve RT2560 rev. no */
343 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
344
345 /* retrieve MAC address */
346 rt2560_get_macaddr(sc, ic->ic_myaddr);
347
348 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
349 ether_sprintf(ic->ic_myaddr));
350
351 /* retrieve RF rev. no and various other things from EEPROM */
352 rt2560_read_eeprom(sc);
353
354 aprint_normal_dev(sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
355 sc->asic_rev, rt2560_get_rf(sc->rf_rev));
356
357 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2560_softintr, sc);
358 if (sc->sc_soft_ih == NULL) {
359 aprint_error_dev(sc->sc_dev, "could not establish softint\n)");
360 goto fail0;
361 }
362
363 /*
364 * Allocate Tx and Rx rings.
365 */
366 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
367 if (error != 0) {
368 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring\n)");
369 goto fail1;
370 }
371
372 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
373 if (error != 0) {
374 aprint_error_dev(sc->sc_dev, "could not allocate ATIM ring\n");
375 goto fail2;
376 }
377
378 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
379 if (error != 0) {
380 aprint_error_dev(sc->sc_dev, "could not allocate Prio ring\n");
381 goto fail3;
382 }
383
384 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
385 if (error != 0) {
386 aprint_error_dev(sc->sc_dev, "could not allocate Beacon ring\n");
387 goto fail4;
388 }
389
390 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
391 if (error != 0) {
392 aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
393 goto fail5;
394 }
395
396 ifp->if_softc = sc;
397 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
398 ifp->if_init = rt2560_init;
399 ifp->if_stop = rt2560_stop;
400 ifp->if_ioctl = rt2560_ioctl;
401 ifp->if_start = rt2560_start;
402 ifp->if_watchdog = rt2560_watchdog;
403 IFQ_SET_READY(&ifp->if_snd);
404 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
405
406 ic->ic_ifp = ifp;
407 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
408 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
409 ic->ic_state = IEEE80211_S_INIT;
410
411 /* set device capabilities */
412 ic->ic_caps =
413 IEEE80211_C_IBSS | /* IBSS mode supported */
414 IEEE80211_C_MONITOR | /* monitor mode supported */
415 IEEE80211_C_HOSTAP | /* HostAp mode supported */
416 IEEE80211_C_TXPMGT | /* tx power management */
417 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
418 IEEE80211_C_SHSLOT | /* short slot time supported */
419 IEEE80211_C_WPA; /* 802.11i */
420
421 if (sc->rf_rev == RT2560_RF_5222) {
422 /* set supported .11a rates */
423 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
424
425 /* set supported .11a channels */
426 for (i = 36; i <= 64; i += 4) {
427 ic->ic_channels[i].ic_freq =
428 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
429 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
430 }
431 for (i = 100; i <= 140; i += 4) {
432 ic->ic_channels[i].ic_freq =
433 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
434 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
435 }
436 for (i = 149; i <= 161; i += 4) {
437 ic->ic_channels[i].ic_freq =
438 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
439 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
440 }
441 }
442
443 /* set supported .11b and .11g rates */
444 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
445 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
446
447 /* set supported .11b and .11g channels (1 through 14) */
448 for (i = 1; i <= 14; i++) {
449 ic->ic_channels[i].ic_freq =
450 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
451 ic->ic_channels[i].ic_flags =
452 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
453 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
454 }
455
456 if_initialize(ifp);
457 ieee80211_ifattach(ic);
458 /* Use common softint-based if_input */
459 ifp->if_percpuq = if_percpuq_create(ifp);
460 if_register(ifp);
461
462 ic->ic_node_alloc = rt2560_node_alloc;
463 ic->ic_updateslot = rt2560_update_slot;
464 ic->ic_reset = rt2560_reset;
465
466 /* override state transition machine */
467 sc->sc_newstate = ic->ic_newstate;
468 ic->ic_newstate = rt2560_newstate;
469 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
470
471 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
472 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
473
474 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
475 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
476 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
477
478 sc->sc_txtap_len = sizeof sc->sc_txtapu;
479 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
480 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
481
482
483 sc->dwelltime = 200;
484
485 ieee80211_announce(ic);
486
487 if (pmf_device_register(sc->sc_dev, NULL, NULL))
488 pmf_class_network_register(sc->sc_dev, ifp);
489 else
490 aprint_error_dev(sc->sc_dev,
491 "couldn't establish power handler\n");
492
493 return 0;
494
495 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
496 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
497 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
498 fail2: rt2560_free_tx_ring(sc, &sc->txq);
499 fail1: softint_disestablish(sc->sc_soft_ih);
500 sc->sc_soft_ih = NULL;
501 fail0: return ENXIO;
502 }
503
504
505 int
506 rt2560_detach(void *xsc)
507 {
508 struct rt2560_softc *sc = xsc;
509 struct ifnet *ifp = &sc->sc_if;
510
511 callout_stop(&sc->scan_ch);
512 callout_stop(&sc->rssadapt_ch);
513
514 pmf_device_deregister(sc->sc_dev);
515
516 rt2560_stop(ifp, 1);
517
518 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
519 if_detach(ifp);
520
521 rt2560_free_tx_ring(sc, &sc->txq);
522 rt2560_free_tx_ring(sc, &sc->atimq);
523 rt2560_free_tx_ring(sc, &sc->prioq);
524 rt2560_free_tx_ring(sc, &sc->bcnq);
525 rt2560_free_rx_ring(sc, &sc->rxq);
526
527 if (sc->sc_soft_ih != NULL) {
528 softint_disestablish(sc->sc_soft_ih);
529 sc->sc_soft_ih = NULL;
530 }
531
532 return 0;
533 }
534
535 int
536 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
537 int count)
538 {
539 int i, nsegs, error;
540
541 ring->count = count;
542 ring->queued = 0;
543 ring->cur = ring->next = 0;
544 ring->cur_encrypt = ring->next_encrypt = 0;
545
546 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
547 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
548 if (error != 0) {
549 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
550 goto fail;
551 }
552
553 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
554 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
555 if (error != 0) {
556 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
557 goto fail;
558 }
559
560 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
561 count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
562 BUS_DMA_NOWAIT);
563 if (error != 0) {
564 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
565 goto fail;
566 }
567
568 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
569 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
570 if (error != 0) {
571 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
572 goto fail;
573 }
574
575 memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
576 ring->physaddr = ring->map->dm_segs->ds_addr;
577
578 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
579 M_NOWAIT);
580 if (ring->data == NULL) {
581 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
582 error = ENOMEM;
583 goto fail;
584 }
585
586 memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
587 for (i = 0; i < count; i++) {
588 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
589 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
590 &ring->data[i].map);
591 if (error != 0) {
592 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
593 goto fail;
594 }
595 }
596
597 return 0;
598
599 fail: rt2560_free_tx_ring(sc, ring);
600 return error;
601 }
602
603 void
604 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
605 {
606 struct rt2560_tx_desc *desc;
607 struct rt2560_tx_data *data;
608 int i;
609
610 for (i = 0; i < ring->count; i++) {
611 desc = &ring->desc[i];
612 data = &ring->data[i];
613
614 if (data->m != NULL) {
615 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
616 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
617 bus_dmamap_unload(sc->sc_dmat, data->map);
618 m_freem(data->m);
619 data->m = NULL;
620 }
621
622 if (data->ni != NULL) {
623 ieee80211_free_node(data->ni);
624 data->ni = NULL;
625 }
626
627 desc->flags = 0;
628 }
629
630 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
631 BUS_DMASYNC_PREWRITE);
632
633 ring->queued = 0;
634 ring->cur = ring->next = 0;
635 ring->cur_encrypt = ring->next_encrypt = 0;
636 }
637
638 void
639 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
640 {
641 struct rt2560_tx_data *data;
642 int i;
643
644 if (ring->desc != NULL) {
645 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
646 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
647 bus_dmamap_unload(sc->sc_dmat, ring->map);
648 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
649 ring->count * RT2560_TX_DESC_SIZE);
650 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
651 }
652
653 if (ring->data != NULL) {
654 for (i = 0; i < ring->count; i++) {
655 data = &ring->data[i];
656
657 if (data->m != NULL) {
658 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
659 data->map->dm_mapsize,
660 BUS_DMASYNC_POSTWRITE);
661 bus_dmamap_unload(sc->sc_dmat, data->map);
662 m_freem(data->m);
663 }
664
665 if (data->ni != NULL)
666 ieee80211_free_node(data->ni);
667
668
669 if (data->map != NULL)
670 bus_dmamap_destroy(sc->sc_dmat, data->map);
671 }
672 free(ring->data, M_DEVBUF);
673 }
674 }
675
676 int
677 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
678 int count)
679 {
680 struct rt2560_rx_desc *desc;
681 struct rt2560_rx_data *data;
682 int i, nsegs, error;
683
684 ring->count = count;
685 ring->cur = ring->next = 0;
686 ring->cur_decrypt = 0;
687
688 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
689 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
690 if (error != 0) {
691 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
692 goto fail;
693 }
694
695 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
696 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
697 if (error != 0) {
698 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
699 goto fail;
700 }
701
702 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
703 count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
704 BUS_DMA_NOWAIT);
705 if (error != 0) {
706 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
707 goto fail;
708 }
709
710 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
711 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
712 if (error != 0) {
713 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
714 goto fail;
715 }
716
717 memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
718 ring->physaddr = ring->map->dm_segs->ds_addr;
719
720 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
721 M_NOWAIT);
722 if (ring->data == NULL) {
723 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
724 error = ENOMEM;
725 goto fail;
726 }
727
728 /*
729 * Pre-allocate Rx buffers and populate Rx ring.
