rt2560.c revision 1.32 1 /* $NetBSD: rt2560.c,v 1.32 2018/02/08 09:05:19 dholland Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4
5 /*-
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
25 */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.32 2018/02/08 09:05:19 dholland Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_rssadapt.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/ic/rt2560reg.h>
63 #include <dev/ic/rt2560var.h>
64
65 #ifdef RAL_DEBUG
66 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
68 int rt2560_debug = 0;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n, x)
72 #endif
73
74 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
75 struct rt2560_tx_ring *, int);
76 static void rt2560_reset_tx_ring(struct rt2560_softc *,
77 struct rt2560_tx_ring *);
78 static void rt2560_free_tx_ring(struct rt2560_softc *,
79 struct rt2560_tx_ring *);
80 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
81 struct rt2560_rx_ring *, int);
82 static void rt2560_reset_rx_ring(struct rt2560_softc *,
83 struct rt2560_rx_ring *);
84 static void rt2560_free_rx_ring(struct rt2560_softc *,
85 struct rt2560_rx_ring *);
86 static struct ieee80211_node *
87 rt2560_node_alloc(struct ieee80211_node_table *);
88 static int rt2560_media_change(struct ifnet *);
89 static void rt2560_next_scan(void *);
90 static void rt2560_iter_func(void *, struct ieee80211_node *);
91 static void rt2560_update_rssadapt(void *);
92 static int rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
93 int);
94 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
95 static void rt2560_encryption_intr(struct rt2560_softc *);
96 static void rt2560_tx_intr(struct rt2560_softc *);
97 static void rt2560_prio_intr(struct rt2560_softc *);
98 static void rt2560_decryption_intr(struct rt2560_softc *);
99 static void rt2560_rx_intr(struct rt2560_softc *);
100 static void rt2560_beacon_expire(struct rt2560_softc *);
101 static void rt2560_wakeup_expire(struct rt2560_softc *);
102 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
103 static int rt2560_ack_rate(struct ieee80211com *, int);
104 static uint16_t rt2560_txtime(int, int, uint32_t);
105 static uint8_t rt2560_plcp_signal(int);
106 static void rt2560_setup_tx_desc(struct rt2560_softc *,
107 struct rt2560_tx_desc *, uint32_t, int, int, int,
108 bus_addr_t);
109 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
110 struct ieee80211_node *);
111 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
112 struct ieee80211_node *);
113 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
114 struct ieee80211_frame *, uint16_t);
115 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
116 struct ieee80211_node *);
117 static void rt2560_start(struct ifnet *);
118 static void rt2560_watchdog(struct ifnet *);
119 static int rt2560_reset(struct ifnet *);
120 static int rt2560_ioctl(struct ifnet *, u_long, void *);
121 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
122 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
123 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
124 static void rt2560_set_chan(struct rt2560_softc *,
125 struct ieee80211_channel *);
126 static void rt2560_disable_rf_tune(struct rt2560_softc *);
127 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
128 static void rt2560_update_plcp(struct rt2560_softc *);
129 static void rt2560_update_slot(struct ifnet *);
130 static void rt2560_set_basicrates(struct rt2560_softc *);
131 static void rt2560_update_led(struct rt2560_softc *, int, int);
132 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
133 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
134 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
135 static void rt2560_update_promisc(struct rt2560_softc *);
136 static void rt2560_set_txantenna(struct rt2560_softc *, int);
137 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
138 static const char *rt2560_get_rf(int);
139 static void rt2560_read_eeprom(struct rt2560_softc *);
140 static int rt2560_bbp_init(struct rt2560_softc *);
141 static int rt2560_init(struct ifnet *);
142 static void rt2560_stop(struct ifnet *, int);
143 static void rt2560_softintr(void *);
144
145 /*
146 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
147 */
148 static const struct ieee80211_rateset rt2560_rateset_11a =
149 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
150
151 static const struct ieee80211_rateset rt2560_rateset_11b =
152 { 4, { 2, 4, 11, 22 } };
153
154 static const struct ieee80211_rateset rt2560_rateset_11g =
155 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
156
157 /*
158 * Default values for MAC registers; values taken from the reference driver.
159 */
160 static const struct {
161 uint32_t reg;
162 uint32_t val;
163 } rt2560_def_mac[] = {
164 { RT2560_PSCSR0, 0x00020002 },
165 { RT2560_PSCSR1, 0x00000002 },
166 { RT2560_PSCSR2, 0x00020002 },
167 { RT2560_PSCSR3, 0x00000002 },
168 { RT2560_TIMECSR, 0x00003f21 },
169 { RT2560_CSR9, 0x00000780 },
170 { RT2560_CSR11, 0x07041483 },
171 { RT2560_CNT3, 0x00000000 },
172 { RT2560_TXCSR1, 0x07614562 },
173 { RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
174 { RT2560_ACKPCTCSR, 0x7038140a },
175 { RT2560_ARTCSR1, 0x1d21252d },
176 { RT2560_ARTCSR2, 0x1919191d },
177 { RT2560_RXCSR0, 0xffffffff },
178 { RT2560_RXCSR3, 0xb3aab3af },
179 { RT2560_PCICSR, 0x000003b8 },
180 { RT2560_PWRCSR0, 0x3f3b3100 },
181 { RT2560_GPIOCSR, 0x0000ff00 },
182 { RT2560_TESTCSR, 0x000000f0 },
183 { RT2560_PWRCSR1, 0x000001ff },
184 { RT2560_MACCSR0, 0x00213223 },
185 { RT2560_MACCSR1, 0x00235518 },
186 { RT2560_RLPWCSR, 0x00000040 },
187 { RT2560_RALINKCSR, 0x9a009a11 },
188 { RT2560_CSR7, 0xffffffff },
189 { RT2560_BBPCSR1, 0x82188200 },
190 { RT2560_TXACKCSR0, 0x00000020 },
191 { RT2560_SECCSR3, 0x0000e78f }
192 };
193
194 /*
195 * Default values for BBP registers; values taken from the reference driver.
196 */
197 static const struct {
198 uint8_t reg;
199 uint8_t val;
200 } rt2560_def_bbp[] = {
201 { 3, 0x02 },
202 { 4, 0x19 },
203 { 14, 0x1c },
204 { 15, 0x30 },
205 { 16, 0xac },
206 { 17, 0x48 },
207 { 18, 0x18 },
208 { 19, 0xff },
209 { 20, 0x1e },
210 { 21, 0x08 },
211 { 22, 0x08 },
212 { 23, 0x08 },
213 { 24, 0x80 },
214 { 25, 0x50 },
215 { 26, 0x08 },
216 { 27, 0x23 },
217 { 30, 0x10 },
218 { 31, 0x2b },
219 { 32, 0xb9 },
220 { 34, 0x12 },
221 { 35, 0x50 },
222 { 39, 0xc4 },
223 { 40, 0x02 },
224 { 41, 0x60 },
225 { 53, 0x10 },
226 { 54, 0x18 },
227 { 56, 0x08 },
228 { 57, 0x10 },
229 { 58, 0x08 },
230 { 61, 0x60 },
231 { 62, 0x10 },
232 { 75, 0xff }
233 };
234
235 /*
236 * Default values for RF register R2 indexed by channel numbers; values taken
237 * from the reference driver.
238 */
239 static const uint32_t rt2560_rf2522_r2[] = {
240 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
241 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
242 };
243
244 static const uint32_t rt2560_rf2523_r2[] = {
245 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
246 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
247 };
248
249 static const uint32_t rt2560_rf2524_r2[] = {
250 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
251 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
252 };
253
254 static const uint32_t rt2560_rf2525_r2[] = {
255 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
256 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
257 };
258
259 static const uint32_t rt2560_rf2525_hi_r2[] = {
260 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
261 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
262 };
263
264 static const uint32_t rt2560_rf2525e_r2[] = {
265 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
266 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
267 };
268
269 static const uint32_t rt2560_rf2526_hi_r2[] = {
270 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
271 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
272 };
273
274 static const uint32_t rt2560_rf2526_r2[] = {
275 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
276 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
277 };
278
279 /*
280 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
281 * values taken from the reference driver.
282 */
283 static const struct {
284 uint8_t chan;
285 uint32_t r1;
286 uint32_t r2;
287 uint32_t r4;
288 } rt2560_rf5222[] = {
289 { 1, 0x08808, 0x0044d, 0x00282 },
290 { 2, 0x08808, 0x0044e, 0x00282 },
291 { 3, 0x08808, 0x0044f, 0x00282 },
292 { 4, 0x08808, 0x00460, 0x00282 },
293 { 5, 0x08808, 0x00461, 0x00282 },
294 { 6, 0x08808, 0x00462, 0x00282 },
295 { 7, 0x08808, 0x00463, 0x00282 },
296 { 8, 0x08808, 0x00464, 0x00282 },
297 { 9, 0x08808, 0x00465, 0x00282 },
298 { 10, 0x08808, 0x00466, 0x00282 },
299 { 11, 0x08808, 0x00467, 0x00282 },
300 { 12, 0x08808, 0x00468, 0x00282 },
301 { 13, 0x08808, 0x00469, 0x00282 },
302 { 14, 0x08808, 0x0046b, 0x00286 },
303
304 { 36, 0x08804, 0x06225, 0x00287 },
305 { 40, 0x08804, 0x06226, 0x00287 },
306 { 44, 0x08804, 0x06227, 0x00287 },
307 { 48, 0x08804, 0x06228, 0x00287 },
308 { 52, 0x08804, 0x06229, 0x00287 },
309 { 56, 0x08804, 0x0622a, 0x00287 },
310 { 60, 0x08804, 0x0622b, 0x00287 },
311 { 64, 0x08804, 0x0622c, 0x00287 },
312
313 { 100, 0x08804, 0x02200, 0x00283 },
314 { 104, 0x08804, 0x02201, 0x00283 },
315 { 108, 0x08804, 0x02202, 0x00283 },
316 { 112, 0x08804, 0x02203, 0x00283 },
317 { 116, 0x08804, 0x02204, 0x00283 },
318 { 120, 0x08804, 0x02205, 0x00283 },
319 { 124, 0x08804, 0x02206, 0x00283 },
320 { 128, 0x08804, 0x02207, 0x00283 },
321 { 132, 0x08804, 0x02208, 0x00283 },
322 { 136, 0x08804, 0x02209, 0x00283 },
323 { 140, 0x08804, 0x0220a, 0x00283 },
324
325 { 149, 0x08808, 0x02429, 0x00281 },
326 { 153, 0x08808, 0x0242b, 0x00281 },
327 { 157, 0x08808, 0x0242d, 0x00281 },
328 { 161, 0x08808, 0x0242f, 0x00281 }
329 };
330
331 int
332 rt2560_attach(void *xsc, int id)
333 {
334 struct rt2560_softc *sc = xsc;
335 struct ieee80211com *ic = &sc->sc_ic;
336 struct ifnet *ifp = &sc->sc_if;
337 int error, i;
338
339 callout_init(&sc->scan_ch, 0);
340 callout_init(&sc->rssadapt_ch, 0);
341
342 /* retrieve RT2560 rev. no */
343 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
344
345 /* retrieve MAC address */
346 rt2560_get_macaddr(sc, ic->ic_myaddr);
347
348 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
349 ether_sprintf(ic->ic_myaddr));
350
351 /* retrieve RF rev. no and various other things from EEPROM */
352 rt2560_read_eeprom(sc);
353
354 aprint_normal_dev(sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
355 sc->asic_rev, rt2560_get_rf(sc->rf_rev));
356
357 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2560_softintr, sc);
358 if (sc->sc_soft_ih == NULL) {
359 aprint_error_dev(sc->sc_dev, "could not establish softint\n)");
360 goto fail0;
361 }
362
363 /*
364 * Allocate Tx and Rx rings.
