Home | History | Annotate | Line # | Download | only in ic
rt2560.c revision 1.4
      1 /*	$NetBSD: rt2560.c,v 1.4 2006/09/17 23:58:51 jmcneill Exp $	*/
      2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
      3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
      4 
      5 /*-
      6  * Copyright (c) 2005, 2006
      7  *	Damien Bergamini <damien.bergamini (at) free.fr>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*-
     23  * Ralink Technology RT2560 chipset driver
     24  * http://www.ralinktech.com/
     25  */
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.4 2006/09/17 23:58:51 jmcneill Exp $");
     28 
     29 #include "bpfilter.h"
     30 
     31 #include <sys/param.h>
     32 #include <sys/sockio.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/callout.h>
     39 #include <sys/conf.h>
     40 #include <sys/device.h>
     41 
     42 #include <machine/bus.h>
     43 #include <machine/endian.h>
     44 #include <machine/intr.h>
     45 
     46 #if NBPFILTER > 0
     47 #include <net/bpf.h>
     48 #endif
     49 #include <net/if.h>
     50 #include <net/if_arp.h>
     51 #include <net/if_dl.h>
     52 #include <net/if_media.h>
     53 #include <net/if_types.h>
     54 #include <net/if_ether.h>
     55 
     56 #include <netinet/in.h>
     57 #include <netinet/in_systm.h>
     58 #include <netinet/in_var.h>
     59 #include <netinet/ip.h>
     60 
     61 #include <net80211/ieee80211_var.h>
     62 #include <net80211/ieee80211_rssadapt.h>
     63 #include <net80211/ieee80211_radiotap.h>
     64 
     65 #include <dev/ic/rt2560reg.h>
     66 #include <dev/ic/rt2560var.h>
     67 
     68 #include <dev/pci/pcireg.h>
     69 #include <dev/pci/pcivar.h>
     70 #include <dev/pci/pcidevs.h>
     71 
     72 #ifdef RAL_DEBUG
     73 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
     74 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
     75 int rt2560_debug = 0;
     76 #else
     77 #define DPRINTF(x)
     78 #define DPRINTFN(n, x)
     79 #endif
     80 
     81 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
     82 		    struct rt2560_tx_ring *, int);
     83 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
     84 		    struct rt2560_tx_ring *);
     85 static void	rt2560_free_tx_ring(struct rt2560_softc *,
     86 		    struct rt2560_tx_ring *);
     87 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
     88 		    struct rt2560_rx_ring *, int);
     89 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
     90 		    struct rt2560_rx_ring *);
     91 static void	rt2560_free_rx_ring(struct rt2560_softc *,
     92 		    struct rt2560_rx_ring *);
     93 static struct ieee80211_node *
     94 		rt2560_node_alloc(struct ieee80211_node_table *);
     95 static int	rt2560_media_change(struct ifnet *);
     96 static void	rt2560_next_scan(void *);
     97 static void	rt2560_iter_func(void *, struct ieee80211_node *);
     98 static void	rt2560_update_rssadapt(void *);
     99 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
    100     		    int);
    101 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
    102 static void	rt2560_encryption_intr(struct rt2560_softc *);
    103 static void	rt2560_tx_intr(struct rt2560_softc *);
    104 static void	rt2560_prio_intr(struct rt2560_softc *);
    105 static void	rt2560_decryption_intr(struct rt2560_softc *);
    106 static void	rt2560_rx_intr(struct rt2560_softc *);
    107 static void	rt2560_beacon_expire(struct rt2560_softc *);
    108 static void	rt2560_wakeup_expire(struct rt2560_softc *);
    109 #if NBPFILTER > 0
    110 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
    111 #endif
    112 static int	rt2560_ack_rate(struct ieee80211com *, int);
    113 static uint16_t	rt2560_txtime(int, int, uint32_t);
    114 static uint8_t	rt2560_plcp_signal(int);
    115 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
    116 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
    117 		    bus_addr_t);
    118 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
    119 		    struct ieee80211_node *);
    120 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
    121 		    struct ieee80211_node *);
    122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
    123 		    struct ieee80211_frame *, uint16_t);
    124 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
    125 		    struct ieee80211_node *);
    126 static void	rt2560_start(struct ifnet *);
    127 static void	rt2560_watchdog(struct ifnet *);
    128 static int	rt2560_reset(struct ifnet *);
    129 static int	rt2560_ioctl(struct ifnet *, u_long, caddr_t);
    130 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
    131 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
    132 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
    133 static void	rt2560_set_chan(struct rt2560_softc *,
    134 		    struct ieee80211_channel *);
    135 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
    136 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
    137 static void	rt2560_update_plcp(struct rt2560_softc *);
    138 static void	rt2560_update_slot(struct ifnet *);
    139 static void	rt2560_set_basicrates(struct rt2560_softc *);
    140 static void	rt2560_update_led(struct rt2560_softc *, int, int);
    141 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
    142 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
    143 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
    144 static void	rt2560_update_promisc(struct rt2560_softc *);
    145 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
    146 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
    147 static const char *rt2560_get_rf(int);
    148 static void	rt2560_read_eeprom(struct rt2560_softc *);
    149 static int	rt2560_bbp_init(struct rt2560_softc *);
    150 static int	rt2560_init(struct ifnet *);
    151 static void	rt2560_stop(void *);
    152 
    153 /*
    154  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    155  */
    156 static const struct ieee80211_rateset rt2560_rateset_11a =
    157 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    158 
    159 static const struct ieee80211_rateset rt2560_rateset_11b =
    160 	{ 4, { 2, 4, 11, 22 } };
    161 
    162 static const struct ieee80211_rateset rt2560_rateset_11g =
    163 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    164 
    165 /*
    166  * Default values for MAC registers; values taken from the reference driver.
