rt2560.c revision 1.32.2.1 1 /* $NetBSD: rt2560.c,v 1.32.2.1 2018/05/02 07:20:06 pgoyette Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4
5 /*-
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
25 */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.32.2.1 2018/05/02 07:20:06 pgoyette Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_rssadapt.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/ic/rt2560reg.h>
63 #include <dev/ic/rt2560var.h>
64
65 #ifdef RAL_DEBUG
66 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
68 int rt2560_debug = 0;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n, x)
72 #endif
73
74 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
75 struct rt2560_tx_ring *, int);
76 static void rt2560_reset_tx_ring(struct rt2560_softc *,
77 struct rt2560_tx_ring *);
78 static void rt2560_free_tx_ring(struct rt2560_softc *,
79 struct rt2560_tx_ring *);
80 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
81 struct rt2560_rx_ring *, int);
82 static void rt2560_reset_rx_ring(struct rt2560_softc *,
83 struct rt2560_rx_ring *);
84 static void rt2560_free_rx_ring(struct rt2560_softc *,
85 struct rt2560_rx_ring *);
86 static struct ieee80211_node *
87 rt2560_node_alloc(struct ieee80211_node_table *);
88 static int rt2560_media_change(struct ifnet *);
89 static void rt2560_next_scan(void *);
90 static void rt2560_iter_func(void *, struct ieee80211_node *);
91 static void rt2560_update_rssadapt(void *);
92 static int rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
93 int);
94 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
95 static void rt2560_encryption_intr(struct rt2560_softc *);
96 static void rt2560_tx_intr(struct rt2560_softc *);
97 static void rt2560_prio_intr(struct rt2560_softc *);
98 static void rt2560_decryption_intr(struct rt2560_softc *);
99 static void rt2560_rx_intr(struct rt2560_softc *);
100 static void rt2560_beacon_expire(struct rt2560_softc *);
101 static void rt2560_wakeup_expire(struct rt2560_softc *);
102 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
103 static int rt2560_ack_rate(struct ieee80211com *, int);
104 static uint16_t rt2560_txtime(int, int, uint32_t);
105 static uint8_t rt2560_plcp_signal(int);
106 static void rt2560_setup_tx_desc(struct rt2560_softc *,
107 struct rt2560_tx_desc *, uint32_t, int, int, int,
108 bus_addr_t);
109 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
110 struct ieee80211_node *);
111 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
112 struct ieee80211_node *);
113 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
114 struct ieee80211_frame *, uint16_t);
115 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
116 struct ieee80211_node *);
117 static void rt2560_start(struct ifnet *);
118 static void rt2560_watchdog(struct ifnet *);
119 static int rt2560_reset(struct ifnet *);
120 static int rt2560_ioctl(struct ifnet *, u_long, void *);
121 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
122 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
123 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
124 static void rt2560_set_chan(struct rt2560_softc *,
125 struct ieee80211_channel *);
126 static void rt2560_disable_rf_tune(struct rt2560_softc *);
127 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
128 static void rt2560_update_plcp(struct rt2560_softc *);
129 static void rt2560_update_slot(struct ifnet *);
130 static void rt2560_set_basicrates(struct rt2560_softc *);
131 static void rt2560_update_led(struct rt2560_softc *, int, int);
132 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
133 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
134 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
135 static void rt2560_update_promisc(struct rt2560_softc *);
136 static void rt2560_set_txantenna(struct rt2560_softc *, int);
137 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
138 static const char *rt2560_get_rf(int);
139 static void rt2560_read_eeprom(struct rt2560_softc *);
140 static int rt2560_bbp_init(struct rt2560_softc *);
141 static int rt2560_init(struct ifnet *);
142 static void rt2560_stop(struct ifnet *, int);
143 static void rt2560_softintr(void *);
144
145 /*
146 * Default values for MAC registers; values taken from the reference driver.
147 */
148 static const struct {
149 uint32_t reg;
150 uint32_t val;
151 } rt2560_def_mac[] = {
152 { RT2560_PSCSR0, 0x00020002 },
153 { RT2560_PSCSR1, 0x00000002 },
154 { RT2560_PSCSR2, 0x00020002 },
155 { RT2560_PSCSR3, 0x00000002 },
156 { RT2560_TIMECSR, 0x00003f21 },
157 { RT2560_CSR9, 0x00000780 },
158 { RT2560_CSR11, 0x07041483 },
159 { RT2560_CNT3, 0x00000000 },
160 { RT2560_TXCSR1, 0x07614562 },
161 { RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
162 { RT2560_ACKPCTCSR, 0x7038140a },
163 { RT2560_ARTCSR1, 0x1d21252d },
164 { RT2560_ARTCSR2, 0x1919191d },
165 { RT2560_RXCSR0, 0xffffffff },
166 { RT2560_RXCSR3, 0xb3aab3af },
167 { RT2560_PCICSR, 0x000003b8 },
168 { RT2560_PWRCSR0, 0x3f3b3100 },
169 { RT2560_GPIOCSR, 0x0000ff00 },
170 { RT2560_TESTCSR, 0x000000f0 },
171 { RT2560_PWRCSR1, 0x000001ff },
172 { RT2560_MACCSR0, 0x00213223 },
173 { RT2560_MACCSR1, 0x00235518 },
174 { RT2560_RLPWCSR, 0x00000040 },
175 { RT2560_RALINKCSR, 0x9a009a11 },
176 { RT2560_CSR7, 0xffffffff },
177 { RT2560_BBPCSR1, 0x82188200 },
178 { RT2560_TXACKCSR0, 0x00000020 },
179 { RT2560_SECCSR3, 0x0000e78f }
180 };
181
182 /*
183 * Default values for BBP registers; values taken from the reference driver.
184 */
185 static const struct {
186 uint8_t reg;
187 uint8_t val;
188 } rt2560_def_bbp[] = {
189 { 3, 0x02 },
190 { 4, 0x19 },
191 { 14, 0x1c },
192 { 15, 0x30 },
193 { 16, 0xac },
194 { 17, 0x48 },
195 { 18, 0x18 },
196 { 19, 0xff },
197 { 20, 0x1e },
198 { 21, 0x08 },
199 { 22, 0x08 },
200 { 23, 0x08 },
201 { 24, 0x80 },
202 { 25, 0x50 },
203 { 26, 0x08 },
204 { 27, 0x23 },
205 { 30, 0x10 },
206 { 31, 0x2b },
207 { 32, 0xb9 },
208 { 34, 0x12 },
209 { 35, 0x50 },
210 { 39, 0xc4 },
211 { 40, 0x02 },
212 { 41, 0x60 },
213 { 53, 0x10 },
214 { 54, 0x18 },
215 { 56, 0x08 },
216 { 57, 0x10 },
217 { 58, 0x08 },
218 { 61, 0x60 },
219 { 62, 0x10 },
220 { 75, 0xff }
221 };
222
223 /*
224 * Default values for RF register R2 indexed by channel numbers; values taken
225 * from the reference driver.
226 */
227 static const uint32_t rt2560_rf2522_r2[] = {
228 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
229 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
230 };
231
232 static const uint32_t rt2560_rf2523_r2[] = {
233 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
234 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
235 };
236
237 static const uint32_t rt2560_rf2524_r2[] = {
238 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
239 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
240 };
241
242 static const uint32_t rt2560_rf2525_r2[] = {
243 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
244 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
245 };
246
247 static const uint32_t rt2560_rf2525_hi_r2[] = {
248 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
249 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
250 };
251
252 static const uint32_t rt2560_rf2525e_r2[] = {
253 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
254 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
255 };
256
257 static const uint32_t rt2560_rf2526_hi_r2[] = {
258 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
259 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
260 };
261
262 static const uint32_t rt2560_rf2526_r2[] = {
263 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
264 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
265 };
266
267 /*
268 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
269 * values taken from the reference driver.
270 */
271 static const struct {
272 uint8_t chan;
273 uint32_t r1;
274 uint32_t r2;
275 uint32_t r4;
276 } rt2560_rf5222[] = {
277 { 1, 0x08808, 0x0044d, 0x00282 },
278 { 2, 0x08808, 0x0044e, 0x00282 },
279 { 3, 0x08808, 0x0044f, 0x00282 },
280 { 4, 0x08808, 0x00460, 0x00282 },
281 { 5, 0x08808, 0x00461, 0x00282 },
282 { 6, 0x08808, 0x00462, 0x00282 },
283 { 7, 0x08808, 0x00463, 0x00282 },
284 { 8, 0x08808, 0x00464, 0x00282 },
285 { 9, 0x08808, 0x00465, 0x00282 },
286 { 10, 0x08808, 0x00466, 0x00282 },
287 { 11, 0x08808, 0x00467, 0x00282 },
288 { 12, 0x08808, 0x00468, 0x00282 },
289 { 13, 0x08808, 0x00469, 0x00282 },
290 { 14, 0x08808, 0x0046b, 0x00286 },
291
292 { 36, 0x08804, 0x06225, 0x00287 },
293 { 40, 0x08804, 0x06226, 0x00287 },
294 { 44, 0x08804, 0x06227, 0x00287 },
295 { 48, 0x08804, 0x06228, 0x00287 },
296 { 52, 0x08804, 0x06229, 0x00287 },
297 { 56, 0x08804, 0x0622a, 0x00287 },
298 { 60, 0x08804, 0x0622b, 0x00287 },
299 { 64, 0x08804, 0x0622c, 0x00287 },
300
301 { 100, 0x08804, 0x02200, 0x00283 },
302 { 104, 0x08804, 0x02201, 0x00283 },
303 { 108, 0x08804, 0x02202, 0x00283 },
304 { 112, 0x08804, 0x02203, 0x00283 },
305 { 116, 0x08804, 0x02204, 0x00283 },
306 { 120, 0x08804, 0x02205, 0x00283 },
307 { 124, 0x08804, 0x02206, 0x00283 },
308 { 128, 0x08804, 0x02207, 0x00283 },
309 { 132, 0x08804, 0x02208, 0x00283 },
310 { 136, 0x08804, 0x02209, 0x00283 },
311 { 140, 0x08804, 0x0220a, 0x00283 },
312
313 { 149, 0x08808, 0x02429, 0x00281 },
314 { 153, 0x08808, 0x0242b, 0x00281 },
315 { 157, 0x08808, 0x0242d, 0x00281 },
316 { 161, 0x08808, 0x0242f, 0x00281 }
317 };
318
319 int
320 rt2560_attach(void *xsc, int id)
321 {
322 struct rt2560_softc *sc = xsc;
323 struct ieee80211com *ic = &sc->sc_ic;
324 struct ifnet *ifp = &sc->sc_if;
325 int error, i;
326
327 callout_init(&sc->scan_ch, 0);
328 callout_init(&sc->rssadapt_ch, 0);
329
330 /* retrieve RT2560 rev. no */
331 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
332
333 /* retrieve MAC address */
334 rt2560_get_macaddr(sc, ic->ic_myaddr);
335
336 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
337 ether_sprintf(ic->ic_myaddr));
338
339 /* retrieve RF rev. no and various other things from EEPROM */
340 rt2560_read_eeprom(sc);
341
342 aprint_normal_dev(sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
343 sc->asic_rev, rt2560_get_rf(sc->rf_rev));
344
345 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2560_softintr, sc);
346 if (sc->sc_soft_ih == NULL) {
347 aprint_error_dev(sc->sc_dev, "could not establish softint\n)");
348 goto fail0;
349 }
350
351 /*
352 * Allocate Tx and Rx rings.
