rt2560.c revision 1.34.2.2 1 /* $NetBSD: rt2560.c,v 1.34.2.2 2020/04/08 14:08:06 martin Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4
5 /*-
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
25 */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.34.2.2 2020/04/08 14:08:06 martin Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_rssadapt.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/ic/rt2560reg.h>
63 #include <dev/ic/rt2560var.h>
64
65 #ifdef RAL_DEBUG
66 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
68 int rt2560_debug = 0;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n, x)
72 #endif
73
74 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
75 struct rt2560_tx_ring *, int);
76 static void rt2560_reset_tx_ring(struct rt2560_softc *,
77 struct rt2560_tx_ring *);
78 static void rt2560_free_tx_ring(struct rt2560_softc *,
79 struct rt2560_tx_ring *);
80 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
81 struct rt2560_rx_ring *, int);
82 static void rt2560_reset_rx_ring(struct rt2560_softc *,
83 struct rt2560_rx_ring *);
84 static void rt2560_free_rx_ring(struct rt2560_softc *,
85 struct rt2560_rx_ring *);
86 static struct ieee80211_node *
87 rt2560_node_alloc(struct ieee80211_node_table *);
88 static int rt2560_media_change(struct ifnet *);
89 static void rt2560_next_scan(void *);
90 static void rt2560_iter_func(void *, struct ieee80211_node *);
91 static void rt2560_update_rssadapt(void *);
92 static int rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
93 int);
94 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
95 static void rt2560_encryption_intr(struct rt2560_softc *);
96 static void rt2560_tx_intr(struct rt2560_softc *);
97 static void rt2560_prio_intr(struct rt2560_softc *);
98 static void rt2560_decryption_intr(struct rt2560_softc *);
99 static void rt2560_rx_intr(struct rt2560_softc *);
100 static void rt2560_beacon_expire(struct rt2560_softc *);
101 static void rt2560_wakeup_expire(struct rt2560_softc *);
102 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
103 static int rt2560_ack_rate(struct ieee80211com *, int);
104 static uint16_t rt2560_txtime(int, int, uint32_t);
105 static uint8_t rt2560_plcp_signal(int);
106 static void rt2560_setup_tx_desc(struct rt2560_softc *,
107 struct rt2560_tx_desc *, uint32_t, int, int, int,
108 bus_addr_t);
109 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
110 struct ieee80211_node *);
111 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
112 struct ieee80211_node *);
113 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
114 struct ieee80211_frame *, uint16_t);
115 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
116 struct ieee80211_node *);
117 static void rt2560_start(struct ifnet *);
118 static void rt2560_watchdog(struct ifnet *);
119 static int rt2560_reset(struct ifnet *);
120 static int rt2560_ioctl(struct ifnet *, u_long, void *);
121 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
122 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
123 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
124 static void rt2560_set_chan(struct rt2560_softc *,
125 struct ieee80211_channel *);
126 static void rt2560_disable_rf_tune(struct rt2560_softc *);
127 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
128 static void rt2560_update_plcp(struct rt2560_softc *);
129 static void rt2560_update_slot(struct ifnet *);
130 static void rt2560_set_basicrates(struct rt2560_softc *);
131 static void rt2560_update_led(struct rt2560_softc *, int, int);
132 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
133 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
134 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
135 static void rt2560_update_promisc(struct rt2560_softc *);
136 static void rt2560_set_txantenna(struct rt2560_softc *, int);
137 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
138 static const char *rt2560_get_rf(int);
139 static void rt2560_read_eeprom(struct rt2560_softc *);
140 static int rt2560_bbp_init(struct rt2560_softc *);
141 static int rt2560_init(struct ifnet *);
142 static void rt2560_stop(struct ifnet *, int);
143 static void rt2560_softintr(void *);
144
145 /*
146 * Default values for MAC registers; values taken from the reference driver.
147 */
148 static const struct {
149 uint32_t reg;
150 uint32_t val;
151 } rt2560_def_mac[] = {
152 { RT2560_PSCSR0, 0x00020002 },
153 { RT2560_PSCSR1, 0x00000002 },
154 { RT2560_PSCSR2, 0x00020002 },
155 { RT2560_PSCSR3, 0x00000002 },
156 { RT2560_TIMECSR, 0x00003f21 },
157 { RT2560_CSR9, 0x00000780 },
158 { RT2560_CSR11, 0x07041483 },
159 { RT2560_CNT3, 0x00000000 },
160 { RT2560_TXCSR1, 0x07614562 },
161 { RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
162 { RT2560_ACKPCTCSR, 0x7038140a },
163 { RT2560_ARTCSR1, 0x1d21252d },
164 { RT2560_ARTCSR2, 0x1919191d },
165 { RT2560_RXCSR0, 0xffffffff },
166 { RT2560_RXCSR3, 0xb3aab3af },
167 { RT2560_PCICSR, 0x000003b8 },
168 { RT2560_PWRCSR0, 0x3f3b3100 },
169 { RT2560_GPIOCSR, 0x0000ff00 },
170 { RT2560_TESTCSR, 0x000000f0 },
171 { RT2560_PWRCSR1, 0x000001ff },
172 { RT2560_MACCSR0, 0x00213223 },
173 { RT2560_MACCSR1, 0x00235518 },
174 { RT2560_RLPWCSR, 0x00000040 },
175 { RT2560_RALINKCSR, 0x9a009a11 },
176 { RT2560_CSR7, 0xffffffff },
177 { RT2560_BBPCSR1, 0x82188200 },
178 { RT2560_TXACKCSR0, 0x00000020 },
179 { RT2560_SECCSR3, 0x0000e78f }
180 };
181
182 /*
183 * Default values for BBP registers; values taken from the reference driver.
184 */
185 static const struct {
186 uint8_t reg;
187 uint8_t val;
188 } rt2560_def_bbp[] = {
189 { 3, 0x02 },
190 { 4, 0x19 },
191 { 14, 0x1c },
192 { 15, 0x30 },
193 { 16, 0xac },
194 { 17, 0x48 },
195 { 18, 0x18 },
196 { 19, 0xff },
197 { 20, 0x1e },
198 { 21, 0x08 },
199 { 22, 0x08 },
200 { 23, 0x08 },
201 { 24, 0x80 },
202 { 25, 0x50 },
203 { 26, 0x08 },
204 { 27, 0x23 },
205 { 30, 0x10 },
206 { 31, 0x2b },
207 { 32, 0xb9 },
208 { 34, 0x12 },
209 { 35, 0x50 },
210 { 39, 0xc4 },
211 { 40, 0x02 },
212 { 41, 0x60 },
213 { 53, 0x10 },
214 { 54, 0x18 },
215 { 56, 0x08 },
216 { 57, 0x10 },
217 { 58, 0x08 },
218 { 61, 0x60 },
219 { 62, 0x10 },
220 { 75, 0xff }
221 };
222
223 /*
224 * Default values for RF register R2 indexed by channel numbers; values taken
225 * from the reference driver.
226 */
227 static const uint32_t rt2560_rf2522_r2[] = {
228 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
229 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
230 };
231
232 static const uint32_t rt2560_rf2523_r2[] = {
233 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
234 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
235 };
236
237 static const uint32_t rt2560_rf2524_r2[] = {
238 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
239 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
240 };
241
242 static const uint32_t rt2560_rf2525_r2[] = {
243 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
244 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
245 };
246
247 static const uint32_t rt2560_rf2525_hi_r2[] = {
248 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
249 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
250 };
251
252 static const uint32_t rt2560_rf2525e_r2[] = {
253 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
254 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
255 };
256
257 static const uint32_t rt2560_rf2526_hi_r2[] = {
258 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
259 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
260 };
261
262 static const uint32_t rt2560_rf2526_r2[] = {
263 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
264 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
265 };
266
267 /*
268 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
269 * values taken from the reference driver.
270 */
271 static const struct {
272 uint8_t chan;
273 uint32_t r1;
274 uint32_t r2;
275 uint32_t r4;
276 } rt2560_rf5222[] = {
277 { 1, 0x08808, 0x0044d, 0x00282 },
278 { 2, 0x08808, 0x0044e, 0x00282 },
279 { 3, 0x08808, 0x0044f, 0x00282 },
280 { 4, 0x08808, 0x00460, 0x00282 },
281 { 5, 0x08808, 0x00461, 0x00282 },
282 { 6, 0x08808, 0x00462, 0x00282 },
283 { 7, 0x08808, 0x00463, 0x00282 },
284 { 8, 0x08808, 0x00464, 0x00282 },
285 { 9, 0x08808, 0x00465, 0x00282 },
286 { 10, 0x08808, 0x00466, 0x00282 },
287 { 11, 0x08808, 0x00467, 0x00282 },
288 { 12, 0x08808, 0x00468, 0x00282 },
289 { 13, 0x08808, 0x00469, 0x00282 },
290 { 14, 0x08808, 0x0046b, 0x00286 },
291
292 { 36, 0x08804, 0x06225, 0x00287 },
293 { 40, 0x08804, 0x06226, 0x00287 },
294 { 44, 0x08804, 0x06227, 0x00287 },
295 { 48, 0x08804, 0x06228, 0x00287 },
296 { 52, 0x08804, 0x06229, 0x00287 },
297 { 56, 0x08804, 0x0622a, 0x00287 },
298 { 60, 0x08804, 0x0622b, 0x00287 },
299 { 64, 0x08804, 0x0622c, 0x00287 },
300
301 { 100, 0x08804, 0x02200, 0x00283 },
302 { 104, 0x08804, 0x02201, 0x00283 },
303 { 108, 0x08804, 0x02202, 0x00283 },
304 { 112, 0x08804, 0x02203, 0x00283 },
305 { 116, 0x08804, 0x02204, 0x00283 },
306 { 120, 0x08804, 0x02205, 0x00283 },
307 { 124, 0x08804, 0x02206, 0x00283 },
308 { 128, 0x08804, 0x02207, 0x00283 },
309 { 132, 0x08804, 0x02208, 0x00283 },
310 { 136, 0x08804, 0x02209, 0x00283 },
311 { 140, 0x08804, 0x0220a, 0x00283 },
312
313 { 149, 0x08808, 0x02429, 0x00281 },
314 { 153, 0x08808, 0x0242b, 0x00281 },
315 { 157, 0x08808, 0x0242d, 0x00281 },
316 { 161, 0x08808, 0x0242f, 0x00281 }
317 };
318
319 int
320 rt2560_attach(void *xsc, int id)
321 {
322 struct rt2560_softc *sc = xsc;
323 struct ieee80211com *ic = &sc->sc_ic;
324 struct ifnet *ifp = &sc->sc_if;
325 int error, i;
326
327 callout_init(&sc->scan_ch, 0);
328 callout_init(&sc->rssadapt_ch, 0);
329
330 /* retrieve RT2560 rev. no */
331 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
332
333 /* retrieve MAC address */
334 rt2560_get_macaddr(sc, ic->ic_myaddr);
335
336 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
337 ether_sprintf(ic->ic_myaddr));
338
339 /* retrieve RF rev. no and various other things from EEPROM */
340 rt2560_read_eeprom(sc);
341
342 aprint_normal_dev(sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
343 sc->asic_rev, rt2560_get_rf(sc->rf_rev));
344
345 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2560_softintr, sc);
346 if (sc->sc_soft_ih == NULL) {
347 aprint_error_dev(sc->sc_dev, "could not establish softint\n)");
348 goto fail0;
349 }
350
351 /*
352 * Allocate Tx and Rx rings.