730 */
731 memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
732 for (i = 0; i < count; i++) {
733 desc = &sc->rxq.desc[i];
734 data = &sc->rxq.data[i];
735
736 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
737 0, BUS_DMA_NOWAIT, &data->map);
738 if (error != 0) {
739 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
740 goto fail;
741 }
742
743 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
744 if (data->m == NULL) {
745 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
746 error = ENOMEM;
747 goto fail;
748 }
749
750 MCLGET(data->m, M_DONTWAIT);
751 if (!(data->m->m_flags & M_EXT)) {
752 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
753 error = ENOMEM;
754 goto fail;
755 }
756
757 error = bus_dmamap_load(sc->sc_dmat, data->map,
758 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
759 if (error != 0) {
760 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
761 goto fail;
762 }
763
764 desc->flags = htole32(RT2560_RX_BUSY);
765 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
766 }
767
768 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
769 BUS_DMASYNC_PREWRITE);
770
771 return 0;
772
773 fail: rt2560_free_rx_ring(sc, ring);
774 return error;
775 }
776
777 void
778 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
779 {
780 int i;
781
782 for (i = 0; i < ring->count; i++) {
783 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
784 ring->data[i].drop = 0;
785 }
786
787 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
788 BUS_DMASYNC_PREWRITE);
789
790 ring->cur = ring->next = 0;
791 ring->cur_decrypt = 0;
792 }
793
794 void
795 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
796 {
797 struct rt2560_rx_data *data;
798 int i;
799
800 if (ring->desc != NULL) {
801 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
802 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
803 bus_dmamap_unload(sc->sc_dmat, ring->map);
804 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
805 ring->count * RT2560_RX_DESC_SIZE);
806 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
807 }
808
809 if (ring->data != NULL) {
810 for (i = 0; i < ring->count; i++) {
811 data = &ring->data[i];
812
813 if (data->m != NULL) {
814 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
815 data->map->dm_mapsize,
816 BUS_DMASYNC_POSTREAD);
817 bus_dmamap_unload(sc->sc_dmat, data->map);
818 m_freem(data->m);
819 }
820
821 if (data->map != NULL)
822 bus_dmamap_destroy(sc->sc_dmat, data->map);
823 }
824 free(ring->data, M_DEVBUF);
825 }
826 }
827
828 struct ieee80211_node *
829 rt2560_node_alloc(struct ieee80211_node_table *nt)
830 {
831 struct rt2560_node *rn;
832
833 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
834 M_NOWAIT | M_ZERO);
835
836 return (rn != NULL) ? &rn->ni : NULL;
837 }
838
839 int
840 rt2560_media_change(struct ifnet *ifp)
841 {
842 int error;
843
844 error = ieee80211_media_change(ifp);
845 if (error != ENETRESET)
846 return error;
847
848 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
849 rt2560_init(ifp);
850
851 return 0;
852 }
853
854 /*
855 * This function is called periodically (every 200ms) during scanning to
856 * switch from one channel to another.
857 */
858 void
859 rt2560_next_scan(void *arg)
860 {
861 struct rt2560_softc *sc = arg;
862 struct ieee80211com *ic = &sc->sc_ic;
863 int s;
864
865 s = splnet();
866 if (ic->ic_state == IEEE80211_S_SCAN)
867 ieee80211_next_scan(ic);
868 splx(s);
869 }
870
871 /*
872 * This function is called for each neighbor node.
873 */
874 void
875 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
876 {
877 struct rt2560_node *rn = (struct rt2560_node *)ni;
878
879 ieee80211_rssadapt_updatestats(&rn->rssadapt);
880 }
881
882 /*
883 * This function is called periodically (every 100ms) in RUN state to update
884 * the rate adaptation statistics.
885 */
886 void
887 rt2560_update_rssadapt(void *arg)
888 {
889 struct rt2560_softc *sc = arg;
890 struct ieee80211com *ic = &sc->sc_ic;
891 int s;
892
893 s = splnet();
894 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
895
896 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
897 splx(s);
898 }
899
900 int
901 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
902 {
903 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
904 enum ieee80211_state ostate;
905 struct ieee80211_node *ni;
906 struct mbuf *m;
907 int error = 0;
908
909 ostate = ic->ic_state;
910 callout_stop(&sc->scan_ch);
911
912 switch (nstate) {
913 case IEEE80211_S_INIT:
914 callout_stop(&sc->rssadapt_ch);
915
916 if (ostate == IEEE80211_S_RUN) {
917 /* abort TSF synchronization */
918 RAL_WRITE(sc, RT2560_CSR14, 0);
919
920 /* turn association led off */
921 rt2560_update_led(sc, 0, 0);
922 }
923 break;
924
925 case IEEE80211_S_SCAN:
926 rt2560_set_chan(sc, ic->ic_curchan);
927 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
928 rt2560_next_scan, sc);
929 break;
930
931 case IEEE80211_S_AUTH:
932 rt2560_set_chan(sc, ic->ic_curchan);
933 break;
934
935 case IEEE80211_S_ASSOC:
936 rt2560_set_chan(sc, ic->ic_curchan);
937 break;
938
939 case IEEE80211_S_RUN:
940 rt2560_set_chan(sc, ic->ic_curchan);
941
942 ni = ic->ic_bss;
943
944 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
945 rt2560_update_plcp(sc);
946 rt2560_set_basicrates(sc);
947 rt2560_set_bssid(sc, ni->ni_bssid);
948 }
949
950 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
951 ic->ic_opmode == IEEE80211_M_IBSS) {
952 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
953 if (m == NULL) {
954 aprint_error_dev(sc->sc_dev, "could not allocate beacon\n");
955 error = ENOBUFS;
956 break;
957 }
958
959 ieee80211_ref_node(ni);
960 error = rt2560_tx_bcn(sc, m, ni);
961 if (error != 0)
962 break;
963 }
964
965 /* turn assocation led on */
966 rt2560_update_led(sc, 1, 0);
967
968 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
969 callout_reset(&sc->rssadapt_ch, hz / 10,
970 rt2560_update_rssadapt, sc);
971 rt2560_enable_tsf_sync(sc);
972 }
973 break;
974 }
975
976 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
977 }
978
979 /*
980 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
981 * 93C66).
982 */
983 uint16_t
984 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
985 {
986 uint32_t tmp;
987 uint16_t val;
988 int n;
989
990 /* clock C once before the first command */
991 RT2560_EEPROM_CTL(sc, 0);
992
993 RT2560_EEPROM_CTL(sc, RT2560_S);
994 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
995 RT2560_EEPROM_CTL(sc, RT2560_S);
996
997 /* write start bit (1) */
998 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
999 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1000
1001 /* write READ opcode (10) */
1002 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1003 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1004 RT2560_EEPROM_CTL(sc, RT2560_S);
1005 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1006
1007 /* write address (A5-A0 or A7-A0) */
1008 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1009 for (; n >= 0; n--) {
1010 RT2560_EEPROM_CTL(sc, RT2560_S |
1011 (((addr >> n) & 1) << RT2560_SHIFT_D));
1012 RT2560_EEPROM_CTL(sc, RT2560_S |
1013 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1014 }
1015
1016 RT2560_EEPROM_CTL(sc, RT2560_S);
1017
1018 /* read data Q15-Q0 */
1019 val = 0;
1020 for (n = 15; n >= 0; n--) {
1021 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1022 tmp = RAL_READ(sc, RT2560_CSR21);
1023 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1024 RT2560_EEPROM_CTL(sc, RT2560_S);
1025 }
1026
1027 RT2560_EEPROM_CTL(sc, 0);
1028
1029 /* clear Chip Select and clock C */
1030 RT2560_EEPROM_CTL(sc, RT2560_S);
1031 RT2560_EEPROM_CTL(sc, 0);
1032 RT2560_EEPROM_CTL(sc, RT2560_C);
1033
1034 return val;
1035 }
1036
1037 /*
1038 * Some frames were processed by the hardware cipher engine and are ready for
1039 * transmission.