353 */
354 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
355 if (error != 0) {
356 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring\n)");
357 goto fail1;
358 }
359
360 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
361 if (error != 0) {
362 aprint_error_dev(sc->sc_dev, "could not allocate ATIM ring\n");
363 goto fail2;
364 }
365
366 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
367 if (error != 0) {
368 aprint_error_dev(sc->sc_dev, "could not allocate Prio ring\n");
369 goto fail3;
370 }
371
372 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
373 if (error != 0) {
374 aprint_error_dev(sc->sc_dev, "could not allocate Beacon ring\n");
375 goto fail4;
376 }
377
378 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
379 if (error != 0) {
380 aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
381 goto fail5;
382 }
383
384 ifp->if_softc = sc;
385 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386 ifp->if_init = rt2560_init;
387 ifp->if_stop = rt2560_stop;
388 ifp->if_ioctl = rt2560_ioctl;
389 ifp->if_start = rt2560_start;
390 ifp->if_watchdog = rt2560_watchdog;
391 IFQ_SET_READY(&ifp->if_snd);
392 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
393
394 ic->ic_ifp = ifp;
395 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
396 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
397 ic->ic_state = IEEE80211_S_INIT;
398
399 /* set device capabilities */
400 ic->ic_caps =
401 IEEE80211_C_IBSS | /* IBSS mode supported */
402 IEEE80211_C_MONITOR | /* monitor mode supported */
403 IEEE80211_C_HOSTAP | /* HostAp mode supported */
404 IEEE80211_C_TXPMGT | /* tx power management */
405 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
406 IEEE80211_C_SHSLOT | /* short slot time supported */
407 IEEE80211_C_WPA; /* 802.11i */
408
409 if (sc->rf_rev == RT2560_RF_5222) {
410 /* set supported .11a rates */
411 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
412
413 /* set supported .11a channels */
414 for (i = 36; i <= 64; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 for (i = 100; i <= 140; i += 4) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 }
424 for (i = 149; i <= 161; i += 4) {
425 ic->ic_channels[i].ic_freq =
426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 }
429 }
430
431 /* set supported .11b and .11g rates */
432 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
433 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
434
435 /* set supported .11b and .11g channels (1 through 14) */
436 for (i = 1; i <= 14; i++) {
437 ic->ic_channels[i].ic_freq =
438 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
439 ic->ic_channels[i].ic_flags =
440 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
441 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
442 }
443
444 error = if_initialize(ifp);
445 if (error != 0) {
446 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
447 error);
448 goto fail6;
449 }
450 ieee80211_ifattach(ic);
451 /* Use common softint-based if_input */
452 ifp->if_percpuq = if_percpuq_create(ifp);
453 if_register(ifp);
454
455 ic->ic_node_alloc = rt2560_node_alloc;
456 ic->ic_updateslot = rt2560_update_slot;
457 ic->ic_reset = rt2560_reset;
458
459 /* override state transition machine */
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = rt2560_newstate;
462 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
463
464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
466
467 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
468 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
469 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
470
471 sc->sc_txtap_len = sizeof sc->sc_txtapu;
472 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
473 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
474
475
476 sc->dwelltime = 200;
477
478 ieee80211_announce(ic);
479
480 if (pmf_device_register(sc->sc_dev, NULL, NULL))
481 pmf_class_network_register(sc->sc_dev, ifp);
482 else
483 aprint_error_dev(sc->sc_dev,
484 "couldn't establish power handler\n");
485
486 return 0;
487
488 fail6: rt2560_free_rx_ring(sc, &sc->rxq);
489 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
490 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
491 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
492 fail2: rt2560_free_tx_ring(sc, &sc->txq);
493 fail1: softint_disestablish(sc->sc_soft_ih);
494 sc->sc_soft_ih = NULL;
495 fail0: return ENXIO;
496 }
497
498
499 int
500 rt2560_detach(void *xsc)
501 {
502 struct rt2560_softc *sc = xsc;
503 struct ifnet *ifp = &sc->sc_if;
504
505 callout_stop(&sc->scan_ch);
506 callout_stop(&sc->rssadapt_ch);
507
508 pmf_device_deregister(sc->sc_dev);
509
510 rt2560_stop(ifp, 1);
511
512 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
513 if_detach(ifp);
514
515 rt2560_free_tx_ring(sc, &sc->txq);
516 rt2560_free_tx_ring(sc, &sc->atimq);
517 rt2560_free_tx_ring(sc, &sc->prioq);
518 rt2560_free_tx_ring(sc, &sc->bcnq);
519 rt2560_free_rx_ring(sc, &sc->rxq);
520
521 if (sc->sc_soft_ih != NULL) {
522 softint_disestablish(sc->sc_soft_ih);
523 sc->sc_soft_ih = NULL;
524 }
525
526 return 0;
527 }
528
529 int
530 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
531 int count)
532 {
533 int i, nsegs, error;
534
535 ring->count = count;
536 ring->queued = 0;
537 ring->cur = ring->next = 0;
538 ring->cur_encrypt = ring->next_encrypt = 0;
539
540 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
541 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
542 if (error != 0) {
543 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
544 goto fail;
545 }
546
547 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
548 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
549 if (error != 0) {
550 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
551 goto fail;
552 }
553
554 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
555 count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
556 BUS_DMA_NOWAIT);
557 if (error != 0) {
558 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
559 goto fail;
560 }
561
562 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
563 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
564 if (error != 0) {
565 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
566 goto fail;
567 }
568
569 memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
570 ring->physaddr = ring->map->dm_segs->ds_addr;
571
572 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
573 M_NOWAIT);
574 if (ring->data == NULL) {
575 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
576 error = ENOMEM;
577 goto fail;
578 }
579
580 memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
581 for (i = 0; i < count; i++) {
582 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
583 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
584 &ring->data[i].map);
585 if (error != 0) {
586 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
587 goto fail;
588 }
589 }
590
591 return 0;
592
593 fail: rt2560_free_tx_ring(sc, ring);
594 return error;
595 }
596
597 void
598 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
599 {
600 struct rt2560_tx_desc *desc;
601 struct rt2560_tx_data *data;
602 int i;
603
604 for (i = 0; i < ring->count; i++) {
605 desc = &ring->desc[i];
606 data = &ring->data[i];
607
608 if (data->m != NULL) {
609 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
610 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
611 bus_dmamap_unload(sc->sc_dmat, data->map);
612 m_freem(data->m);
613 data->m = NULL;
614 }
615
616 if (data->ni != NULL) {
617 ieee80211_free_node(data->ni);
618 data->ni = NULL;
619 }
620
621 desc->flags = 0;
622 }
623
624 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
625 BUS_DMASYNC_PREWRITE);
626
627 ring->queued = 0;
628 ring->cur = ring->next = 0;
629 ring->cur_encrypt = ring->next_encrypt = 0;
630 }
631
632 void
633 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
634 {
635 struct rt2560_tx_data *data;
636 int i;
637
638 if (ring->desc != NULL) {
639 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
640 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
641 bus_dmamap_unload(sc->sc_dmat, ring->map);
642 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
643 ring->count * RT2560_TX_DESC_SIZE);
644 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
645 }
646
647 if (ring->data != NULL) {
648 for (i = 0; i < ring->count; i++) {
649 data = &ring->data[i];
650
651 if (data->m != NULL) {
652 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
653 data->map->dm_mapsize,
654 BUS_DMASYNC_POSTWRITE);
655 bus_dmamap_unload(sc->sc_dmat, data->map);
656 m_freem(data->m);
657 }
658
659 if (data->ni != NULL)
660 ieee80211_free_node(data->ni);
661
662
663 if (data->map != NULL)
664 bus_dmamap_destroy(sc->sc_dmat, data->map);
665 }
666 free(ring->data, M_DEVBUF);
667 }
668 }
669
670 int
671 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
672 int count)
673 {
674 struct rt2560_rx_desc *desc;
675 struct rt2560_rx_data *data;
676 int i, nsegs, error;
677
678 ring->count = count;
679 ring->cur = ring->next = 0;
680 ring->cur_decrypt = 0;
681
682 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
683 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
684 if (error != 0) {
685 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
686 goto fail;
687 }
688
689 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
690 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
691 if (error != 0) {
692 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
693 goto fail;
694 }
695
696 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
697 count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
698 BUS_DMA_NOWAIT);
699 if (error != 0) {
700 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
701 goto fail;
702 }
703
704 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
705 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
706 if (error != 0) {
707 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
708 goto fail;
709 }
710
711 memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
712 ring->physaddr = ring->map->dm_segs->ds_addr;
713
714 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
715 M_NOWAIT);
716 if (ring->data == NULL) {
717 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
718 error = ENOMEM;
719 goto fail;
720 }
721
722 /*
723 * Pre-allocate Rx buffers and populate Rx ring.