353 */
354 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
355 if (error != 0) {
356 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring\n)");
357 goto fail1;
358 }
359
360 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
361 if (error != 0) {
362 aprint_error_dev(sc->sc_dev, "could not allocate ATIM ring\n");
363 goto fail2;
364 }
365
366 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
367 if (error != 0) {
368 aprint_error_dev(sc->sc_dev, "could not allocate Prio ring\n");
369 goto fail3;
370 }
371
372 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
373 if (error != 0) {
374 aprint_error_dev(sc->sc_dev, "could not allocate Beacon ring\n");
375 goto fail4;
376 }
377
378 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
379 if (error != 0) {
380 aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
381 goto fail5;
382 }
383
384 ifp->if_softc = sc;
385 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386 ifp->if_init = rt2560_init;
387 ifp->if_stop = rt2560_stop;
388 ifp->if_ioctl = rt2560_ioctl;
389 ifp->if_start = rt2560_start;
390 ifp->if_watchdog = rt2560_watchdog;
391 IFQ_SET_READY(&ifp->if_snd);
392 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
393
394 ic->ic_ifp = ifp;
395 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
396 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
397 ic->ic_state = IEEE80211_S_INIT;
398
399 /* set device capabilities */
400 ic->ic_caps =
401 IEEE80211_C_IBSS | /* IBSS mode supported */
402 IEEE80211_C_MONITOR | /* monitor mode supported */
403 IEEE80211_C_HOSTAP | /* HostAp mode supported */
404 IEEE80211_C_TXPMGT | /* tx power management */
405 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
406 IEEE80211_C_SHSLOT | /* short slot time supported */
407 IEEE80211_C_WPA; /* 802.11i */
408
409 if (sc->rf_rev == RT2560_RF_5222) {
410 /* set supported .11a rates */
411 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
412
413 /* set supported .11a channels */
414 for (i = 36; i <= 64; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 for (i = 100; i <= 140; i += 4) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 }
424 for (i = 149; i <= 161; i += 4) {
425 ic->ic_channels[i].ic_freq =
426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 }
429 }
430
431 /* set supported .11b and .11g rates */
432 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
433 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
434
435 /* set supported .11b and .11g channels (1 through 14) */
436 for (i = 1; i <= 14; i++) {
437 ic->ic_channels[i].ic_freq =
438 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
439 ic->ic_channels[i].ic_flags =
440 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
441 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
442 }
443
444 error = if_initialize(ifp);
445 if (error != 0) {
446 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
447 error);
448 goto fail6;
449 }
450 ieee80211_ifattach(ic);
451 /* Use common softint-based if_input */
452 ifp->if_percpuq = if_percpuq_create(ifp);
453 if_register(ifp);
454
455 ic->ic_node_alloc = rt2560_node_alloc;
456 ic->ic_updateslot = rt2560_update_slot;
457 ic->ic_reset = rt2560_reset;
458
459 /* override state transition machine */
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = rt2560_newstate;
462 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
463
464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
466
467 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
468 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
469 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
470
471 sc->sc_txtap_len = sizeof sc->sc_txtapu;
472 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
473 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
474
475
476 sc->dwelltime = 200;
477
478 ieee80211_announce(ic);
479
480 if (pmf_device_register(sc->sc_dev, NULL, NULL))
481 pmf_class_network_register(sc->sc_dev, ifp);
482 else
483 aprint_error_dev(sc->sc_dev,
484 "couldn't establish power handler\n");
485
486 return 0;
487
488 fail6: rt2560_free_rx_ring(sc, &sc->rxq);
489 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
490 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
491 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
492 fail2: rt2560_free_tx_ring(sc, &sc->txq);
493 fail1: softint_disestablish(sc->sc_soft_ih);
494 sc->sc_soft_ih = NULL;
495 fail0: return ENXIO;
496 }
497
498
499 int
500 rt2560_detach(void *xsc)
501 {
502 struct rt2560_softc *sc = xsc;
503 struct ifnet *ifp = &sc->sc_if;
504
505 callout_stop(&sc->scan_ch);
506 callout_stop(&sc->rssadapt_ch);
507
508 pmf_device_deregister(sc->sc_dev);
509
510 rt2560_stop(ifp, 1);
511
512 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
513 if_detach(ifp);
514
515 rt2560_free_tx_ring(sc, &sc->txq);
516 rt2560_free_tx_ring(sc, &sc->atimq);
517 rt2560_free_tx_ring(sc, &sc->prioq);
518 rt2560_free_tx_ring(sc, &sc->bcnq);
519 rt2560_free_rx_ring(sc, &sc->rxq);
520
521 if (sc->sc_soft_ih != NULL) {
522 softint_disestablish(sc->sc_soft_ih);
523 sc->sc_soft_ih = NULL;
524 }
525
526 return 0;
527 }
528
529 int
530 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
531 int count)
532 {
533 int i, nsegs, error;
534
535 ring->count = count;
536 ring->queued = 0;
537 ring->cur = ring->next = 0;
538 ring->cur_encrypt = ring->next_encrypt = 0;
539
540 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
541 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
542 if (error != 0) {
543 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
544 goto fail;
545 }
546
547 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
548 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
549 if (error != 0) {
550 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
551 goto fail;
552 }
553
554 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
555 count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
556 BUS_DMA_NOWAIT);
557 if (error != 0) {
558 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
559 goto fail;
560 }
561
562 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
563 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
564 if (error != 0) {
565 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
566 goto fail;
567 }
568
569 memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
570 ring->physaddr = ring->map->dm_segs->ds_addr;
571
572 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
573 M_NOWAIT);
574 if (ring->data == NULL) {
575 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
576 error = ENOMEM;
577 goto fail;
578 }
579
580 memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
581 for (i = 0; i < count; i++) {
582 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
583 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
584 &ring->data[i].map);
585 if (error != 0) {
586 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
587 goto fail;
588 }
589 }
590
591 return 0;
592
593 fail: rt2560_free_tx_ring(sc, ring);
594 return error;
595 }
596
597 void
598 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
599 {
600 struct rt2560_tx_desc *desc;
601 struct rt2560_tx_data *data;
602 int i;
603
604 for (i = 0; i < ring->count; i++) {
605 desc = &ring->desc[i];
606 data = &ring->data[i];
607
608 if (data->m != NULL) {
609 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
610 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
611 bus_dmamap_unload(sc->sc_dmat, data->map);
612 m_freem(data->m);
613 data->m = NULL;
614 }
615
616 if (data->ni != NULL) {
617 ieee80211_free_node(data->ni);
618 data->ni = NULL;
619 }
620
621 desc->flags = 0;
622 }
623
624 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
625 BUS_DMASYNC_PREWRITE);
626
627 ring->queued = 0;
628 ring->cur = ring->next = 0;
629 ring->cur_encrypt = ring->next_encrypt = 0;
630 }
631
632 void
633 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
634 {
635 struct rt2560_tx_data *data;
636 int i;
637
638 if (ring->desc != NULL) {
639 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
640 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
641 bus_dmamap_unload(sc->sc_dmat, ring->map);
642 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
643 ring->count * RT2560_TX_DESC_SIZE);
644 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
645 }
646
647 if (ring->data != NULL) {
648 for (i = 0; i < ring->count; i++) {
649 data = &ring->data[i];
650
651 if (data->m != NULL) {
652 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
653 data->map->dm_mapsize,
654 BUS_DMASYNC_POSTWRITE);
655 bus_dmamap_unload(sc->sc_dmat, data->map);
656 m_freem(data->m);
657 }
658
659 if (data->ni != NULL)
660 ieee80211_free_node(data->ni);
661
662
663 if (data->map != NULL)
664 bus_dmamap_destroy(sc->sc_dmat, data->map);
665 }
666 free(ring->data, M_DEVBUF);
667 }
668 }
669
670 int
671 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
672 int count)
673 {
674 struct rt2560_rx_desc *desc;
675 struct rt2560_rx_data *data;
676 int i, nsegs, error;
677
678 ring->count = count;
679 ring->cur = ring->next = 0;
680 ring->cur_decrypt = 0;
681
682 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
683 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
684 if (error != 0) {
685 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
686 goto fail;
687 }
688
689 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
690 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
691 if (error != 0) {
692 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
693 goto fail;
694 }
695
696 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
697 count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
698 BUS_DMA_NOWAIT);
699 if (error != 0) {
700 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
701 goto fail;
702 }
703
704 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
705 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
706 if (error != 0) {
707 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
708 goto fail;
709 }
710
711 memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
712 ring->physaddr = ring->map->dm_segs->ds_addr;
713
714 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
715 M_NOWAIT);
716 if (ring->data == NULL) {
717 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
718 error = ENOMEM;
719 goto fail;
720 }
721
722 /*
723 * Pre-allocate Rx buffers and populate Rx ring.