    167  */
    168 static const struct {
    169 	uint32_t	reg;
    170 	uint32_t	val;
    171 } rt2560_def_mac[] = {
    172 	{ RT2560_PSCSR0,      0x00020002 },
    173 	{ RT2560_PSCSR1,      0x00000002 },
    174 	{ RT2560_PSCSR2,      0x00020002 },
    175 	{ RT2560_PSCSR3,      0x00000002 },
    176 	{ RT2560_TIMECSR,     0x00003f21 },
    177 	{ RT2560_CSR9,        0x00000780 },
    178 	{ RT2560_CSR11,       0x07041483 },
    179 	{ RT2560_CNT3,        0x00000000 },
    180 	{ RT2560_TXCSR1,      0x07614562 },
    181 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
    182 	{ RT2560_ACKPCTCSR,   0x7038140a },
    183 	{ RT2560_ARTCSR1,     0x1d21252d },
    184 	{ RT2560_ARTCSR2,     0x1919191d },
    185 	{ RT2560_RXCSR0,      0xffffffff },
    186 	{ RT2560_RXCSR3,      0xb3aab3af },
    187 	{ RT2560_PCICSR,      0x000003b8 },
    188 	{ RT2560_PWRCSR0,     0x3f3b3100 },
    189 	{ RT2560_GPIOCSR,     0x0000ff00 },
    190 	{ RT2560_TESTCSR,     0x000000f0 },
    191 	{ RT2560_PWRCSR1,     0x000001ff },
    192 	{ RT2560_MACCSR0,     0x00213223 },
    193 	{ RT2560_MACCSR1,     0x00235518 },
    194 	{ RT2560_RLPWCSR,     0x00000040 },
    195 	{ RT2560_RALINKCSR,   0x9a009a11 },
    196 	{ RT2560_CSR7,        0xffffffff },
    197 	{ RT2560_BBPCSR1,     0x82188200 },
    198 	{ RT2560_TXACKCSR0,   0x00000020 },
    199 	{ RT2560_SECCSR3,     0x0000e78f }
    200 };
    201 
    202 /*
    203  * Default values for BBP registers; values taken from the reference driver.
    204  */
    205 static const struct {
    206 	uint8_t	reg;
    207 	uint8_t	val;
    208 } rt2560_def_bbp[] = {
    209 	{  3, 0x02 },
    210 	{  4, 0x19 },
    211 	{ 14, 0x1c },
    212 	{ 15, 0x30 },
    213 	{ 16, 0xac },
    214 	{ 17, 0x48 },
    215 	{ 18, 0x18 },
    216 	{ 19, 0xff },
    217 	{ 20, 0x1e },
    218 	{ 21, 0x08 },
    219 	{ 22, 0x08 },
    220 	{ 23, 0x08 },
    221 	{ 24, 0x80 },
    222 	{ 25, 0x50 },
    223 	{ 26, 0x08 },
    224 	{ 27, 0x23 },
    225 	{ 30, 0x10 },
    226 	{ 31, 0x2b },
    227 	{ 32, 0xb9 },
    228 	{ 34, 0x12 },
    229 	{ 35, 0x50 },
    230 	{ 39, 0xc4 },
    231 	{ 40, 0x02 },
    232 	{ 41, 0x60 },
    233 	{ 53, 0x10 },
    234 	{ 54, 0x18 },
    235 	{ 56, 0x08 },
    236 	{ 57, 0x10 },
    237 	{ 58, 0x08 },
    238 	{ 61, 0x60 },
    239 	{ 62, 0x10 },
    240 	{ 75, 0xff }
    241 };
    242 
    243 /*
    244  * Default values for RF register R2 indexed by channel numbers; values taken
    245  * from the reference driver.
    246  */
    247 static const uint32_t rt2560_rf2522_r2[] = {
    248 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
    249 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
    250 };
    251 
    252 static const uint32_t rt2560_rf2523_r2[] = {
    253 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    254 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    255 };
    256 
    257 static const uint32_t rt2560_rf2524_r2[] = {
    258 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
    259 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
    260 };
    261 
    262 static const uint32_t rt2560_rf2525_r2[] = {
    263 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
    264 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
    265 };
    266 
    267 static const uint32_t rt2560_rf2525_hi_r2[] = {
    268 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
    269 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
    270 };
    271 
    272 static const uint32_t rt2560_rf2525e_r2[] = {
    273 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
    274 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
    275 };
    276 
    277 static const uint32_t rt2560_rf2526_hi_r2[] = {
    278 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
    279 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
    280 };
    281 
    282 static const uint32_t rt2560_rf2526_r2[] = {
    283 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
    284 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
    285 };
    286 
    287 /*
    288  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
    289  * values taken from the reference driver.
    290  */
    291 static const struct {
    292 	uint8_t		chan;
    293 	uint32_t	r1;
    294 	uint32_t	r2;
    295 	uint32_t	r4;
    296 } rt2560_rf5222[] = {
    297 	{   1, 0x08808, 0x0044d, 0x00282 },
    298 	{   2, 0x08808, 0x0044e, 0x00282 },
    299 	{   3, 0x08808, 0x0044f, 0x00282 },
    300 	{   4, 0x08808, 0x00460, 0x00282 },
    301 	{   5, 0x08808, 0x00461, 0x00282 },
    302 	{   6, 0x08808, 0x00462, 0x00282 },
    303 	{   7, 0x08808, 0x00463, 0x00282 },
    304 	{   8, 0x08808, 0x00464, 0x00282 },
    305 	{   9, 0x08808, 0x00465, 0x00282 },
    306 	{  10, 0x08808, 0x00466, 0x00282 },
    307 	{  11, 0x08808, 0x00467, 0x00282 },
    308 	{  12, 0x08808, 0x00468, 0x00282 },
    309 	{  13, 0x08808, 0x00469, 0x00282 },
    310 	{  14, 0x08808, 0x0046b, 0x00286 },
    311 
    312 	{  36, 0x08804, 0x06225, 0x00287 },
    313 	{  40, 0x08804, 0x06226, 0x00287 },
    314 	{  44, 0x08804, 0x06227, 0x00287 },
    315 	{  48, 0x08804, 0x06228, 0x00287 },
    316 	{  52, 0x08804, 0x06229, 0x00287 },
    317 	{  56, 0x08804, 0x0622a, 0x00287 },
    318 	{  60, 0x08804, 0x0622b, 0x00287 },
    319 	{  64, 0x08804, 0x0622c, 0x00287 },
    320 
    321 	{ 100, 0x08804, 0x02200, 0x00283 },
    322 	{ 104, 0x08804, 0x02201, 0x00283 },
    323 	{ 108, 0x08804, 0x02202, 0x00283 },
    324 	{ 112, 0x08804, 0x02203, 0x00283 },
    325 	{ 116, 0x08804, 0x02204, 0x00283 },
    326 	{ 120, 0x08804, 0x02205, 0x00283 },
    327 	{ 124, 0x08804, 0x02206, 0x00283 },
    328 	{ 128, 0x08804, 0x02207, 0x00283 },
    329 	{ 132, 0x08804, 0x02208, 0x00283 },
    330 	{ 136, 0x08804, 0x02209, 0x00283 },
    331 	{ 140, 0x08804, 0x0220a, 0x00283 },
    332 
    333 	{ 149, 0x08808, 0x02429, 0x00281 },
    334 	{ 153, 0x08808, 0x0242b, 0x00281 },
    335 	{ 157, 0x08808, 0x0242d, 0x00281 },
    336 	{ 161, 0x08808, 0x0242f, 0x00281 }
    337 };
    338 
    339 int
    340 rt2560_attach(void *xsc, int id)
    341 {
    342 	struct rt2560_softc *sc = xsc;
    343 	struct ieee80211com *ic = &sc->sc_ic;
    344 	struct ifnet *ifp = &sc->sc_if;
    345 	int error, i;
    346 
    347 	callout_init(&sc->scan_ch);
    348 	callout_init(&sc->rssadapt_ch);
    349 
    350 	/* retrieve RT2560 rev. no */
    351 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
    352 
    353 	/* retrieve MAC address */
    354 	rt2560_get_macaddr(sc, ic->ic_myaddr);
    355 
    356 	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
    357 	    ether_sprintf(ic->ic_myaddr));
    358 
    359 	/* retrieve RF rev. no and various other things from EEPROM */
    360 	rt2560_read_eeprom(sc);
    361 
    362 	aprint_normal("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
    363 	    sc->sc_dev.dv_xname, sc->asic_rev, rt2560_get_rf(sc->rf_rev));
    364 
    365 	/*
    366 	 * Allocate Tx and Rx rings.