365 */
366 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
367 if (error != 0) {
368 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring\n)");
369 goto fail1;
370 }
371
372 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
373 if (error != 0) {
374 aprint_error_dev(sc->sc_dev, "could not allocate ATIM ring\n");
375 goto fail2;
376 }
377
378 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
379 if (error != 0) {
380 aprint_error_dev(sc->sc_dev, "could not allocate Prio ring\n");
381 goto fail3;
382 }
383
384 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
385 if (error != 0) {
386 aprint_error_dev(sc->sc_dev, "could not allocate Beacon ring\n");
387 goto fail4;
388 }
389
390 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
391 if (error != 0) {
392 aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
393 goto fail5;
394 }
395
396 ifp->if_softc = sc;
397 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
398 ifp->if_init = rt2560_init;
399 ifp->if_stop = rt2560_stop;
400 ifp->if_ioctl = rt2560_ioctl;
401 ifp->if_start = rt2560_start;
402 ifp->if_watchdog = rt2560_watchdog;
403 IFQ_SET_READY(&ifp->if_snd);
404 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
405
406 ic->ic_ifp = ifp;
407 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
408 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
409 ic->ic_state = IEEE80211_S_INIT;
410
411 /* set device capabilities */
412 ic->ic_caps =
413 IEEE80211_C_IBSS | /* IBSS mode supported */
414 IEEE80211_C_MONITOR | /* monitor mode supported */
415 IEEE80211_C_HOSTAP | /* HostAp mode supported */
416 IEEE80211_C_TXPMGT | /* tx power management */
417 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
418 IEEE80211_C_SHSLOT | /* short slot time supported */
419 IEEE80211_C_WPA; /* 802.11i */
420
421 if (sc->rf_rev == RT2560_RF_5222) {
422 /* set supported .11a rates */
423 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
424
425 /* set supported .11a channels */
426 for (i = 36; i <= 64; i += 4) {
427 ic->ic_channels[i].ic_freq =
428 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
429 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
430 }
431 for (i = 100; i <= 140; i += 4) {
432 ic->ic_channels[i].ic_freq =
433 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
434 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
435 }
436 for (i = 149; i <= 161; i += 4) {
437 ic->ic_channels[i].ic_freq =
438 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
439 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
440 }
441 }
442
443 /* set supported .11b and .11g rates */
444 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
445 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
446
447 /* set supported .11b and .11g channels (1 through 14) */
448 for (i = 1; i <= 14; i++) {
449 ic->ic_channels[i].ic_freq =
450 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
451 ic->ic_channels[i].ic_flags =
452 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
453 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
454 }
455
456 error = if_initialize(ifp);
457 if (error != 0) {
458 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
459 error);
460 goto fail6;
461 }
462 ieee80211_ifattach(ic);
463 /* Use common softint-based if_input */
464 ifp->if_percpuq = if_percpuq_create(ifp);
465 if_register(ifp);
466
467 ic->ic_node_alloc = rt2560_node_alloc;
468 ic->ic_updateslot = rt2560_update_slot;
469 ic->ic_reset = rt2560_reset;
470
471 /* override state transition machine */
472 sc->sc_newstate = ic->ic_newstate;
473 ic->ic_newstate = rt2560_newstate;
474 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
475
476 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
477 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
478
479 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
480 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
481 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
482
483 sc->sc_txtap_len = sizeof sc->sc_txtapu;
484 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
485 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
486
487
488 sc->dwelltime = 200;
489
490 ieee80211_announce(ic);
491
492 if (pmf_device_register(sc->sc_dev, NULL, NULL))
493 pmf_class_network_register(sc->sc_dev, ifp);
494 else
495 aprint_error_dev(sc->sc_dev,
496 "couldn't establish power handler\n");
497
498 return 0;
499
500 fail6: rt2560_free_rx_ring(sc, &sc->rxq);
501 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
502 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
503 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
504 fail2: rt2560_free_tx_ring(sc, &sc->txq);
505 fail1: softint_disestablish(sc->sc_soft_ih);
506 sc->sc_soft_ih = NULL;
507 fail0: return ENXIO;
508 }
509
510
511 int
512 rt2560_detach(void *xsc)
513 {
514 struct rt2560_softc *sc = xsc;
515 struct ifnet *ifp = &sc->sc_if;
516
517 callout_stop(&sc->scan_ch);
518 callout_stop(&sc->rssadapt_ch);
519
520 pmf_device_deregister(sc->sc_dev);
521
522 rt2560_stop(ifp, 1);
523
524 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
525 if_detach(ifp);
526
527 rt2560_free_tx_ring(sc, &sc->txq);
528 rt2560_free_tx_ring(sc, &sc->atimq);
529 rt2560_free_tx_ring(sc, &sc->prioq);
530 rt2560_free_tx_ring(sc, &sc->bcnq);
531 rt2560_free_rx_ring(sc, &sc->rxq);
532
533 if (sc->sc_soft_ih != NULL) {
534 softint_disestablish(sc->sc_soft_ih);
535 sc->sc_soft_ih = NULL;
536 }
537
538 return 0;
539 }
540
541 int
542 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
543 int count)
544 {
545 int i, nsegs, error;
546
547 ring->count = count;
548 ring->queued = 0;
549 ring->cur = ring->next = 0;
550 ring->cur_encrypt = ring->next_encrypt = 0;
551
552 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
553 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
554 if (error != 0) {
555 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
556 goto fail;
557 }
558
559 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
560 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
561 if (error != 0) {
562 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
563 goto fail;
564 }
565
566 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
567 count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
568 BUS_DMA_NOWAIT);
569 if (error != 0) {
570 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
571 goto fail;
572 }
573
574 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
575 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
576 if (error != 0) {
577 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
578 goto fail;
579 }
580
581 memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
582 ring->physaddr = ring->map->dm_segs->ds_addr;
583
584 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
585 M_NOWAIT);
586 if (ring->data == NULL) {
587 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
588 error = ENOMEM;
589 goto fail;
590 }
591
592 memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
593 for (i = 0; i < count; i++) {
594 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
595 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
596 &ring->data[i].map);
597 if (error != 0) {
598 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
599 goto fail;
600 }
601 }
602
603 return 0;
604
605 fail: rt2560_free_tx_ring(sc, ring);
606 return error;
607 }
608
609 void
610 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
611 {
612 struct rt2560_tx_desc *desc;
613 struct rt2560_tx_data *data;
614 int i;
615
616 for (i = 0; i < ring->count; i++) {
617 desc = &ring->desc[i];
618 data = &ring->data[i];
619
620 if (data->m != NULL) {
621 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
622 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
623 bus_dmamap_unload(sc->sc_dmat, data->map);
624 m_freem(data->m);
625 data->m = NULL;
626 }
627
628 if (data->ni != NULL) {
629 ieee80211_free_node(data->ni);
630 data->ni = NULL;
631 }
632
633 desc->flags = 0;
634 }
635
636 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
637 BUS_DMASYNC_PREWRITE);
638
639 ring->queued = 0;
640 ring->cur = ring->next = 0;
641 ring->cur_encrypt = ring->next_encrypt = 0;
642 }
643
644 void
645 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
646 {
647 struct rt2560_tx_data *data;
648 int i;
649
650 if (ring->desc != NULL) {
651 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
652 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
653 bus_dmamap_unload(sc->sc_dmat, ring->map);
654 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
655 ring->count * RT2560_TX_DESC_SIZE);
656 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
657 }
658
659 if (ring->data != NULL) {
660 for (i = 0; i < ring->count; i++) {
661 data = &ring->data[i];
662
663 if (data->m != NULL) {
664 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
665 data->map->dm_mapsize,
666 BUS_DMASYNC_POSTWRITE);
667 bus_dmamap_unload(sc->sc_dmat, data->map);
668 m_freem(data->m);
669 }
670
671 if (data->ni != NULL)
672 ieee80211_free_node(data->ni);
673
674
675 if (data->map != NULL)
676 bus_dmamap_destroy(sc->sc_dmat, data->map);
677 }
678 free(ring->data, M_DEVBUF);
679 }
680 }
681
682 int
683 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
684 int count)
685 {
686 struct rt2560_rx_desc *desc;
687 struct rt2560_rx_data *data;
688 int i, nsegs, error;
689
690 ring->count = count;
691 ring->cur = ring->next = 0;
692 ring->cur_decrypt = 0;
693
694 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
695 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
696 if (error != 0) {
697 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
698 goto fail;
699 }
700
701 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
702 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
703 if (error != 0) {
704 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
705 goto fail;
706 }
707
708 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
709 count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
710 BUS_DMA_NOWAIT);
711 if (error != 0) {
712 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
713 goto fail;
714 }
715
716 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
717 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
718 if (error != 0) {
719 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
720 goto fail;
721 }
722
723 memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
724 ring->physaddr = ring->map->dm_segs->ds_addr;
725
726 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
727 M_NOWAIT);
728 if (ring->data == NULL) {
729 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
730 error = ENOMEM;
731 goto fail;
732 }
733
734 /*
735 * Pre-allocate Rx buffers and populate Rx ring.