724 */
725 memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
726 for (i = 0; i < count; i++) {
727 desc = &sc->rxq.desc[i];
728 data = &sc->rxq.data[i];
729
730 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
731 0, BUS_DMA_NOWAIT, &data->map);
732 if (error != 0) {
733 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
734 goto fail;
735 }
736
737 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
738 if (data->m == NULL) {
739 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
740 error = ENOMEM;
741 goto fail;
742 }
743
744 MCLGET(data->m, M_DONTWAIT);
745 if (!(data->m->m_flags & M_EXT)) {
746 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
747 error = ENOMEM;
748 goto fail;
749 }
750
751 error = bus_dmamap_load(sc->sc_dmat, data->map,
752 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
753 if (error != 0) {
754 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
755 goto fail;
756 }
757
758 desc->flags = htole32(RT2560_RX_BUSY);
759 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
760 }
761
762 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
763 BUS_DMASYNC_PREWRITE);
764
765 return 0;
766
767 fail: rt2560_free_rx_ring(sc, ring);
768 return error;
769 }
770
771 void
772 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
773 {
774 int i;
775
776 for (i = 0; i < ring->count; i++) {
777 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
778 ring->data[i].drop = 0;
779 }
780
781 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
782 BUS_DMASYNC_PREWRITE);
783
784 ring->cur = ring->next = 0;
785 ring->cur_decrypt = 0;
786 }
787
788 void
789 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
790 {
791 struct rt2560_rx_data *data;
792 int i;
793
794 if (ring->desc != NULL) {
795 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
796 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
797 bus_dmamap_unload(sc->sc_dmat, ring->map);
798 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
799 ring->count * RT2560_RX_DESC_SIZE);
800 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
801 }
802
803 if (ring->data != NULL) {
804 for (i = 0; i < ring->count; i++) {
805 data = &ring->data[i];
806
807 if (data->m != NULL) {
808 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
809 data->map->dm_mapsize,
810 BUS_DMASYNC_POSTREAD);
811 bus_dmamap_unload(sc->sc_dmat, data->map);
812 m_freem(data->m);
813 }
814
815 if (data->map != NULL)
816 bus_dmamap_destroy(sc->sc_dmat, data->map);
817 }
818 free(ring->data, M_DEVBUF);
819 }
820 }
821
822 struct ieee80211_node *
823 rt2560_node_alloc(struct ieee80211_node_table *nt)
824 {
825 struct rt2560_node *rn;
826
827 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
828 M_NOWAIT | M_ZERO);
829
830 return (rn != NULL) ? &rn->ni : NULL;
831 }
832
833 int
834 rt2560_media_change(struct ifnet *ifp)
835 {
836 int error;
837
838 error = ieee80211_media_change(ifp);
839 if (error != ENETRESET)
840 return error;
841
842 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843 rt2560_init(ifp);
844
845 return 0;
846 }
847
848 /*
849 * This function is called periodically (every 200ms) during scanning to
850 * switch from one channel to another.
851 */
852 void
853 rt2560_next_scan(void *arg)
854 {
855 struct rt2560_softc *sc = arg;
856 struct ieee80211com *ic = &sc->sc_ic;
857 int s;
858
859 s = splnet();
860 if (ic->ic_state == IEEE80211_S_SCAN)
861 ieee80211_next_scan(ic);
862 splx(s);
863 }
864
865 /*
866 * This function is called for each neighbor node.
867 */
868 void
869 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
870 {
871 struct rt2560_node *rn = (struct rt2560_node *)ni;
872
873 ieee80211_rssadapt_updatestats(&rn->rssadapt);
874 }
875
876 /*
877 * This function is called periodically (every 100ms) in RUN state to update
878 * the rate adaptation statistics.
879 */
880 void
881 rt2560_update_rssadapt(void *arg)
882 {
883 struct rt2560_softc *sc = arg;
884 struct ieee80211com *ic = &sc->sc_ic;
885 int s;
886
887 s = splnet();
888 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
889
890 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
891 splx(s);
892 }
893
894 int
895 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
896 {
897 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
898 enum ieee80211_state ostate;
899 struct ieee80211_node *ni;
900 struct mbuf *m;
901 int error = 0;
902
903 ostate = ic->ic_state;
904 callout_stop(&sc->scan_ch);
905
906 switch (nstate) {
907 case IEEE80211_S_INIT:
908 callout_stop(&sc->rssadapt_ch);
909
910 if (ostate == IEEE80211_S_RUN) {
911 /* abort TSF synchronization */
912 RAL_WRITE(sc, RT2560_CSR14, 0);
913
914 /* turn association led off */
915 rt2560_update_led(sc, 0, 0);
916 }
917 break;
918
919 case IEEE80211_S_SCAN:
920 rt2560_set_chan(sc, ic->ic_curchan);
921 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
922 rt2560_next_scan, sc);
923 break;
924
925 case IEEE80211_S_AUTH:
926 rt2560_set_chan(sc, ic->ic_curchan);
927 break;
928
929 case IEEE80211_S_ASSOC:
930 rt2560_set_chan(sc, ic->ic_curchan);
931 break;
932
933 case IEEE80211_S_RUN:
934 rt2560_set_chan(sc, ic->ic_curchan);
935
936 ni = ic->ic_bss;
937
938 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
939 rt2560_update_plcp(sc);
940 rt2560_set_basicrates(sc);
941 rt2560_set_bssid(sc, ni->ni_bssid);
942 }
943
944 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
945 ic->ic_opmode == IEEE80211_M_IBSS) {
946 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
947 if (m == NULL) {
948 aprint_error_dev(sc->sc_dev, "could not allocate beacon\n");
949 error = ENOBUFS;
950 break;
951 }
952
953 ieee80211_ref_node(ni);
954 error = rt2560_tx_bcn(sc, m, ni);
955 if (error != 0)
956 break;
957 }
958
959 /* turn association led on */
960 rt2560_update_led(sc, 1, 0);
961
962 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
963 callout_reset(&sc->rssadapt_ch, hz / 10,
964 rt2560_update_rssadapt, sc);
965 rt2560_enable_tsf_sync(sc);
966 }
967 break;
968 }
969
970 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
971 }
972
973 /*
974 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
975 * 93C66).
976 */
977 uint16_t
978 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
979 {
980 uint32_t tmp;
981 uint16_t val;
982 int n;
983
984 /* clock C once before the first command */
985 RT2560_EEPROM_CTL(sc, 0);
986
987 RT2560_EEPROM_CTL(sc, RT2560_S);
988 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
989 RT2560_EEPROM_CTL(sc, RT2560_S);
990
991 /* write start bit (1) */
992 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
993 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
994
995 /* write READ opcode (10) */
996 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
997 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
998 RT2560_EEPROM_CTL(sc, RT2560_S);
999 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1000
1001 /* write address (A5-A0 or A7-A0) */
1002 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1003 for (; n >= 0; n--) {
1004 RT2560_EEPROM_CTL(sc, RT2560_S |
1005 (((addr >> n) & 1) << RT2560_SHIFT_D));
1006 RT2560_EEPROM_CTL(sc, RT2560_S |
1007 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1008 }
1009
1010 RT2560_EEPROM_CTL(sc, RT2560_S);
1011
1012 /* read data Q15-Q0 */
1013 val = 0;
1014 for (n = 15; n >= 0; n--) {
1015 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1016 tmp = RAL_READ(sc, RT2560_CSR21);
1017 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1018 RT2560_EEPROM_CTL(sc, RT2560_S);
1019 }
1020
1021 RT2560_EEPROM_CTL(sc, 0);
1022
1023 /* clear Chip Select and clock C */
1024 RT2560_EEPROM_CTL(sc, RT2560_S);
1025 RT2560_EEPROM_CTL(sc, 0);
1026 RT2560_EEPROM_CTL(sc, RT2560_C);
1027
1028 return val;
1029 }
1030
1031 /*
1032 * Some frames were processed by the hardware cipher engine and are ready for
1033 * transmission.