724 */
725 memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
726 for (i = 0; i < count; i++) {
727 desc = &sc->rxq.desc[i];
728 data = &sc->rxq.data[i];
729
730 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
731 0, BUS_DMA_NOWAIT, &data->map);
732 if (error != 0) {
733 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
734 goto fail;
735 }
736
737 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
738 if (data->m == NULL) {
739 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
740 error = ENOMEM;
741 goto fail;
742 }
743
744 MCLGET(data->m, M_DONTWAIT);
745 if (!(data->m->m_flags & M_EXT)) {
746 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
747 error = ENOMEM;
748 goto fail;
749 }
750
751 error = bus_dmamap_load(sc->sc_dmat, data->map,
752 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
753 if (error != 0) {
754 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
755 goto fail;
756 }
757
758 desc->flags = htole32(RT2560_RX_BUSY);
759 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
760 }
761
762 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
763 BUS_DMASYNC_PREWRITE);
764
765 return 0;
766
767 fail: rt2560_free_rx_ring(sc, ring);
768 return error;
769 }
770
771 void
772 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
773 {
774 int i;
775
776 for (i = 0; i < ring->count; i++) {
777 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
778 ring->data[i].drop = 0;
779 }
780
781 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
782 BUS_DMASYNC_PREWRITE);
783
784 ring->cur = ring->next = 0;
785 ring->cur_decrypt = 0;
786 }
787
788 void
789 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
790 {
791 struct rt2560_rx_data *data;
792 int i;
793
794 if (ring->desc != NULL) {
795 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
796 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
797 bus_dmamap_unload(sc->sc_dmat, ring->map);
798 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
799 ring->count * RT2560_RX_DESC_SIZE);
800 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
801 }
802
803 if (ring->data != NULL) {
804 for (i = 0; i < ring->count; i++) {
805 data = &ring->data[i];
806
807 if (data->m != NULL) {
808 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
809 data->map->dm_mapsize,
810 BUS_DMASYNC_POSTREAD);
811 bus_dmamap_unload(sc->sc_dmat, data->map);
812 m_freem(data->m);
813 }
814
815 if (data->map != NULL)
816 bus_dmamap_destroy(sc->sc_dmat, data->map);
817 }
818 free(ring->data, M_DEVBUF);
819 }
820 }
821
822 struct ieee80211_node *
823 rt2560_node_alloc(struct ieee80211_node_table *nt)
824 {
825 struct rt2560_node *rn;
826
827 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
828 M_NOWAIT | M_ZERO);
829
830 return (rn != NULL) ? &rn->ni : NULL;
831 }
832
833 int
834 rt2560_media_change(struct ifnet *ifp)
835 {
836 int error;
837
838 error = ieee80211_media_change(ifp);
839 if (error != ENETRESET)
840 return error;
841
842 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843 rt2560_init(ifp);
844
845 return 0;
846 }
847
848 /*
849 * This function is called periodically (every 200ms) during scanning to
850 * switch from one channel to another.
851 */
852 void
853 rt2560_next_scan(void *arg)
854 {
855 struct rt2560_softc *sc = arg;
856 struct ieee80211com *ic = &sc->sc_ic;
857 int s;
858
859 s = splnet();
860 if (ic->ic_state == IEEE80211_S_SCAN)
861 ieee80211_next_scan(ic);
862 splx(s);
863 }
864
865 /*
866 * This function is called for each neighbor node.
867 */
868 void
869 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
870 {
871 struct rt2560_node *rn = (struct rt2560_node *)ni;
872
873 ieee80211_rssadapt_updatestats(&rn->rssadapt);
874 }
875
876 /*
877 * This function is called periodically (every 100ms) in RUN state to update
878 * the rate adaptation statistics.
879 */
880 void
881 rt2560_update_rssadapt(void *arg)
882 {
883 struct rt2560_softc *sc = arg;
884 struct ieee80211com *ic = &sc->sc_ic;
885 int s;
886
887 s = splnet();
888 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
889
890 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
891 splx(s);
892 }
893
894 int
895 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
896 {
897 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
898 enum ieee80211_state ostate;
899 struct ieee80211_node *ni;
900 struct mbuf *m;
901 int error = 0;
902
903 ostate = ic->ic_state;
904 callout_stop(&sc->scan_ch);
905
906 switch (nstate) {
907 case IEEE80211_S_INIT:
908 callout_stop(&sc->rssadapt_ch);
909
910 if (ostate == IEEE80211_S_RUN) {
911 /* abort TSF synchronization */
912 RAL_WRITE(sc, RT2560_CSR14, 0);
913
914 /* turn association led off */
915 rt2560_update_led(sc, 0, 0);
916 }
917 break;
918
919 case IEEE80211_S_SCAN:
920 rt2560_set_chan(sc, ic->ic_curchan);
921 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
922 rt2560_next_scan, sc);
923 break;
924
925 case IEEE80211_S_AUTH:
926 rt2560_set_chan(sc, ic->ic_curchan);
927 break;
928
929 case IEEE80211_S_ASSOC:
930 rt2560_set_chan(sc, ic->ic_curchan);
931 break;
932
933 case IEEE80211_S_RUN:
934 rt2560_set_chan(sc, ic->ic_curchan);
935
936 ni = ic->ic_bss;
937
938 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
939 rt2560_update_plcp(sc);
940 rt2560_set_basicrates(sc);
941 rt2560_set_bssid(sc, ni->ni_bssid);
942 }
943
944 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
945 ic->ic_opmode == IEEE80211_M_IBSS) {
946 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
947 if (m == NULL) {
948 aprint_error_dev(sc->sc_dev, "could not allocate beacon\n");
949 error = ENOBUFS;
950 break;
951 }
952
953 ieee80211_ref_node(ni);
954 error = rt2560_tx_bcn(sc, m, ni);
955 if (error != 0)
956 break;
957 }
958
959 /* turn association led on */
960 rt2560_update_led(sc, 1, 0);
961
962 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
963 callout_reset(&sc->rssadapt_ch, hz / 10,
964 rt2560_update_rssadapt, sc);
965 rt2560_enable_tsf_sync(sc);
966 }
967 break;
968 }
969
970 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
971 }
972
973 /*
974 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
975 * 93C66).
976 */
977 uint16_t
978 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
979 {
980 uint32_t tmp;
981 uint16_t val;
982 int n;
983
984 /* clock C once before the first command */
985 RT2560_EEPROM_CTL(sc, 0);
986
987 RT2560_EEPROM_CTL(sc, RT2560_S);
988 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
989 RT2560_EEPROM_CTL(sc, RT2560_S);
990
991 /* write start bit (1) */
992 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
993 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
994
995 /* write READ opcode (10) */
996 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
997 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
998 RT2560_EEPROM_CTL(sc, RT2560_S);
999 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1000
1001 /* write address (A5-A0 or A7-A0) */
1002 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1003 for (; n >= 0; n--) {
1004 RT2560_EEPROM_CTL(sc, RT2560_S |
1005 (((addr >> n) & 1) << RT2560_SHIFT_D));
1006 RT2560_EEPROM_CTL(sc, RT2560_S |
1007 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1008 }
1009
1010 RT2560_EEPROM_CTL(sc, RT2560_S);
1011
1012 /* read data Q15-Q0 */
1013 val = 0;
1014 for (n = 15; n >= 0; n--) {
1015 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1016 tmp = RAL_READ(sc, RT2560_CSR21);
1017 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1018 RT2560_EEPROM_CTL(sc, RT2560_S);
1019 }
1020
1021 RT2560_EEPROM_CTL(sc, 0);
1022
1023 /* clear Chip Select and clock C */
1024 RT2560_EEPROM_CTL(sc, RT2560_S);
1025 RT2560_EEPROM_CTL(sc, 0);
1026 RT2560_EEPROM_CTL(sc, RT2560_C);
1027
1028 return val;
1029 }
1030
1031 /*
1032 * Some frames were processed by the hardware cipher engine and are ready for
1033 * transmission.