    367 	 */
    368 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
    369 	if (error != 0) {
    370 		aprint_error("%s: could not allocate Tx ring\n)",
    371 		    sc->sc_dev.dv_xname);
    372 		goto fail1;
    373 	}
    374 
    375 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
    376 	if (error != 0) {
    377 		aprint_error("%s: could not allocate ATIM ring\n",
    378 		    sc->sc_dev.dv_xname);
    379 		goto fail2;
    380 	}
    381 
    382 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
    383 	if (error != 0) {
    384 		aprint_error("%s: could not allocate Prio ring\n",
    385 		    sc->sc_dev.dv_xname);
    386 		goto fail3;
    387 	}
    388 
    389 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
    390 	if (error != 0) {
    391 		aprint_error("%s: could not allocate Beacon ring\n",
    392 		    sc->sc_dev.dv_xname);
    393 		goto fail4;
    394 	}
    395 
    396 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
    397 	if (error != 0) {
    398 		aprint_error("%s: could not allocate Rx ring\n",
    399 		    sc->sc_dev.dv_xname);
    400 		goto fail5;
    401 	}
    402 
    403 	ifp->if_softc = sc;
    404 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    405 	ifp->if_init = rt2560_init;
    406 	ifp->if_ioctl = rt2560_ioctl;
    407 	ifp->if_start = rt2560_start;
    408 	ifp->if_watchdog = rt2560_watchdog;
    409 	IFQ_SET_READY(&ifp->if_snd);
    410 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    411 
    412 	ic->ic_ifp = ifp;
    413 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    414 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    415 	ic->ic_state = IEEE80211_S_INIT;
    416 
    417 	/* set device capabilities */
    418 	ic->ic_caps =
    419 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    420 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    421 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    422 	    IEEE80211_C_TXPMGT |	/* tx power management */
    423 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    424 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    425 	    IEEE80211_C_WPA;		/* 802.11i */
    426 
    427 	if (sc->rf_rev == RT2560_RF_5222) {
    428 		/* set supported .11a rates */
    429 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
    430 
    431 		/* set supported .11a channels */
    432 		for (i = 36; i <= 64; i += 4) {
    433 			ic->ic_channels[i].ic_freq =
    434 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    435 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    436 		}
    437 		for (i = 100; i <= 140; i += 4) {
    438 			ic->ic_channels[i].ic_freq =
    439 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    440 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    441 		}
    442 		for (i = 149; i <= 161; i += 4) {
    443 			ic->ic_channels[i].ic_freq =
    444 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    445 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    446 		}
    447 	}
    448 
    449 	/* set supported .11b and .11g rates */
    450 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
    451 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
    452 
    453 	/* set supported .11b and .11g channels (1 through 14) */
    454 	for (i = 1; i <= 14; i++) {
    455 		ic->ic_channels[i].ic_freq =
    456 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    457 		ic->ic_channels[i].ic_flags =
    458 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    459 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    460 	}
    461 
    462 	if_attach(ifp);
    463 	ieee80211_ifattach(ic);
    464 	ic->ic_node_alloc = rt2560_node_alloc;
    465 	ic->ic_updateslot = rt2560_update_slot;
    466 	ic->ic_reset = rt2560_reset;
    467 
    468 	/* override state transition machine */
    469 	sc->sc_newstate = ic->ic_newstate;
    470 	ic->ic_newstate = rt2560_newstate;
    471 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
    472 
    473 #if NBPFILTER > 0
    474 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    475 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
    476 #endif
    477 
    478 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    479 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    480 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
    481 
    482 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    483 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    484 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
    485 
    486 
    487 	sc->dwelltime = 200;
    488 
    489 	ieee80211_announce(ic);
    490 
    491 	return 0;
    492 
    493 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
    494 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
    495 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
    496 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
    497 fail1:
    498 	return ENXIO;
    499 }
    500 
    501 
    502 int
    503 rt2560_detach(void *xsc)
    504 {
    505 	struct rt2560_softc *sc = xsc;
    506 	struct ifnet *ifp = &sc->sc_if;
    507 
    508 	callout_stop(&sc->scan_ch);
    509 	callout_stop(&sc->rssadapt_ch);
    510 
    511 	rt2560_stop(sc);
    512 
    513 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
    514 	if_detach(ifp);
    515 
    516 	rt2560_free_tx_ring(sc, &sc->txq);
    517 	rt2560_free_tx_ring(sc, &sc->atimq);
    518 	rt2560_free_tx_ring(sc, &sc->prioq);
    519 	rt2560_free_tx_ring(sc, &sc->bcnq);
    520 	rt2560_free_rx_ring(sc, &sc->rxq);
    521 
    522 	return 0;
    523 }
    524 
    525 int
    526 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
    527     int count)
    528 {
    529 	int i, nsegs, error;
    530 
    531 	ring->count = count;
    532 	ring->queued = 0;
    533 	ring->cur = ring->next = 0;
    534 	ring->cur_encrypt = ring->next_encrypt = 0;
    535 
    536 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
    537 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    538 	if (error != 0) {