1034 */
1035 void
1036 rt2560_encryption_intr(struct rt2560_softc *sc)
1037 {
1038 struct rt2560_tx_desc *desc;
1039 int hw;
1040
1041 /* retrieve last descriptor index processed by cipher engine */
1042 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1043 RT2560_TX_DESC_SIZE;
1044
1045 for (; sc->txq.next_encrypt != hw;) {
1046 desc = &sc->txq.desc[sc->txq.next_encrypt];
1047
1048 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1049 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1050 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1051
1052 if (le32toh(desc->flags) &
1053 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1054 break;
1055
1056 /* for TKIP, swap eiv field to fix a bug in ASIC */
1057 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1058 RT2560_TX_CIPHER_TKIP)
1059 desc->eiv = bswap32(desc->eiv);
1060
1061 /* mark the frame ready for transmission */
1062 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1063
1064 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1065 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1066 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1067
1068 DPRINTFN(15, ("encryption done idx=%u\n",
1069 sc->txq.next_encrypt));
1070
1071 sc->txq.next_encrypt =
1072 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1073 }
1074
1075 /* kick Tx */
1076 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1077 }
1078
1079 void
1080 rt2560_tx_intr(struct rt2560_softc *sc)
1081 {
1082 struct ieee80211com *ic = &sc->sc_ic;
1083 struct ifnet *ifp = ic->ic_ifp;
1084 struct rt2560_tx_desc *desc;
1085 struct rt2560_tx_data *data;
1086 struct rt2560_node *rn;
1087 int s;
1088
1089 s = splnet();
1090
1091 for (;;) {
1092 desc = &sc->txq.desc[sc->txq.next];
1093 data = &sc->txq.data[sc->txq.next];
1094
1095 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1096 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1097 BUS_DMASYNC_POSTREAD);
1098
1099 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1100 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1101 !(le32toh(desc->flags) & RT2560_TX_VALID))
1102 break;
1103
1104 rn = (struct rt2560_node *)data->ni;
1105
1106 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1107 case RT2560_TX_SUCCESS:
1108 DPRINTFN(10, ("data frame sent successfully\n"));
1109 if (data->id.id_node != NULL) {
1110 ieee80211_rssadapt_raise_rate(ic,
1111 &rn->rssadapt, &data->id);
1112 }
1113 if_statinc(ifp, if_opackets);
1114 break;
1115
1116 case RT2560_TX_SUCCESS_RETRY:
1117 DPRINTFN(9, ("data frame sent after %u retries\n",
1118 (le32toh(desc->flags) >> 5) & 0x7));
1119 if_statinc(ifp, if_opackets);
1120 break;
1121
1122 case RT2560_TX_FAIL_RETRY:
1123 DPRINTFN(9, ("sending data frame failed (too much "
1124 "retries)\n"));
1125 if (data->id.id_node != NULL) {
1126 ieee80211_rssadapt_lower_rate(ic, data->ni,
1127 &rn->rssadapt, &data->id);
1128 }
1129 if_statinc(ifp, if_oerrors);
1130 break;
1131
1132 case RT2560_TX_FAIL_INVALID:
1133 case RT2560_TX_FAIL_OTHER:
1134 default:
1135 aprint_error_dev(sc->sc_dev,
1136 "sending data frame failed 0x%08x\n",
1137 le32toh(desc->flags));
1138 if_statinc(ifp, if_oerrors);
1139 }
1140
1141 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1142 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1143 bus_dmamap_unload(sc->sc_dmat, data->map);
1144 m_freem(data->m);
1145 data->m = NULL;
1146 ieee80211_free_node(data->ni);
1147 data->ni = NULL;
1148
1149 /* descriptor is no longer valid */
1150 desc->flags &= ~htole32(RT2560_TX_VALID);
1151
1152 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1153 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1154 BUS_DMASYNC_PREWRITE);
1155
1156 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1157
1158 sc->txq.queued--;
1159 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1160 }
1161
1162 sc->sc_tx_timer = 0;
1163 ifp->if_flags &= ~IFF_OACTIVE;
1164 rt2560_start(ifp); /* in softint */
1165
1166 splx(s);
1167 }
1168
1169 void
1170 rt2560_prio_intr(struct rt2560_softc *sc)
1171 {
1172 struct ieee80211com *ic = &sc->sc_ic;
1173 struct ifnet *ifp = ic->ic_ifp;
1174 struct rt2560_tx_desc *desc;
1175 struct rt2560_tx_data *data;
1176 int s;
1177
1178 s = splnet();
1179
1180 for (;;) {
1181 desc = &sc->prioq.desc[sc->prioq.next];
1182 data = &sc->prioq.data[sc->prioq.next];
1183
1184 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1185 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1186 BUS_DMASYNC_POSTREAD);
1187
1188 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1189 !(le32toh(desc->flags) & RT2560_TX_VALID))
1190 break;
1191
1192 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1193 case RT2560_TX_SUCCESS:
1194 DPRINTFN(10, ("mgt frame sent successfully\n"));
1195 break;
1196
1197 case RT2560_TX_SUCCESS_RETRY:
1198 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1199 (le32toh(desc->flags) >> 5) & 0x7));
1200 break;
1201
1202 case RT2560_TX_FAIL_RETRY:
1203 DPRINTFN(9, ("sending mgt frame failed (too much "
1204 "retries)\n"));
1205 break;
1206
1207 case RT2560_TX_FAIL_INVALID:
1208 case RT2560_TX_FAIL_OTHER:
1209 default:
1210 aprint_error_dev(sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1211 le32toh(desc->flags));
1212 }
1213
1214 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1215 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1216 bus_dmamap_unload(sc->sc_dmat, data->map);
1217 m_freem(data->m);
1218 data->m = NULL;
1219 ieee80211_free_node(data->ni);
1220 data->ni = NULL;
1221
1222 /* descriptor is no longer valid */
1223 desc->flags &= ~htole32(RT2560_TX_VALID);
1224
1225 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1226 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1227 BUS_DMASYNC_PREWRITE);
1228
1229 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1230
1231 sc->prioq.queued--;
1232 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1233 }
1234
1235 sc->sc_tx_timer = 0;
1236 ifp->if_flags &= ~IFF_OACTIVE;
1237 rt2560_start(ifp); /* in softint */
1238
1239 splx(s);
1240 }
1241
1242 /*
1243 * Some frames were processed by the hardware cipher engine and are ready for
1244 * transmission to the IEEE802.11 layer.
1245 */
1246 void
1247 rt2560_decryption_intr(struct rt2560_softc *sc)
1248 {
1249 struct ieee80211com *ic = &sc->sc_ic;
1250 struct ifnet *ifp = ic->ic_ifp;
1251 struct rt2560_rx_desc *desc;
1252 struct rt2560_rx_data *data;
1253 struct rt2560_node *rn;
1254 struct ieee80211_frame *wh;
1255 struct ieee80211_node *ni;
1256 struct mbuf *mnew, *m;
1257 int hw, error, s;
1258
1259 /* retrieve last decriptor index processed by cipher engine */
1260 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1261 RT2560_RX_DESC_SIZE;
1262
1263 for (; sc->rxq.cur_decrypt != hw;) {
1264 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1265 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1266
1267 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1268 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1269 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1270
1271 if (le32toh(desc->flags) &
1272 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1273 break;
1274
1275 if (data->drop) {
1276 if_statinc(ifp, if_ierrors);
1277 goto skip;
1278 }
1279
1280 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1281 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1282 if_statinc(ifp, if_ierrors);
1283 goto skip;
1284 }
1285
1286 /*
1287 * Try to allocate a new mbuf for this ring element and load it
1288 * before processing the current mbuf. If the ring element
1289 * cannot be loaded, drop the received packet and reuse the old
1290 * mbuf. In the unlikely case that the old mbuf can't be
1291 * reloaded either, explicitly panic.
1292 */
1293 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1294 if (mnew == NULL) {
1295 if_statinc(ifp, if_ierrors);
1296 goto skip;
1297 }
1298
1299 MCLGET(mnew, M_DONTWAIT);
1300 if (!(mnew->m_flags & M_EXT)) {
1301 m_freem(mnew);
1302 if_statinc(ifp, if_ierrors);
1303 goto skip;
1304 }
1305
1306 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1307 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1308 bus_dmamap_unload(sc->sc_dmat, data->map);
1309
1310 error = bus_dmamap_load(sc->sc_dmat, data->map,
1311 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1312 if (error != 0) {
1313 m_freem(mnew);
1314
1315 /* try to reload the old mbuf */
1316 error = bus_dmamap_load(sc->sc_dmat, data->map,
1317 mtod(data->m, void *), MCLBYTES, NULL,
1318 BUS_DMA_NOWAIT);
1319 if (error != 0) {
1320 /* very unlikely that it will fail... */
1321 panic("%s: could not load old rx mbuf",
1322 device_xname(sc->sc_dev));
1323 }
1324 /* physical address may have changed */
1325 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1326 if_statinc(ifp, if_ierrors);
1327 goto skip;
1328 }
1329
1330 /*
1331 * New mbuf successfully loaded, update Rx ring and continue
1332 * processing.
1333 */
1334 m = data->m;
1335 data->m = mnew;
1336 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1337
1338 /* finalize mbuf */
1339 m_set_rcvif(m, ifp);
1340 m->m_pkthdr.len = m->m_len =
1341 (le32toh(desc->flags) >> 16) & 0xfff;
1342
1343 s = splnet();
1344
1345 if (sc->sc_drvbpf != NULL) {
1346 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1347 uint32_t tsf_lo, tsf_hi;
1348
1349 /* get timestamp (low and high 32 bits) */
1350 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1351 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1352
1353 tap->wr_tsf =
1354 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1355 tap->wr_flags = 0;
1356 tap->wr_rate = rt2560_rxrate(desc);
1357 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1358 tap->wr_chan_flags =
1359 htole16(ic->ic_ibss_chan->ic_flags);
1360 tap->wr_antenna = sc->rx_ant;
1361 tap->wr_antsignal = desc->rssi;
1362
1363 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1364 BPF_D_IN);
1365 }
1366
1367 wh = mtod(m, struct ieee80211_frame *);
1368 ni = ieee80211_find_rxnode(ic,
1369 (struct ieee80211_frame_min *)wh);
1370
1371 /* send the frame to the 802.11 layer */
1372 ieee80211_input(ic, m, ni, desc->rssi, 0);
1373
1374 /* give rssi to the rate adatation algorithm */
1375 rn = (struct rt2560_node *)ni;
1376 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1377
1378 /* node is no longer needed */
1379 ieee80211_free_node(ni);
1380
1381 splx(s);
1382
1383 skip: desc->flags = htole32(RT2560_RX_BUSY);
1384
1385 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1386 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1387 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1388
1389 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1390
1391 sc->rxq.cur_decrypt =
1392 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1393 }
1394
1395 /*
1396 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1397 * without calling if_start().
1398 */
1399 s = splnet();
1400 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1401 rt2560_start(ifp);
1402 splx(s);
1403 }
1404
1405 /*
1406 * Some frames were received. Pass them to the hardware cipher engine before
1407 * sending them to the 802.11 layer.
1408 */
1409 void
1410 rt2560_rx_intr(struct rt2560_softc *sc)
1411 {
1412 struct rt2560_rx_desc *desc;
1413 struct rt2560_rx_data *data;
1414
1415 for (;;) {
1416 desc = &sc->rxq.desc[sc->rxq.cur];
1417 data = &sc->rxq.data[sc->rxq.cur];
1418
1419 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1420 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1421 BUS_DMASYNC_POSTREAD);
1422
1423 if (le32toh(desc->flags) &
1424 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1425 break;
1426
1427 data->drop = 0;
1428
1429 if (le32toh(desc->flags) &
1430 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1431 /*
1432 * This should not happen since we did not request
1433 * to receive those frames when we filled RXCSR0.
1434 */
1435 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1436 le32toh(desc->flags)));
1437 data->drop = 1;
1438 }
1439
1440 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1441 DPRINTFN(5, ("bad length\n"));
1442 data->drop = 1;
1443 }
1444
1445 /* mark the frame for decryption */
1446 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1447
1448 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1449 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1450 BUS_DMASYNC_PREWRITE);
1451
1452 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1453
1454 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1455 }
1456
1457 /* kick decrypt */
1458 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1459 }
1460
1461 /*
1462 * This function is called periodically in IBSS mode when a new beacon must be
1463 * sent out.