1040 */
1041 void
1042 rt2560_encryption_intr(struct rt2560_softc *sc)
1043 {
1044 struct rt2560_tx_desc *desc;
1045 int hw;
1046
1047 /* retrieve last descriptor index processed by cipher engine */
1048 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1049 RT2560_TX_DESC_SIZE;
1050
1051 for (; sc->txq.next_encrypt != hw;) {
1052 desc = &sc->txq.desc[sc->txq.next_encrypt];
1053
1054 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1055 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1056 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1057
1058 if (le32toh(desc->flags) &
1059 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1060 break;
1061
1062 /* for TKIP, swap eiv field to fix a bug in ASIC */
1063 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1064 RT2560_TX_CIPHER_TKIP)
1065 desc->eiv = bswap32(desc->eiv);
1066
1067 /* mark the frame ready for transmission */
1068 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1069
1070 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1071 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1072 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1073
1074 DPRINTFN(15, ("encryption done idx=%u\n",
1075 sc->txq.next_encrypt));
1076
1077 sc->txq.next_encrypt =
1078 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1079 }
1080
1081 /* kick Tx */
1082 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1083 }
1084
1085 void
1086 rt2560_tx_intr(struct rt2560_softc *sc)
1087 {
1088 struct ieee80211com *ic = &sc->sc_ic;
1089 struct ifnet *ifp = ic->ic_ifp;
1090 struct rt2560_tx_desc *desc;
1091 struct rt2560_tx_data *data;
1092 struct rt2560_node *rn;
1093 int s;
1094
1095 s = splnet();
1096
1097 for (;;) {
1098 desc = &sc->txq.desc[sc->txq.next];
1099 data = &sc->txq.data[sc->txq.next];
1100
1101 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1102 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1103 BUS_DMASYNC_POSTREAD);
1104
1105 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1106 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1107 !(le32toh(desc->flags) & RT2560_TX_VALID))
1108 break;
1109
1110 rn = (struct rt2560_node *)data->ni;
1111
1112 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1113 case RT2560_TX_SUCCESS:
1114 DPRINTFN(10, ("data frame sent successfully\n"));
1115 if (data->id.id_node != NULL) {
1116 ieee80211_rssadapt_raise_rate(ic,
1117 &rn->rssadapt, &data->id);
1118 }
1119 ifp->if_opackets++;
1120 break;
1121
1122 case RT2560_TX_SUCCESS_RETRY:
1123 DPRINTFN(9, ("data frame sent after %u retries\n",
1124 (le32toh(desc->flags) >> 5) & 0x7));
1125 ifp->if_opackets++;
1126 break;
1127
1128 case RT2560_TX_FAIL_RETRY:
1129 DPRINTFN(9, ("sending data frame failed (too much "
1130 "retries)\n"));
1131 if (data->id.id_node != NULL) {
1132 ieee80211_rssadapt_lower_rate(ic, data->ni,
1133 &rn->rssadapt, &data->id);
1134 }
1135 ifp->if_oerrors++;
1136 break;
1137
1138 case RT2560_TX_FAIL_INVALID:
1139 case RT2560_TX_FAIL_OTHER:
1140 default:
1141 aprint_error_dev(sc->sc_dev,
1142 "sending data frame failed 0x%08x\n",
1143 le32toh(desc->flags));
1144 ifp->if_oerrors++;
1145 }
1146
1147 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1148 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1149 bus_dmamap_unload(sc->sc_dmat, data->map);
1150 m_freem(data->m);
1151 data->m = NULL;
1152 ieee80211_free_node(data->ni);
1153 data->ni = NULL;
1154
1155 /* descriptor is no longer valid */
1156 desc->flags &= ~htole32(RT2560_TX_VALID);
1157
1158 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1159 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1160 BUS_DMASYNC_PREWRITE);
1161
1162 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1163
1164 sc->txq.queued--;
1165 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1166 }
1167
1168 sc->sc_tx_timer = 0;
1169 ifp->if_flags &= ~IFF_OACTIVE;
1170 rt2560_start(ifp);
1171
1172 splx(s);
1173 }
1174
1175 void
1176 rt2560_prio_intr(struct rt2560_softc *sc)
1177 {
1178 struct ieee80211com *ic = &sc->sc_ic;
1179 struct ifnet *ifp = ic->ic_ifp;
1180 struct rt2560_tx_desc *desc;
1181 struct rt2560_tx_data *data;
1182 int s;
1183
1184 s = splnet();
1185
1186 for (;;) {
1187 desc = &sc->prioq.desc[sc->prioq.next];
1188 data = &sc->prioq.data[sc->prioq.next];
1189
1190 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1191 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1192 BUS_DMASYNC_POSTREAD);
1193
1194 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1195 !(le32toh(desc->flags) & RT2560_TX_VALID))
1196 break;
1197
1198 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1199 case RT2560_TX_SUCCESS:
1200 DPRINTFN(10, ("mgt frame sent successfully\n"));
1201 break;
1202
1203 case RT2560_TX_SUCCESS_RETRY:
1204 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1205 (le32toh(desc->flags) >> 5) & 0x7));
1206 break;
1207
1208 case RT2560_TX_FAIL_RETRY:
1209 DPRINTFN(9, ("sending mgt frame failed (too much "
1210 "retries)\n"));
1211 break;
1212
1213 case RT2560_TX_FAIL_INVALID:
1214 case RT2560_TX_FAIL_OTHER:
1215 default:
1216 aprint_error_dev(sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1217 le32toh(desc->flags));
1218 }
1219
1220 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1221 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1222 bus_dmamap_unload(sc->sc_dmat, data->map);
1223 m_freem(data->m);
1224 data->m = NULL;
1225 ieee80211_free_node(data->ni);
1226 data->ni = NULL;
1227
1228 /* descriptor is no longer valid */
1229 desc->flags &= ~htole32(RT2560_TX_VALID);
1230
1231 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1232 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1233 BUS_DMASYNC_PREWRITE);
1234
1235 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1236
1237 sc->prioq.queued--;
1238 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1239 }
1240
1241 sc->sc_tx_timer = 0;
1242 ifp->if_flags &= ~IFF_OACTIVE;
1243 rt2560_start(ifp);
1244
1245 splx(s);
1246 }
1247
1248 /*
1249 * Some frames were processed by the hardware cipher engine and are ready for
1250 * transmission to the IEEE802.11 layer.
1251 */
1252 void
1253 rt2560_decryption_intr(struct rt2560_softc *sc)
1254 {
1255 struct ieee80211com *ic = &sc->sc_ic;
1256 struct ifnet *ifp = ic->ic_ifp;
1257 struct rt2560_rx_desc *desc;
1258 struct rt2560_rx_data *data;
1259 struct rt2560_node *rn;
1260 struct ieee80211_frame *wh;
1261 struct ieee80211_node *ni;
1262 struct mbuf *mnew, *m;
1263 int hw, error, s;
1264
1265 /* retrieve last decriptor index processed by cipher engine */
1266 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1267 RT2560_RX_DESC_SIZE;
1268
1269 for (; sc->rxq.cur_decrypt != hw;) {
1270 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1271 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1272
1273 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1274 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1275 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1276
1277 if (le32toh(desc->flags) &
1278 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1279 break;
1280
1281 if (data->drop) {
1282 ifp->if_ierrors++;
1283 goto skip;
1284 }
1285
1286 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1287 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1288 ifp->if_ierrors++;
1289 goto skip;
1290 }
1291
1292 /*
1293 * Try to allocate a new mbuf for this ring element and load it
1294 * before processing the current mbuf. If the ring element
1295 * cannot be loaded, drop the received packet and reuse the old
1296 * mbuf. In the unlikely case that the old mbuf can't be
1297 * reloaded either, explicitly panic.
1298 */
1299 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1300 if (mnew == NULL) {
1301 ifp->if_ierrors++;
1302 goto skip;
1303 }
1304
1305 MCLGET(mnew, M_DONTWAIT);
1306 if (!(mnew->m_flags & M_EXT)) {
1307 m_freem(mnew);
1308 ifp->if_ierrors++;
1309 goto skip;
1310 }
1311
1312 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1313 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1314 bus_dmamap_unload(sc->sc_dmat, data->map);
1315
1316 error = bus_dmamap_load(sc->sc_dmat, data->map,
1317 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1318 if (error != 0) {
1319 m_freem(mnew);
1320
1321 /* try to reload the old mbuf */
1322 error = bus_dmamap_load(sc->sc_dmat, data->map,
1323 mtod(data->m, void *), MCLBYTES, NULL,
1324 BUS_DMA_NOWAIT);
1325 if (error != 0) {
1326 /* very unlikely that it will fail... */
1327 panic("%s: could not load old rx mbuf",
1328 device_xname(sc->sc_dev));
1329 }
1330 /* physical address may have changed */
1331 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1332 ifp->if_ierrors++;
1333 goto skip;
1334 }
1335
1336 /*
1337 * New mbuf successfully loaded, update Rx ring and continue
1338 * processing.