    539 		printf("%s: could not create desc DMA map\n",
    540 		    sc->sc_dev.dv_xname);
    541 		goto fail;
    542 	}
    543 
    544 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
    545 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    546 	if (error != 0) {
    547 		printf("%s: could not allocate DMA memory\n",
    548 		    sc->sc_dev.dv_xname);
    549 		goto fail;
    550 	}
    551 
    552 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    553 	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
    554 	    BUS_DMA_NOWAIT);
    555 	if (error != 0) {
    556 		printf("%s: could not map desc DMA memory\n",
    557 		    sc->sc_dev.dv_xname);
    558 		goto fail;
    559 	}
    560 
    561 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    562 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    563 	if (error != 0) {
    564 		printf("%s: could not load desc DMA map\n",
    565 		    sc->sc_dev.dv_xname);
    566 		goto fail;
    567 	}
    568 
    569 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
    570 	ring->physaddr = ring->map->dm_segs->ds_addr;
    571 
    572 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
    573 	    M_NOWAIT);
    574 	if (ring->data == NULL) {
    575 		printf("%s: could not allocate soft data\n",
    576 		    sc->sc_dev.dv_xname);
    577 		error = ENOMEM;
    578 		goto fail;
    579 	}
    580 
    581 	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
    582 	for (i = 0; i < count; i++) {
    583 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    584 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
    585 		    &ring->data[i].map);
    586 		if (error != 0) {
    587 			printf("%s: could not create DMA map\n",
    588 			    sc->sc_dev.dv_xname);
    589 			goto fail;
    590 		}
    591 	}
    592 
    593 	return 0;
    594 
    595 fail:	rt2560_free_tx_ring(sc, ring);
    596 	return error;
    597 }
    598 
    599 void
    600 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    601 {
    602 	struct rt2560_tx_desc *desc;
    603 	struct rt2560_tx_data *data;
    604 	int i;
    605 
    606 	for (i = 0; i < ring->count; i++) {
    607 		desc = &ring->desc[i];
    608 		data = &ring->data[i];
    609 
    610 		if (data->m != NULL) {
    611 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    612 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    613 			bus_dmamap_unload(sc->sc_dmat, data->map);
    614 			m_freem(data->m);
    615 			data->m = NULL;
    616 		}
    617 
    618 		if (data->ni != NULL) {
    619 			ieee80211_free_node(data->ni);
    620 			data->ni = NULL;
    621 		}
    622 
    623 		desc->flags = 0;
    624 	}
    625 
    626 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    627 	    BUS_DMASYNC_PREWRITE);
    628 
    629 	ring->queued = 0;
    630 	ring->cur = ring->next = 0;
    631 	ring->cur_encrypt = ring->next_encrypt = 0;
    632 }
    633 
    634 void
    635 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
    636 {
    637 	struct rt2560_tx_data *data;
    638 	int i;
    639 
    640 	if (ring->desc != NULL) {
    641 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    642 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    643 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    644 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
    645 		    ring->count * RT2560_TX_DESC_SIZE);
    646 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    647 	}
    648 
    649 	if (ring->data != NULL) {
    650 		for (i = 0; i < ring->count; i++) {
    651 			data = &ring->data[i];
    652 
    653 			if (data->m != NULL) {
    654 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    655 				    data->map->dm_mapsize,
    656 				    BUS_DMASYNC_POSTWRITE);
    657 				bus_dmamap_unload(sc->sc_dmat, data->map);
    658 				m_freem(data->m);
    659 			}
    660 
    661 			if (data->ni != NULL)
    662 				ieee80211_free_node(data->ni);
    663 
    664 
    665 			if (data->map != NULL)
    666 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    667 		}
    668 		free(ring->data, M_DEVBUF);
    669 	}
    670 }
    671 
    672 int
    673 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
    674     int count)
    675 {
    676 	struct rt2560_rx_desc *desc;
    677 	struct rt2560_rx_data *data;
    678 	int i, nsegs, error;
    679 
    680 	ring->count = count;
    681 	ring->cur = ring->next = 0;
    682 	ring->cur_decrypt = 0;
    683 
    684 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
    685 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    686 	if (error != 0) {
    687 		printf("%s: could not create desc DMA map\n",
    688 		    sc->sc_dev.dv_xname);
    689 		goto fail;
    690 	}
    691 
    692 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
    693 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    694 	if (error != 0) {
    695 		printf("%s: could not allocate DMA memory\n",
    696 		    sc->sc_dev.dv_xname);
    697 		goto fail;
    698 	}
    699 
    700 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    701 	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
    702 	    BUS_DMA_NOWAIT);
    703 	if (error != 0) {
    704 		printf("%s: could not map desc DMA memory\n",
    705 		    sc->sc_dev.dv_xname);
    706 		goto fail;
    707 	}
    708 
    709 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    710 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    711 	if (error != 0) {
    712 		printf("%s: could not load desc DMA map\n",
    713 		    sc->sc_dev.dv_xname);
    714 		goto fail;
    715 	}
    716 
    717 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
    718 	ring->physaddr = ring->map->dm_segs->ds_addr;
    719 
    720 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
    721 	    M_NOWAIT);
    722 	if (ring->data == NULL) {
    723 		printf("%s: could not allocate soft data\n",
    724 		    sc->sc_dev.dv_xname);
    725 		error = ENOMEM;
    726 		goto fail;
    727 	}
    728 
    729 	/*
    730 	 * Pre-allocate Rx buffers and populate Rx ring.