736 */
737 memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
738 for (i = 0; i < count; i++) {
739 desc = &sc->rxq.desc[i];
740 data = &sc->rxq.data[i];
741
742 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
743 0, BUS_DMA_NOWAIT, &data->map);
744 if (error != 0) {
745 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
746 goto fail;
747 }
748
749 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
750 if (data->m == NULL) {
751 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
752 error = ENOMEM;
753 goto fail;
754 }
755
756 MCLGET(data->m, M_DONTWAIT);
757 if (!(data->m->m_flags & M_EXT)) {
758 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
759 error = ENOMEM;
760 goto fail;
761 }
762
763 error = bus_dmamap_load(sc->sc_dmat, data->map,
764 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
765 if (error != 0) {
766 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
767 goto fail;
768 }
769
770 desc->flags = htole32(RT2560_RX_BUSY);
771 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
772 }
773
774 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
775 BUS_DMASYNC_PREWRITE);
776
777 return 0;
778
779 fail: rt2560_free_rx_ring(sc, ring);
780 return error;
781 }
782
783 void
784 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
785 {
786 int i;
787
788 for (i = 0; i < ring->count; i++) {
789 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
790 ring->data[i].drop = 0;
791 }
792
793 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
794 BUS_DMASYNC_PREWRITE);
795
796 ring->cur = ring->next = 0;
797 ring->cur_decrypt = 0;
798 }
799
800 void
801 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
802 {
803 struct rt2560_rx_data *data;
804 int i;
805
806 if (ring->desc != NULL) {
807 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
808 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
809 bus_dmamap_unload(sc->sc_dmat, ring->map);
810 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
811 ring->count * RT2560_RX_DESC_SIZE);
812 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
813 }
814
815 if (ring->data != NULL) {
816 for (i = 0; i < ring->count; i++) {
817 data = &ring->data[i];
818
819 if (data->m != NULL) {
820 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
821 data->map->dm_mapsize,
822 BUS_DMASYNC_POSTREAD);
823 bus_dmamap_unload(sc->sc_dmat, data->map);
824 m_freem(data->m);
825 }
826
827 if (data->map != NULL)
828 bus_dmamap_destroy(sc->sc_dmat, data->map);
829 }
830 free(ring->data, M_DEVBUF);
831 }
832 }
833
834 struct ieee80211_node *
835 rt2560_node_alloc(struct ieee80211_node_table *nt)
836 {
837 struct rt2560_node *rn;
838
839 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
840 M_NOWAIT | M_ZERO);
841
842 return (rn != NULL) ? &rn->ni : NULL;
843 }
844
845 int
846 rt2560_media_change(struct ifnet *ifp)
847 {
848 int error;
849
850 error = ieee80211_media_change(ifp);
851 if (error != ENETRESET)
852 return error;
853
854 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
855 rt2560_init(ifp);
856
857 return 0;
858 }
859
860 /*
861 * This function is called periodically (every 200ms) during scanning to
862 * switch from one channel to another.
863 */
864 void
865 rt2560_next_scan(void *arg)
866 {
867 struct rt2560_softc *sc = arg;
868 struct ieee80211com *ic = &sc->sc_ic;
869 int s;
870
871 s = splnet();
872 if (ic->ic_state == IEEE80211_S_SCAN)
873 ieee80211_next_scan(ic);
874 splx(s);
875 }
876
877 /*
878 * This function is called for each neighbor node.
879 */
880 void
881 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
882 {
883 struct rt2560_node *rn = (struct rt2560_node *)ni;
884
885 ieee80211_rssadapt_updatestats(&rn->rssadapt);
886 }
887
888 /*
889 * This function is called periodically (every 100ms) in RUN state to update
890 * the rate adaptation statistics.
891 */
892 void
893 rt2560_update_rssadapt(void *arg)
894 {
895 struct rt2560_softc *sc = arg;
896 struct ieee80211com *ic = &sc->sc_ic;
897 int s;
898
899 s = splnet();
900 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
901
902 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
903 splx(s);
904 }
905
906 int
907 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
908 {
909 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
910 enum ieee80211_state ostate;
911 struct ieee80211_node *ni;
912 struct mbuf *m;
913 int error = 0;
914
915 ostate = ic->ic_state;
916 callout_stop(&sc->scan_ch);
917
918 switch (nstate) {
919 case IEEE80211_S_INIT:
920 callout_stop(&sc->rssadapt_ch);
921
922 if (ostate == IEEE80211_S_RUN) {
923 /* abort TSF synchronization */
924 RAL_WRITE(sc, RT2560_CSR14, 0);
925
926 /* turn association led off */
927 rt2560_update_led(sc, 0, 0);
928 }
929 break;
930
931 case IEEE80211_S_SCAN:
932 rt2560_set_chan(sc, ic->ic_curchan);
933 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
934 rt2560_next_scan, sc);
935 break;
936
937 case IEEE80211_S_AUTH:
938 rt2560_set_chan(sc, ic->ic_curchan);
939 break;
940
941 case IEEE80211_S_ASSOC:
942 rt2560_set_chan(sc, ic->ic_curchan);
943 break;
944
945 case IEEE80211_S_RUN:
946 rt2560_set_chan(sc, ic->ic_curchan);
947
948 ni = ic->ic_bss;
949
950 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
951 rt2560_update_plcp(sc);
952 rt2560_set_basicrates(sc);
953 rt2560_set_bssid(sc, ni->ni_bssid);
954 }
955
956 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
957 ic->ic_opmode == IEEE80211_M_IBSS) {
958 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
959 if (m == NULL) {
960 aprint_error_dev(sc->sc_dev, "could not allocate beacon\n");
961 error = ENOBUFS;
962 break;
963 }
964
965 ieee80211_ref_node(ni);
966 error = rt2560_tx_bcn(sc, m, ni);
967 if (error != 0)
968 break;
969 }
970
971 /* turn association led on */
972 rt2560_update_led(sc, 1, 0);
973
974 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
975 callout_reset(&sc->rssadapt_ch, hz / 10,
976 rt2560_update_rssadapt, sc);
977 rt2560_enable_tsf_sync(sc);
978 }
979 break;
980 }
981
982 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
983 }
984
985 /*
986 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
987 * 93C66).
988 */
989 uint16_t
990 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
991 {
992 uint32_t tmp;
993 uint16_t val;
994 int n;
995
996 /* clock C once before the first command */
997 RT2560_EEPROM_CTL(sc, 0);
998
999 RT2560_EEPROM_CTL(sc, RT2560_S);
1000 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1001 RT2560_EEPROM_CTL(sc, RT2560_S);
1002
1003 /* write start bit (1) */
1004 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1005 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1006
1007 /* write READ opcode (10) */
1008 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1009 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1010 RT2560_EEPROM_CTL(sc, RT2560_S);
1011 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1012
1013 /* write address (A5-A0 or A7-A0) */
1014 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1015 for (; n >= 0; n--) {
1016 RT2560_EEPROM_CTL(sc, RT2560_S |
1017 (((addr >> n) & 1) << RT2560_SHIFT_D));
1018 RT2560_EEPROM_CTL(sc, RT2560_S |
1019 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1020 }
1021
1022 RT2560_EEPROM_CTL(sc, RT2560_S);
1023
1024 /* read data Q15-Q0 */
1025 val = 0;
1026 for (n = 15; n >= 0; n--) {
1027 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1028 tmp = RAL_READ(sc, RT2560_CSR21);
1029 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1030 RT2560_EEPROM_CTL(sc, RT2560_S);
1031 }
1032
1033 RT2560_EEPROM_CTL(sc, 0);
1034
1035 /* clear Chip Select and clock C */
1036 RT2560_EEPROM_CTL(sc, RT2560_S);
1037 RT2560_EEPROM_CTL(sc, 0);
1038 RT2560_EEPROM_CTL(sc, RT2560_C);
1039
1040 return val;
1041 }
1042
1043 /*
1044 * Some frames were processed by the hardware cipher engine and are ready for
1045 * transmission.