1034 */
1035 void
1036 rt2560_encryption_intr(struct rt2560_softc *sc)
1037 {
1038 struct rt2560_tx_desc *desc;
1039 int hw;
1040
1041 /* retrieve last descriptor index processed by cipher engine */
1042 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1043 RT2560_TX_DESC_SIZE;
1044
1045 for (; sc->txq.next_encrypt != hw;) {
1046 desc = &sc->txq.desc[sc->txq.next_encrypt];
1047
1048 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1049 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1050 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1051
1052 if (le32toh(desc->flags) &
1053 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1054 break;
1055
1056 /* for TKIP, swap eiv field to fix a bug in ASIC */
1057 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1058 RT2560_TX_CIPHER_TKIP)
1059 desc->eiv = bswap32(desc->eiv);
1060
1061 /* mark the frame ready for transmission */
1062 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1063
1064 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1065 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1066 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1067
1068 DPRINTFN(15, ("encryption done idx=%u\n",
1069 sc->txq.next_encrypt));
1070
1071 sc->txq.next_encrypt =
1072 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1073 }
1074
1075 /* kick Tx */
1076 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1077 }
1078
1079 void
1080 rt2560_tx_intr(struct rt2560_softc *sc)
1081 {
1082 struct ieee80211com *ic = &sc->sc_ic;
1083 struct ifnet *ifp = ic->ic_ifp;
1084 struct rt2560_tx_desc *desc;
1085 struct rt2560_tx_data *data;
1086 struct rt2560_node *rn;
1087 int s;
1088
1089 s = splnet();
1090
1091 for (;;) {
1092 desc = &sc->txq.desc[sc->txq.next];
1093 data = &sc->txq.data[sc->txq.next];
1094
1095 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1096 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1097 BUS_DMASYNC_POSTREAD);
1098
1099 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1100 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1101 !(le32toh(desc->flags) & RT2560_TX_VALID))
1102 break;
1103
1104 rn = (struct rt2560_node *)data->ni;
1105
1106 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1107 case RT2560_TX_SUCCESS:
1108 DPRINTFN(10, ("data frame sent successfully\n"));
1109 if (data->id.id_node != NULL) {
1110 ieee80211_rssadapt_raise_rate(ic,
1111 &rn->rssadapt, &data->id);
1112 }
1113 ifp->if_opackets++;
1114 break;
1115
1116 case RT2560_TX_SUCCESS_RETRY:
1117 DPRINTFN(9, ("data frame sent after %u retries\n",
1118 (le32toh(desc->flags) >> 5) & 0x7));
1119 ifp->if_opackets++;
1120 break;
1121
1122 case RT2560_TX_FAIL_RETRY:
1123 DPRINTFN(9, ("sending data frame failed (too much "
1124 "retries)\n"));
1125 if (data->id.id_node != NULL) {
1126 ieee80211_rssadapt_lower_rate(ic, data->ni,
1127 &rn->rssadapt, &data->id);
1128 }
1129 ifp->if_oerrors++;
1130 break;
1131
1132 case RT2560_TX_FAIL_INVALID:
1133 case RT2560_TX_FAIL_OTHER:
1134 default:
1135 aprint_error_dev(sc->sc_dev,
1136 "sending data frame failed 0x%08x\n",
1137 le32toh(desc->flags));
1138 ifp->if_oerrors++;
1139 }
1140
1141 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1142 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1143 bus_dmamap_unload(sc->sc_dmat, data->map);
1144 m_freem(data->m);
1145 data->m = NULL;
1146 ieee80211_free_node(data->ni);
1147 data->ni = NULL;
1148
1149 /* descriptor is no longer valid */
1150 desc->flags &= ~htole32(RT2560_TX_VALID);
1151
1152 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1153 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1154 BUS_DMASYNC_PREWRITE);
1155
1156 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1157
1158 sc->txq.queued--;
1159 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1160 }
1161
1162 sc->sc_tx_timer = 0;
1163 ifp->if_flags &= ~IFF_OACTIVE;
1164 rt2560_start(ifp); /* in softint */
1165
1166 splx(s);
1167 }
1168
1169 void
1170 rt2560_prio_intr(struct rt2560_softc *sc)
1171 {
1172 struct ieee80211com *ic = &sc->sc_ic;
1173 struct ifnet *ifp = ic->ic_ifp;
1174 struct rt2560_tx_desc *desc;
1175 struct rt2560_tx_data *data;
1176 int s;
1177
1178 s = splnet();
1179
1180 for (;;) {
1181 desc = &sc->prioq.desc[sc->prioq.next];
1182 data = &sc->prioq.data[sc->prioq.next];
1183
1184 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1185 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1186 BUS_DMASYNC_POSTREAD);
1187
1188 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1189 !(le32toh(desc->flags) & RT2560_TX_VALID))
1190 break;
1191
1192 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1193 case RT2560_TX_SUCCESS:
1194 DPRINTFN(10, ("mgt frame sent successfully\n"));
1195 break;
1196
1197 case RT2560_TX_SUCCESS_RETRY:
1198 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1199 (le32toh(desc->flags) >> 5) & 0x7));
1200 break;
1201
1202 case RT2560_TX_FAIL_RETRY:
1203 DPRINTFN(9, ("sending mgt frame failed (too much "
1204 "retries)\n"));
1205 break;
1206
1207 case RT2560_TX_FAIL_INVALID:
1208 case RT2560_TX_FAIL_OTHER:
1209 default:
1210 aprint_error_dev(sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1211 le32toh(desc->flags));
1212 }
1213
1214 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1215 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1216 bus_dmamap_unload(sc->sc_dmat, data->map);
1217 m_freem(data->m);
1218 data->m = NULL;
1219 ieee80211_free_node(data->ni);
1220 data->ni = NULL;
1221
1222 /* descriptor is no longer valid */
1223 desc->flags &= ~htole32(RT2560_TX_VALID);
1224
1225 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1226 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1227 BUS_DMASYNC_PREWRITE);
1228
1229 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1230
1231 sc->prioq.queued--;
1232 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1233 }
1234
1235 sc->sc_tx_timer = 0;
1236 ifp->if_flags &= ~IFF_OACTIVE;
1237 rt2560_start(ifp); /* in softint */
1238
1239 splx(s);
1240 }
1241
1242 /*
1243 * Some frames were processed by the hardware cipher engine and are ready for
1244 * transmission to the IEEE802.11 layer.
1245 */
1246 void
1247 rt2560_decryption_intr(struct rt2560_softc *sc)
1248 {
1249 struct ieee80211com *ic = &sc->sc_ic;
1250 struct ifnet *ifp = ic->ic_ifp;
1251 struct rt2560_rx_desc *desc;
1252 struct rt2560_rx_data *data;
1253 struct rt2560_node *rn;
1254 struct ieee80211_frame *wh;
1255 struct ieee80211_node *ni;
1256 struct mbuf *mnew, *m;
1257 int hw, error, s;
1258
1259 /* retrieve last decriptor index processed by cipher engine */
1260 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1261 RT2560_RX_DESC_SIZE;
1262
1263 for (; sc->rxq.cur_decrypt != hw;) {
1264 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1265 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1266
1267 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1268 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1269 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1270
1271 if (le32toh(desc->flags) &
1272 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1273 break;
1274
1275 if (data->drop) {
1276 ifp->if_ierrors++;
1277 goto skip;
1278 }
1279
1280 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1281 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1282 ifp->if_ierrors++;
1283 goto skip;
1284 }
1285
1286 /*
1287 * Try to allocate a new mbuf for this ring element and load it
1288 * before processing the current mbuf. If the ring element
1289 * cannot be loaded, drop the received packet and reuse the old
1290 * mbuf. In the unlikely case that the old mbuf can't be
1291 * reloaded either, explicitly panic.
1292 */
1293 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1294 if (mnew == NULL) {
1295 ifp->if_ierrors++;
1296 goto skip;
1297 }
1298
1299 MCLGET(mnew, M_DONTWAIT);
1300 if (!(mnew->m_flags & M_EXT)) {
1301 m_freem(mnew);
1302 ifp->if_ierrors++;
1303 goto skip;
1304 }
1305
1306 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1307 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1308 bus_dmamap_unload(sc->sc_dmat, data->map);
1309
1310 error = bus_dmamap_load(sc->sc_dmat, data->map,
1311 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1312 if (error != 0) {
1313 m_freem(mnew);
1314
1315 /* try to reload the old mbuf */
1316 error = bus_dmamap_load(sc->sc_dmat, data->map,
1317 mtod(data->m, void *), MCLBYTES, NULL,
1318 BUS_DMA_NOWAIT);
1319 if (error != 0) {
1320 /* very unlikely that it will fail... */
1321 panic("%s: could not load old rx mbuf",
1322 device_xname(sc->sc_dev));
1323 }
1324 /* physical address may have changed */
1325 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1326 ifp->if_ierrors++;
1327 goto skip;
1328 }
1329
1330 /*
1331 * New mbuf successfully loaded, update Rx ring and continue
1332 * processing.
1333 */
1334 m = data->m;
1335 data->m = mnew;
1336 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1337
1338 /* finalize mbuf */
1339 m_set_rcvif(m, ifp);
1340 m->m_pkthdr.len = m->m_len =
1341 (le32toh(desc->flags) >> 16) & 0xfff;
1342
1343 s = splnet();
1344
1345 if (sc->sc_drvbpf != NULL) {
1346 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1347 uint32_t tsf_lo, tsf_hi;
1348
1349 /* get timestamp (low and high 32 bits) */
1350 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1351 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1352
1353 tap->wr_tsf =
1354 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1355 tap->wr_flags = 0;
1356 tap->wr_rate = rt2560_rxrate(desc);
1357 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1358 tap->wr_chan_flags =
1359 htole16(ic->ic_ibss_chan->ic_flags);
1360 tap->wr_antenna = sc->rx_ant;
1361 tap->wr_antsignal = desc->rssi;
1362
1363 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1364 }
1365
1366 wh = mtod(m, struct ieee80211_frame *);
1367 ni = ieee80211_find_rxnode(ic,
1368 (struct ieee80211_frame_min *)wh);
1369
1370 /* send the frame to the 802.11 layer */
1371 ieee80211_input(ic, m, ni, desc->rssi, 0);
1372
1373 /* give rssi to the rate adatation algorithm */
1374 rn = (struct rt2560_node *)ni;
1375 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1376
1377 /* node is no longer needed */
1378 ieee80211_free_node(ni);
1379
1380 splx(s);
1381
1382 skip: desc->flags = htole32(RT2560_RX_BUSY);
1383
1384 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1385 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1386 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1387
1388 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1389
1390 sc->rxq.cur_decrypt =
1391 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1392 }
1393
1394 /*
1395 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1396 * without calling if_start().
1397 */
1398 s = splnet();
1399 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1400 rt2560_start(ifp);
1401 splx(s);
1402 }
1403
1404 /*
1405 * Some frames were received. Pass them to the hardware cipher engine before
1406 * sending them to the 802.11 layer.
1407 */
1408 void
1409 rt2560_rx_intr(struct rt2560_softc *sc)
1410 {
1411 struct rt2560_rx_desc *desc;
1412 struct rt2560_rx_data *data;
1413
1414 for (;;) {
1415 desc = &sc->rxq.desc[sc->rxq.cur];
1416 data = &sc->rxq.data[sc->rxq.cur];
1417
1418 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1419 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1420 BUS_DMASYNC_POSTREAD);
1421
1422 if (le32toh(desc->flags) &
1423 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1424 break;
1425
1426 data->drop = 0;
1427
1428 if (le32toh(desc->flags) &
1429 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1430 /*
1431 * This should not happen since we did not request
1432 * to receive those frames when we filled RXCSR0.
1433 */
1434 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1435 le32toh(desc->flags)));
1436 data->drop = 1;
1437 }
1438
1439 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1440 DPRINTFN(5, ("bad length\n"));
1441 data->drop = 1;
1442 }
1443
1444 /* mark the frame for decryption */
1445 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1446
1447 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1448 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1449 BUS_DMASYNC_PREWRITE);
1450
1451 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1452
1453 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1454 }
1455
1456 /* kick decrypt */
1457 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1458 }
1459
1460 /*
1461 * This function is called periodically in IBSS mode when a new beacon must be
1462 * sent out.