    731 	 */
    732 	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
    733 	for (i = 0; i < count; i++) {
    734 		desc = &sc->rxq.desc[i];
    735 		data = &sc->rxq.data[i];
    736 
    737 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    738 		    0, BUS_DMA_NOWAIT, &data->map);
    739 		if (error != 0) {
    740 			printf("%s: could not create DMA map\n",
    741 			    sc->sc_dev.dv_xname);
    742 			goto fail;
    743 		}
    744 
    745 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    746 		if (data->m == NULL) {
    747 			printf("%s: could not allocate rx mbuf\n",
    748 			    sc->sc_dev.dv_xname);
    749 			error = ENOMEM;
    750 			goto fail;
    751 		}
    752 
    753 		MCLGET(data->m, M_DONTWAIT);
    754 		if (!(data->m->m_flags & M_EXT)) {
    755 			printf("%s: could not allocate rx mbuf cluster\n",
    756 			    sc->sc_dev.dv_xname);
    757 			error = ENOMEM;
    758 			goto fail;
    759 		}
    760 
    761 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    762 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
    763 		if (error != 0) {
    764 			printf("%s: could not load rx buf DMA map",
    765 			    sc->sc_dev.dv_xname);
    766 			goto fail;
    767 		}
    768 
    769 		desc->flags = htole32(RT2560_RX_BUSY);
    770 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
    771 	}
    772 
    773 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    774 	    BUS_DMASYNC_PREWRITE);
    775 
    776 	return 0;
    777 
    778 fail:	rt2560_free_rx_ring(sc, ring);
    779 	return error;
    780 }
    781 
    782 void
    783 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    784 {
    785 	int i;
    786 
    787 	for (i = 0; i < ring->count; i++) {
    788 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
    789 		ring->data[i].drop = 0;
    790 	}
    791 
    792 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    793 	    BUS_DMASYNC_PREWRITE);
    794 
    795 	ring->cur = ring->next = 0;
    796 	ring->cur_decrypt = 0;
    797 }
    798 
    799 void
    800 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
    801 {
    802 	struct rt2560_rx_data *data;
    803 	int i;
    804 
    805 	if (ring->desc != NULL) {
    806 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    807 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    808 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    809 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
    810 		    ring->count * RT2560_RX_DESC_SIZE);
    811 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    812 	}
    813 
    814 	if (ring->data != NULL) {
    815 		for (i = 0; i < ring->count; i++) {
    816 			data = &ring->data[i];
    817 
    818 			if (data->m != NULL) {
    819 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    820 				    data->map->dm_mapsize,
    821 				    BUS_DMASYNC_POSTREAD);
    822 				bus_dmamap_unload(sc->sc_dmat, data->map);
    823 				m_freem(data->m);
    824 			}
    825 
    826 			if (data->map != NULL)
    827 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    828 		}
    829 		free(ring->data, M_DEVBUF);
    830 	}
    831 }
    832 
    833 struct ieee80211_node *
    834 rt2560_node_alloc(struct ieee80211_node_table *nt)
    835 {
    836 	struct rt2560_node *rn;
    837 
    838 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
    839 	    M_NOWAIT | M_ZERO);
    840 
    841 	return (rn != NULL) ? &rn->ni : NULL;
    842 }
    843 
    844 int
    845 rt2560_media_change(struct ifnet *ifp)
    846 {
    847 	int error;
    848 
    849 	error = ieee80211_media_change(ifp);
    850 	if (error != ENETRESET)
    851 		return error;
    852 
    853 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    854 		rt2560_init(ifp);
    855 
    856 	return 0;
    857 }
    858 
    859 /*
    860  * This function is called periodically (every 200ms) during scanning to
    861  * switch from one channel to another.
    862  */
    863 void
    864 rt2560_next_scan(void *arg)
    865 {
    866 	struct rt2560_softc *sc = arg;
    867 	struct ieee80211com *ic = &sc->sc_ic;
    868 
    869 	if (ic->ic_state == IEEE80211_S_SCAN)
    870 		ieee80211_next_scan(ic);
    871 }
    872 
    873 /*
    874  * This function is called for each neighbor node.
    875  */
    876 void
    877 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
    878 {
    879 	struct rt2560_node *rn = (struct rt2560_node *)ni;
    880 
    881 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
    882 }
    883 
    884 /*
    885  * This function is called periodically (every 100ms) in RUN state to update
    886  * the rate adaptation statistics.
    887  */
    888 void
    889 rt2560_update_rssadapt(void *arg)
    890 {
    891 	struct rt2560_softc *sc = arg;
    892 	struct ieee80211com *ic = &sc->sc_ic;
    893 
    894 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
    895 
    896 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
    897 }
    898 
    899 int
    900 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    901 {
    902 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
    903 	enum ieee80211_state ostate;
    904 	struct ieee80211_node *ni;
    905 	struct mbuf *m;
    906 	int error = 0;
    907 
    908 	ostate = ic->ic_state;
    909 	callout_stop(&sc->scan_ch);
    910 
    911 	switch (nstate) {
    912 	case IEEE80211_S_INIT:
    913 		callout_stop(&sc->rssadapt_ch);
    914 
    915 		if (ostate == IEEE80211_S_RUN) {
    916 			/* abort TSF synchronization */
    917 			RAL_WRITE(sc, RT2560_CSR14, 0);
    918 
    919 			/* turn association led off */
    920 			rt2560_update_led(sc, 0, 0);
    921 		}
    922 		break;
    923 
    924 	case IEEE80211_S_SCAN:
    925 		rt2560_set_chan(sc, ic->ic_curchan);
    926 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
    927 		    rt2560_next_scan, sc);
    928 		break;
    929 
    930 	case IEEE80211_S_AUTH:
    931 		rt2560_set_chan(sc, ic->ic_curchan);
    932 		break;
    933 
    934 	case IEEE80211_S_ASSOC:
    935 		rt2560_set_chan(sc, ic->ic_curchan);
    936 		break;
    937 
    938 	case IEEE80211_S_RUN:
    939 		rt2560_set_chan(sc, ic->ic_curchan);
    940 
    941 		ni = ic->ic_bss;
    942 
    943 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    944 			rt2560_update_plcp(sc);
    945 			rt2560_set_basicrates(sc);
    946 			rt2560_set_bssid(sc, ni->ni_bssid);
    947 		}
    948 
    949 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    950 		    ic->ic_opmode == IEEE80211_M_IBSS) {
    951 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
    952 			if (m == NULL) {
    953 				printf("%s: could not allocate beacon\n",
    954 				    sc->sc_dev.dv_xname);
    955 				error = ENOBUFS;
    956 				break;
    957 			}
    958 
    959 			ieee80211_ref_node(ni);
    960 			error = rt2560_tx_bcn(sc, m, ni);
    961 			if (error != 0)
    962 				break;
    963 		}
    964 
    965 		/* turn assocation led on */
    966 		rt2560_update_led(sc, 1, 0);
    967 
    968 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    969 			callout_reset(&sc->rssadapt_ch, hz / 10,
    970 			    rt2560_update_rssadapt, sc);
    971 			rt2560_enable_tsf_sync(sc);
    972 		}
    973 		break;
    974 	}
    975 
    976 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
    977 }
    978 
    979 /*
    980  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
    981  * 93C66).
    982  */
    983 uint16_t
    984 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
    985 {
    986 	uint32_t tmp;
    987 	uint16_t val;
    988 	int n;
    989 
    990 	/* clock C once before the first command */
    991 	RT2560_EEPROM_CTL(sc, 0);
    992 
    993 	RT2560_EEPROM_CTL(sc, RT2560_S);
    994 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
    995 	RT2560_EEPROM_CTL(sc, RT2560_S);
    996 
    997 	/* write start bit (1) */
    998 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
    999 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
   1000 
   1001 	/* write READ opcode (10) */
   1002 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
   1003 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
   1004 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1005 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
   1006 
   1007 	/* write address (A5-A0 or A7-A0) */
   1008 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
   1009 	for (; n >= 0; n--) {
   1010 		RT2560_EEPROM_CTL(sc, RT2560_S |
   1011 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
   1012 		RT2560_EEPROM_CTL(sc, RT2560_S |
   1013 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
   1014 	}
   1015 
   1016 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1017 
   1018 	/* read data Q15-Q0 */
   1019 	val = 0;
   1020 	for (n = 15; n >= 0; n--) {
   1021 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
   1022 		tmp = RAL_READ(sc, RT2560_CSR21);
   1023 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
   1024 		RT2560_EEPROM_CTL(sc, RT2560_S);
   1025 	}
   1026 
   1027 	RT2560_EEPROM_CTL(sc, 0);
   1028 
   1029 	/* clear Chip Select and clock C */
   1030 	RT2560_EEPROM_CTL(sc, RT2560_S);
   1031 	RT2560_EEPROM_CTL(sc, 0);
   1032 	RT2560_EEPROM_CTL(sc, RT2560_C);
   1033 
   1034 	return val;
   1035 }
   1036 
   1037 /*
   1038  * Some frames were processed by the hardware cipher engine and are ready for
   1039  * transmission.