1464 */
1465 static void
1466 rt2560_beacon_expire(struct rt2560_softc *sc)
1467 {
1468 struct ieee80211com *ic = &sc->sc_ic;
1469 struct rt2560_tx_data *data;
1470
1471 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1472 ic->ic_opmode != IEEE80211_M_HOSTAP)
1473 return;
1474
1475 data = &sc->bcnq.data[sc->bcnq.next];
1476
1477 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1478 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1479 bus_dmamap_unload(sc->sc_dmat, data->map);
1480
1481 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1482
1483 bpf_mtap3(ic->ic_rawbpf, data->m, BPF_D_OUT);
1484 rt2560_tx_bcn(sc, data->m, data->ni);
1485
1486 DPRINTFN(15, ("beacon expired\n"));
1487
1488 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1489 }
1490
1491 static void
1492 rt2560_wakeup_expire(struct rt2560_softc *sc)
1493 {
1494 DPRINTFN(15, ("wakeup expired\n"));
1495 }
1496
1497 int
1498 rt2560_intr(void *arg)
1499 {
1500 struct rt2560_softc *sc = arg;
1501 struct ifnet *ifp = &sc->sc_if;
1502 uint32_t r;
1503
1504 if (!device_is_active(sc->sc_dev))
1505 return 0;
1506
1507 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1508 return 0; /* not for us */
1509
1510 /* disable interrupts */
1511 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1512
1513 /* don't re-enable interrupts if we're shutting down */
1514 if (!(ifp->if_flags & IFF_RUNNING))
1515 return 0;
1516
1517 softint_schedule(sc->sc_soft_ih);
1518 return 1;
1519 }
1520
1521 static void
1522 rt2560_softintr(void *arg)
1523 {
1524 struct rt2560_softc *sc = arg;
1525 struct ifnet *ifp = &sc->sc_if;
1526 uint32_t r;
1527
1528 if (!device_is_active(sc->sc_dev) || !(ifp->if_flags & IFF_RUNNING))
1529 return;
1530
1531 if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1532 goto out;
1533
1534 /* acknowledge interrupts */
1535 RAL_WRITE(sc, RT2560_CSR7, r);
1536
1537 if (r & RT2560_BEACON_EXPIRE)
1538 rt2560_beacon_expire(sc);
1539
1540 if (r & RT2560_WAKEUP_EXPIRE)
1541 rt2560_wakeup_expire(sc);
1542
1543 if (r & RT2560_ENCRYPTION_DONE)
1544 rt2560_encryption_intr(sc);
1545
1546 if (r & RT2560_TX_DONE)
1547 rt2560_tx_intr(sc);
1548
1549 if (r & RT2560_PRIO_DONE)
1550 rt2560_prio_intr(sc);
1551
1552 if (r & RT2560_DECRYPTION_DONE)
1553 rt2560_decryption_intr(sc);
1554
1555 if (r & RT2560_RX_DONE)
1556 rt2560_rx_intr(sc);
1557
1558 out:
1559 /* re-enable interrupts */
1560 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1561 }
1562
1563 /* quickly determine if a given rate is CCK or OFDM */
1564 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1565
1566 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1567 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1568
1569 #define RAL_SIFS 10 /* us */
1570
1571 #define RT2560_RXTX_TURNAROUND 10 /* us */
1572
1573 /*
1574 * This function is only used by the Rx radiotap code. It returns the rate at
1575 * which a given frame was received.
1576 */
1577 static uint8_t
1578 rt2560_rxrate(struct rt2560_rx_desc *desc)
1579 {
1580 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1581 /* reverse function of rt2560_plcp_signal */
1582 switch (desc->rate) {
1583 case 0xb: return 12;
1584 case 0xf: return 18;
1585 case 0xa: return 24;
1586 case 0xe: return 36;
1587 case 0x9: return 48;
1588 case 0xd: return 72;
1589 case 0x8: return 96;
1590 case 0xc: return 108;
1591 }
1592 } else {
1593 if (desc->rate == 10)
1594 return 2;
1595 if (desc->rate == 20)
1596 return 4;
1597 if (desc->rate == 55)
1598 return 11;
1599 if (desc->rate == 110)
1600 return 22;
1601 }
1602 return 2; /* should not get there */
1603 }
1604
1605 /*
1606 * Return the expected ack rate for a frame transmitted at rate `rate'.
1607 * XXX: this should depend on the destination node basic rate set.
1608 */
1609 static int
1610 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1611 {
1612 switch (rate) {
1613 /* CCK rates */
1614 case 2:
1615 return 2;
1616 case 4:
1617 case 11:
1618 case 22:
1619 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1620
1621 /* OFDM rates */
1622 case 12:
1623 case 18:
1624 return 12;
1625 case 24:
1626 case 36:
1627 return 24;
1628 case 48:
1629 case 72:
1630 case 96:
1631 case 108:
1632 return 48;
1633 }
1634
1635 /* default to 1Mbps */
1636 return 2;
1637 }
1638
1639 /*
1640 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1641 * The function automatically determines the operating mode depending on the
1642 * given rate. `flags' indicates whether short preamble is in use or not.
1643 */
1644 static uint16_t
1645 rt2560_txtime(int len, int rate, uint32_t flags)
1646 {
1647 uint16_t txtime;
1648
1649 if (RAL_RATE_IS_OFDM(rate)) {
1650 /* IEEE Std 802.11a-1999, pp. 37 */
1651 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1652 txtime = 16 + 4 + 4 * txtime + 6;
1653 } else {
1654 /* IEEE Std 802.11b-1999, pp. 28 */
1655 txtime = (16 * len + rate - 1) / rate;
1656 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1657 txtime += 72 + 24;
1658 else
1659 txtime += 144 + 48;
1660 }
1661 return txtime;
1662 }
1663
1664 static uint8_t
1665 rt2560_plcp_signal(int rate)
1666 {
1667 switch (rate) {
1668 /* CCK rates (returned values are device-dependent) */
1669 case 2: return 0x0;
1670 case 4: return 0x1;
1671 case 11: return 0x2;
1672 case 22: return 0x3;
1673
1674 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1675 case 12: return 0xb;
1676 case 18: return 0xf;
1677 case 24: return 0xa;
1678 case 36: return 0xe;
1679 case 48: return 0x9;
1680 case 72: return 0xd;
1681 case 96: return 0x8;
1682 case 108: return 0xc;
1683
1684 /* unsupported rates (should not get there) */
1685 default: return 0xff;
1686 }
1687 }
1688
1689 static void
1690 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1691 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1692 {
1693 struct ieee80211com *ic = &sc->sc_ic;
1694 uint16_t plcp_length;
1695 int remainder;
1696
1697 desc->flags = htole32(flags);
1698 desc->flags |= htole32(len << 16);
1699 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1700 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1701
1702 desc->physaddr = htole32(physaddr);
1703 desc->wme = htole16(
1704 RT2560_AIFSN(2) |
1705 RT2560_LOGCWMIN(3) |
1706 RT2560_LOGCWMAX(8));
1707
1708 /* setup PLCP fields */
1709 desc->plcp_signal = rt2560_plcp_signal(rate);
1710 desc->plcp_service = 4;
1711
1712 len += IEEE80211_CRC_LEN;
1713 if (RAL_RATE_IS_OFDM(rate)) {
1714 desc->flags |= htole32(RT2560_TX_OFDM);
1715
1716 plcp_length = len & 0xfff;
1717 desc->plcp_length_hi = plcp_length >> 6;
1718 desc->plcp_length_lo = plcp_length & 0x3f;
1719 } else {
1720 plcp_length = (16 * len + rate - 1) / rate;
1721 if (rate == 22) {
1722 remainder = (16 * len) % 22;
1723 if (remainder != 0 && remainder < 7)
1724 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1725 }
1726 desc->plcp_length_hi = plcp_length >> 8;
1727 desc->plcp_length_lo = plcp_length & 0xff;
1728
1729 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1730 desc->plcp_signal |= 0x08;
1731 }
1732 }
1733
1734 static int
1735 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1736 struct ieee80211_node *ni)
1737 {
1738 struct rt2560_tx_desc *desc;
1739 struct rt2560_tx_data *data;
1740 int rate, error;
1741
1742 desc = &sc->bcnq.desc[sc->bcnq.cur];
1743 data = &sc->bcnq.data[sc->bcnq.cur];
1744
1745 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1746
1747 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1748 BUS_DMA_NOWAIT);
1749 if (error != 0) {
1750 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1751 error);
1752 m_freem(m0);
1753 return error;
1754 }
1755
1756 data->m = m0;
1757 data->ni = ni;
1758
1759 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1760 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1761 data->map->dm_segs->ds_addr);
1762
1763 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1764 BUS_DMASYNC_PREWRITE);
1765 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1766 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1767 BUS_DMASYNC_PREWRITE);
1768
1769 return 0;
1770 }
1771
1772 static int
1773 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1774 struct ieee80211_node *ni)
1775 {
1776 struct ieee80211com *ic = &sc->sc_ic;
1777 struct rt2560_tx_desc *desc;
1778 struct rt2560_tx_data *data;
1779 struct ieee80211_frame *wh;
1780 struct ieee80211_key *k;
1781 uint16_t dur;
1782 uint32_t flags = 0;
1783 int rate, error;
1784
1785 desc = &sc->prioq.desc[sc->prioq.cur];
1786 data = &sc->prioq.data[sc->prioq.cur];
1787
1788 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1789
1790 wh = mtod(m0, struct ieee80211_frame *);
1791
1792 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1793 k = ieee80211_crypto_encap(ic, ni, m0);
1794 if (k == NULL) {
1795 m_freem(m0);
1796 return ENOBUFS;
1797 }
1798
1799 /* packet header may have moved, reset our local pointer */
1800 wh = mtod(m0, struct ieee80211_frame *);
1801 }
1802
1803 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1804 BUS_DMA_NOWAIT);
1805 if (error != 0) {
1806 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1807 error);
1808 m_freem(m0);
1809 return error;
1810 }
1811
1812 if (sc->sc_drvbpf != NULL) {
1813 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1814
1815 tap->wt_flags = 0;
1816 tap->wt_rate = rate;
1817 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1818 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1819 tap->wt_antenna = sc->tx_ant;
1820
1821 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1822 }
1823
1824 data->m = m0;
1825 data->ni = ni;
1826
1827 wh = mtod(m0, struct ieee80211_frame *);
1828
1829 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1830 flags |= RT2560_TX_ACK;
1831
1832 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1833 RAL_SIFS;
1834 *(uint16_t *)wh->i_dur = htole16(dur);
1835
1836 /* tell hardware to add timestamp for probe responses */
1837 if ((wh->i_fc[0] &
1838 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1839 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1840 flags |= RT2560_TX_TIMESTAMP;
1841 }
1842
1843 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1844 data->map->dm_segs->ds_addr);
1845
1846 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1847 BUS_DMASYNC_PREWRITE);
1848 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1849 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1850 BUS_DMASYNC_PREWRITE);
1851
1852 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1853 m0->m_pkthdr.len, sc->prioq.cur, rate));
1854
1855 /* kick prio */
1856 sc->prioq.queued++;
1857 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1858 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1859
1860 return 0;
1861 }
1862
1863 /*
1864 * Build a RTS control frame.