1339 */
1340 m = data->m;
1341 data->m = mnew;
1342 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1343
1344 /* finalize mbuf */
1345 m_set_rcvif(m, ifp);
1346 m->m_pkthdr.len = m->m_len =
1347 (le32toh(desc->flags) >> 16) & 0xfff;
1348
1349 s = splnet();
1350
1351 if (sc->sc_drvbpf != NULL) {
1352 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1353 uint32_t tsf_lo, tsf_hi;
1354
1355 /* get timestamp (low and high 32 bits) */
1356 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1357 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1358
1359 tap->wr_tsf =
1360 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1361 tap->wr_flags = 0;
1362 tap->wr_rate = rt2560_rxrate(desc);
1363 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1364 tap->wr_chan_flags =
1365 htole16(ic->ic_ibss_chan->ic_flags);
1366 tap->wr_antenna = sc->rx_ant;
1367 tap->wr_antsignal = desc->rssi;
1368
1369 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1370 }
1371
1372 wh = mtod(m, struct ieee80211_frame *);
1373 ni = ieee80211_find_rxnode(ic,
1374 (struct ieee80211_frame_min *)wh);
1375
1376 /* send the frame to the 802.11 layer */
1377 ieee80211_input(ic, m, ni, desc->rssi, 0);
1378
1379 /* give rssi to the rate adatation algorithm */
1380 rn = (struct rt2560_node *)ni;
1381 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1382
1383 /* node is no longer needed */
1384 ieee80211_free_node(ni);
1385
1386 splx(s);
1387
1388 skip: desc->flags = htole32(RT2560_RX_BUSY);
1389
1390 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1391 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1392 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1393
1394 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1395
1396 sc->rxq.cur_decrypt =
1397 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1398 }
1399
1400 /*
1401 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1402 * without calling if_start().
1403 */
1404 s = splnet();
1405 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1406 rt2560_start(ifp);
1407 splx(s);
1408 }
1409
1410 /*
1411 * Some frames were received. Pass them to the hardware cipher engine before
1412 * sending them to the 802.11 layer.
1413 */
1414 void
1415 rt2560_rx_intr(struct rt2560_softc *sc)
1416 {
1417 struct rt2560_rx_desc *desc;
1418 struct rt2560_rx_data *data;
1419
1420 for (;;) {
1421 desc = &sc->rxq.desc[sc->rxq.cur];
1422 data = &sc->rxq.data[sc->rxq.cur];
1423
1424 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1425 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1426 BUS_DMASYNC_POSTREAD);
1427
1428 if (le32toh(desc->flags) &
1429 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1430 break;
1431
1432 data->drop = 0;
1433
1434 if (le32toh(desc->flags) &
1435 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1436 /*
1437 * This should not happen since we did not request
1438 * to receive those frames when we filled RXCSR0.
1439 */
1440 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1441 le32toh(desc->flags)));
1442 data->drop = 1;
1443 }
1444
1445 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1446 DPRINTFN(5, ("bad length\n"));
1447 data->drop = 1;
1448 }
1449
1450 /* mark the frame for decryption */
1451 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1452
1453 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1454 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1455 BUS_DMASYNC_PREWRITE);
1456
1457 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1458
1459 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1460 }
1461
1462 /* kick decrypt */
1463 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1464 }
1465
1466 /*
1467 * This function is called periodically in IBSS mode when a new beacon must be
1468 * sent out.
1469 */
1470 static void
1471 rt2560_beacon_expire(struct rt2560_softc *sc)
1472 {
1473 struct ieee80211com *ic = &sc->sc_ic;
1474 struct rt2560_tx_data *data;
1475
1476 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1477 ic->ic_opmode != IEEE80211_M_HOSTAP)
1478 return;
1479
1480 data = &sc->bcnq.data[sc->bcnq.next];
1481
1482 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1483 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1484 bus_dmamap_unload(sc->sc_dmat, data->map);
1485
1486 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1487
1488 bpf_mtap3(ic->ic_rawbpf, data->m);
1489 rt2560_tx_bcn(sc, data->m, data->ni);
1490
1491 DPRINTFN(15, ("beacon expired\n"));
1492
1493 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1494 }
1495
1496 static void
1497 rt2560_wakeup_expire(struct rt2560_softc *sc)
1498 {
1499 DPRINTFN(15, ("wakeup expired\n"));
1500 }
1501
1502 int
1503 rt2560_intr(void *arg)
1504 {
1505 struct rt2560_softc *sc = arg;
1506 struct ifnet *ifp = &sc->sc_if;
1507 uint32_t r;
1508
1509 if (!device_is_active(sc->sc_dev))
1510 return 0;
1511
1512 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1513 return 0; /* not for us */
1514
1515 /* disable interrupts */
1516 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1517
1518 /* don't re-enable interrupts if we're shutting down */
1519 if (!(ifp->if_flags & IFF_RUNNING))
1520 return 0;
1521
1522 softint_schedule(sc->sc_soft_ih);
1523 return 1;
1524 }
1525
1526 static void
1527 rt2560_softintr(void *arg)
1528 {
1529 struct rt2560_softc *sc = arg;
1530 struct ifnet *ifp = &sc->sc_if;
1531 uint32_t r;
1532
1533 if (!device_is_active(sc->sc_dev) || !(ifp->if_flags & IFF_RUNNING))
1534 return;
1535
1536 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1537 goto out;
1538
1539 /* acknowledge interrupts */
1540 RAL_WRITE(sc, RT2560_CSR7, r);
1541
1542 if (r & RT2560_BEACON_EXPIRE)
1543 rt2560_beacon_expire(sc);
1544
1545 if (r & RT2560_WAKEUP_EXPIRE)
1546 rt2560_wakeup_expire(sc);
1547
1548 if (r & RT2560_ENCRYPTION_DONE)
1549 rt2560_encryption_intr(sc);
1550
1551 if (r & RT2560_TX_DONE)
1552 rt2560_tx_intr(sc);
1553
1554 if (r & RT2560_PRIO_DONE)
1555 rt2560_prio_intr(sc);
1556
1557 if (r & RT2560_DECRYPTION_DONE)
1558 rt2560_decryption_intr(sc);
1559
1560 if (r & RT2560_RX_DONE)
1561 rt2560_rx_intr(sc);
1562
1563 out:
1564 /* re-enable interrupts */
1565 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1566 }
1567
1568 /* quickly determine if a given rate is CCK or OFDM */
1569 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1570
1571 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1572 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1573
1574 #define RAL_SIFS 10 /* us */
1575
1576 #define RT2560_RXTX_TURNAROUND 10 /* us */
1577
1578 /*
1579 * This function is only used by the Rx radiotap code. It returns the rate at
1580 * which a given frame was received.
1581 */
1582 static uint8_t
1583 rt2560_rxrate(struct rt2560_rx_desc *desc)
1584 {
1585 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1586 /* reverse function of rt2560_plcp_signal */
1587 switch (desc->rate) {
1588 case 0xb: return 12;
1589 case 0xf: return 18;
1590 case 0xa: return 24;
1591 case 0xe: return 36;
1592 case 0x9: return 48;
1593 case 0xd: return 72;
1594 case 0x8: return 96;
1595 case 0xc: return 108;
1596 }
1597 } else {
1598 if (desc->rate == 10)
1599 return 2;
1600 if (desc->rate == 20)
1601 return 4;
1602 if (desc->rate == 55)
1603 return 11;
1604 if (desc->rate == 110)
1605 return 22;
1606 }
1607 return 2; /* should not get there */
1608 }
1609
1610 /*
1611 * Return the expected ack rate for a frame transmitted at rate `rate'.
1612 * XXX: this should depend on the destination node basic rate set.
1613 */
1614 static int
1615 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1616 {
1617 switch (rate) {
1618 /* CCK rates */
1619 case 2:
1620 return 2;
1621 case 4:
1622 case 11:
1623 case 22:
1624 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1625
1626 /* OFDM rates */
1627 case 12:
1628 case 18:
1629 return 12;
1630 case 24:
1631 case 36:
1632 return 24;
1633 case 48:
1634 case 72:
1635 case 96:
1636 case 108:
1637 return 48;
1638 }
1639
1640 /* default to 1Mbps */
1641 return 2;
1642 }
1643
1644 /*
1645 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1646 * The function automatically determines the operating mode depending on the
1647 * given rate. `flags' indicates whether short preamble is in use or not.