   1040  */
   1041 void
   1042 rt2560_encryption_intr(struct rt2560_softc *sc)
   1043 {
   1044 	struct rt2560_tx_desc *desc;
   1045 	int hw;
   1046 
   1047 	/* retrieve last descriptor index processed by cipher engine */
   1048 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
   1049 	    RT2560_TX_DESC_SIZE;
   1050 
   1051 	for (; sc->txq.next_encrypt != hw;) {
   1052 		desc = &sc->txq.desc[sc->txq.next_encrypt];
   1053 
   1054 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1055 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1056 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1057 
   1058 		if (le32toh(desc->flags) &
   1059 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
   1060 			break;
   1061 
   1062 		/* for TKIP, swap eiv field to fix a bug in ASIC */
   1063 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
   1064 		    RT2560_TX_CIPHER_TKIP)
   1065 			desc->eiv = bswap32(desc->eiv);
   1066 
   1067 		/* mark the frame ready for transmission */
   1068 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1069 
   1070 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1071 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
   1072 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1073 
   1074 		DPRINTFN(15, ("encryption done idx=%u\n",
   1075 		    sc->txq.next_encrypt));
   1076 
   1077 		sc->txq.next_encrypt =
   1078 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
   1079 	}
   1080 
   1081 	/* kick Tx */
   1082 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
   1083 }
   1084 
   1085 void
   1086 rt2560_tx_intr(struct rt2560_softc *sc)
   1087 {
   1088 	struct ieee80211com *ic = &sc->sc_ic;
   1089 	struct ifnet *ifp = ic->ic_ifp;
   1090 	struct rt2560_tx_desc *desc;
   1091 	struct rt2560_tx_data *data;
   1092 	struct rt2560_node *rn;
   1093 
   1094 	for (;;) {
   1095 		desc = &sc->txq.desc[sc->txq.next];
   1096 		data = &sc->txq.data[sc->txq.next];
   1097 
   1098 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1099 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1100 		    BUS_DMASYNC_POSTREAD);
   1101 
   1102 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1103 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
   1104 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1105 			break;
   1106 
   1107 		rn = (struct rt2560_node *)data->ni;
   1108 
   1109 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1110 		case RT2560_TX_SUCCESS:
   1111 			DPRINTFN(10, ("data frame sent successfully\n"));
   1112 			if (data->id.id_node != NULL) {
   1113 				ieee80211_rssadapt_raise_rate(ic,
   1114 				    &rn->rssadapt, &data->id);
   1115 			}
   1116 			ifp->if_opackets++;
   1117 			break;
   1118 
   1119 		case RT2560_TX_SUCCESS_RETRY:
   1120 			DPRINTFN(9, ("data frame sent after %u retries\n",
   1121 			    (le32toh(desc->flags) >> 5) & 0x7));
   1122 			ifp->if_opackets++;
   1123 			break;
   1124 
   1125 		case RT2560_TX_FAIL_RETRY:
   1126 			DPRINTFN(9, ("sending data frame failed (too much "
   1127 			    "retries)\n"));
   1128 			if (data->id.id_node != NULL) {
   1129 				ieee80211_rssadapt_lower_rate(ic, data->ni,
   1130 				    &rn->rssadapt, &data->id);
   1131 			}
   1132 			ifp->if_oerrors++;
   1133 			break;
   1134 
   1135 		case RT2560_TX_FAIL_INVALID:
   1136 		case RT2560_TX_FAIL_OTHER:
   1137 		default:
   1138 			printf("%s: sending data frame failed 0x%08x\n",
   1139 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
   1140 			ifp->if_oerrors++;
   1141 		}
   1142 
   1143 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1144 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1145 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1146 		m_freem(data->m);
   1147 		data->m = NULL;
   1148 		ieee80211_free_node(data->ni);
   1149 		data->ni = NULL;
   1150 
   1151 		/* descriptor is no longer valid */
   1152 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1153 
   1154 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1155 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1156 		    BUS_DMASYNC_PREWRITE);
   1157 
   1158 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
   1159 
   1160 		sc->txq.queued--;
   1161 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
   1162 	}
   1163 
   1164 	sc->sc_tx_timer = 0;
   1165 	ifp->if_flags &= ~IFF_OACTIVE;
   1166 	rt2560_start(ifp);
   1167 }
   1168 
   1169 void
   1170 rt2560_prio_intr(struct rt2560_softc *sc)
   1171 {
   1172 	struct ieee80211com *ic = &sc->sc_ic;
   1173 	struct ifnet *ifp = ic->ic_ifp;
   1174 	struct rt2560_tx_desc *desc;
   1175 	struct rt2560_tx_data *data;
   1176 
   1177 	for (;;) {
   1178 		desc = &sc->prioq.desc[sc->prioq.next];
   1179 		data = &sc->prioq.data[sc->prioq.next];
   1180 
   1181 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1182 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1183 		    BUS_DMASYNC_POSTREAD);
   1184 
   1185 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
   1186 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
   1187 			break;
   1188 
   1189 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
   1190 		case RT2560_TX_SUCCESS:
   1191 			DPRINTFN(10, ("mgt frame sent successfully\n"));
   1192 			break;
   1193 
   1194 		case RT2560_TX_SUCCESS_RETRY:
   1195 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
   1196 			    (le32toh(desc->flags) >> 5) & 0x7));
   1197 			break;
   1198 
   1199 		case RT2560_TX_FAIL_RETRY:
   1200 			DPRINTFN(9, ("sending mgt frame failed (too much "
   1201 			    "retries)\n"));
   1202 			break;
   1203 
   1204 		case RT2560_TX_FAIL_INVALID:
   1205 		case RT2560_TX_FAIL_OTHER:
   1206 		default:
   1207 			printf("%s: sending mgt frame failed 0x%08x\n",
   1208 			    sc->sc_dev.dv_xname, le32toh(desc->flags));
   1209 		}
   1210 
   1211 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1212 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1213 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1214 		m_freem(data->m);
   1215 		data->m = NULL;
   1216 		ieee80211_free_node(data->ni);
   1217 		data->ni = NULL;
   1218 
   1219 		/* descriptor is no longer valid */
   1220 		desc->flags &= ~htole32(RT2560_TX_VALID);
   1221 
   1222 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1223 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1224 		    BUS_DMASYNC_PREWRITE);
   1225 
   1226 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
   1227 
   1228 		sc->prioq.queued--;
   1229 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
   1230 	}
   1231 
   1232 	sc->sc_tx_timer = 0;
   1233 	ifp->if_flags &= ~IFF_OACTIVE;
   1234 	rt2560_start(ifp);
   1235 }
   1236 
   1237 /*
   1238  * Some frames were processed by the hardware cipher engine and are ready for
   1239  * transmission to the IEEE802.11 layer.