1865 */
1866 static struct mbuf *
1867 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1868 uint16_t dur)
1869 {
1870 struct ieee80211_frame_rts *rts;
1871 struct mbuf *m;
1872
1873 MGETHDR(m, M_DONTWAIT, MT_DATA);
1874 if (m == NULL) {
1875 sc->sc_ic.ic_stats.is_tx_nobuf++;
1876 aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1877 return NULL;
1878 }
1879
1880 rts = mtod(m, struct ieee80211_frame_rts *);
1881
1882 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1883 IEEE80211_FC0_SUBTYPE_RTS;
1884 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1885 *(uint16_t *)rts->i_dur = htole16(dur);
1886 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1887 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1888
1889 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1890
1891 return m;
1892 }
1893
1894 static int
1895 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1896 struct ieee80211_node *ni)
1897 {
1898 struct ieee80211com *ic = &sc->sc_ic;
1899 struct rt2560_tx_desc *desc;
1900 struct rt2560_tx_data *data;
1901 struct rt2560_node *rn;
1902 struct ieee80211_rateset *rs;
1903 struct ieee80211_frame *wh;
1904 struct ieee80211_key *k;
1905 struct mbuf *mnew;
1906 uint16_t dur;
1907 uint32_t flags = 0;
1908 int rate, error;
1909
1910 wh = mtod(m0, struct ieee80211_frame *);
1911
1912 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1913 rs = &ic->ic_sup_rates[ic->ic_curmode];
1914 rate = rs->rs_rates[ic->ic_fixed_rate];
1915 } else {
1916 rs = &ni->ni_rates;
1917 rn = (struct rt2560_node *)ni;
1918 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1919 wh, m0->m_pkthdr.len, -1, NULL, 0);
1920 rate = rs->rs_rates[ni->ni_txrate];
1921 }
1922 rate &= IEEE80211_RATE_VAL;
1923
1924 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1925 k = ieee80211_crypto_encap(ic, ni, m0);
1926 if (k == NULL) {
1927 m_freem(m0);
1928 return ENOBUFS;
1929 }
1930
1931 /* packet header may have moved, reset our local pointer */
1932 wh = mtod(m0, struct ieee80211_frame *);
1933 }
1934
1935 /*
1936 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1937 * for directed frames only when the length of the MPDU is greater
1938 * than the length threshold indicated by [...]" ic_rtsthreshold.
1939 */
1940 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1941 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1942 struct mbuf *m;
1943 int rtsrate, ackrate;
1944
1945 rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1946 ackrate = rt2560_ack_rate(ic, rate);
1947
1948 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1949 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1950 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1951 3 * RAL_SIFS;
1952
1953 m = rt2560_get_rts(sc, wh, dur);
1954
1955 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1956 data = &sc->txq.data[sc->txq.cur_encrypt];
1957
1958 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1959 BUS_DMA_NOWAIT);
1960 if (error != 0) {
1961 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1962 error);
1963 m_freem(m);
1964 m_freem(m0);
1965 return error;
1966 }
1967
1968 /* avoid multiple free() of the same node for each fragment */
1969 ieee80211_ref_node(ni);
1970
1971 data->m = m;
1972 data->ni = ni;
1973
1974 /* RTS frames are not taken into account for rssadapt */
1975 data->id.id_node = NULL;
1976
1977 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1978 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1979 data->map->dm_segs->ds_addr);
1980
1981 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1982 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1983 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1984 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1985 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1986
1987 sc->txq.queued++;
1988 sc->txq.cur_encrypt =
1989 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1990
1991 /*
1992 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1993 * asynchronous data frame shall be transmitted after the CTS
1994 * frame and a SIFS period.
1995 */
1996 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1997 }
1998
1999 data = &sc->txq.data[sc->txq.cur_encrypt];
2000 desc = &sc->txq.desc[sc->txq.cur_encrypt];
2001
2002 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2003 BUS_DMA_NOWAIT);
2004 if (error != 0 && error != EFBIG) {
2005 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2006 error);
2007 m_freem(m0);
2008 return error;
2009 }
2010 if (error != 0) {
2011 /* too many fragments, linearize */
2012
2013 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2014 if (mnew == NULL) {
2015 m_freem(m0);
2016 return ENOMEM;
2017 }
2018
2019 m_copy_pkthdr(mnew, m0);
2020 if (m0->m_pkthdr.len > MHLEN) {
2021 MCLGET(mnew, M_DONTWAIT);
2022 if (!(mnew->m_flags & M_EXT)) {
2023 m_freem(m0);
2024 m_freem(mnew);
2025 return ENOMEM;
2026 }
2027 }
2028
2029 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2030 m_freem(m0);
2031 mnew->m_len = mnew->m_pkthdr.len;
2032 m0 = mnew;
2033
2034 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2035 BUS_DMA_NOWAIT);
2036 if (error != 0) {
2037 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2038 error);
2039 m_freem(m0);
2040 return error;
2041 }
2042
2043 /* packet header have moved, reset our local pointer */
2044 wh = mtod(m0, struct ieee80211_frame *);
2045 }
2046
2047 if (sc->sc_drvbpf != NULL) {
2048 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2049
2050 tap->wt_flags = 0;
2051 tap->wt_rate = rate;
2052 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2053 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2054 tap->wt_antenna = sc->tx_ant;
2055
2056 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2057 }
2058
2059 data->m = m0;
2060 data->ni = ni;
2061
2062 /* remember link conditions for rate adaptation algorithm */
2063 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2064 data->id.id_len = m0->m_pkthdr.len;
2065 data->id.id_rateidx = ni->ni_txrate;
2066 data->id.id_node = ni;
2067 data->id.id_rssi = ni->ni_rssi;
2068 } else
2069 data->id.id_node = NULL;
2070
2071 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2072 flags |= RT2560_TX_ACK;
2073
2074 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2075 ic->ic_flags) + RAL_SIFS;
2076 *(uint16_t *)wh->i_dur = htole16(dur);
2077 }
2078
2079 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2080 data->map->dm_segs->ds_addr);
2081
2082 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2083 BUS_DMASYNC_PREWRITE);
2084 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2085 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2086 BUS_DMASYNC_PREWRITE);
2087
2088 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2089 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2090
2091 /* kick encrypt */
2092 sc->txq.queued++;
2093 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2094 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2095
2096 return 0;
2097 }
2098
2099 static void
2100 rt2560_start(struct ifnet *ifp)
2101 {
2102 struct rt2560_softc *sc = ifp->if_softc;
2103 struct ieee80211com *ic = &sc->sc_ic;
2104 struct mbuf *m0;
2105 struct ieee80211_node *ni;
2106 struct ether_header *eh;
2107
2108 /*
2109 * net80211 may still try to send management frames even if the
2110 * IFF_RUNNING flag is not set...
2111 */
2112 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2113 return;
2114
2115 for (;;) {
2116 IF_POLL(&ic->ic_mgtq, m0);
2117 if (m0 != NULL) {
2118 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2119 ifp->if_flags |= IFF_OACTIVE;
2120 break;
2121 }
2122 IF_DEQUEUE(&ic->ic_mgtq, m0);
2123 if (m0 == NULL)
2124 break;
2125
2126 ni = M_GETCTX(m0, struct ieee80211_node *);
2127 M_CLEARCTX(m0);
2128 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2129 if (rt2560_tx_mgt(sc, m0, ni) != 0)
2130 break;
2131
2132 } else {
2133 if (ic->ic_state != IEEE80211_S_RUN)
2134 break;
2135 IFQ_DEQUEUE(&ifp->if_snd, m0);
2136 if (m0 == NULL)
2137 break;
2138 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2139 ifp->if_flags |= IFF_OACTIVE;
2140 break;
2141 }
2142
2143 if (m0->m_len < sizeof (struct ether_header) &&
2144 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2145 continue;
2146
2147 eh = mtod(m0, struct ether_header *);
2148 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2149 if (ni == NULL) {
2150 m_freem(m0);
2151 continue;
2152 }
2153 bpf_mtap(ifp, m0, BPF_D_OUT);
2154
2155 m0 = ieee80211_encap(ic, m0, ni);
2156 if (m0 == NULL) {
2157 ieee80211_free_node(ni);
2158 continue;
2159 }
2160
2161 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2162
2163 if (rt2560_tx_data(sc, m0, ni) != 0) {
2164 ieee80211_free_node(ni);
2165 if_statinc(ifp, if_oerrors);
2166 break;
2167 }
2168 }
2169
2170 sc->sc_tx_timer = 5;
2171 ifp->if_timer = 1;
2172 }
2173 }
2174
2175 static void
2176 rt2560_watchdog(struct ifnet *ifp)
2177 {
2178 struct rt2560_softc *sc = ifp->if_softc;
2179
2180 ifp->if_timer = 0;
2181
2182 if (sc->sc_tx_timer > 0) {
2183 if (--sc->sc_tx_timer == 0) {
2184 aprint_error_dev(sc->sc_dev, "device timeout\n");
2185 rt2560_init(ifp);
2186 if_statinc(ifp, if_oerrors);
2187 return;
2188 }
2189 ifp->if_timer = 1;
2190 }
2191
2192 ieee80211_watchdog(&sc->sc_ic);
2193 }
2194
2195 /*
2196 * This function allows for fast channel switching in monitor mode (used by
2197 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2198 * generate a new beacon frame.