1046 */
1047 void
1048 rt2560_encryption_intr(struct rt2560_softc *sc)
1049 {
1050 struct rt2560_tx_desc *desc;
1051 int hw;
1052
1053 /* retrieve last descriptor index processed by cipher engine */
1054 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1055 RT2560_TX_DESC_SIZE;
1056
1057 for (; sc->txq.next_encrypt != hw;) {
1058 desc = &sc->txq.desc[sc->txq.next_encrypt];
1059
1060 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1061 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1062 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1063
1064 if (le32toh(desc->flags) &
1065 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1066 break;
1067
1068 /* for TKIP, swap eiv field to fix a bug in ASIC */
1069 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1070 RT2560_TX_CIPHER_TKIP)
1071 desc->eiv = bswap32(desc->eiv);
1072
1073 /* mark the frame ready for transmission */
1074 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1075
1076 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1077 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1078 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1079
1080 DPRINTFN(15, ("encryption done idx=%u\n",
1081 sc->txq.next_encrypt));
1082
1083 sc->txq.next_encrypt =
1084 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1085 }
1086
1087 /* kick Tx */
1088 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1089 }
1090
1091 void
1092 rt2560_tx_intr(struct rt2560_softc *sc)
1093 {
1094 struct ieee80211com *ic = &sc->sc_ic;
1095 struct ifnet *ifp = ic->ic_ifp;
1096 struct rt2560_tx_desc *desc;
1097 struct rt2560_tx_data *data;
1098 struct rt2560_node *rn;
1099 int s;
1100
1101 s = splnet();
1102
1103 for (;;) {
1104 desc = &sc->txq.desc[sc->txq.next];
1105 data = &sc->txq.data[sc->txq.next];
1106
1107 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1108 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1109 BUS_DMASYNC_POSTREAD);
1110
1111 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1112 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1113 !(le32toh(desc->flags) & RT2560_TX_VALID))
1114 break;
1115
1116 rn = (struct rt2560_node *)data->ni;
1117
1118 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1119 case RT2560_TX_SUCCESS:
1120 DPRINTFN(10, ("data frame sent successfully\n"));
1121 if (data->id.id_node != NULL) {
1122 ieee80211_rssadapt_raise_rate(ic,
1123 &rn->rssadapt, &data->id);
1124 }
1125 ifp->if_opackets++;
1126 break;
1127
1128 case RT2560_TX_SUCCESS_RETRY:
1129 DPRINTFN(9, ("data frame sent after %u retries\n",
1130 (le32toh(desc->flags) >> 5) & 0x7));
1131 ifp->if_opackets++;
1132 break;
1133
1134 case RT2560_TX_FAIL_RETRY:
1135 DPRINTFN(9, ("sending data frame failed (too much "
1136 "retries)\n"));
1137 if (data->id.id_node != NULL) {
1138 ieee80211_rssadapt_lower_rate(ic, data->ni,
1139 &rn->rssadapt, &data->id);
1140 }
1141 ifp->if_oerrors++;
1142 break;
1143
1144 case RT2560_TX_FAIL_INVALID:
1145 case RT2560_TX_FAIL_OTHER:
1146 default:
1147 aprint_error_dev(sc->sc_dev,
1148 "sending data frame failed 0x%08x\n",
1149 le32toh(desc->flags));
1150 ifp->if_oerrors++;
1151 }
1152
1153 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1154 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1155 bus_dmamap_unload(sc->sc_dmat, data->map);
1156 m_freem(data->m);
1157 data->m = NULL;
1158 ieee80211_free_node(data->ni);
1159 data->ni = NULL;
1160
1161 /* descriptor is no longer valid */
1162 desc->flags &= ~htole32(RT2560_TX_VALID);
1163
1164 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1165 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1166 BUS_DMASYNC_PREWRITE);
1167
1168 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1169
1170 sc->txq.queued--;
1171 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1172 }
1173
1174 sc->sc_tx_timer = 0;
1175 ifp->if_flags &= ~IFF_OACTIVE;
1176 rt2560_start(ifp); /* in softint */
1177
1178 splx(s);
1179 }
1180
1181 void
1182 rt2560_prio_intr(struct rt2560_softc *sc)
1183 {
1184 struct ieee80211com *ic = &sc->sc_ic;
1185 struct ifnet *ifp = ic->ic_ifp;
1186 struct rt2560_tx_desc *desc;
1187 struct rt2560_tx_data *data;
1188 int s;
1189
1190 s = splnet();
1191
1192 for (;;) {
1193 desc = &sc->prioq.desc[sc->prioq.next];
1194 data = &sc->prioq.data[sc->prioq.next];
1195
1196 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1197 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1198 BUS_DMASYNC_POSTREAD);
1199
1200 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1201 !(le32toh(desc->flags) & RT2560_TX_VALID))
1202 break;
1203
1204 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1205 case RT2560_TX_SUCCESS:
1206 DPRINTFN(10, ("mgt frame sent successfully\n"));
1207 break;
1208
1209 case RT2560_TX_SUCCESS_RETRY:
1210 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1211 (le32toh(desc->flags) >> 5) & 0x7));
1212 break;
1213
1214 case RT2560_TX_FAIL_RETRY:
1215 DPRINTFN(9, ("sending mgt frame failed (too much "
1216 "retries)\n"));
1217 break;
1218
1219 case RT2560_TX_FAIL_INVALID:
1220 case RT2560_TX_FAIL_OTHER:
1221 default:
1222 aprint_error_dev(sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1223 le32toh(desc->flags));
1224 }
1225
1226 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1227 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1228 bus_dmamap_unload(sc->sc_dmat, data->map);
1229 m_freem(data->m);
1230 data->m = NULL;
1231 ieee80211_free_node(data->ni);
1232 data->ni = NULL;
1233
1234 /* descriptor is no longer valid */
1235 desc->flags &= ~htole32(RT2560_TX_VALID);
1236
1237 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1238 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1239 BUS_DMASYNC_PREWRITE);
1240
1241 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1242
1243 sc->prioq.queued--;
1244 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1245 }
1246
1247 sc->sc_tx_timer = 0;
1248 ifp->if_flags &= ~IFF_OACTIVE;
1249 rt2560_start(ifp); /* in softint */
1250
1251 splx(s);
1252 }
1253
1254 /*
1255 * Some frames were processed by the hardware cipher engine and are ready for
1256 * transmission to the IEEE802.11 layer.
1257 */
1258 void
1259 rt2560_decryption_intr(struct rt2560_softc *sc)
1260 {
1261 struct ieee80211com *ic = &sc->sc_ic;
1262 struct ifnet *ifp = ic->ic_ifp;
1263 struct rt2560_rx_desc *desc;
1264 struct rt2560_rx_data *data;
1265 struct rt2560_node *rn;
1266 struct ieee80211_frame *wh;
1267 struct ieee80211_node *ni;
1268 struct mbuf *mnew, *m;
1269 int hw, error, s;
1270
1271 /* retrieve last decriptor index processed by cipher engine */
1272 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1273 RT2560_RX_DESC_SIZE;
1274
1275 for (; sc->rxq.cur_decrypt != hw;) {
1276 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1277 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1278
1279 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1280 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1281 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1282
1283 if (le32toh(desc->flags) &
1284 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1285 break;
1286
1287 if (data->drop) {
1288 ifp->if_ierrors++;
1289 goto skip;
1290 }
1291
1292 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1293 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1294 ifp->if_ierrors++;
1295 goto skip;
1296 }
1297
1298 /*
1299 * Try to allocate a new mbuf for this ring element and load it
1300 * before processing the current mbuf. If the ring element
1301 * cannot be loaded, drop the received packet and reuse the old
1302 * mbuf. In the unlikely case that the old mbuf can't be
1303 * reloaded either, explicitly panic.
1304 */
1305 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1306 if (mnew == NULL) {
1307 ifp->if_ierrors++;
1308 goto skip;
1309 }
1310
1311 MCLGET(mnew, M_DONTWAIT);
1312 if (!(mnew->m_flags & M_EXT)) {
1313 m_freem(mnew);
1314 ifp->if_ierrors++;
1315 goto skip;
1316 }
1317
1318 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1319 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1320 bus_dmamap_unload(sc->sc_dmat, data->map);
1321
1322 error = bus_dmamap_load(sc->sc_dmat, data->map,
1323 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1324 if (error != 0) {
1325 m_freem(mnew);
1326
1327 /* try to reload the old mbuf */
1328 error = bus_dmamap_load(sc->sc_dmat, data->map,
1329 mtod(data->m, void *), MCLBYTES, NULL,
1330 BUS_DMA_NOWAIT);
1331 if (error != 0) {
1332 /* very unlikely that it will fail... */
1333 panic("%s: could not load old rx mbuf",
1334 device_xname(sc->sc_dev));
1335 }
1336 /* physical address may have changed */
1337 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1338 ifp->if_ierrors++;
1339 goto skip;
1340 }
1341
1342 /*
1343 * New mbuf successfully loaded, update Rx ring and continue
1344 * processing.
1345 */
1346 m = data->m;
1347 data->m = mnew;
1348 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1349
1350 /* finalize mbuf */
1351 m_set_rcvif(m, ifp);
1352 m->m_pkthdr.len = m->m_len =
1353 (le32toh(desc->flags) >> 16) & 0xfff;
1354
1355 s = splnet();
1356
1357 if (sc->sc_drvbpf != NULL) {
1358 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1359 uint32_t tsf_lo, tsf_hi;
1360
1361 /* get timestamp (low and high 32 bits) */
1362 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1363 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1364
1365 tap->wr_tsf =
1366 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1367 tap->wr_flags = 0;
1368 tap->wr_rate = rt2560_rxrate(desc);
1369 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1370 tap->wr_chan_flags =
1371 htole16(ic->ic_ibss_chan->ic_flags);
1372 tap->wr_antenna = sc->rx_ant;
1373 tap->wr_antsignal = desc->rssi;
1374
1375 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1376 }
1377
1378 wh = mtod(m, struct ieee80211_frame *);
1379 ni = ieee80211_find_rxnode(ic,
1380 (struct ieee80211_frame_min *)wh);
1381
1382 /* send the frame to the 802.11 layer */
1383 ieee80211_input(ic, m, ni, desc->rssi, 0);
1384
1385 /* give rssi to the rate adatation algorithm */
1386 rn = (struct rt2560_node *)ni;
1387 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1388
1389 /* node is no longer needed */
1390 ieee80211_free_node(ni);
1391
1392 splx(s);
1393
1394 skip: desc->flags = htole32(RT2560_RX_BUSY);
1395
1396 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1397 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1398 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1399
1400 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1401
1402 sc->rxq.cur_decrypt =
1403 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1404 }
1405
1406 /*
1407 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1408 * without calling if_start().
1409 */
1410 s = splnet();
1411 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1412 rt2560_start(ifp);
1413 splx(s);
1414 }
1415
1416 /*
1417 * Some frames were received. Pass them to the hardware cipher engine before
1418 * sending them to the 802.11 layer.
1419 */
1420 void
1421 rt2560_rx_intr(struct rt2560_softc *sc)
1422 {
1423 struct rt2560_rx_desc *desc;
1424 struct rt2560_rx_data *data;
1425
1426 for (;;) {
1427 desc = &sc->rxq.desc[sc->rxq.cur];
1428 data = &sc->rxq.data[sc->rxq.cur];
1429
1430 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1431 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1432 BUS_DMASYNC_POSTREAD);
1433
1434 if (le32toh(desc->flags) &
1435 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1436 break;
1437
1438 data->drop = 0;
1439
1440 if (le32toh(desc->flags) &
1441 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1442 /*
1443 * This should not happen since we did not request
1444 * to receive those frames when we filled RXCSR0.