   1240  */
   1241 void
   1242 rt2560_decryption_intr(struct rt2560_softc *sc)
   1243 {
   1244 	struct ieee80211com *ic = &sc->sc_ic;
   1245 	struct ifnet *ifp = ic->ic_ifp;
   1246 	struct rt2560_rx_desc *desc;
   1247 	struct rt2560_rx_data *data;
   1248 	struct rt2560_node *rn;
   1249 	struct ieee80211_frame *wh;
   1250 	struct ieee80211_node *ni;
   1251 	struct mbuf *mnew, *m;
   1252 	int hw, error;
   1253 
   1254 	/* retrieve last decriptor index processed by cipher engine */
   1255 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
   1256 	    RT2560_RX_DESC_SIZE;
   1257 
   1258 	for (; sc->rxq.cur_decrypt != hw;) {
   1259 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
   1260 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
   1261 
   1262 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1263 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1264 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
   1265 
   1266 		if (le32toh(desc->flags) &
   1267 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1268 			break;
   1269 
   1270 		if (data->drop) {
   1271 			ifp->if_ierrors++;
   1272 			goto skip;
   1273 		}
   1274 
   1275 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
   1276 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
   1277 			ifp->if_ierrors++;
   1278 			goto skip;
   1279 		}
   1280 
   1281 		/*
   1282 		 * Try to allocate a new mbuf for this ring element and load it
   1283 		 * before processing the current mbuf.  If the ring element
   1284 		 * cannot be loaded, drop the received packet and reuse the old
   1285 		 * mbuf.  In the unlikely case that the old mbuf can't be
   1286 		 * reloaded either, explicitly panic.
   1287 		 */
   1288 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1289 		if (mnew == NULL) {
   1290 			ifp->if_ierrors++;
   1291 			goto skip;
   1292 		}
   1293 
   1294 		MCLGET(mnew, M_DONTWAIT);
   1295 		if (!(mnew->m_flags & M_EXT)) {
   1296 			m_freem(mnew);
   1297 			ifp->if_ierrors++;
   1298 			goto skip;
   1299 		}
   1300 
   1301 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1302 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1303 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1304 
   1305 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1306 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
   1307 		if (error != 0) {
   1308 			m_freem(mnew);
   1309 
   1310 			/* try to reload the old mbuf */
   1311 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1312 			    mtod(data->m, void *), MCLBYTES, NULL,
   1313 			    BUS_DMA_NOWAIT);
   1314 			if (error != 0) {
   1315 				/* very unlikely that it will fail... */
   1316 				panic("%s: could not load old rx mbuf",
   1317 				    sc->sc_dev.dv_xname);
   1318 			}
   1319 			ifp->if_ierrors++;
   1320 			goto skip;
   1321 		}
   1322 
   1323 		/*
   1324 		 * New mbuf successfully loaded, update Rx ring and continue
   1325 		 * processing.
   1326 		 */
   1327 		m = data->m;
   1328 		data->m = mnew;
   1329 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1330 
   1331 		/* finalize mbuf */
   1332 		m->m_pkthdr.rcvif = ifp;
   1333 		m->m_pkthdr.len = m->m_len =
   1334 		    (le32toh(desc->flags) >> 16) & 0xfff;
   1335 
   1336 #if NBPFILTER > 0
   1337 		if (sc->sc_drvbpf != NULL) {
   1338 			struct mbuf mb;
   1339 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
   1340 			uint32_t tsf_lo, tsf_hi;
   1341 
   1342 			/* get timestamp (low and high 32 bits) */
   1343 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
   1344 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
   1345 
   1346 			tap->wr_tsf =
   1347 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
   1348 			tap->wr_flags = 0;
   1349 			tap->wr_rate = rt2560_rxrate(desc);
   1350 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1351 			tap->wr_chan_flags =
   1352 			    htole16(ic->ic_ibss_chan->ic_flags);
   1353 			tap->wr_antenna = sc->rx_ant;
   1354 			tap->wr_antsignal = desc->rssi;
   1355 
   1356 			M_COPY_PKTHDR(&mb, m);
   1357 			mb.m_data = (caddr_t)tap;
   1358 			mb.m_len = sc->sc_txtap_len;
   1359 			mb.m_next = m;
   1360 			mb.m_pkthdr.len += mb.m_len;
   1361 			bpf_mtap(sc->sc_drvbpf, &mb);
   1362 		}
   1363 #endif
   1364 
   1365 		wh = mtod(m, struct ieee80211_frame *);
   1366 		ni = ieee80211_find_rxnode(ic,
   1367 		    (struct ieee80211_frame_min *)wh);
   1368 
   1369 		/* send the frame to the 802.11 layer */
   1370 		ieee80211_input(ic, m, ni, desc->rssi, 0);
   1371 
   1372 		/* give rssi to the rate adatation algorithm */
   1373 		rn = (struct rt2560_node *)ni;
   1374 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
   1375 
   1376 		/* node is no longer needed */
   1377 		ieee80211_free_node(ni);
   1378 
   1379 skip:		desc->flags = htole32(RT2560_RX_BUSY);
   1380 
   1381 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1382 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
   1383 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1384 
   1385 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
   1386 
   1387 		sc->rxq.cur_decrypt =
   1388 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
   1389 	}
   1390 
   1391 	/*
   1392 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
   1393 	 * without calling if_start().
   1394 	 */
   1395 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
   1396 		rt2560_start(ifp);
   1397 }
   1398 
   1399 /*
   1400  * Some frames were received. Pass them to the hardware cipher engine before
   1401  * sending them to the 802.11 layer.