1463 */
1464 static void
1465 rt2560_beacon_expire(struct rt2560_softc *sc)
1466 {
1467 struct ieee80211com *ic = &sc->sc_ic;
1468 struct rt2560_tx_data *data;
1469
1470 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1471 ic->ic_opmode != IEEE80211_M_HOSTAP)
1472 return;
1473
1474 data = &sc->bcnq.data[sc->bcnq.next];
1475
1476 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1477 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1478 bus_dmamap_unload(sc->sc_dmat, data->map);
1479
1480 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1481
1482 bpf_mtap3(ic->ic_rawbpf, data->m);
1483 rt2560_tx_bcn(sc, data->m, data->ni);
1484
1485 DPRINTFN(15, ("beacon expired\n"));
1486
1487 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1488 }
1489
1490 static void
1491 rt2560_wakeup_expire(struct rt2560_softc *sc)
1492 {
1493 DPRINTFN(15, ("wakeup expired\n"));
1494 }
1495
1496 int
1497 rt2560_intr(void *arg)
1498 {
1499 struct rt2560_softc *sc = arg;
1500 struct ifnet *ifp = &sc->sc_if;
1501 uint32_t r;
1502
1503 if (!device_is_active(sc->sc_dev))
1504 return 0;
1505
1506 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1507 return 0; /* not for us */
1508
1509 /* disable interrupts */
1510 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1511
1512 /* don't re-enable interrupts if we're shutting down */
1513 if (!(ifp->if_flags & IFF_RUNNING))
1514 return 0;
1515
1516 softint_schedule(sc->sc_soft_ih);
1517 return 1;
1518 }
1519
1520 static void
1521 rt2560_softintr(void *arg)
1522 {
1523 struct rt2560_softc *sc = arg;
1524 struct ifnet *ifp = &sc->sc_if;
1525 uint32_t r;
1526
1527 if (!device_is_active(sc->sc_dev) || !(ifp->if_flags & IFF_RUNNING))
1528 return;
1529
1530 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1531 goto out;
1532
1533 /* acknowledge interrupts */
1534 RAL_WRITE(sc, RT2560_CSR7, r);
1535
1536 if (r & RT2560_BEACON_EXPIRE)
1537 rt2560_beacon_expire(sc);
1538
1539 if (r & RT2560_WAKEUP_EXPIRE)
1540 rt2560_wakeup_expire(sc);
1541
1542 if (r & RT2560_ENCRYPTION_DONE)
1543 rt2560_encryption_intr(sc);
1544
1545 if (r & RT2560_TX_DONE)
1546 rt2560_tx_intr(sc);
1547
1548 if (r & RT2560_PRIO_DONE)
1549 rt2560_prio_intr(sc);
1550
1551 if (r & RT2560_DECRYPTION_DONE)
1552 rt2560_decryption_intr(sc);
1553
1554 if (r & RT2560_RX_DONE)
1555 rt2560_rx_intr(sc);
1556
1557 out:
1558 /* re-enable interrupts */
1559 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1560 }
1561
1562 /* quickly determine if a given rate is CCK or OFDM */
1563 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1564
1565 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1566 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1567
1568 #define RAL_SIFS 10 /* us */
1569
1570 #define RT2560_RXTX_TURNAROUND 10 /* us */
1571
1572 /*
1573 * This function is only used by the Rx radiotap code. It returns the rate at
1574 * which a given frame was received.
1575 */
1576 static uint8_t
1577 rt2560_rxrate(struct rt2560_rx_desc *desc)
1578 {
1579 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1580 /* reverse function of rt2560_plcp_signal */
1581 switch (desc->rate) {
1582 case 0xb: return 12;
1583 case 0xf: return 18;
1584 case 0xa: return 24;
1585 case 0xe: return 36;
1586 case 0x9: return 48;
1587 case 0xd: return 72;
1588 case 0x8: return 96;
1589 case 0xc: return 108;
1590 }
1591 } else {
1592 if (desc->rate == 10)
1593 return 2;
1594 if (desc->rate == 20)
1595 return 4;
1596 if (desc->rate == 55)
1597 return 11;
1598 if (desc->rate == 110)
1599 return 22;
1600 }
1601 return 2; /* should not get there */
1602 }
1603
1604 /*
1605 * Return the expected ack rate for a frame transmitted at rate `rate'.
1606 * XXX: this should depend on the destination node basic rate set.
1607 */
1608 static int
1609 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1610 {
1611 switch (rate) {
1612 /* CCK rates */
1613 case 2:
1614 return 2;
1615 case 4:
1616 case 11:
1617 case 22:
1618 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1619
1620 /* OFDM rates */
1621 case 12:
1622 case 18:
1623 return 12;
1624 case 24:
1625 case 36:
1626 return 24;
1627 case 48:
1628 case 72:
1629 case 96:
1630 case 108:
1631 return 48;
1632 }
1633
1634 /* default to 1Mbps */
1635 return 2;
1636 }
1637
1638 /*
1639 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1640 * The function automatically determines the operating mode depending on the
1641 * given rate. `flags' indicates whether short preamble is in use or not.
1642 */
1643 static uint16_t
1644 rt2560_txtime(int len, int rate, uint32_t flags)
1645 {
1646 uint16_t txtime;
1647
1648 if (RAL_RATE_IS_OFDM(rate)) {
1649 /* IEEE Std 802.11a-1999, pp. 37 */
1650 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1651 txtime = 16 + 4 + 4 * txtime + 6;
1652 } else {
1653 /* IEEE Std 802.11b-1999, pp. 28 */
1654 txtime = (16 * len + rate - 1) / rate;
1655 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1656 txtime += 72 + 24;
1657 else
1658 txtime += 144 + 48;
1659 }
1660 return txtime;
1661 }
1662
1663 static uint8_t
1664 rt2560_plcp_signal(int rate)
1665 {
1666 switch (rate) {
1667 /* CCK rates (returned values are device-dependent) */
1668 case 2: return 0x0;
1669 case 4: return 0x1;
1670 case 11: return 0x2;
1671 case 22: return 0x3;
1672
1673 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1674 case 12: return 0xb;
1675 case 18: return 0xf;
1676 case 24: return 0xa;
1677 case 36: return 0xe;
1678 case 48: return 0x9;
1679 case 72: return 0xd;
1680 case 96: return 0x8;
1681 case 108: return 0xc;
1682
1683 /* unsupported rates (should not get there) */
1684 default: return 0xff;
1685 }
1686 }
1687
1688 static void
1689 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1690 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1691 {
1692 struct ieee80211com *ic = &sc->sc_ic;
1693 uint16_t plcp_length;
1694 int remainder;
1695
1696 desc->flags = htole32(flags);
1697 desc->flags |= htole32(len << 16);
1698 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1699 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1700
1701 desc->physaddr = htole32(physaddr);
1702 desc->wme = htole16(
1703 RT2560_AIFSN(2) |
1704 RT2560_LOGCWMIN(3) |
1705 RT2560_LOGCWMAX(8));
1706
1707 /* setup PLCP fields */
1708 desc->plcp_signal = rt2560_plcp_signal(rate);
1709 desc->plcp_service = 4;
1710
1711 len += IEEE80211_CRC_LEN;
1712 if (RAL_RATE_IS_OFDM(rate)) {
1713 desc->flags |= htole32(RT2560_TX_OFDM);
1714
1715 plcp_length = len & 0xfff;
1716 desc->plcp_length_hi = plcp_length >> 6;
1717 desc->plcp_length_lo = plcp_length & 0x3f;
1718 } else {
1719 plcp_length = (16 * len + rate - 1) / rate;
1720 if (rate == 22) {
1721 remainder = (16 * len) % 22;
1722 if (remainder != 0 && remainder < 7)
1723 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1724 }
1725 desc->plcp_length_hi = plcp_length >> 8;
1726 desc->plcp_length_lo = plcp_length & 0xff;
1727
1728 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1729 desc->plcp_signal |= 0x08;
1730 }
1731 }
1732
1733 static int
1734 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1735 struct ieee80211_node *ni)
1736 {
1737 struct rt2560_tx_desc *desc;
1738 struct rt2560_tx_data *data;
1739 int rate, error;
1740
1741 desc = &sc->bcnq.desc[sc->bcnq.cur];
1742 data = &sc->bcnq.data[sc->bcnq.cur];
1743
1744 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1745
1746 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1747 BUS_DMA_NOWAIT);
1748 if (error != 0) {
1749 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1750 error);
1751 m_freem(m0);
1752 return error;
1753 }
1754
1755 data->m = m0;
1756 data->ni = ni;
1757
1758 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1759 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1760 data->map->dm_segs->ds_addr);
1761
1762 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1763 BUS_DMASYNC_PREWRITE);
1764 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1765 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1766 BUS_DMASYNC_PREWRITE);
1767
1768 return 0;
1769 }
1770
1771 static int
1772 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1773 struct ieee80211_node *ni)
1774 {
1775 struct ieee80211com *ic = &sc->sc_ic;
1776 struct rt2560_tx_desc *desc;
1777 struct rt2560_tx_data *data;
1778 struct ieee80211_frame *wh;
1779 struct ieee80211_key *k;
1780 uint16_t dur;
1781 uint32_t flags = 0;
1782 int rate, error;
1783
1784 desc = &sc->prioq.desc[sc->prioq.cur];
1785 data = &sc->prioq.data[sc->prioq.cur];
1786
1787 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1788
1789 wh = mtod(m0, struct ieee80211_frame *);
1790
1791 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1792 k = ieee80211_crypto_encap(ic, ni, m0);
1793 if (k == NULL) {
1794 m_freem(m0);
1795 return ENOBUFS;
1796 }
1797
1798 /* packet header may have moved, reset our local pointer */
1799 wh = mtod(m0, struct ieee80211_frame *);
1800 }
1801
1802 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1803 BUS_DMA_NOWAIT);
1804 if (error != 0) {
1805 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1806 error);
1807 m_freem(m0);
1808 return error;
1809 }
1810
1811 if (sc->sc_drvbpf != NULL) {
1812 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1813
1814 tap->wt_flags = 0;
1815 tap->wt_rate = rate;
1816 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1817 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1818 tap->wt_antenna = sc->tx_ant;
1819
1820 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1821 }
1822
1823 data->m = m0;
1824 data->ni = ni;
1825
1826 wh = mtod(m0, struct ieee80211_frame *);
1827
1828 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1829 flags |= RT2560_TX_ACK;
1830
1831 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1832 RAL_SIFS;
1833 *(uint16_t *)wh->i_dur = htole16(dur);
1834
1835 /* tell hardware to add timestamp for probe responses */
1836 if ((wh->i_fc[0] &
1837 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1838 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1839 flags |= RT2560_TX_TIMESTAMP;
1840 }
1841
1842 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1843 data->map->dm_segs->ds_addr);
1844
1845 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1846 BUS_DMASYNC_PREWRITE);
1847 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1848 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1849 BUS_DMASYNC_PREWRITE);
1850
1851 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1852 m0->m_pkthdr.len, sc->prioq.cur, rate));
1853
1854 /* kick prio */
1855 sc->prioq.queued++;
1856 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1857 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1858
1859 return 0;
1860 }
1861
1862 /*
1863 * Build a RTS control frame.