1445 */
1446 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1447 le32toh(desc->flags)));
1448 data->drop = 1;
1449 }
1450
1451 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1452 DPRINTFN(5, ("bad length\n"));
1453 data->drop = 1;
1454 }
1455
1456 /* mark the frame for decryption */
1457 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1458
1459 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1460 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1461 BUS_DMASYNC_PREWRITE);
1462
1463 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1464
1465 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1466 }
1467
1468 /* kick decrypt */
1469 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1470 }
1471
1472 /*
1473 * This function is called periodically in IBSS mode when a new beacon must be
1474 * sent out.
1475 */
1476 static void
1477 rt2560_beacon_expire(struct rt2560_softc *sc)
1478 {
1479 struct ieee80211com *ic = &sc->sc_ic;
1480 struct rt2560_tx_data *data;
1481
1482 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1483 ic->ic_opmode != IEEE80211_M_HOSTAP)
1484 return;
1485
1486 data = &sc->bcnq.data[sc->bcnq.next];
1487
1488 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1489 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1490 bus_dmamap_unload(sc->sc_dmat, data->map);
1491
1492 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1493
1494 bpf_mtap3(ic->ic_rawbpf, data->m);
1495 rt2560_tx_bcn(sc, data->m, data->ni);
1496
1497 DPRINTFN(15, ("beacon expired\n"));
1498
1499 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1500 }
1501
1502 static void
1503 rt2560_wakeup_expire(struct rt2560_softc *sc)
1504 {
1505 DPRINTFN(15, ("wakeup expired\n"));
1506 }
1507
1508 int
1509 rt2560_intr(void *arg)
1510 {
1511 struct rt2560_softc *sc = arg;
1512 struct ifnet *ifp = &sc->sc_if;
1513 uint32_t r;
1514
1515 if (!device_is_active(sc->sc_dev))
1516 return 0;
1517
1518 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1519 return 0; /* not for us */
1520
1521 /* disable interrupts */
1522 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1523
1524 /* don't re-enable interrupts if we're shutting down */
1525 if (!(ifp->if_flags & IFF_RUNNING))
1526 return 0;
1527
1528 softint_schedule(sc->sc_soft_ih);
1529 return 1;
1530 }
1531
1532 static void
1533 rt2560_softintr(void *arg)
1534 {
1535 struct rt2560_softc *sc = arg;
1536 struct ifnet *ifp = &sc->sc_if;
1537 uint32_t r;
1538
1539 if (!device_is_active(sc->sc_dev) || !(ifp->if_flags & IFF_RUNNING))
1540 return;
1541
1542 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1543 goto out;
1544
1545 /* acknowledge interrupts */
1546 RAL_WRITE(sc, RT2560_CSR7, r);
1547
1548 if (r & RT2560_BEACON_EXPIRE)
1549 rt2560_beacon_expire(sc);
1550
1551 if (r & RT2560_WAKEUP_EXPIRE)
1552 rt2560_wakeup_expire(sc);
1553
1554 if (r & RT2560_ENCRYPTION_DONE)
1555 rt2560_encryption_intr(sc);
1556
1557 if (r & RT2560_TX_DONE)
1558 rt2560_tx_intr(sc);
1559
1560 if (r & RT2560_PRIO_DONE)
1561 rt2560_prio_intr(sc);
1562
1563 if (r & RT2560_DECRYPTION_DONE)
1564 rt2560_decryption_intr(sc);
1565
1566 if (r & RT2560_RX_DONE)
1567 rt2560_rx_intr(sc);
1568
1569 out:
1570 /* re-enable interrupts */
1571 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1572 }
1573
1574 /* quickly determine if a given rate is CCK or OFDM */
1575 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1576
1577 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1578 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1579
1580 #define RAL_SIFS 10 /* us */
1581
1582 #define RT2560_RXTX_TURNAROUND 10 /* us */
1583
1584 /*
1585 * This function is only used by the Rx radiotap code. It returns the rate at
1586 * which a given frame was received.
1587 */
1588 static uint8_t
1589 rt2560_rxrate(struct rt2560_rx_desc *desc)
1590 {
1591 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1592 /* reverse function of rt2560_plcp_signal */
1593 switch (desc->rate) {
1594 case 0xb: return 12;
1595 case 0xf: return 18;
1596 case 0xa: return 24;
1597 case 0xe: return 36;
1598 case 0x9: return 48;
1599 case 0xd: return 72;
1600 case 0x8: return 96;
1601 case 0xc: return 108;
1602 }
1603 } else {
1604 if (desc->rate == 10)
1605 return 2;
1606 if (desc->rate == 20)
1607 return 4;
1608 if (desc->rate == 55)
1609 return 11;
1610 if (desc->rate == 110)
1611 return 22;
1612 }
1613 return 2; /* should not get there */
1614 }
1615
1616 /*
1617 * Return the expected ack rate for a frame transmitted at rate `rate'.
1618 * XXX: this should depend on the destination node basic rate set.
1619 */
1620 static int
1621 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1622 {
1623 switch (rate) {
1624 /* CCK rates */
1625 case 2:
1626 return 2;
1627 case 4:
1628 case 11:
1629 case 22:
1630 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1631
1632 /* OFDM rates */
1633 case 12:
1634 case 18:
1635 return 12;
1636 case 24:
1637 case 36:
1638 return 24;
1639 case 48:
1640 case 72:
1641 case 96:
1642 case 108:
1643 return 48;
1644 }
1645
1646 /* default to 1Mbps */
1647 return 2;
1648 }
1649
1650 /*
1651 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1652 * The function automatically determines the operating mode depending on the
1653 * given rate. `flags' indicates whether short preamble is in use or not.
1654 */
1655 static uint16_t
1656 rt2560_txtime(int len, int rate, uint32_t flags)
1657 {
1658 uint16_t txtime;
1659
1660 if (RAL_RATE_IS_OFDM(rate)) {
1661 /* IEEE Std 802.11a-1999, pp. 37 */
1662 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1663 txtime = 16 + 4 + 4 * txtime + 6;
1664 } else {
1665 /* IEEE Std 802.11b-1999, pp. 28 */
1666 txtime = (16 * len + rate - 1) / rate;
1667 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1668 txtime += 72 + 24;
1669 else
1670 txtime += 144 + 48;
1671 }
1672 return txtime;
1673 }
1674
1675 static uint8_t
1676 rt2560_plcp_signal(int rate)
1677 {
1678 switch (rate) {
1679 /* CCK rates (returned values are device-dependent) */
1680 case 2: return 0x0;
1681 case 4: return 0x1;
1682 case 11: return 0x2;
1683 case 22: return 0x3;
1684
1685 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1686 case 12: return 0xb;
1687 case 18: return 0xf;
1688 case 24: return 0xa;
1689 case 36: return 0xe;
1690 case 48: return 0x9;
1691 case 72: return 0xd;
1692 case 96: return 0x8;
1693 case 108: return 0xc;
1694
1695 /* unsupported rates (should not get there) */
1696 default: return 0xff;
1697 }
1698 }
1699
1700 static void
1701 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1702 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1703 {
1704 struct ieee80211com *ic = &sc->sc_ic;
1705 uint16_t plcp_length;
1706 int remainder;
1707
1708 desc->flags = htole32(flags);
1709 desc->flags |= htole32(len << 16);
1710 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1711 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1712
1713 desc->physaddr = htole32(physaddr);
1714 desc->wme = htole16(
1715 RT2560_AIFSN(2) |
1716 RT2560_LOGCWMIN(3) |
1717 RT2560_LOGCWMAX(8));
1718
1719 /* setup PLCP fields */
1720 desc->plcp_signal = rt2560_plcp_signal(rate);
1721 desc->plcp_service = 4;
1722
1723 len += IEEE80211_CRC_LEN;
1724 if (RAL_RATE_IS_OFDM(rate)) {
1725 desc->flags |= htole32(RT2560_TX_OFDM);
1726
1727 plcp_length = len & 0xfff;
1728 desc->plcp_length_hi = plcp_length >> 6;
1729 desc->plcp_length_lo = plcp_length & 0x3f;
1730 } else {
1731 plcp_length = (16 * len + rate - 1) / rate;
1732 if (rate == 22) {
1733 remainder = (16 * len) % 22;
1734 if (remainder != 0 && remainder < 7)
1735 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1736 }
1737 desc->plcp_length_hi = plcp_length >> 8;
1738 desc->plcp_length_lo = plcp_length & 0xff;
1739
1740 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1741 desc->plcp_signal |= 0x08;
1742 }
1743 }
1744
1745 static int
1746 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1747 struct ieee80211_node *ni)
1748 {
1749 struct rt2560_tx_desc *desc;
1750 struct rt2560_tx_data *data;
1751 int rate, error;
1752
1753 desc = &sc->bcnq.desc[sc->bcnq.cur];
1754 data = &sc->bcnq.data[sc->bcnq.cur];
1755
1756 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1757
1758 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1759 BUS_DMA_NOWAIT);
1760 if (error != 0) {
1761 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1762 error);
1763 m_freem(m0);
1764 return error;
1765 }
1766
1767 data->m = m0;
1768 data->ni = ni;
1769
1770 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1771 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1772 data->map->dm_segs->ds_addr);
1773
1774 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1775 BUS_DMASYNC_PREWRITE);
1776 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1777 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1778 BUS_DMASYNC_PREWRITE);
1779
1780 return 0;
1781 }
1782
1783 static int
1784 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1785 struct ieee80211_node *ni)
1786 {
1787 struct ieee80211com *ic = &sc->sc_ic;
1788 struct rt2560_tx_desc *desc;
1789 struct rt2560_tx_data *data;
1790 struct ieee80211_frame *wh;
1791 struct ieee80211_key *k;
1792 uint16_t dur;
1793 uint32_t flags = 0;
1794 int rate, error;
1795
1796 desc = &sc->prioq.desc[sc->prioq.cur];
1797 data = &sc->prioq.data[sc->prioq.cur];
1798
1799 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1800
1801 wh = mtod(m0, struct ieee80211_frame *);
1802
1803 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1804 k = ieee80211_crypto_encap(ic, ni, m0);
1805 if (k == NULL) {
1806 m_freem(m0);
1807 return ENOBUFS;
1808 }
1809
1810 /* packet header may have moved, reset our local pointer */
1811 wh = mtod(m0, struct ieee80211_frame *);
1812 }
1813
1814 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1815 BUS_DMA_NOWAIT);
1816 if (error != 0) {
1817 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1818 error);
1819 m_freem(m0);
1820 return error;
1821 }
1822
1823 if (sc->sc_drvbpf != NULL) {
1824 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1825
1826 tap->wt_flags = 0;
1827 tap->wt_rate = rate;
1828 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1829 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1830 tap->wt_antenna = sc->tx_ant;
1831
1832 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1833 }
1834
1835 data->m = m0;
1836 data->ni = ni;
1837
1838 wh = mtod(m0, struct ieee80211_frame *);
1839
1840 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1841 flags |= RT2560_TX_ACK;
1842
1843 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1844 RAL_SIFS;
1845 *(uint16_t *)wh->i_dur = htole16(dur);
1846
1847 /* tell hardware to add timestamp for probe responses */
1848 if ((wh->i_fc[0] &
1849 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1850 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1851 flags |= RT2560_TX_TIMESTAMP;
1852 }
1853
1854 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1855 data->map->dm_segs->ds_addr);
1856
1857 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1858 BUS_DMASYNC_PREWRITE);
1859 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1860 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1861 BUS_DMASYNC_PREWRITE);
1862
1863 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1864 m0->m_pkthdr.len, sc->prioq.cur, rate));
1865
1866 /* kick prio */
1867 sc->prioq.queued++;
1868 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1869 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1870
1871 return 0;
1872 }
1873
1874 /*
1875 * Build a RTS control frame.