2199 */
2200 static int
2201 rt2560_reset(struct ifnet *ifp)
2202 {
2203 struct rt2560_softc *sc = ifp->if_softc;
2204 struct ieee80211com *ic = &sc->sc_ic;
2205
2206 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2207 return ENETRESET;
2208
2209 rt2560_set_chan(sc, ic->ic_curchan);
2210
2211 return 0;
2212 }
2213
2214 int
2215 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2216 {
2217 struct rt2560_softc *sc = ifp->if_softc;
2218 struct ieee80211com *ic = &sc->sc_ic;
2219 int s, error = 0;
2220
2221 s = splnet();
2222
2223 switch (cmd) {
2224 case SIOCSIFFLAGS:
2225 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2226 break;
2227 if (ifp->if_flags & IFF_UP) {
2228 if (ifp->if_flags & IFF_RUNNING)
2229 rt2560_update_promisc(sc);
2230 else
2231 rt2560_init(ifp);
2232 } else {
2233 if (ifp->if_flags & IFF_RUNNING)
2234 rt2560_stop(ifp, 1);
2235 }
2236 break;
2237
2238 case SIOCADDMULTI:
2239 case SIOCDELMULTI:
2240 /* XXX no h/w multicast filter? --dyoung */
2241 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2242 error = 0;
2243 break;
2244
2245 case SIOCS80211CHANNEL:
2246 /*
2247 * This allows for fast channel switching in monitor mode
2248 * (used by kismet). In IBSS mode, we must explicitly reset
2249 * the interface to generate a new beacon frame.
2250 */
2251 error = ieee80211_ioctl(ic, cmd, data);
2252 if (error == ENETRESET &&
2253 ic->ic_opmode == IEEE80211_M_MONITOR) {
2254 rt2560_set_chan(sc, ic->ic_ibss_chan);
2255 error = 0;
2256 }
2257 break;
2258
2259 default:
2260 error = ieee80211_ioctl(ic, cmd, data);
2261 }
2262
2263 if (error == ENETRESET) {
2264 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2265 (IFF_UP | IFF_RUNNING))
2266 rt2560_init(ifp);
2267 error = 0;
2268 }
2269
2270 splx(s);
2271
2272 return error;
2273 }
2274
2275 static void
2276 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2277 {
2278 uint32_t tmp;
2279 int ntries;
2280
2281 for (ntries = 0; ntries < 100; ntries++) {
2282 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2283 break;
2284 DELAY(1);
2285 }
2286 if (ntries == 100) {
2287 aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2288 return;
2289 }
2290
2291 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2292 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2293
2294 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2295 }
2296
2297 static uint8_t
2298 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2299 {
2300 uint32_t val;
2301 int ntries;
2302
2303 val = RT2560_BBP_BUSY | reg << 8;
2304 RAL_WRITE(sc, RT2560_BBPCSR, val);
2305
2306 for (ntries = 0; ntries < 100; ntries++) {
2307 val = RAL_READ(sc, RT2560_BBPCSR);
2308 if (!(val & RT2560_BBP_BUSY))
2309 return val & 0xff;
2310 DELAY(1);
2311 }
2312
2313 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2314 return 0;
2315 }
2316
2317 static void
2318 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2319 {
2320 uint32_t tmp;
2321 int ntries;
2322
2323 for (ntries = 0; ntries < 100; ntries++) {
2324 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2325 break;
2326 DELAY(1);
2327 }
2328 if (ntries == 100) {
2329 aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2330 return;
2331 }
2332
2333 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2334 (reg & 0x3);
2335 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2336
2337 /* remember last written value in sc */
2338 sc->rf_regs[reg] = val;
2339
2340 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2341 }
2342
2343 static void
2344 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2345 {
2346 struct ieee80211com *ic = &sc->sc_ic;
2347 uint8_t power, tmp;
2348 u_int i, chan;
2349
2350 chan = ieee80211_chan2ieee(ic, c);
2351 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2352 return;
2353
2354 if (IEEE80211_IS_CHAN_2GHZ(c))
2355 power = uimin(sc->txpow[chan - 1], 31);
2356 else
2357 power = 31;
2358
2359 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2360
2361 switch (sc->rf_rev) {
2362 case RT2560_RF_2522:
2363 rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2364 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2365 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2366 break;
2367
2368 case RT2560_RF_2523:
2369 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2370 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2371 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2372 rt2560_rf_write(sc, RT2560_RF4,
2373 (chan == 14) ? 0x00280 : 0x00286);
2374 break;
2375
2376 case RT2560_RF_2524:
2377 rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2378 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2379 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2380 rt2560_rf_write(sc, RT2560_RF4,
2381 (chan == 14) ? 0x00280 : 0x00286);
2382 break;
2383
2384 case RT2560_RF_2525:
2385 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2386 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2387 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2388 rt2560_rf_write(sc, RT2560_RF4,
2389 (chan == 14) ? 0x00280 : 0x00286);
2390
2391 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2392 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2393 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2394 rt2560_rf_write(sc, RT2560_RF4,
2395 (chan == 14) ? 0x00280 : 0x00286);
2396 break;
2397
2398 case RT2560_RF_2525E:
2399 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2400 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2401 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2402 rt2560_rf_write(sc, RT2560_RF4,
2403 (chan == 14) ? 0x00286 : 0x00282);
2404 break;
2405
2406 case RT2560_RF_2526:
2407 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2408 rt2560_rf_write(sc, RT2560_RF4,
2409 (chan & 1) ? 0x00386 : 0x00381);
2410 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2411
2412 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2413 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2414 rt2560_rf_write(sc, RT2560_RF4,
2415 (chan & 1) ? 0x00386 : 0x00381);
2416 break;
2417
2418 /* dual-band RF */
2419 case RT2560_RF_5222:
2420 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2421
2422 rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2423 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2424 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2425 rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2426 break;
2427 }
2428
2429 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2430 ic->ic_state != IEEE80211_S_SCAN) {
2431 /* set Japan filter bit for channel 14 */
2432 tmp = rt2560_bbp_read(sc, 70);
2433
2434 tmp &= ~RT2560_JAPAN_FILTER;
2435 if (chan == 14)
2436 tmp |= RT2560_JAPAN_FILTER;
2437
2438 rt2560_bbp_write(sc, 70, tmp);
2439
2440 DELAY(1000); /* RF needs a 1ms delay here */
2441 rt2560_disable_rf_tune(sc);
2442
2443 /* clear CRC errors */
2444 RAL_READ(sc, RT2560_CNT0);
2445 }
2446 }
2447
2448 /*
2449 * Disable RF auto-tuning.
2450 */
2451 static void
2452 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2453 {
2454 uint32_t tmp;
2455
2456 if (sc->rf_rev != RT2560_RF_2523) {
2457 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2458 rt2560_rf_write(sc, RT2560_RF1, tmp);
2459 }
2460
2461 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2462 rt2560_rf_write(sc, RT2560_RF3, tmp);
2463
2464 DPRINTFN(2, ("disabling RF autotune\n"));
2465 }
2466
2467 /*
2468 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2469 * synchronization.
2470 */
2471 static void
2472 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2473 {
2474 struct ieee80211com *ic = &sc->sc_ic;
2475 uint16_t logcwmin, preload;
2476 uint32_t tmp;
2477
2478 /* first, disable TSF synchronization */
2479 RAL_WRITE(sc, RT2560_CSR14, 0);
2480
2481 tmp = 16 * ic->ic_bss->ni_intval;
2482 RAL_WRITE(sc, RT2560_CSR12, tmp);
2483
2484 RAL_WRITE(sc, RT2560_CSR13, 0);
2485
2486 logcwmin = 5;
2487 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2488 tmp = logcwmin << 16 | preload;
2489 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2490
2491 /* finally, enable TSF synchronization */
2492 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2493 if (ic->ic_opmode == IEEE80211_M_STA)
2494 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2495 else
2496 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2497 RT2560_ENABLE_BEACON_GENERATOR;
2498 RAL_WRITE(sc, RT2560_CSR14, tmp);
2499
2500 DPRINTF(("enabling TSF synchronization\n"));
2501 }
2502
2503 static void
2504 rt2560_update_plcp(struct rt2560_softc *sc)
2505 {
2506 struct ieee80211com *ic = &sc->sc_ic;
2507
2508 /* no short preamble for 1Mbps */
2509 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2510
2511 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2512 /* values taken from the reference driver */
2513 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2514 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2515 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2516 } else {
2517 /* same values as above or'ed 0x8 */
2518 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2519 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2520 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2521 }
2522
2523 DPRINTF(("updating PLCP for %s preamble\n",
2524 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2525 }
2526
2527 /*
2528 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2529 * know how these values are computed.