1864 */
1865 static struct mbuf *
1866 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1867 uint16_t dur)
1868 {
1869 struct ieee80211_frame_rts *rts;
1870 struct mbuf *m;
1871
1872 MGETHDR(m, M_DONTWAIT, MT_DATA);
1873 if (m == NULL) {
1874 sc->sc_ic.ic_stats.is_tx_nobuf++;
1875 aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1876 return NULL;
1877 }
1878
1879 rts = mtod(m, struct ieee80211_frame_rts *);
1880
1881 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1882 IEEE80211_FC0_SUBTYPE_RTS;
1883 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1884 *(uint16_t *)rts->i_dur = htole16(dur);
1885 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1886 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1887
1888 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1889
1890 return m;
1891 }
1892
1893 static int
1894 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1895 struct ieee80211_node *ni)
1896 {
1897 struct ieee80211com *ic = &sc->sc_ic;
1898 struct rt2560_tx_desc *desc;
1899 struct rt2560_tx_data *data;
1900 struct rt2560_node *rn;
1901 struct ieee80211_rateset *rs;
1902 struct ieee80211_frame *wh;
1903 struct ieee80211_key *k;
1904 struct mbuf *mnew;
1905 uint16_t dur;
1906 uint32_t flags = 0;
1907 int rate, error;
1908
1909 wh = mtod(m0, struct ieee80211_frame *);
1910
1911 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1912 rs = &ic->ic_sup_rates[ic->ic_curmode];
1913 rate = rs->rs_rates[ic->ic_fixed_rate];
1914 } else {
1915 rs = &ni->ni_rates;
1916 rn = (struct rt2560_node *)ni;
1917 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1918 wh, m0->m_pkthdr.len, -1, NULL, 0);
1919 rate = rs->rs_rates[ni->ni_txrate];
1920 }
1921 rate &= IEEE80211_RATE_VAL;
1922
1923 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1924 k = ieee80211_crypto_encap(ic, ni, m0);
1925 if (k == NULL) {
1926 m_freem(m0);
1927 return ENOBUFS;
1928 }
1929
1930 /* packet header may have moved, reset our local pointer */
1931 wh = mtod(m0, struct ieee80211_frame *);
1932 }
1933
1934 /*
1935 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1936 * for directed frames only when the length of the MPDU is greater
1937 * than the length threshold indicated by [...]" ic_rtsthreshold.
1938 */
1939 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1940 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1941 struct mbuf *m;
1942 int rtsrate, ackrate;
1943
1944 rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1945 ackrate = rt2560_ack_rate(ic, rate);
1946
1947 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1948 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1949 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1950 3 * RAL_SIFS;
1951
1952 m = rt2560_get_rts(sc, wh, dur);
1953
1954 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1955 data = &sc->txq.data[sc->txq.cur_encrypt];
1956
1957 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1958 BUS_DMA_NOWAIT);
1959 if (error != 0) {
1960 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1961 error);
1962 m_freem(m);
1963 m_freem(m0);
1964 return error;
1965 }
1966
1967 /* avoid multiple free() of the same node for each fragment */
1968 ieee80211_ref_node(ni);
1969
1970 data->m = m;
1971 data->ni = ni;
1972
1973 /* RTS frames are not taken into account for rssadapt */
1974 data->id.id_node = NULL;
1975
1976 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1977 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1978 data->map->dm_segs->ds_addr);
1979
1980 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1981 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1982 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1983 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1984 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1985
1986 sc->txq.queued++;
1987 sc->txq.cur_encrypt =
1988 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1989
1990 /*
1991 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1992 * asynchronous data frame shall be transmitted after the CTS
1993 * frame and a SIFS period.
1994 */
1995 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1996 }
1997
1998 data = &sc->txq.data[sc->txq.cur_encrypt];
1999 desc = &sc->txq.desc[sc->txq.cur_encrypt];
2000
2001 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2002 BUS_DMA_NOWAIT);
2003 if (error != 0 && error != EFBIG) {
2004 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2005 error);
2006 m_freem(m0);
2007 return error;
2008 }
2009 if (error != 0) {
2010 /* too many fragments, linearize */
2011
2012 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2013 if (mnew == NULL) {
2014 m_freem(m0);
2015 return ENOMEM;
2016 }
2017
2018 M_COPY_PKTHDR(mnew, m0);
2019 if (m0->m_pkthdr.len > MHLEN) {
2020 MCLGET(mnew, M_DONTWAIT);
2021 if (!(mnew->m_flags & M_EXT)) {
2022 m_freem(m0);
2023 m_freem(mnew);
2024 return ENOMEM;
2025 }
2026 }
2027
2028 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2029 m_freem(m0);
2030 mnew->m_len = mnew->m_pkthdr.len;
2031 m0 = mnew;
2032
2033 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2034 BUS_DMA_NOWAIT);
2035 if (error != 0) {
2036 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2037 error);
2038 m_freem(m0);
2039 return error;
2040 }
2041
2042 /* packet header have moved, reset our local pointer */
2043 wh = mtod(m0, struct ieee80211_frame *);
2044 }
2045
2046 if (sc->sc_drvbpf != NULL) {
2047 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2048
2049 tap->wt_flags = 0;
2050 tap->wt_rate = rate;
2051 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2052 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2053 tap->wt_antenna = sc->tx_ant;
2054
2055 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2056 }
2057
2058 data->m = m0;
2059 data->ni = ni;
2060
2061 /* remember link conditions for rate adaptation algorithm */
2062 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2063 data->id.id_len = m0->m_pkthdr.len;
2064 data->id.id_rateidx = ni->ni_txrate;
2065 data->id.id_node = ni;
2066 data->id.id_rssi = ni->ni_rssi;
2067 } else
2068 data->id.id_node = NULL;
2069
2070 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2071 flags |= RT2560_TX_ACK;
2072
2073 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2074 ic->ic_flags) + RAL_SIFS;
2075 *(uint16_t *)wh->i_dur = htole16(dur);
2076 }
2077
2078 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2079 data->map->dm_segs->ds_addr);
2080
2081 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2082 BUS_DMASYNC_PREWRITE);
2083 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2084 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2085 BUS_DMASYNC_PREWRITE);
2086
2087 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2088 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2089
2090 /* kick encrypt */
2091 sc->txq.queued++;
2092 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2093 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2094
2095 return 0;
2096 }
2097
2098 static void
2099 rt2560_start(struct ifnet *ifp)
2100 {
2101 struct rt2560_softc *sc = ifp->if_softc;
2102 struct ieee80211com *ic = &sc->sc_ic;
2103 struct mbuf *m0;
2104 struct ieee80211_node *ni;
2105 struct ether_header *eh;
2106
2107 /*
2108 * net80211 may still try to send management frames even if the
2109 * IFF_RUNNING flag is not set...
2110 */
2111 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2112 return;
2113
2114 for (;;) {
2115 IF_POLL(&ic->ic_mgtq, m0);
2116 if (m0 != NULL) {
2117 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2118 ifp->if_flags |= IFF_OACTIVE;
2119 break;
2120 }
2121 IF_DEQUEUE(&ic->ic_mgtq, m0);
2122 if (m0 == NULL)
2123 break;
2124
2125 ni = M_GETCTX(m0, struct ieee80211_node *);
2126 M_CLEARCTX(m0);
2127 bpf_mtap3(ic->ic_rawbpf, m0);
2128 if (rt2560_tx_mgt(sc, m0, ni) != 0)
2129 break;
2130
2131 } else {
2132 if (ic->ic_state != IEEE80211_S_RUN)
2133 break;
2134 IFQ_DEQUEUE(&ifp->if_snd, m0);
2135 if (m0 == NULL)
2136 break;
2137 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2138 ifp->if_flags |= IFF_OACTIVE;
2139 break;
2140 }
2141
2142 if (m0->m_len < sizeof (struct ether_header) &&
2143 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2144 continue;
2145
2146 eh = mtod(m0, struct ether_header *);
2147 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2148 if (ni == NULL) {
2149 m_freem(m0);
2150 continue;
2151 }
2152 bpf_mtap(ifp, m0);
2153
2154 m0 = ieee80211_encap(ic, m0, ni);
2155 if (m0 == NULL) {
2156 ieee80211_free_node(ni);
2157 continue;
2158 }
2159
2160 bpf_mtap3(ic->ic_rawbpf, m0);
2161
2162 if (rt2560_tx_data(sc, m0, ni) != 0) {
2163 ieee80211_free_node(ni);
2164 ifp->if_oerrors++;
2165 break;
2166 }
2167 }
2168
2169 sc->sc_tx_timer = 5;
2170 ifp->if_timer = 1;
2171 }
2172 }
2173
2174 static void
2175 rt2560_watchdog(struct ifnet *ifp)
2176 {
2177 struct rt2560_softc *sc = ifp->if_softc;
2178
2179 ifp->if_timer = 0;
2180
2181 if (sc->sc_tx_timer > 0) {
2182 if (--sc->sc_tx_timer == 0) {
2183 aprint_error_dev(sc->sc_dev, "device timeout\n");
2184 rt2560_init(ifp);
2185 ifp->if_oerrors++;
2186 return;
2187 }
2188 ifp->if_timer = 1;
2189 }
2190
2191 ieee80211_watchdog(&sc->sc_ic);
2192 }
2193
2194 /*
2195 * This function allows for fast channel switching in monitor mode (used by
2196 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2197 * generate a new beacon frame.