1648 */
1649 static uint16_t
1650 rt2560_txtime(int len, int rate, uint32_t flags)
1651 {
1652 uint16_t txtime;
1653
1654 if (RAL_RATE_IS_OFDM(rate)) {
1655 /* IEEE Std 802.11a-1999, pp. 37 */
1656 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1657 txtime = 16 + 4 + 4 * txtime + 6;
1658 } else {
1659 /* IEEE Std 802.11b-1999, pp. 28 */
1660 txtime = (16 * len + rate - 1) / rate;
1661 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1662 txtime += 72 + 24;
1663 else
1664 txtime += 144 + 48;
1665 }
1666 return txtime;
1667 }
1668
1669 static uint8_t
1670 rt2560_plcp_signal(int rate)
1671 {
1672 switch (rate) {
1673 /* CCK rates (returned values are device-dependent) */
1674 case 2: return 0x0;
1675 case 4: return 0x1;
1676 case 11: return 0x2;
1677 case 22: return 0x3;
1678
1679 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1680 case 12: return 0xb;
1681 case 18: return 0xf;
1682 case 24: return 0xa;
1683 case 36: return 0xe;
1684 case 48: return 0x9;
1685 case 72: return 0xd;
1686 case 96: return 0x8;
1687 case 108: return 0xc;
1688
1689 /* unsupported rates (should not get there) */
1690 default: return 0xff;
1691 }
1692 }
1693
1694 static void
1695 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1696 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1697 {
1698 struct ieee80211com *ic = &sc->sc_ic;
1699 uint16_t plcp_length;
1700 int remainder;
1701
1702 desc->flags = htole32(flags);
1703 desc->flags |= htole32(len << 16);
1704 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1705 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1706
1707 desc->physaddr = htole32(physaddr);
1708 desc->wme = htole16(
1709 RT2560_AIFSN(2) |
1710 RT2560_LOGCWMIN(3) |
1711 RT2560_LOGCWMAX(8));
1712
1713 /* setup PLCP fields */
1714 desc->plcp_signal = rt2560_plcp_signal(rate);
1715 desc->plcp_service = 4;
1716
1717 len += IEEE80211_CRC_LEN;
1718 if (RAL_RATE_IS_OFDM(rate)) {
1719 desc->flags |= htole32(RT2560_TX_OFDM);
1720
1721 plcp_length = len & 0xfff;
1722 desc->plcp_length_hi = plcp_length >> 6;
1723 desc->plcp_length_lo = plcp_length & 0x3f;
1724 } else {
1725 plcp_length = (16 * len + rate - 1) / rate;
1726 if (rate == 22) {
1727 remainder = (16 * len) % 22;
1728 if (remainder != 0 && remainder < 7)
1729 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1730 }
1731 desc->plcp_length_hi = plcp_length >> 8;
1732 desc->plcp_length_lo = plcp_length & 0xff;
1733
1734 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1735 desc->plcp_signal |= 0x08;
1736 }
1737 }
1738
1739 static int
1740 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1741 struct ieee80211_node *ni)
1742 {
1743 struct rt2560_tx_desc *desc;
1744 struct rt2560_tx_data *data;
1745 int rate, error;
1746
1747 desc = &sc->bcnq.desc[sc->bcnq.cur];
1748 data = &sc->bcnq.data[sc->bcnq.cur];
1749
1750 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1751
1752 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1753 BUS_DMA_NOWAIT);
1754 if (error != 0) {
1755 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1756 error);
1757 m_freem(m0);
1758 return error;
1759 }
1760
1761 data->m = m0;
1762 data->ni = ni;
1763
1764 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1765 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1766 data->map->dm_segs->ds_addr);
1767
1768 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1769 BUS_DMASYNC_PREWRITE);
1770 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1771 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1772 BUS_DMASYNC_PREWRITE);
1773
1774 return 0;
1775 }
1776
1777 static int
1778 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1779 struct ieee80211_node *ni)
1780 {
1781 struct ieee80211com *ic = &sc->sc_ic;
1782 struct rt2560_tx_desc *desc;
1783 struct rt2560_tx_data *data;
1784 struct ieee80211_frame *wh;
1785 struct ieee80211_key *k;
1786 uint16_t dur;
1787 uint32_t flags = 0;
1788 int rate, error;
1789
1790 desc = &sc->prioq.desc[sc->prioq.cur];
1791 data = &sc->prioq.data[sc->prioq.cur];
1792
1793 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1794
1795 wh = mtod(m0, struct ieee80211_frame *);
1796
1797 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1798 k = ieee80211_crypto_encap(ic, ni, m0);
1799 if (k == NULL) {
1800 m_freem(m0);
1801 return ENOBUFS;
1802 }
1803
1804 /* packet header may have moved, reset our local pointer */
1805 wh = mtod(m0, struct ieee80211_frame *);
1806 }
1807
1808 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1809 BUS_DMA_NOWAIT);
1810 if (error != 0) {
1811 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1812 error);
1813 m_freem(m0);
1814 return error;
1815 }
1816
1817 if (sc->sc_drvbpf != NULL) {
1818 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1819
1820 tap->wt_flags = 0;
1821 tap->wt_rate = rate;
1822 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1823 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1824 tap->wt_antenna = sc->tx_ant;
1825
1826 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1827 }
1828
1829 data->m = m0;
1830 data->ni = ni;
1831
1832 wh = mtod(m0, struct ieee80211_frame *);
1833
1834 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1835 flags |= RT2560_TX_ACK;
1836
1837 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1838 RAL_SIFS;
1839 *(uint16_t *)wh->i_dur = htole16(dur);
1840
1841 /* tell hardware to add timestamp for probe responses */
1842 if ((wh->i_fc[0] &
1843 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1844 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1845 flags |= RT2560_TX_TIMESTAMP;
1846 }
1847
1848 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1849 data->map->dm_segs->ds_addr);
1850
1851 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1852 BUS_DMASYNC_PREWRITE);
1853 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1854 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1855 BUS_DMASYNC_PREWRITE);
1856
1857 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1858 m0->m_pkthdr.len, sc->prioq.cur, rate));
1859
1860 /* kick prio */
1861 sc->prioq.queued++;
1862 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1863 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1864
1865 return 0;
1866 }
1867
1868 /*
1869 * Build a RTS control frame.
1870 */
1871 static struct mbuf *
1872 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1873 uint16_t dur)
1874 {
1875 struct ieee80211_frame_rts *rts;
1876 struct mbuf *m;
1877
1878 MGETHDR(m, M_DONTWAIT, MT_DATA);
1879 if (m == NULL) {
1880 sc->sc_ic.ic_stats.is_tx_nobuf++;
1881 aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1882 return NULL;
1883 }
1884
1885 rts = mtod(m, struct ieee80211_frame_rts *);
1886
1887 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1888 IEEE80211_FC0_SUBTYPE_RTS;
1889 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1890 *(uint16_t *)rts->i_dur = htole16(dur);
1891 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1892 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1893
1894 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1895
1896 return m;
1897 }
1898
1899 static int
1900 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1901 struct ieee80211_node *ni)
1902 {
1903 struct ieee80211com *ic = &sc->sc_ic;
1904 struct rt2560_tx_desc *desc;
1905 struct rt2560_tx_data *data;
1906 struct rt2560_node *rn;
1907 struct ieee80211_rateset *rs;
1908 struct ieee80211_frame *wh;
1909 struct ieee80211_key *k;
1910 struct mbuf *mnew;
1911 uint16_t dur;
1912 uint32_t flags = 0;
1913 int rate, error;
1914
1915 wh = mtod(m0, struct ieee80211_frame *);
1916
1917 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1918 rs = &ic->ic_sup_rates[ic->ic_curmode];
1919 rate = rs->rs_rates[ic->ic_fixed_rate];
1920 } else {
1921 rs = &ni->ni_rates;
1922 rn = (struct rt2560_node *)ni;
1923 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1924 wh, m0->m_pkthdr.len, -1, NULL, 0);
1925 rate = rs->rs_rates[ni->ni_txrate];
1926 }
1927 rate &= IEEE80211_RATE_VAL;
1928
1929 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1930 k = ieee80211_crypto_encap(ic, ni, m0);
1931 if (k == NULL) {
1932 m_freem(m0);
1933 return ENOBUFS;
1934 }
1935
1936 /* packet header may have moved, reset our local pointer */
1937 wh = mtod(m0, struct ieee80211_frame *);
1938 }
1939
1940 /*
1941 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1942 * for directed frames only when the length of the MPDU is greater
1943 * than the length threshold indicated by [...]" ic_rtsthreshold.