2530 */
2531 static void
2532 rt2560_update_slot(struct ifnet *ifp)
2533 {
2534 struct rt2560_softc *sc = ifp->if_softc;
2535 struct ieee80211com *ic = &sc->sc_ic;
2536 uint8_t slottime;
2537 uint16_t sifs, pifs, difs, eifs;
2538 uint32_t tmp;
2539
2540 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2541
2542 /* define the MAC slot boundaries */
2543 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2544 pifs = sifs + slottime;
2545 difs = sifs + 2 * slottime;
2546 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2547
2548 tmp = RAL_READ(sc, RT2560_CSR11);
2549 tmp = (tmp & ~0x1f00) | slottime << 8;
2550 RAL_WRITE(sc, RT2560_CSR11, tmp);
2551
2552 tmp = pifs << 16 | sifs;
2553 RAL_WRITE(sc, RT2560_CSR18, tmp);
2554
2555 tmp = eifs << 16 | difs;
2556 RAL_WRITE(sc, RT2560_CSR19, tmp);
2557
2558 DPRINTF(("setting slottime to %uus\n", slottime));
2559 }
2560
2561 static void
2562 rt2560_set_basicrates(struct rt2560_softc *sc)
2563 {
2564 struct ieee80211com *ic = &sc->sc_ic;
2565
2566 /* update basic rate set */
2567 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2568 /* 11b basic rates: 1, 2Mbps */
2569 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2570 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2571 /* 11a basic rates: 6, 12, 24Mbps */
2572 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2573 } else {
2574 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2575 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2576 }
2577 }
2578
2579 static void
2580 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2581 {
2582 uint32_t tmp;
2583
2584 /* set ON period to 70ms and OFF period to 30ms */
2585 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2586 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2587 }
2588
2589 static void
2590 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2591 {
2592 uint32_t tmp;
2593
2594 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2595 RAL_WRITE(sc, RT2560_CSR5, tmp);
2596
2597 tmp = bssid[4] | bssid[5] << 8;
2598 RAL_WRITE(sc, RT2560_CSR6, tmp);
2599
2600 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2601 }
2602
2603 static void
2604 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2605 {
2606 uint32_t tmp;
2607
2608 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2609 RAL_WRITE(sc, RT2560_CSR3, tmp);
2610
2611 tmp = addr[4] | addr[5] << 8;
2612 RAL_WRITE(sc, RT2560_CSR4, tmp);
2613
2614 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2615 }
2616
2617 static void
2618 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2619 {
2620 uint32_t tmp;
2621
2622 tmp = RAL_READ(sc, RT2560_CSR3);
2623 addr[0] = tmp & 0xff;
2624 addr[1] = (tmp >> 8) & 0xff;
2625 addr[2] = (tmp >> 16) & 0xff;
2626 addr[3] = (tmp >> 24);
2627
2628 tmp = RAL_READ(sc, RT2560_CSR4);
2629 addr[4] = tmp & 0xff;
2630 addr[5] = (tmp >> 8) & 0xff;
2631 }
2632
2633 static void
2634 rt2560_update_promisc(struct rt2560_softc *sc)
2635 {
2636 struct ifnet *ifp = &sc->sc_if;
2637 uint32_t tmp;
2638
2639 tmp = RAL_READ(sc, RT2560_RXCSR0);
2640
2641 tmp &= ~RT2560_DROP_NOT_TO_ME;
2642 if (!(ifp->if_flags & IFF_PROMISC))
2643 tmp |= RT2560_DROP_NOT_TO_ME;
2644
2645 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2646
2647 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2648 "entering" : "leaving"));
2649 }
2650
2651 static void
2652 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2653 {
2654 uint32_t tmp;
2655 uint8_t tx;
2656
2657 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2658 if (antenna == 1)
2659 tx |= RT2560_BBP_ANTA;
2660 else if (antenna == 2)
2661 tx |= RT2560_BBP_ANTB;
2662 else
2663 tx |= RT2560_BBP_DIVERSITY;
2664
2665 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2666 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2667 sc->rf_rev == RT2560_RF_5222)
2668 tx |= RT2560_BBP_FLIPIQ;
2669
2670 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2671
2672 /* update values for CCK and OFDM in BBPCSR1 */
2673 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2674 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2675 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2676 }
2677
2678 static void
2679 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2680 {
2681 uint8_t rx;
2682
2683 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2684 if (antenna == 1)
2685 rx |= RT2560_BBP_ANTA;
2686 else if (antenna == 2)
2687 rx |= RT2560_BBP_ANTB;
2688 else
2689 rx |= RT2560_BBP_DIVERSITY;
2690
2691 /* need to force no I/Q flip for RF 2525e and 2526 */
2692 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2693 rx &= ~RT2560_BBP_FLIPIQ;
2694
2695 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2696 }
2697
2698 static const char *
2699 rt2560_get_rf(int rev)
2700 {
2701 switch (rev) {
2702 case RT2560_RF_2522: return "RT2522";
2703 case RT2560_RF_2523: return "RT2523";
2704 case RT2560_RF_2524: return "RT2524";
2705 case RT2560_RF_2525: return "RT2525";
2706 case RT2560_RF_2525E: return "RT2525e";
2707 case RT2560_RF_2526: return "RT2526";
2708 case RT2560_RF_5222: return "RT5222";
2709 default: return "unknown";
2710 }
2711 }
2712
2713 static void
2714 rt2560_read_eeprom(struct rt2560_softc *sc)
2715 {
2716 uint16_t val;
2717 int i;
2718
2719 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2720 sc->rf_rev = (val >> 11) & 0x1f;
2721 sc->hw_radio = (val >> 10) & 0x1;
2722 sc->led_mode = (val >> 6) & 0x7;
2723 sc->rx_ant = (val >> 4) & 0x3;
2724 sc->tx_ant = (val >> 2) & 0x3;
2725 sc->nb_ant = val & 0x3;
2726
2727 /* read default values for BBP registers */
2728 for (i = 0; i < 16; i++) {
2729 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2730 sc->bbp_prom[i].reg = val >> 8;
2731 sc->bbp_prom[i].val = val & 0xff;
2732 }
2733
2734 /* read Tx power for all b/g channels */
2735 for (i = 0; i < 14 / 2; i++) {
2736 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2737 sc->txpow[i * 2] = val >> 8;
2738 sc->txpow[i * 2 + 1] = val & 0xff;
2739 }
2740 }
2741
2742 static int
2743 rt2560_bbp_init(struct rt2560_softc *sc)
2744 {
2745 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2746 int i, ntries;
2747
2748 /* wait for BBP to be ready */
2749 for (ntries = 0; ntries < 100; ntries++) {
2750 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2751 break;
2752 DELAY(1);
2753 }
2754 if (ntries == 100) {
2755 aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2756 return EIO;
2757 }
2758
2759 /* initialize BBP registers to default values */
2760 for (i = 0; i < N(rt2560_def_bbp); i++) {
2761 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2762 rt2560_def_bbp[i].val);
2763 }
2764 #if 0
2765 /* initialize BBP registers to values stored in EEPROM */
2766 for (i = 0; i < 16; i++) {
2767 if (sc->bbp_prom[i].reg == 0xff)
2768 continue;
2769 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2770 }
2771 #endif
2772
2773 return 0;
2774 #undef N
2775 }
2776
2777 static int
2778 rt2560_init(struct ifnet *ifp)
2779 {
2780 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2781 struct rt2560_softc *sc = ifp->if_softc;
2782 struct ieee80211com *ic = &sc->sc_ic;
2783 uint32_t tmp;
2784 int i;
2785
2786 /* for CardBus, power on the socket */
2787 if (!(sc->sc_flags & RT2560_ENABLED)) {
2788 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2789 aprint_error_dev(sc->sc_dev, "could not enable device\n");
2790 return EIO;
2791 }
2792 sc->sc_flags |= RT2560_ENABLED;
2793 }
2794
2795 rt2560_stop(ifp, 1);
2796
2797 /* setup tx rings */
2798 tmp = RT2560_PRIO_RING_COUNT << 24 |
2799 RT2560_ATIM_RING_COUNT << 16 |
2800 RT2560_TX_RING_COUNT << 8 |
2801 RT2560_TX_DESC_SIZE;
2802
2803 /* rings _must_ be initialized in this _exact_ order! */
2804 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2805 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2806 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2807 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2808 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2809
2810 /* setup rx ring */
2811 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2812
2813 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2814 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2815
2816 /* initialize MAC registers to default values */
2817 for (i = 0; i < N(rt2560_def_mac); i++)
2818 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2819
2820 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2821 rt2560_set_macaddr(sc, ic->ic_myaddr);
2822
2823 /* set basic rate set (will be updated later) */
2824 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2825
2826 rt2560_update_slot(ifp);
2827 rt2560_update_plcp(sc);
2828 rt2560_update_led(sc, 0, 0);
2829
2830 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2831 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2832
2833 if (rt2560_bbp_init(sc) != 0) {
2834 rt2560_stop(ifp, 1);
2835 return EIO;
2836 }
2837
2838 rt2560_set_txantenna(sc, 1);
2839 rt2560_set_rxantenna(sc, 1);
2840
2841 /* set default BSS channel */
2842 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2843 rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2844
2845 /* kick Rx */
2846 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2847 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2848 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2849 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2850 tmp |= RT2560_DROP_TODS;
2851 if (!(ifp->if_flags & IFF_PROMISC))
2852 tmp |= RT2560_DROP_NOT_TO_ME;
2853 }
2854 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2855
2856 /* clear old FCS and Rx FIFO errors */
2857 RAL_READ(sc, RT2560_CNT0);
2858 RAL_READ(sc, RT2560_CNT4);
2859
2860 /* clear any pending interrupts */
2861 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2862
2863 /* enable interrupts */
2864 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2865
2866 ifp->if_flags &= ~IFF_OACTIVE;
2867 ifp->if_flags |= IFF_RUNNING;
2868
2869 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2870 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2871 else
2872 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2873
2874 return 0;
2875 #undef N
2876 }
2877
2878 static void
2879 rt2560_stop(struct ifnet *ifp, int disable)
2880 {
2881 struct rt2560_softc *sc = ifp->if_softc;
2882 struct ieee80211com *ic = &sc->sc_ic;
2883
2884 sc->sc_tx_timer = 0;
2885 ifp->if_timer = 0;
2886 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2887
2888 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2889
2890 /* abort Tx */
2891 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2892
2893 /* disable Rx */
2894 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2895
2896 /* reset ASIC (and thus, BBP) */
2897 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2898 RAL_WRITE(sc, RT2560_CSR1, 0);
2899
2900 /* disable interrupts */
2901 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2902
2903 /* clear any pending interrupt */
2904 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2905
2906 /* reset Tx and Rx rings */
2907 rt2560_reset_tx_ring(sc, &sc->txq);
2908 rt2560_reset_tx_ring(sc, &sc->atimq);
2909 rt2560_reset_tx_ring(sc, &sc->prioq);
2910 rt2560_reset_tx_ring(sc, &sc->bcnq);
2911 rt2560_reset_rx_ring(sc, &sc->rxq);
2912 }
2913