1876 */
1877 static struct mbuf *
1878 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1879 uint16_t dur)
1880 {
1881 struct ieee80211_frame_rts *rts;
1882 struct mbuf *m;
1883
1884 MGETHDR(m, M_DONTWAIT, MT_DATA);
1885 if (m == NULL) {
1886 sc->sc_ic.ic_stats.is_tx_nobuf++;
1887 aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1888 return NULL;
1889 }
1890
1891 rts = mtod(m, struct ieee80211_frame_rts *);
1892
1893 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1894 IEEE80211_FC0_SUBTYPE_RTS;
1895 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1896 *(uint16_t *)rts->i_dur = htole16(dur);
1897 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1898 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1899
1900 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1901
1902 return m;
1903 }
1904
1905 static int
1906 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1907 struct ieee80211_node *ni)
1908 {
1909 struct ieee80211com *ic = &sc->sc_ic;
1910 struct rt2560_tx_desc *desc;
1911 struct rt2560_tx_data *data;
1912 struct rt2560_node *rn;
1913 struct ieee80211_rateset *rs;
1914 struct ieee80211_frame *wh;
1915 struct ieee80211_key *k;
1916 struct mbuf *mnew;
1917 uint16_t dur;
1918 uint32_t flags = 0;
1919 int rate, error;
1920
1921 wh = mtod(m0, struct ieee80211_frame *);
1922
1923 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1924 rs = &ic->ic_sup_rates[ic->ic_curmode];
1925 rate = rs->rs_rates[ic->ic_fixed_rate];
1926 } else {
1927 rs = &ni->ni_rates;
1928 rn = (struct rt2560_node *)ni;
1929 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1930 wh, m0->m_pkthdr.len, -1, NULL, 0);
1931 rate = rs->rs_rates[ni->ni_txrate];
1932 }
1933 rate &= IEEE80211_RATE_VAL;
1934
1935 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1936 k = ieee80211_crypto_encap(ic, ni, m0);
1937 if (k == NULL) {
1938 m_freem(m0);
1939 return ENOBUFS;
1940 }
1941
1942 /* packet header may have moved, reset our local pointer */
1943 wh = mtod(m0, struct ieee80211_frame *);
1944 }
1945
1946 /*
1947 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1948 * for directed frames only when the length of the MPDU is greater
1949 * than the length threshold indicated by [...]" ic_rtsthreshold.
1950 */
1951 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1952 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1953 struct mbuf *m;
1954 int rtsrate, ackrate;
1955
1956 rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1957 ackrate = rt2560_ack_rate(ic, rate);
1958
1959 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1960 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1961 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1962 3 * RAL_SIFS;
1963
1964 m = rt2560_get_rts(sc, wh, dur);
1965
1966 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1967 data = &sc->txq.data[sc->txq.cur_encrypt];
1968
1969 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1970 BUS_DMA_NOWAIT);
1971 if (error != 0) {
1972 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1973 error);
1974 m_freem(m);
1975 m_freem(m0);
1976 return error;
1977 }
1978
1979 /* avoid multiple free() of the same node for each fragment */
1980 ieee80211_ref_node(ni);
1981
1982 data->m = m;
1983 data->ni = ni;
1984
1985 /* RTS frames are not taken into account for rssadapt */
1986 data->id.id_node = NULL;
1987
1988 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1989 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1990 data->map->dm_segs->ds_addr);
1991
1992 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1993 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1994 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1995 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1996 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1997
1998 sc->txq.queued++;
1999 sc->txq.cur_encrypt =
2000 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2001
2002 /*
2003 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
2004 * asynchronous data frame shall be transmitted after the CTS
2005 * frame and a SIFS period.
2006 */
2007 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
2008 }
2009
2010 data = &sc->txq.data[sc->txq.cur_encrypt];
2011 desc = &sc->txq.desc[sc->txq.cur_encrypt];
2012
2013 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2014 BUS_DMA_NOWAIT);
2015 if (error != 0 && error != EFBIG) {
2016 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2017 error);
2018 m_freem(m0);
2019 return error;
2020 }
2021 if (error != 0) {
2022 /* too many fragments, linearize */
2023
2024 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2025 if (mnew == NULL) {
2026 m_freem(m0);
2027 return ENOMEM;
2028 }
2029
2030 M_COPY_PKTHDR(mnew, m0);
2031 if (m0->m_pkthdr.len > MHLEN) {
2032 MCLGET(mnew, M_DONTWAIT);
2033 if (!(mnew->m_flags & M_EXT)) {
2034 m_freem(m0);
2035 m_freem(mnew);
2036 return ENOMEM;
2037 }
2038 }
2039
2040 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2041 m_freem(m0);
2042 mnew->m_len = mnew->m_pkthdr.len;
2043 m0 = mnew;
2044
2045 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2046 BUS_DMA_NOWAIT);
2047 if (error != 0) {
2048 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2049 error);
2050 m_freem(m0);
2051 return error;
2052 }
2053
2054 /* packet header have moved, reset our local pointer */
2055 wh = mtod(m0, struct ieee80211_frame *);
2056 }
2057
2058 if (sc->sc_drvbpf != NULL) {
2059 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2060
2061 tap->wt_flags = 0;
2062 tap->wt_rate = rate;
2063 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2064 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2065 tap->wt_antenna = sc->tx_ant;
2066
2067 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2068 }
2069
2070 data->m = m0;
2071 data->ni = ni;
2072
2073 /* remember link conditions for rate adaptation algorithm */
2074 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2075 data->id.id_len = m0->m_pkthdr.len;
2076 data->id.id_rateidx = ni->ni_txrate;
2077 data->id.id_node = ni;
2078 data->id.id_rssi = ni->ni_rssi;
2079 } else
2080 data->id.id_node = NULL;
2081
2082 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2083 flags |= RT2560_TX_ACK;
2084
2085 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2086 ic->ic_flags) + RAL_SIFS;
2087 *(uint16_t *)wh->i_dur = htole16(dur);
2088 }
2089
2090 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2091 data->map->dm_segs->ds_addr);
2092
2093 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2094 BUS_DMASYNC_PREWRITE);
2095 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2096 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2097 BUS_DMASYNC_PREWRITE);
2098
2099 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2100 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2101
2102 /* kick encrypt */
2103 sc->txq.queued++;
2104 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2105 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2106
2107 return 0;
2108 }
2109
2110 static void
2111 rt2560_start(struct ifnet *ifp)
2112 {
2113 struct rt2560_softc *sc = ifp->if_softc;
2114 struct ieee80211com *ic = &sc->sc_ic;
2115 struct mbuf *m0;
2116 struct ieee80211_node *ni;
2117 struct ether_header *eh;
2118
2119 /*
2120 * net80211 may still try to send management frames even if the
2121 * IFF_RUNNING flag is not set...
2122 */
2123 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2124 return;
2125
2126 for (;;) {
2127 IF_POLL(&ic->ic_mgtq, m0);
2128 if (m0 != NULL) {
2129 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2130 ifp->if_flags |= IFF_OACTIVE;
2131 break;
2132 }
2133 IF_DEQUEUE(&ic->ic_mgtq, m0);
2134 if (m0 == NULL)
2135 break;
2136
2137 ni = M_GETCTX(m0, struct ieee80211_node *);
2138 M_CLEARCTX(m0);
2139 bpf_mtap3(ic->ic_rawbpf, m0);
2140 if (rt2560_tx_mgt(sc, m0, ni) != 0)
2141 break;
2142
2143 } else {
2144 if (ic->ic_state != IEEE80211_S_RUN)
2145 break;
2146 IFQ_DEQUEUE(&ifp->if_snd, m0);
2147 if (m0 == NULL)
2148 break;
2149 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2150 ifp->if_flags |= IFF_OACTIVE;
2151 break;
2152 }
2153
2154 if (m0->m_len < sizeof (struct ether_header) &&
2155 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2156 continue;
2157
2158 eh = mtod(m0, struct ether_header *);
2159 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2160 if (ni == NULL) {
2161 m_freem(m0);
2162 continue;
2163 }
2164 bpf_mtap(ifp, m0);
2165
2166 m0 = ieee80211_encap(ic, m0, ni);
2167 if (m0 == NULL) {
2168 ieee80211_free_node(ni);
2169 continue;
2170 }
2171
2172 bpf_mtap3(ic->ic_rawbpf, m0);
2173
2174 if (rt2560_tx_data(sc, m0, ni) != 0) {
2175 ieee80211_free_node(ni);
2176 ifp->if_oerrors++;
2177 break;
2178 }
2179 }
2180
2181 sc->sc_tx_timer = 5;
2182 ifp->if_timer = 1;
2183 }
2184 }
2185
2186 static void
2187 rt2560_watchdog(struct ifnet *ifp)
2188 {
2189 struct rt2560_softc *sc = ifp->if_softc;
2190
2191 ifp->if_timer = 0;
2192
2193 if (sc->sc_tx_timer > 0) {
2194 if (--sc->sc_tx_timer == 0) {
2195 aprint_error_dev(sc->sc_dev, "device timeout\n");
2196 rt2560_init(ifp);
2197 ifp->if_oerrors++;
2198 return;
2199 }
2200 ifp->if_timer = 1;
2201 }
2202
2203 ieee80211_watchdog(&sc->sc_ic);
2204 }
2205
2206 /*
2207 * This function allows for fast channel switching in monitor mode (used by
2208 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2209 * generate a new beacon frame.