1944 */
1945 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1946 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1947 struct mbuf *m;
1948 int rtsrate, ackrate;
1949
1950 rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1951 ackrate = rt2560_ack_rate(ic, rate);
1952
1953 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1954 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1955 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1956 3 * RAL_SIFS;
1957
1958 m = rt2560_get_rts(sc, wh, dur);
1959
1960 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1961 data = &sc->txq.data[sc->txq.cur_encrypt];
1962
1963 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1964 BUS_DMA_NOWAIT);
1965 if (error != 0) {
1966 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1967 error);
1968 m_freem(m);
1969 m_freem(m0);
1970 return error;
1971 }
1972
1973 /* avoid multiple free() of the same node for each fragment */
1974 ieee80211_ref_node(ni);
1975
1976 data->m = m;
1977 data->ni = ni;
1978
1979 /* RTS frames are not taken into account for rssadapt */
1980 data->id.id_node = NULL;
1981
1982 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1983 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1984 data->map->dm_segs->ds_addr);
1985
1986 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1987 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1988 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1989 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1990 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1991
1992 sc->txq.queued++;
1993 sc->txq.cur_encrypt =
1994 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1995
1996 /*
1997 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1998 * asynchronous data frame shall be transmitted after the CTS
1999 * frame and a SIFS period.
2000 */
2001 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
2002 }
2003
2004 data = &sc->txq.data[sc->txq.cur_encrypt];
2005 desc = &sc->txq.desc[sc->txq.cur_encrypt];
2006
2007 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2008 BUS_DMA_NOWAIT);
2009 if (error != 0 && error != EFBIG) {
2010 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2011 error);
2012 m_freem(m0);
2013 return error;
2014 }
2015 if (error != 0) {
2016 /* too many fragments, linearize */
2017
2018 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2019 if (mnew == NULL) {
2020 m_freem(m0);
2021 return ENOMEM;
2022 }
2023
2024 M_COPY_PKTHDR(mnew, m0);
2025 if (m0->m_pkthdr.len > MHLEN) {
2026 MCLGET(mnew, M_DONTWAIT);
2027 if (!(mnew->m_flags & M_EXT)) {
2028 m_freem(m0);
2029 m_freem(mnew);
2030 return ENOMEM;
2031 }
2032 }
2033
2034 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2035 m_freem(m0);
2036 mnew->m_len = mnew->m_pkthdr.len;
2037 m0 = mnew;
2038
2039 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2040 BUS_DMA_NOWAIT);
2041 if (error != 0) {
2042 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2043 error);
2044 m_freem(m0);
2045 return error;
2046 }
2047
2048 /* packet header have moved, reset our local pointer */
2049 wh = mtod(m0, struct ieee80211_frame *);
2050 }
2051
2052 if (sc->sc_drvbpf != NULL) {
2053 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2054
2055 tap->wt_flags = 0;
2056 tap->wt_rate = rate;
2057 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2058 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2059 tap->wt_antenna = sc->tx_ant;
2060
2061 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2062 }
2063
2064 data->m = m0;
2065 data->ni = ni;
2066
2067 /* remember link conditions for rate adaptation algorithm */
2068 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2069 data->id.id_len = m0->m_pkthdr.len;
2070 data->id.id_rateidx = ni->ni_txrate;
2071 data->id.id_node = ni;
2072 data->id.id_rssi = ni->ni_rssi;
2073 } else
2074 data->id.id_node = NULL;
2075
2076 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2077 flags |= RT2560_TX_ACK;
2078
2079 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2080 ic->ic_flags) + RAL_SIFS;
2081 *(uint16_t *)wh->i_dur = htole16(dur);
2082 }
2083
2084 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2085 data->map->dm_segs->ds_addr);
2086
2087 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2088 BUS_DMASYNC_PREWRITE);
2089 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2090 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2091 BUS_DMASYNC_PREWRITE);
2092
2093 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2094 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2095
2096 /* kick encrypt */
2097 sc->txq.queued++;
2098 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2099 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2100
2101 return 0;
2102 }
2103
2104 static void
2105 rt2560_start(struct ifnet *ifp)
2106 {
2107 struct rt2560_softc *sc = ifp->if_softc;
2108 struct ieee80211com *ic = &sc->sc_ic;
2109 struct mbuf *m0;
2110 struct ieee80211_node *ni;
2111 struct ether_header *eh;
2112
2113 /*
2114 * net80211 may still try to send management frames even if the
2115 * IFF_RUNNING flag is not set...
2116 */
2117 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2118 return;
2119
2120 for (;;) {
2121 IF_POLL(&ic->ic_mgtq, m0);
2122 if (m0 != NULL) {
2123 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2124 ifp->if_flags |= IFF_OACTIVE;
2125 break;
2126 }
2127 IF_DEQUEUE(&ic->ic_mgtq, m0);
2128 if (m0 == NULL)
2129 break;
2130
2131 ni = M_GETCTX(m0, struct ieee80211_node *);
2132 M_CLEARCTX(m0);
2133 bpf_mtap3(ic->ic_rawbpf, m0);
2134 if (rt2560_tx_mgt(sc, m0, ni) != 0)
2135 break;
2136
2137 } else {
2138 if (ic->ic_state != IEEE80211_S_RUN)
2139 break;
2140 IFQ_DEQUEUE(&ifp->if_snd, m0);
2141 if (m0 == NULL)
2142 break;
2143 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2144 ifp->if_flags |= IFF_OACTIVE;
2145 break;
2146 }
2147
2148 if (m0->m_len < sizeof (struct ether_header) &&
2149 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2150 continue;
2151
2152 eh = mtod(m0, struct ether_header *);
2153 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2154 if (ni == NULL) {
2155 m_freem(m0);
2156 continue;
2157 }
2158 bpf_mtap(ifp, m0);
2159
2160 m0 = ieee80211_encap(ic, m0, ni);
2161 if (m0 == NULL) {
2162 ieee80211_free_node(ni);
2163 continue;
2164 }
2165
2166 bpf_mtap3(ic->ic_rawbpf, m0);
2167
2168 if (rt2560_tx_data(sc, m0, ni) != 0) {
2169 ieee80211_free_node(ni);
2170 ifp->if_oerrors++;
2171 break;
2172 }
2173 }
2174
2175 sc->sc_tx_timer = 5;
2176 ifp->if_timer = 1;
2177 }
2178 }
2179
2180 static void
2181 rt2560_watchdog(struct ifnet *ifp)
2182 {
2183 struct rt2560_softc *sc = ifp->if_softc;
2184
2185 ifp->if_timer = 0;
2186
2187 if (sc->sc_tx_timer > 0) {
2188 if (--sc->sc_tx_timer == 0) {
2189 aprint_error_dev(sc->sc_dev, "device timeout\n");
2190 rt2560_init(ifp);
2191 ifp->if_oerrors++;
2192 return;
2193 }
2194 ifp->if_timer = 1;
2195 }
2196
2197 ieee80211_watchdog(&sc->sc_ic);
2198 }
2199
2200 /*
2201 * This function allows for fast channel switching in monitor mode (used by
2202 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2203 * generate a new beacon frame.
2204 */
2205 static int
2206 rt2560_reset(struct ifnet *ifp)
2207 {
2208 struct rt2560_softc *sc = ifp->if_softc;
2209 struct ieee80211com *ic = &sc->sc_ic;
2210
2211 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2212 return ENETRESET;
2213
2214 rt2560_set_chan(sc, ic->ic_curchan);
2215
2216 return 0;
2217 }
2218
2219 int
2220 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2221 {
2222 struct rt2560_softc *sc = ifp->if_softc;
2223 struct ieee80211com *ic = &sc->sc_ic;
2224 int s, error = 0;
2225
2226 s = splnet();
2227
2228 switch (cmd) {
2229 case SIOCSIFFLAGS:
2230 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2231 break;
2232 if (ifp->if_flags & IFF_UP) {
2233 if (ifp->if_flags & IFF_RUNNING)
2234 rt2560_update_promisc(sc);
2235 else
2236 rt2560_init(ifp);
2237 } else {
2238 if (ifp->if_flags & IFF_RUNNING)
2239 rt2560_stop(ifp, 1);
2240 }
2241 break;
2242
2243 case SIOCADDMULTI:
2244 case SIOCDELMULTI:
2245 /* XXX no h/w multicast filter? --dyoung */
2246 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2247 error = 0;
2248 break;
2249
2250 case SIOCS80211CHANNEL:
2251 /*
2252 * This allows for fast channel switching in monitor mode
2253 * (used by kismet). In IBSS mode, we must explicitly reset
2254 * the interface to generate a new beacon frame.