2198 */
2199 static int
2200 rt2560_reset(struct ifnet *ifp)
2201 {
2202 struct rt2560_softc *sc = ifp->if_softc;
2203 struct ieee80211com *ic = &sc->sc_ic;
2204
2205 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2206 return ENETRESET;
2207
2208 rt2560_set_chan(sc, ic->ic_curchan);
2209
2210 return 0;
2211 }
2212
2213 int
2214 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2215 {
2216 struct rt2560_softc *sc = ifp->if_softc;
2217 struct ieee80211com *ic = &sc->sc_ic;
2218 int s, error = 0;
2219
2220 s = splnet();
2221
2222 switch (cmd) {
2223 case SIOCSIFFLAGS:
2224 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2225 break;
2226 if (ifp->if_flags & IFF_UP) {
2227 if (ifp->if_flags & IFF_RUNNING)
2228 rt2560_update_promisc(sc);
2229 else
2230 rt2560_init(ifp);
2231 } else {
2232 if (ifp->if_flags & IFF_RUNNING)
2233 rt2560_stop(ifp, 1);
2234 }
2235 break;
2236
2237 case SIOCADDMULTI:
2238 case SIOCDELMULTI:
2239 /* XXX no h/w multicast filter? --dyoung */
2240 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2241 error = 0;
2242 break;
2243
2244 case SIOCS80211CHANNEL:
2245 /*
2246 * This allows for fast channel switching in monitor mode
2247 * (used by kismet). In IBSS mode, we must explicitly reset
2248 * the interface to generate a new beacon frame.
2249 */
2250 error = ieee80211_ioctl(ic, cmd, data);
2251 if (error == ENETRESET &&
2252 ic->ic_opmode == IEEE80211_M_MONITOR) {
2253 rt2560_set_chan(sc, ic->ic_ibss_chan);
2254 error = 0;
2255 }
2256 break;
2257
2258 default:
2259 error = ieee80211_ioctl(ic, cmd, data);
2260 }
2261
2262 if (error == ENETRESET) {
2263 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2264 (IFF_UP | IFF_RUNNING))
2265 rt2560_init(ifp);
2266 error = 0;
2267 }
2268
2269 splx(s);
2270
2271 return error;
2272 }
2273
2274 static void
2275 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2276 {
2277 uint32_t tmp;
2278 int ntries;
2279
2280 for (ntries = 0; ntries < 100; ntries++) {
2281 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2282 break;
2283 DELAY(1);
2284 }
2285 if (ntries == 100) {
2286 aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2287 return;
2288 }
2289
2290 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2291 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2292
2293 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2294 }
2295
2296 static uint8_t
2297 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2298 {
2299 uint32_t val;
2300 int ntries;
2301
2302 val = RT2560_BBP_BUSY | reg << 8;
2303 RAL_WRITE(sc, RT2560_BBPCSR, val);
2304
2305 for (ntries = 0; ntries < 100; ntries++) {
2306 val = RAL_READ(sc, RT2560_BBPCSR);
2307 if (!(val & RT2560_BBP_BUSY))
2308 return val & 0xff;
2309 DELAY(1);
2310 }
2311
2312 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2313 return 0;
2314 }
2315
2316 static void
2317 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2318 {
2319 uint32_t tmp;
2320 int ntries;
2321
2322 for (ntries = 0; ntries < 100; ntries++) {
2323 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2324 break;
2325 DELAY(1);
2326 }
2327 if (ntries == 100) {
2328 aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2329 return;
2330 }
2331
2332 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2333 (reg & 0x3);
2334 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2335
2336 /* remember last written value in sc */
2337 sc->rf_regs[reg] = val;
2338
2339 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2340 }
2341
2342 static void
2343 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2344 {
2345 struct ieee80211com *ic = &sc->sc_ic;
2346 uint8_t power, tmp;
2347 u_int i, chan;
2348
2349 chan = ieee80211_chan2ieee(ic, c);
2350 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2351 return;
2352
2353 if (IEEE80211_IS_CHAN_2GHZ(c))
2354 power = min(sc->txpow[chan - 1], 31);
2355 else
2356 power = 31;
2357
2358 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2359
2360 switch (sc->rf_rev) {
2361 case RT2560_RF_2522:
2362 rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2363 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2364 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2365 break;
2366
2367 case RT2560_RF_2523:
2368 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2369 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2370 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2371 rt2560_rf_write(sc, RT2560_RF4,
2372 (chan == 14) ? 0x00280 : 0x00286);
2373 break;
2374
2375 case RT2560_RF_2524:
2376 rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2377 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2378 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2379 rt2560_rf_write(sc, RT2560_RF4,
2380 (chan == 14) ? 0x00280 : 0x00286);
2381 break;
2382
2383 case RT2560_RF_2525:
2384 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2385 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2386 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2387 rt2560_rf_write(sc, RT2560_RF4,
2388 (chan == 14) ? 0x00280 : 0x00286);
2389
2390 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2391 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2392 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2393 rt2560_rf_write(sc, RT2560_RF4,
2394 (chan == 14) ? 0x00280 : 0x00286);
2395 break;
2396
2397 case RT2560_RF_2525E:
2398 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2399 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2400 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2401 rt2560_rf_write(sc, RT2560_RF4,
2402 (chan == 14) ? 0x00286 : 0x00282);
2403 break;
2404
2405 case RT2560_RF_2526:
2406 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2407 rt2560_rf_write(sc, RT2560_RF4,
2408 (chan & 1) ? 0x00386 : 0x00381);
2409 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2410
2411 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2412 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2413 rt2560_rf_write(sc, RT2560_RF4,
2414 (chan & 1) ? 0x00386 : 0x00381);
2415 break;
2416
2417 /* dual-band RF */
2418 case RT2560_RF_5222:
2419 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2420
2421 rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2422 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2423 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2424 rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2425 break;
2426 }
2427
2428 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2429 ic->ic_state != IEEE80211_S_SCAN) {
2430 /* set Japan filter bit for channel 14 */
2431 tmp = rt2560_bbp_read(sc, 70);
2432
2433 tmp &= ~RT2560_JAPAN_FILTER;
2434 if (chan == 14)
2435 tmp |= RT2560_JAPAN_FILTER;
2436
2437 rt2560_bbp_write(sc, 70, tmp);
2438
2439 DELAY(1000); /* RF needs a 1ms delay here */
2440 rt2560_disable_rf_tune(sc);
2441
2442 /* clear CRC errors */
2443 RAL_READ(sc, RT2560_CNT0);
2444 }
2445 }
2446
2447 /*
2448 * Disable RF auto-tuning.
2449 */
2450 static void
2451 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2452 {
2453 uint32_t tmp;
2454
2455 if (sc->rf_rev != RT2560_RF_2523) {
2456 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2457 rt2560_rf_write(sc, RT2560_RF1, tmp);
2458 }
2459
2460 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2461 rt2560_rf_write(sc, RT2560_RF3, tmp);
2462
2463 DPRINTFN(2, ("disabling RF autotune\n"));
2464 }
2465
2466 /*
2467 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2468 * synchronization.
2469 */
2470 static void
2471 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2472 {
2473 struct ieee80211com *ic = &sc->sc_ic;
2474 uint16_t logcwmin, preload;
2475 uint32_t tmp;
2476
2477 /* first, disable TSF synchronization */
2478 RAL_WRITE(sc, RT2560_CSR14, 0);
2479
2480 tmp = 16 * ic->ic_bss->ni_intval;
2481 RAL_WRITE(sc, RT2560_CSR12, tmp);
2482
2483 RAL_WRITE(sc, RT2560_CSR13, 0);
2484
2485 logcwmin = 5;
2486 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2487 tmp = logcwmin << 16 | preload;
2488 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2489
2490 /* finally, enable TSF synchronization */
2491 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2492 if (ic->ic_opmode == IEEE80211_M_STA)
2493 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2494 else
2495 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2496 RT2560_ENABLE_BEACON_GENERATOR;
2497 RAL_WRITE(sc, RT2560_CSR14, tmp);
2498
2499 DPRINTF(("enabling TSF synchronization\n"));
2500 }
2501
2502 static void
2503 rt2560_update_plcp(struct rt2560_softc *sc)
2504 {
2505 struct ieee80211com *ic = &sc->sc_ic;
2506
2507 /* no short preamble for 1Mbps */
2508 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2509
2510 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2511 /* values taken from the reference driver */
2512 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2513 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2514 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2515 } else {
2516 /* same values as above or'ed 0x8 */
2517 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2518 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2519 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2520 }
2521
2522 DPRINTF(("updating PLCP for %s preamble\n",
2523 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2524 }
2525
2526 /*
2527 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2528 * know how these values are computed.