2210 */
2211 static int
2212 rt2560_reset(struct ifnet *ifp)
2213 {
2214 struct rt2560_softc *sc = ifp->if_softc;
2215 struct ieee80211com *ic = &sc->sc_ic;
2216
2217 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2218 return ENETRESET;
2219
2220 rt2560_set_chan(sc, ic->ic_curchan);
2221
2222 return 0;
2223 }
2224
2225 int
2226 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2227 {
2228 struct rt2560_softc *sc = ifp->if_softc;
2229 struct ieee80211com *ic = &sc->sc_ic;
2230 int s, error = 0;
2231
2232 s = splnet();
2233
2234 switch (cmd) {
2235 case SIOCSIFFLAGS:
2236 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2237 break;
2238 if (ifp->if_flags & IFF_UP) {
2239 if (ifp->if_flags & IFF_RUNNING)
2240 rt2560_update_promisc(sc);
2241 else
2242 rt2560_init(ifp);
2243 } else {
2244 if (ifp->if_flags & IFF_RUNNING)
2245 rt2560_stop(ifp, 1);
2246 }
2247 break;
2248
2249 case SIOCADDMULTI:
2250 case SIOCDELMULTI:
2251 /* XXX no h/w multicast filter? --dyoung */
2252 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2253 error = 0;
2254 break;
2255
2256 case SIOCS80211CHANNEL:
2257 /*
2258 * This allows for fast channel switching in monitor mode
2259 * (used by kismet). In IBSS mode, we must explicitly reset
2260 * the interface to generate a new beacon frame.
2261 */
2262 error = ieee80211_ioctl(ic, cmd, data);
2263 if (error == ENETRESET &&
2264 ic->ic_opmode == IEEE80211_M_MONITOR) {
2265 rt2560_set_chan(sc, ic->ic_ibss_chan);
2266 error = 0;
2267 }
2268 break;
2269
2270 default:
2271 error = ieee80211_ioctl(ic, cmd, data);
2272 }
2273
2274 if (error == ENETRESET) {
2275 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2276 (IFF_UP | IFF_RUNNING))
2277 rt2560_init(ifp);
2278 error = 0;
2279 }
2280
2281 splx(s);
2282
2283 return error;
2284 }
2285
2286 static void
2287 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2288 {
2289 uint32_t tmp;
2290 int ntries;
2291
2292 for (ntries = 0; ntries < 100; ntries++) {
2293 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2294 break;
2295 DELAY(1);
2296 }
2297 if (ntries == 100) {
2298 aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2299 return;
2300 }
2301
2302 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2303 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2304
2305 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2306 }
2307
2308 static uint8_t
2309 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2310 {
2311 uint32_t val;
2312 int ntries;
2313
2314 val = RT2560_BBP_BUSY | reg << 8;
2315 RAL_WRITE(sc, RT2560_BBPCSR, val);
2316
2317 for (ntries = 0; ntries < 100; ntries++) {
2318 val = RAL_READ(sc, RT2560_BBPCSR);
2319 if (!(val & RT2560_BBP_BUSY))
2320 return val & 0xff;
2321 DELAY(1);
2322 }
2323
2324 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2325 return 0;
2326 }
2327
2328 static void
2329 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2330 {
2331 uint32_t tmp;
2332 int ntries;
2333
2334 for (ntries = 0; ntries < 100; ntries++) {
2335 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2336 break;
2337 DELAY(1);
2338 }
2339 if (ntries == 100) {
2340 aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2341 return;
2342 }
2343
2344 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2345 (reg & 0x3);
2346 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2347
2348 /* remember last written value in sc */
2349 sc->rf_regs[reg] = val;
2350
2351 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2352 }
2353
2354 static void
2355 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2356 {
2357 struct ieee80211com *ic = &sc->sc_ic;
2358 uint8_t power, tmp;
2359 u_int i, chan;
2360
2361 chan = ieee80211_chan2ieee(ic, c);
2362 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2363 return;
2364
2365 if (IEEE80211_IS_CHAN_2GHZ(c))
2366 power = min(sc->txpow[chan - 1], 31);
2367 else
2368 power = 31;
2369
2370 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2371
2372 switch (sc->rf_rev) {
2373 case RT2560_RF_2522:
2374 rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2375 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2376 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2377 break;
2378
2379 case RT2560_RF_2523:
2380 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2381 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2382 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2383 rt2560_rf_write(sc, RT2560_RF4,
2384 (chan == 14) ? 0x00280 : 0x00286);
2385 break;
2386
2387 case RT2560_RF_2524:
2388 rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2389 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2390 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2391 rt2560_rf_write(sc, RT2560_RF4,
2392 (chan == 14) ? 0x00280 : 0x00286);
2393 break;
2394
2395 case RT2560_RF_2525:
2396 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2397 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2398 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2399 rt2560_rf_write(sc, RT2560_RF4,
2400 (chan == 14) ? 0x00280 : 0x00286);
2401
2402 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2403 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2404 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2405 rt2560_rf_write(sc, RT2560_RF4,
2406 (chan == 14) ? 0x00280 : 0x00286);
2407 break;
2408
2409 case RT2560_RF_2525E:
2410 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2411 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2412 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2413 rt2560_rf_write(sc, RT2560_RF4,
2414 (chan == 14) ? 0x00286 : 0x00282);
2415 break;
2416
2417 case RT2560_RF_2526:
2418 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2419 rt2560_rf_write(sc, RT2560_RF4,
2420 (chan & 1) ? 0x00386 : 0x00381);
2421 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2422
2423 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2424 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2425 rt2560_rf_write(sc, RT2560_RF4,
2426 (chan & 1) ? 0x00386 : 0x00381);
2427 break;
2428
2429 /* dual-band RF */
2430 case RT2560_RF_5222:
2431 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2432
2433 rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2434 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2435 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2436 rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2437 break;
2438 }
2439
2440 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2441 ic->ic_state != IEEE80211_S_SCAN) {
2442 /* set Japan filter bit for channel 14 */
2443 tmp = rt2560_bbp_read(sc, 70);
2444
2445 tmp &= ~RT2560_JAPAN_FILTER;
2446 if (chan == 14)
2447 tmp |= RT2560_JAPAN_FILTER;
2448
2449 rt2560_bbp_write(sc, 70, tmp);
2450
2451 DELAY(1000); /* RF needs a 1ms delay here */
2452 rt2560_disable_rf_tune(sc);
2453
2454 /* clear CRC errors */
2455 RAL_READ(sc, RT2560_CNT0);
2456 }
2457 }
2458
2459 /*
2460 * Disable RF auto-tuning.
2461 */
2462 static void
2463 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2464 {
2465 uint32_t tmp;
2466
2467 if (sc->rf_rev != RT2560_RF_2523) {
2468 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2469 rt2560_rf_write(sc, RT2560_RF1, tmp);
2470 }
2471
2472 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2473 rt2560_rf_write(sc, RT2560_RF3, tmp);
2474
2475 DPRINTFN(2, ("disabling RF autotune\n"));
2476 }
2477
2478 /*
2479 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2480 * synchronization.
2481 */
2482 static void
2483 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2484 {
2485 struct ieee80211com *ic = &sc->sc_ic;
2486 uint16_t logcwmin, preload;
2487 uint32_t tmp;
2488
2489 /* first, disable TSF synchronization */
2490 RAL_WRITE(sc, RT2560_CSR14, 0);
2491
2492 tmp = 16 * ic->ic_bss->ni_intval;
2493 RAL_WRITE(sc, RT2560_CSR12, tmp);
2494
2495 RAL_WRITE(sc, RT2560_CSR13, 0);
2496
2497 logcwmin = 5;
2498 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2499 tmp = logcwmin << 16 | preload;
2500 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2501
2502 /* finally, enable TSF synchronization */
2503 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2504 if (ic->ic_opmode == IEEE80211_M_STA)
2505 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2506 else
2507 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2508 RT2560_ENABLE_BEACON_GENERATOR;
2509 RAL_WRITE(sc, RT2560_CSR14, tmp);
2510
2511 DPRINTF(("enabling TSF synchronization\n"));
2512 }
2513
2514 static void
2515 rt2560_update_plcp(struct rt2560_softc *sc)
2516 {
2517 struct ieee80211com *ic = &sc->sc_ic;
2518
2519 /* no short preamble for 1Mbps */
2520 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2521
2522 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2523 /* values taken from the reference driver */
2524 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2525 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2526 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2527 } else {
2528 /* same values as above or'ed 0x8 */
2529 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2530 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2531 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2532 }
2533
2534 DPRINTF(("updating PLCP for %s preamble\n",
2535 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2536 }
2537
2538 /*
2539 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2540 * know how these values are computed.