2255 */
2256 error = ieee80211_ioctl(ic, cmd, data);
2257 if (error == ENETRESET &&
2258 ic->ic_opmode == IEEE80211_M_MONITOR) {
2259 rt2560_set_chan(sc, ic->ic_ibss_chan);
2260 error = 0;
2261 }
2262 break;
2263
2264 default:
2265 error = ieee80211_ioctl(ic, cmd, data);
2266 }
2267
2268 if (error == ENETRESET) {
2269 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2270 (IFF_UP | IFF_RUNNING))
2271 rt2560_init(ifp);
2272 error = 0;
2273 }
2274
2275 splx(s);
2276
2277 return error;
2278 }
2279
2280 static void
2281 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2282 {
2283 uint32_t tmp;
2284 int ntries;
2285
2286 for (ntries = 0; ntries < 100; ntries++) {
2287 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2288 break;
2289 DELAY(1);
2290 }
2291 if (ntries == 100) {
2292 aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2293 return;
2294 }
2295
2296 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2297 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2298
2299 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2300 }
2301
2302 static uint8_t
2303 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2304 {
2305 uint32_t val;
2306 int ntries;
2307
2308 val = RT2560_BBP_BUSY | reg << 8;
2309 RAL_WRITE(sc, RT2560_BBPCSR, val);
2310
2311 for (ntries = 0; ntries < 100; ntries++) {
2312 val = RAL_READ(sc, RT2560_BBPCSR);
2313 if (!(val & RT2560_BBP_BUSY))
2314 return val & 0xff;
2315 DELAY(1);
2316 }
2317
2318 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2319 return 0;
2320 }
2321
2322 static void
2323 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2324 {
2325 uint32_t tmp;
2326 int ntries;
2327
2328 for (ntries = 0; ntries < 100; ntries++) {
2329 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2330 break;
2331 DELAY(1);
2332 }
2333 if (ntries == 100) {
2334 aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2335 return;
2336 }
2337
2338 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2339 (reg & 0x3);
2340 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2341
2342 /* remember last written value in sc */
2343 sc->rf_regs[reg] = val;
2344
2345 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2346 }
2347
2348 static void
2349 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2350 {
2351 struct ieee80211com *ic = &sc->sc_ic;
2352 uint8_t power, tmp;
2353 u_int i, chan;
2354
2355 chan = ieee80211_chan2ieee(ic, c);
2356 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2357 return;
2358
2359 if (IEEE80211_IS_CHAN_2GHZ(c))
2360 power = min(sc->txpow[chan - 1], 31);
2361 else
2362 power = 31;
2363
2364 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2365
2366 switch (sc->rf_rev) {
2367 case RT2560_RF_2522:
2368 rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2369 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2370 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2371 break;
2372
2373 case RT2560_RF_2523:
2374 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2375 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2376 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2377 rt2560_rf_write(sc, RT2560_RF4,
2378 (chan == 14) ? 0x00280 : 0x00286);
2379 break;
2380
2381 case RT2560_RF_2524:
2382 rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2383 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2384 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2385 rt2560_rf_write(sc, RT2560_RF4,
2386 (chan == 14) ? 0x00280 : 0x00286);
2387 break;
2388
2389 case RT2560_RF_2525:
2390 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2391 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2392 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2393 rt2560_rf_write(sc, RT2560_RF4,
2394 (chan == 14) ? 0x00280 : 0x00286);
2395
2396 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2397 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2398 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2399 rt2560_rf_write(sc, RT2560_RF4,
2400 (chan == 14) ? 0x00280 : 0x00286);
2401 break;
2402
2403 case RT2560_RF_2525E:
2404 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2405 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2406 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2407 rt2560_rf_write(sc, RT2560_RF4,
2408 (chan == 14) ? 0x00286 : 0x00282);
2409 break;
2410
2411 case RT2560_RF_2526:
2412 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2413 rt2560_rf_write(sc, RT2560_RF4,
2414 (chan & 1) ? 0x00386 : 0x00381);
2415 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2416
2417 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2418 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2419 rt2560_rf_write(sc, RT2560_RF4,
2420 (chan & 1) ? 0x00386 : 0x00381);
2421 break;
2422
2423 /* dual-band RF */
2424 case RT2560_RF_5222:
2425 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2426
2427 rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2428 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2429 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2430 rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2431 break;
2432 }
2433
2434 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2435 ic->ic_state != IEEE80211_S_SCAN) {
2436 /* set Japan filter bit for channel 14 */
2437 tmp = rt2560_bbp_read(sc, 70);
2438
2439 tmp &= ~RT2560_JAPAN_FILTER;
2440 if (chan == 14)
2441 tmp |= RT2560_JAPAN_FILTER;
2442
2443 rt2560_bbp_write(sc, 70, tmp);
2444
2445 DELAY(1000); /* RF needs a 1ms delay here */
2446 rt2560_disable_rf_tune(sc);
2447
2448 /* clear CRC errors */
2449 RAL_READ(sc, RT2560_CNT0);
2450 }
2451 }
2452
2453 /*
2454 * Disable RF auto-tuning.
2455 */
2456 static void
2457 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2458 {
2459 uint32_t tmp;
2460
2461 if (sc->rf_rev != RT2560_RF_2523) {
2462 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2463 rt2560_rf_write(sc, RT2560_RF1, tmp);
2464 }
2465
2466 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2467 rt2560_rf_write(sc, RT2560_RF3, tmp);
2468
2469 DPRINTFN(2, ("disabling RF autotune\n"));
2470 }
2471
2472 /*
2473 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2474 * synchronization.
2475 */
2476 static void
2477 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2478 {
2479 struct ieee80211com *ic = &sc->sc_ic;
2480 uint16_t logcwmin, preload;
2481 uint32_t tmp;
2482
2483 /* first, disable TSF synchronization */
2484 RAL_WRITE(sc, RT2560_CSR14, 0);
2485
2486 tmp = 16 * ic->ic_bss->ni_intval;
2487 RAL_WRITE(sc, RT2560_CSR12, tmp);
2488
2489 RAL_WRITE(sc, RT2560_CSR13, 0);
2490
2491 logcwmin = 5;
2492 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2493 tmp = logcwmin << 16 | preload;
2494 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2495
2496 /* finally, enable TSF synchronization */
2497 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2498 if (ic->ic_opmode == IEEE80211_M_STA)
2499 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2500 else
2501 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2502 RT2560_ENABLE_BEACON_GENERATOR;
2503 RAL_WRITE(sc, RT2560_CSR14, tmp);
2504
2505 DPRINTF(("enabling TSF synchronization\n"));
2506 }
2507
2508 static void
2509 rt2560_update_plcp(struct rt2560_softc *sc)
2510 {
2511 struct ieee80211com *ic = &sc->sc_ic;
2512
2513 /* no short preamble for 1Mbps */
2514 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2515
2516 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2517 /* values taken from the reference driver */
2518 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2519 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2520 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2521 } else {
2522 /* same values as above or'ed 0x8 */
2523 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2524 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2525 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2526 }
2527
2528 DPRINTF(("updating PLCP for %s preamble\n",
2529 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2530 }
2531
2532 /*
2533 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2534 * know how these values are computed.