2529 */
2530 static void
2531 rt2560_update_slot(struct ifnet *ifp)
2532 {
2533 struct rt2560_softc *sc = ifp->if_softc;
2534 struct ieee80211com *ic = &sc->sc_ic;
2535 uint8_t slottime;
2536 uint16_t sifs, pifs, difs, eifs;
2537 uint32_t tmp;
2538
2539 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2540
2541 /* define the MAC slot boundaries */
2542 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2543 pifs = sifs + slottime;
2544 difs = sifs + 2 * slottime;
2545 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2546
2547 tmp = RAL_READ(sc, RT2560_CSR11);
2548 tmp = (tmp & ~0x1f00) | slottime << 8;
2549 RAL_WRITE(sc, RT2560_CSR11, tmp);
2550
2551 tmp = pifs << 16 | sifs;
2552 RAL_WRITE(sc, RT2560_CSR18, tmp);
2553
2554 tmp = eifs << 16 | difs;
2555 RAL_WRITE(sc, RT2560_CSR19, tmp);
2556
2557 DPRINTF(("setting slottime to %uus\n", slottime));
2558 }
2559
2560 static void
2561 rt2560_set_basicrates(struct rt2560_softc *sc)
2562 {
2563 struct ieee80211com *ic = &sc->sc_ic;
2564
2565 /* update basic rate set */
2566 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2567 /* 11b basic rates: 1, 2Mbps */
2568 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2569 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2570 /* 11a basic rates: 6, 12, 24Mbps */
2571 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2572 } else {
2573 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2574 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2575 }
2576 }
2577
2578 static void
2579 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2580 {
2581 uint32_t tmp;
2582
2583 /* set ON period to 70ms and OFF period to 30ms */
2584 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2585 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2586 }
2587
2588 static void
2589 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2590 {
2591 uint32_t tmp;
2592
2593 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2594 RAL_WRITE(sc, RT2560_CSR5, tmp);
2595
2596 tmp = bssid[4] | bssid[5] << 8;
2597 RAL_WRITE(sc, RT2560_CSR6, tmp);
2598
2599 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2600 }
2601
2602 static void
2603 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2604 {
2605 uint32_t tmp;
2606
2607 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2608 RAL_WRITE(sc, RT2560_CSR3, tmp);
2609
2610 tmp = addr[4] | addr[5] << 8;
2611 RAL_WRITE(sc, RT2560_CSR4, tmp);
2612
2613 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2614 }
2615
2616 static void
2617 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2618 {
2619 uint32_t tmp;
2620
2621 tmp = RAL_READ(sc, RT2560_CSR3);
2622 addr[0] = tmp & 0xff;
2623 addr[1] = (tmp >> 8) & 0xff;
2624 addr[2] = (tmp >> 16) & 0xff;
2625 addr[3] = (tmp >> 24);
2626
2627 tmp = RAL_READ(sc, RT2560_CSR4);
2628 addr[4] = tmp & 0xff;
2629 addr[5] = (tmp >> 8) & 0xff;
2630 }
2631
2632 static void
2633 rt2560_update_promisc(struct rt2560_softc *sc)
2634 {
2635 struct ifnet *ifp = &sc->sc_if;
2636 uint32_t tmp;
2637
2638 tmp = RAL_READ(sc, RT2560_RXCSR0);
2639
2640 tmp &= ~RT2560_DROP_NOT_TO_ME;
2641 if (!(ifp->if_flags & IFF_PROMISC))
2642 tmp |= RT2560_DROP_NOT_TO_ME;
2643
2644 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2645
2646 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2647 "entering" : "leaving"));
2648 }
2649
2650 static void
2651 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2652 {
2653 uint32_t tmp;
2654 uint8_t tx;
2655
2656 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2657 if (antenna == 1)
2658 tx |= RT2560_BBP_ANTA;
2659 else if (antenna == 2)
2660 tx |= RT2560_BBP_ANTB;
2661 else
2662 tx |= RT2560_BBP_DIVERSITY;
2663
2664 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2665 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2666 sc->rf_rev == RT2560_RF_5222)
2667 tx |= RT2560_BBP_FLIPIQ;
2668
2669 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2670
2671 /* update values for CCK and OFDM in BBPCSR1 */
2672 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2673 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2674 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2675 }
2676
2677 static void
2678 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2679 {
2680 uint8_t rx;
2681
2682 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2683 if (antenna == 1)
2684 rx |= RT2560_BBP_ANTA;
2685 else if (antenna == 2)
2686 rx |= RT2560_BBP_ANTB;
2687 else
2688 rx |= RT2560_BBP_DIVERSITY;
2689
2690 /* need to force no I/Q flip for RF 2525e and 2526 */
2691 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2692 rx &= ~RT2560_BBP_FLIPIQ;
2693
2694 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2695 }
2696
2697 static const char *
2698 rt2560_get_rf(int rev)
2699 {
2700 switch (rev) {
2701 case RT2560_RF_2522: return "RT2522";
2702 case RT2560_RF_2523: return "RT2523";
2703 case RT2560_RF_2524: return "RT2524";
2704 case RT2560_RF_2525: return "RT2525";
2705 case RT2560_RF_2525E: return "RT2525e";
2706 case RT2560_RF_2526: return "RT2526";
2707 case RT2560_RF_5222: return "RT5222";
2708 default: return "unknown";
2709 }
2710 }
2711
2712 static void
2713 rt2560_read_eeprom(struct rt2560_softc *sc)
2714 {
2715 uint16_t val;
2716 int i;
2717
2718 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2719 sc->rf_rev = (val >> 11) & 0x1f;
2720 sc->hw_radio = (val >> 10) & 0x1;
2721 sc->led_mode = (val >> 6) & 0x7;
2722 sc->rx_ant = (val >> 4) & 0x3;
2723 sc->tx_ant = (val >> 2) & 0x3;
2724 sc->nb_ant = val & 0x3;
2725
2726 /* read default values for BBP registers */
2727 for (i = 0; i < 16; i++) {
2728 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2729 sc->bbp_prom[i].reg = val >> 8;
2730 sc->bbp_prom[i].val = val & 0xff;
2731 }
2732
2733 /* read Tx power for all b/g channels */
2734 for (i = 0; i < 14 / 2; i++) {
2735 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2736 sc->txpow[i * 2] = val >> 8;
2737 sc->txpow[i * 2 + 1] = val & 0xff;
2738 }
2739 }
2740
2741 static int
2742 rt2560_bbp_init(struct rt2560_softc *sc)
2743 {
2744 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2745 int i, ntries;
2746
2747 /* wait for BBP to be ready */
2748 for (ntries = 0; ntries < 100; ntries++) {
2749 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2750 break;
2751 DELAY(1);
2752 }
2753 if (ntries == 100) {
2754 aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2755 return EIO;
2756 }
2757
2758 /* initialize BBP registers to default values */
2759 for (i = 0; i < N(rt2560_def_bbp); i++) {
2760 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2761 rt2560_def_bbp[i].val);
2762 }
2763 #if 0
2764 /* initialize BBP registers to values stored in EEPROM */
2765 for (i = 0; i < 16; i++) {
2766 if (sc->bbp_prom[i].reg == 0xff)
2767 continue;
2768 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2769 }
2770 #endif
2771
2772 return 0;
2773 #undef N
2774 }
2775
2776 static int
2777 rt2560_init(struct ifnet *ifp)
2778 {
2779 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2780 struct rt2560_softc *sc = ifp->if_softc;
2781 struct ieee80211com *ic = &sc->sc_ic;
2782 uint32_t tmp;
2783 int i;
2784
2785 /* for CardBus, power on the socket */
2786 if (!(sc->sc_flags & RT2560_ENABLED)) {
2787 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2788 aprint_error_dev(sc->sc_dev, "could not enable device\n");
2789 return EIO;
2790 }
2791 sc->sc_flags |= RT2560_ENABLED;
2792 }
2793
2794 rt2560_stop(ifp, 1);
2795
2796 /* setup tx rings */
2797 tmp = RT2560_PRIO_RING_COUNT << 24 |
2798 RT2560_ATIM_RING_COUNT << 16 |
2799 RT2560_TX_RING_COUNT << 8 |
2800 RT2560_TX_DESC_SIZE;
2801
2802 /* rings _must_ be initialized in this _exact_ order! */
2803 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2804 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2805 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2806 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2807 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2808
2809 /* setup rx ring */
2810 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2811
2812 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2813 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2814
2815 /* initialize MAC registers to default values */
2816 for (i = 0; i < N(rt2560_def_mac); i++)
2817 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2818
2819 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2820 rt2560_set_macaddr(sc, ic->ic_myaddr);
2821
2822 /* set basic rate set (will be updated later) */
2823 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2824
2825 rt2560_update_slot(ifp);
2826 rt2560_update_plcp(sc);
2827 rt2560_update_led(sc, 0, 0);
2828
2829 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2830 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2831
2832 if (rt2560_bbp_init(sc) != 0) {
2833 rt2560_stop(ifp, 1);
2834 return EIO;
2835 }
2836
2837 rt2560_set_txantenna(sc, 1);
2838 rt2560_set_rxantenna(sc, 1);
2839
2840 /* set default BSS channel */
2841 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2842 rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2843
2844 /* kick Rx */
2845 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2846 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2847 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2848 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2849 tmp |= RT2560_DROP_TODS;
2850 if (!(ifp->if_flags & IFF_PROMISC))
2851 tmp |= RT2560_DROP_NOT_TO_ME;
2852 }
2853 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2854
2855 /* clear old FCS and Rx FIFO errors */
2856 RAL_READ(sc, RT2560_CNT0);
2857 RAL_READ(sc, RT2560_CNT4);
2858
2859 /* clear any pending interrupts */
2860 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2861
2862 /* enable interrupts */
2863 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2864
2865 ifp->if_flags &= ~IFF_OACTIVE;
2866 ifp->if_flags |= IFF_RUNNING;
2867
2868 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2869 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2870 else
2871 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2872
2873 return 0;
2874 #undef N
2875 }
2876
2877 static void
2878 rt2560_stop(struct ifnet *ifp, int disable)
2879 {
2880 struct rt2560_softc *sc = ifp->if_softc;
2881 struct ieee80211com *ic = &sc->sc_ic;
2882
2883 sc->sc_tx_timer = 0;
2884 ifp->if_timer = 0;
2885 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2886
2887 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2888
2889 /* abort Tx */
2890 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2891
2892 /* disable Rx */
2893 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2894
2895 /* reset ASIC (and thus, BBP) */
2896 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2897 RAL_WRITE(sc, RT2560_CSR1, 0);
2898
2899 /* disable interrupts */
2900 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2901
2902 /* clear any pending interrupt */
2903 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2904
2905 /* reset Tx and Rx rings */
2906 rt2560_reset_tx_ring(sc, &sc->txq);
2907 rt2560_reset_tx_ring(sc, &sc->atimq);
2908 rt2560_reset_tx_ring(sc, &sc->prioq);
2909 rt2560_reset_tx_ring(sc, &sc->bcnq);
2910 rt2560_reset_rx_ring(sc, &sc->rxq);
2911 }
2912