2541 */
2542 static void
2543 rt2560_update_slot(struct ifnet *ifp)
2544 {
2545 struct rt2560_softc *sc = ifp->if_softc;
2546 struct ieee80211com *ic = &sc->sc_ic;
2547 uint8_t slottime;
2548 uint16_t sifs, pifs, difs, eifs;
2549 uint32_t tmp;
2550
2551 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2552
2553 /* define the MAC slot boundaries */
2554 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2555 pifs = sifs + slottime;
2556 difs = sifs + 2 * slottime;
2557 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2558
2559 tmp = RAL_READ(sc, RT2560_CSR11);
2560 tmp = (tmp & ~0x1f00) | slottime << 8;
2561 RAL_WRITE(sc, RT2560_CSR11, tmp);
2562
2563 tmp = pifs << 16 | sifs;
2564 RAL_WRITE(sc, RT2560_CSR18, tmp);
2565
2566 tmp = eifs << 16 | difs;
2567 RAL_WRITE(sc, RT2560_CSR19, tmp);
2568
2569 DPRINTF(("setting slottime to %uus\n", slottime));
2570 }
2571
2572 static void
2573 rt2560_set_basicrates(struct rt2560_softc *sc)
2574 {
2575 struct ieee80211com *ic = &sc->sc_ic;
2576
2577 /* update basic rate set */
2578 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2579 /* 11b basic rates: 1, 2Mbps */
2580 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2581 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2582 /* 11a basic rates: 6, 12, 24Mbps */
2583 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2584 } else {
2585 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2586 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2587 }
2588 }
2589
2590 static void
2591 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2592 {
2593 uint32_t tmp;
2594
2595 /* set ON period to 70ms and OFF period to 30ms */
2596 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2597 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2598 }
2599
2600 static void
2601 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2602 {
2603 uint32_t tmp;
2604
2605 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2606 RAL_WRITE(sc, RT2560_CSR5, tmp);
2607
2608 tmp = bssid[4] | bssid[5] << 8;
2609 RAL_WRITE(sc, RT2560_CSR6, tmp);
2610
2611 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2612 }
2613
2614 static void
2615 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2616 {
2617 uint32_t tmp;
2618
2619 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2620 RAL_WRITE(sc, RT2560_CSR3, tmp);
2621
2622 tmp = addr[4] | addr[5] << 8;
2623 RAL_WRITE(sc, RT2560_CSR4, tmp);
2624
2625 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2626 }
2627
2628 static void
2629 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2630 {
2631 uint32_t tmp;
2632
2633 tmp = RAL_READ(sc, RT2560_CSR3);
2634 addr[0] = tmp & 0xff;
2635 addr[1] = (tmp >> 8) & 0xff;
2636 addr[2] = (tmp >> 16) & 0xff;
2637 addr[3] = (tmp >> 24);
2638
2639 tmp = RAL_READ(sc, RT2560_CSR4);
2640 addr[4] = tmp & 0xff;
2641 addr[5] = (tmp >> 8) & 0xff;
2642 }
2643
2644 static void
2645 rt2560_update_promisc(struct rt2560_softc *sc)
2646 {
2647 struct ifnet *ifp = &sc->sc_if;
2648 uint32_t tmp;
2649
2650 tmp = RAL_READ(sc, RT2560_RXCSR0);
2651
2652 tmp &= ~RT2560_DROP_NOT_TO_ME;
2653 if (!(ifp->if_flags & IFF_PROMISC))
2654 tmp |= RT2560_DROP_NOT_TO_ME;
2655
2656 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2657
2658 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2659 "entering" : "leaving"));
2660 }
2661
2662 static void
2663 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2664 {
2665 uint32_t tmp;
2666 uint8_t tx;
2667
2668 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2669 if (antenna == 1)
2670 tx |= RT2560_BBP_ANTA;
2671 else if (antenna == 2)
2672 tx |= RT2560_BBP_ANTB;
2673 else
2674 tx |= RT2560_BBP_DIVERSITY;
2675
2676 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2677 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2678 sc->rf_rev == RT2560_RF_5222)
2679 tx |= RT2560_BBP_FLIPIQ;
2680
2681 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2682
2683 /* update values for CCK and OFDM in BBPCSR1 */
2684 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2685 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2686 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2687 }
2688
2689 static void
2690 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2691 {
2692 uint8_t rx;
2693
2694 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2695 if (antenna == 1)
2696 rx |= RT2560_BBP_ANTA;
2697 else if (antenna == 2)
2698 rx |= RT2560_BBP_ANTB;
2699 else
2700 rx |= RT2560_BBP_DIVERSITY;
2701
2702 /* need to force no I/Q flip for RF 2525e and 2526 */
2703 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2704 rx &= ~RT2560_BBP_FLIPIQ;
2705
2706 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2707 }
2708
2709 static const char *
2710 rt2560_get_rf(int rev)
2711 {
2712 switch (rev) {
2713 case RT2560_RF_2522: return "RT2522";
2714 case RT2560_RF_2523: return "RT2523";
2715 case RT2560_RF_2524: return "RT2524";
2716 case RT2560_RF_2525: return "RT2525";
2717 case RT2560_RF_2525E: return "RT2525e";
2718 case RT2560_RF_2526: return "RT2526";
2719 case RT2560_RF_5222: return "RT5222";
2720 default: return "unknown";
2721 }
2722 }
2723
2724 static void
2725 rt2560_read_eeprom(struct rt2560_softc *sc)
2726 {
2727 uint16_t val;
2728 int i;
2729
2730 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2731 sc->rf_rev = (val >> 11) & 0x1f;
2732 sc->hw_radio = (val >> 10) & 0x1;
2733 sc->led_mode = (val >> 6) & 0x7;
2734 sc->rx_ant = (val >> 4) & 0x3;
2735 sc->tx_ant = (val >> 2) & 0x3;
2736 sc->nb_ant = val & 0x3;
2737
2738 /* read default values for BBP registers */
2739 for (i = 0; i < 16; i++) {
2740 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2741 sc->bbp_prom[i].reg = val >> 8;
2742 sc->bbp_prom[i].val = val & 0xff;
2743 }
2744
2745 /* read Tx power for all b/g channels */
2746 for (i = 0; i < 14 / 2; i++) {
2747 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2748 sc->txpow[i * 2] = val >> 8;
2749 sc->txpow[i * 2 + 1] = val & 0xff;
2750 }
2751 }
2752
2753 static int
2754 rt2560_bbp_init(struct rt2560_softc *sc)
2755 {
2756 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2757 int i, ntries;
2758
2759 /* wait for BBP to be ready */
2760 for (ntries = 0; ntries < 100; ntries++) {
2761 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2762 break;
2763 DELAY(1);
2764 }
2765 if (ntries == 100) {
2766 aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2767 return EIO;
2768 }
2769
2770 /* initialize BBP registers to default values */
2771 for (i = 0; i < N(rt2560_def_bbp); i++) {
2772 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2773 rt2560_def_bbp[i].val);
2774 }
2775 #if 0
2776 /* initialize BBP registers to values stored in EEPROM */
2777 for (i = 0; i < 16; i++) {
2778 if (sc->bbp_prom[i].reg == 0xff)
2779 continue;
2780 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2781 }
2782 #endif
2783
2784 return 0;
2785 #undef N
2786 }
2787
2788 static int
2789 rt2560_init(struct ifnet *ifp)
2790 {
2791 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2792 struct rt2560_softc *sc = ifp->if_softc;
2793 struct ieee80211com *ic = &sc->sc_ic;
2794 uint32_t tmp;
2795 int i;
2796
2797 /* for CardBus, power on the socket */
2798 if (!(sc->sc_flags & RT2560_ENABLED)) {
2799 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2800 aprint_error_dev(sc->sc_dev, "could not enable device\n");
2801 return EIO;
2802 }
2803 sc->sc_flags |= RT2560_ENABLED;
2804 }
2805
2806 rt2560_stop(ifp, 1);
2807
2808 /* setup tx rings */
2809 tmp = RT2560_PRIO_RING_COUNT << 24 |
2810 RT2560_ATIM_RING_COUNT << 16 |
2811 RT2560_TX_RING_COUNT << 8 |
2812 RT2560_TX_DESC_SIZE;
2813
2814 /* rings _must_ be initialized in this _exact_ order! */
2815 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2816 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2817 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2818 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2819 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2820
2821 /* setup rx ring */
2822 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2823
2824 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2825 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2826
2827 /* initialize MAC registers to default values */
2828 for (i = 0; i < N(rt2560_def_mac); i++)
2829 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2830
2831 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2832 rt2560_set_macaddr(sc, ic->ic_myaddr);
2833
2834 /* set basic rate set (will be updated later) */
2835 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2836
2837 rt2560_update_slot(ifp);
2838 rt2560_update_plcp(sc);
2839 rt2560_update_led(sc, 0, 0);
2840
2841 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2842 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2843
2844 if (rt2560_bbp_init(sc) != 0) {
2845 rt2560_stop(ifp, 1);
2846 return EIO;
2847 }
2848
2849 rt2560_set_txantenna(sc, 1);
2850 rt2560_set_rxantenna(sc, 1);
2851
2852 /* set default BSS channel */
2853 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2854 rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2855
2856 /* kick Rx */
2857 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2858 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2859 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2860 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2861 tmp |= RT2560_DROP_TODS;
2862 if (!(ifp->if_flags & IFF_PROMISC))
2863 tmp |= RT2560_DROP_NOT_TO_ME;
2864 }
2865 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2866
2867 /* clear old FCS and Rx FIFO errors */
2868 RAL_READ(sc, RT2560_CNT0);
2869 RAL_READ(sc, RT2560_CNT4);
2870
2871 /* clear any pending interrupts */
2872 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2873
2874 /* enable interrupts */
2875 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2876
2877 ifp->if_flags &= ~IFF_OACTIVE;
2878 ifp->if_flags |= IFF_RUNNING;
2879
2880 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2881 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2882 else
2883 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2884
2885 return 0;
2886 #undef N
2887 }
2888
2889 static void
2890 rt2560_stop(struct ifnet *ifp, int disable)
2891 {
2892 struct rt2560_softc *sc = ifp->if_softc;
2893 struct ieee80211com *ic = &sc->sc_ic;
2894
2895 sc->sc_tx_timer = 0;
2896 ifp->if_timer = 0;
2897 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2898
2899 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2900
2901 /* abort Tx */
2902 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2903
2904 /* disable Rx */
2905 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2906
2907 /* reset ASIC (and thus, BBP) */
2908 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2909 RAL_WRITE(sc, RT2560_CSR1, 0);
2910
2911 /* disable interrupts */
2912 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2913
2914 /* clear any pending interrupt */
2915 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2916
2917 /* reset Tx and Rx rings */
2918 rt2560_reset_tx_ring(sc, &sc->txq);
2919 rt2560_reset_tx_ring(sc, &sc->atimq);
2920 rt2560_reset_tx_ring(sc, &sc->prioq);
2921 rt2560_reset_tx_ring(sc, &sc->bcnq);
2922 rt2560_reset_rx_ring(sc, &sc->rxq);
2923 }
2924