2535 */
2536 static void
2537 rt2560_update_slot(struct ifnet *ifp)
2538 {
2539 struct rt2560_softc *sc = ifp->if_softc;
2540 struct ieee80211com *ic = &sc->sc_ic;
2541 uint8_t slottime;
2542 uint16_t sifs, pifs, difs, eifs;
2543 uint32_t tmp;
2544
2545 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2546
2547 /* define the MAC slot boundaries */
2548 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2549 pifs = sifs + slottime;
2550 difs = sifs + 2 * slottime;
2551 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2552
2553 tmp = RAL_READ(sc, RT2560_CSR11);
2554 tmp = (tmp & ~0x1f00) | slottime << 8;
2555 RAL_WRITE(sc, RT2560_CSR11, tmp);
2556
2557 tmp = pifs << 16 | sifs;
2558 RAL_WRITE(sc, RT2560_CSR18, tmp);
2559
2560 tmp = eifs << 16 | difs;
2561 RAL_WRITE(sc, RT2560_CSR19, tmp);
2562
2563 DPRINTF(("setting slottime to %uus\n", slottime));
2564 }
2565
2566 static void
2567 rt2560_set_basicrates(struct rt2560_softc *sc)
2568 {
2569 struct ieee80211com *ic = &sc->sc_ic;
2570
2571 /* update basic rate set */
2572 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2573 /* 11b basic rates: 1, 2Mbps */
2574 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2575 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2576 /* 11a basic rates: 6, 12, 24Mbps */
2577 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2578 } else {
2579 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2580 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2581 }
2582 }
2583
2584 static void
2585 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2586 {
2587 uint32_t tmp;
2588
2589 /* set ON period to 70ms and OFF period to 30ms */
2590 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2591 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2592 }
2593
2594 static void
2595 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2596 {
2597 uint32_t tmp;
2598
2599 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2600 RAL_WRITE(sc, RT2560_CSR5, tmp);
2601
2602 tmp = bssid[4] | bssid[5] << 8;
2603 RAL_WRITE(sc, RT2560_CSR6, tmp);
2604
2605 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2606 }
2607
2608 static void
2609 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2610 {
2611 uint32_t tmp;
2612
2613 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2614 RAL_WRITE(sc, RT2560_CSR3, tmp);
2615
2616 tmp = addr[4] | addr[5] << 8;
2617 RAL_WRITE(sc, RT2560_CSR4, tmp);
2618
2619 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2620 }
2621
2622 static void
2623 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2624 {
2625 uint32_t tmp;
2626
2627 tmp = RAL_READ(sc, RT2560_CSR3);
2628 addr[0] = tmp & 0xff;
2629 addr[1] = (tmp >> 8) & 0xff;
2630 addr[2] = (tmp >> 16) & 0xff;
2631 addr[3] = (tmp >> 24);
2632
2633 tmp = RAL_READ(sc, RT2560_CSR4);
2634 addr[4] = tmp & 0xff;
2635 addr[5] = (tmp >> 8) & 0xff;
2636 }
2637
2638 static void
2639 rt2560_update_promisc(struct rt2560_softc *sc)
2640 {
2641 struct ifnet *ifp = &sc->sc_if;
2642 uint32_t tmp;
2643
2644 tmp = RAL_READ(sc, RT2560_RXCSR0);
2645
2646 tmp &= ~RT2560_DROP_NOT_TO_ME;
2647 if (!(ifp->if_flags & IFF_PROMISC))
2648 tmp |= RT2560_DROP_NOT_TO_ME;
2649
2650 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2651
2652 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2653 "entering" : "leaving"));
2654 }
2655
2656 static void
2657 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2658 {
2659 uint32_t tmp;
2660 uint8_t tx;
2661
2662 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2663 if (antenna == 1)
2664 tx |= RT2560_BBP_ANTA;
2665 else if (antenna == 2)
2666 tx |= RT2560_BBP_ANTB;
2667 else
2668 tx |= RT2560_BBP_DIVERSITY;
2669
2670 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2671 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2672 sc->rf_rev == RT2560_RF_5222)
2673 tx |= RT2560_BBP_FLIPIQ;
2674
2675 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2676
2677 /* update values for CCK and OFDM in BBPCSR1 */
2678 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2679 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2680 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2681 }
2682
2683 static void
2684 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2685 {
2686 uint8_t rx;
2687
2688 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2689 if (antenna == 1)
2690 rx |= RT2560_BBP_ANTA;
2691 else if (antenna == 2)
2692 rx |= RT2560_BBP_ANTB;
2693 else
2694 rx |= RT2560_BBP_DIVERSITY;
2695
2696 /* need to force no I/Q flip for RF 2525e and 2526 */
2697 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2698 rx &= ~RT2560_BBP_FLIPIQ;
2699
2700 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2701 }
2702
2703 static const char *
2704 rt2560_get_rf(int rev)
2705 {
2706 switch (rev) {
2707 case RT2560_RF_2522: return "RT2522";
2708 case RT2560_RF_2523: return "RT2523";
2709 case RT2560_RF_2524: return "RT2524";
2710 case RT2560_RF_2525: return "RT2525";
2711 case RT2560_RF_2525E: return "RT2525e";
2712 case RT2560_RF_2526: return "RT2526";
2713 case RT2560_RF_5222: return "RT5222";
2714 default: return "unknown";
2715 }
2716 }
2717
2718 static void
2719 rt2560_read_eeprom(struct rt2560_softc *sc)
2720 {
2721 uint16_t val;
2722 int i;
2723
2724 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2725 sc->rf_rev = (val >> 11) & 0x1f;
2726 sc->hw_radio = (val >> 10) & 0x1;
2727 sc->led_mode = (val >> 6) & 0x7;
2728 sc->rx_ant = (val >> 4) & 0x3;
2729 sc->tx_ant = (val >> 2) & 0x3;
2730 sc->nb_ant = val & 0x3;
2731
2732 /* read default values for BBP registers */
2733 for (i = 0; i < 16; i++) {
2734 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2735 sc->bbp_prom[i].reg = val >> 8;
2736 sc->bbp_prom[i].val = val & 0xff;
2737 }
2738
2739 /* read Tx power for all b/g channels */
2740 for (i = 0; i < 14 / 2; i++) {
2741 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2742 sc->txpow[i * 2] = val >> 8;
2743 sc->txpow[i * 2 + 1] = val & 0xff;
2744 }
2745 }
2746
2747 static int
2748 rt2560_bbp_init(struct rt2560_softc *sc)
2749 {
2750 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2751 int i, ntries;
2752
2753 /* wait for BBP to be ready */
2754 for (ntries = 0; ntries < 100; ntries++) {
2755 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2756 break;
2757 DELAY(1);
2758 }
2759 if (ntries == 100) {
2760 aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2761 return EIO;
2762 }
2763
2764 /* initialize BBP registers to default values */
2765 for (i = 0; i < N(rt2560_def_bbp); i++) {
2766 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2767 rt2560_def_bbp[i].val);
2768 }
2769 #if 0
2770 /* initialize BBP registers to values stored in EEPROM */
2771 for (i = 0; i < 16; i++) {
2772 if (sc->bbp_prom[i].reg == 0xff)
2773 continue;
2774 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2775 }
2776 #endif
2777
2778 return 0;
2779 #undef N
2780 }
2781
2782 static int
2783 rt2560_init(struct ifnet *ifp)
2784 {
2785 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2786 struct rt2560_softc *sc = ifp->if_softc;
2787 struct ieee80211com *ic = &sc->sc_ic;
2788 uint32_t tmp;
2789 int i;
2790
2791 /* for CardBus, power on the socket */
2792 if (!(sc->sc_flags & RT2560_ENABLED)) {
2793 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2794 aprint_error_dev(sc->sc_dev, "could not enable device\n");
2795 return EIO;
2796 }
2797 sc->sc_flags |= RT2560_ENABLED;
2798 }
2799
2800 rt2560_stop(ifp, 1);
2801
2802 /* setup tx rings */
2803 tmp = RT2560_PRIO_RING_COUNT << 24 |
2804 RT2560_ATIM_RING_COUNT << 16 |
2805 RT2560_TX_RING_COUNT << 8 |
2806 RT2560_TX_DESC_SIZE;
2807
2808 /* rings _must_ be initialized in this _exact_ order! */
2809 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2810 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2811 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2812 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2813 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2814
2815 /* setup rx ring */
2816 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2817
2818 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2819 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2820
2821 /* initialize MAC registers to default values */
2822 for (i = 0; i < N(rt2560_def_mac); i++)
2823 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2824
2825 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2826 rt2560_set_macaddr(sc, ic->ic_myaddr);
2827
2828 /* set basic rate set (will be updated later) */
2829 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2830
2831 rt2560_update_slot(ifp);
2832 rt2560_update_plcp(sc);
2833 rt2560_update_led(sc, 0, 0);
2834
2835 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2836 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2837
2838 if (rt2560_bbp_init(sc) != 0) {
2839 rt2560_stop(ifp, 1);
2840 return EIO;
2841 }
2842
2843 rt2560_set_txantenna(sc, 1);
2844 rt2560_set_rxantenna(sc, 1);
2845
2846 /* set default BSS channel */
2847 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2848 rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2849
2850 /* kick Rx */
2851 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2852 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2853 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2854 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2855 tmp |= RT2560_DROP_TODS;
2856 if (!(ifp->if_flags & IFF_PROMISC))
2857 tmp |= RT2560_DROP_NOT_TO_ME;
2858 }
2859 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2860
2861 /* clear old FCS and Rx FIFO errors */
2862 RAL_READ(sc, RT2560_CNT0);
2863 RAL_READ(sc, RT2560_CNT4);
2864
2865 /* clear any pending interrupts */
2866 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2867
2868 /* enable interrupts */
2869 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2870
2871 ifp->if_flags &= ~IFF_OACTIVE;
2872 ifp->if_flags |= IFF_RUNNING;
2873
2874 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2875 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2876 else
2877 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2878
2879 return 0;
2880 #undef N
2881 }
2882
2883 static void
2884 rt2560_stop(struct ifnet *ifp, int disable)
2885 {
2886 struct rt2560_softc *sc = ifp->if_softc;
2887 struct ieee80211com *ic = &sc->sc_ic;
2888
2889 sc->sc_tx_timer = 0;
2890 ifp->if_timer = 0;
2891 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2892
2893 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2894
2895 /* abort Tx */
2896 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2897
2898 /* disable Rx */
2899 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2900
2901 /* reset ASIC (and thus, BBP) */
2902 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2903 RAL_WRITE(sc, RT2560_CSR1, 0);
2904
2905 /* disable interrupts */
2906 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2907
2908 /* clear any pending interrupt */
2909 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2910
2911 /* reset Tx and Rx rings */
2912 rt2560_reset_tx_ring(sc, &sc->txq);
2913 rt2560_reset_tx_ring(sc, &sc->atimq);
2914 rt2560_reset_tx_ring(sc, &sc->prioq);
2915 rt2560_reset_tx_ring(sc, &sc->bcnq);
2916 rt2560_reset_rx_ring(sc, &sc->rxq);
2917 }
2918