   1402  */
   1403 void
   1404 rt2560_rx_intr(struct rt2560_softc *sc)
   1405 {
   1406 	struct rt2560_rx_desc *desc;
   1407 	struct rt2560_rx_data *data;
   1408 
   1409 	for (;;) {
   1410 		desc = &sc->rxq.desc[sc->rxq.cur];
   1411 		data = &sc->rxq.data[sc->rxq.cur];
   1412 
   1413 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1414 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1415 		    BUS_DMASYNC_POSTREAD);
   1416 
   1417 		if (le32toh(desc->flags) &
   1418 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
   1419 			break;
   1420 
   1421 		data->drop = 0;
   1422 
   1423 		if (le32toh(desc->flags) &
   1424 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
   1425 			/*
   1426 			 * This should not happen since we did not request
   1427 			 * to receive those frames when we filled RXCSR0.
   1428 			 */
   1429 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
   1430 			    le32toh(desc->flags)));
   1431 			data->drop = 1;
   1432 		}
   1433 
   1434 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
   1435 			DPRINTFN(5, ("bad length\n"));
   1436 			data->drop = 1;
   1437 		}
   1438 
   1439 		/* mark the frame for decryption */
   1440 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
   1441 
   1442 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1443 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
   1444 		    BUS_DMASYNC_PREWRITE);
   1445 
   1446 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
   1447 
   1448 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
   1449 	}
   1450 
   1451 	/* kick decrypt */
   1452 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
   1453 }
   1454 
   1455 #if 0
   1456 void
   1457 rt2560_shutdown(void *xsc)
   1458 {
   1459 	struct rt2560_softc *sc = xsc;
   1460 
   1461 	rt2560_stop(sc);
   1462 }
   1463 
   1464 void
   1465 rt2560_suspend(void *xsc)
   1466 {
   1467 	struct rt2560_softc *sc = xsc;
   1468 
   1469 	rt2560_stop(sc);
   1470 }
   1471 
   1472 void
   1473 rt2560_resume(void *xsc)
   1474 {
   1475 	struct rt2560_softc *sc = xsc;
   1476 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1477 
   1478 	if (ifp->if_flags & IFF_UP) {
   1479 		ifp->if_init(ifp->if_softc);
   1480 		if (ifp->if_flags & IFF_RUNNING)
   1481 			ifp->if_start(ifp);
   1482 	}
   1483 }
   1484 
   1485 #endif
   1486 /*
   1487  * This function is called periodically in IBSS mode when a new beacon must be
   1488  * sent out.
   1489  */
   1490 static void
   1491 rt2560_beacon_expire(struct rt2560_softc *sc)
   1492 {
   1493 	struct ieee80211com *ic = &sc->sc_ic;
   1494 	struct rt2560_tx_data *data;
   1495 
   1496 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
   1497 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
   1498 		return;
   1499 
   1500 	data = &sc->bcnq.data[sc->bcnq.next];
   1501 
   1502 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1503 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1504 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1505 
   1506 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
   1507 
   1508 #if NBPFILTER > 0
   1509 	if (ic->ic_rawbpf != NULL)
   1510 		bpf_mtap(ic->ic_rawbpf, data->m);
   1511 #endif
   1512 	rt2560_tx_bcn(sc, data->m, data->ni);
   1513 
   1514 	DPRINTFN(15, ("beacon expired\n"));
   1515 
   1516 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
   1517 }
   1518 
   1519 static void
   1520 rt2560_wakeup_expire(struct rt2560_softc *sc)
   1521 {
   1522 	DPRINTFN(15, ("wakeup expired\n"));
   1523 }
   1524 
   1525 int
   1526 rt2560_intr(void *arg)
   1527 {
   1528 	struct rt2560_softc *sc = arg;
   1529 	struct ifnet *ifp = &sc->sc_if;
   1530 	uint32_t r;
   1531 
   1532 	/* disable interrupts */
   1533 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   1534 
   1535 	/* don't re-enable interrupts if we're shutting down */
   1536 	if (!(ifp->if_flags & IFF_RUNNING))
   1537 		return 0;
   1538 
   1539 	r = RAL_READ(sc, RT2560_CSR7);
   1540 	RAL_WRITE(sc, RT2560_CSR7, r);
   1541 
   1542 	if (r & RT2560_BEACON_EXPIRE)
   1543 		rt2560_beacon_expire(sc);
   1544 
   1545 	if (r & RT2560_WAKEUP_EXPIRE)
   1546 		rt2560_wakeup_expire(sc);
   1547 
   1548 	if (r & RT2560_ENCRYPTION_DONE)
   1549 		rt2560_encryption_intr(sc);
   1550 
   1551 	if (r & RT2560_TX_DONE)
   1552 		rt2560_tx_intr(sc);
   1553 
   1554 	if (r & RT2560_PRIO_DONE)
   1555 		rt2560_prio_intr(sc);
   1556 
   1557 	if (r & RT2560_DECRYPTION_DONE)
   1558 		rt2560_decryption_intr(sc);
   1559 
   1560 	if (r & RT2560_RX_DONE)
   1561 		rt2560_rx_intr(sc);
   1562 
   1563 	/* re-enable interrupts */
   1564 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   1565 
   1566 	return 1;
   1567 }
   1568 
   1569 /* quickly determine if a given rate is CCK or OFDM */
   1570 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1571 
   1572 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
   1573 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
   1574 
   1575 #define RAL_SIFS		10	/* us */
   1576 
   1577 #define RT2560_RXTX_TURNAROUND	10	/* us */
   1578 
   1579 /*
   1580  * This function is only used by the Rx radiotap code. It returns the rate at
   1581  * which a given frame was received.
   1582  */
   1583 #if NBPFILTER > 0
   1584 static uint8_t
   1585 rt2560_rxrate(struct rt2560_rx_desc *desc)
   1586 {
   1587 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
   1588 		/* reverse function of rt2560_plcp_signal */
   1589 		switch (desc->rate) {
   1590 		case 0xb:	return 12;
   1591 		case 0xf:	return 18;
   1592 		case 0xa:	return 24;
   1593 		case 0xe:	return 36;
   1594 		case 0x9:	return 48;
   1595 		case 0xd:	return 72;
   1596 		case 0x8:	return 96;
   1597 		case 0xc:	return 108;
   1598 		}
   1599 	} else {
   1600 		if (desc->rate == 10)
   1601 			return 2;
   1602 		if (desc->rate == 20)
   1603 			return 4;
   1604 		if (desc->rate == 55)
   1605 			return 11;
   1606 		if (desc->rate == 110)
   1607 			return 22;
   1608 	}
   1609 	return 2;	/* should not get there */
   1610 }
   1611 #endif
   1612 
   1613 /*
   1614  * Return the expected ack rate for a frame transmitted at rate `rate'.
   1615  * XXX: this should depend on the destination node basic rate set.
   1616  */
   1617 static int
   1618 rt2560_ack_rate(struct ieee80211com *ic, int rate)
   1619 {
   1620 	switch (rate) {
   1621 	/* CCK rates */
   1622 	case 2:
   1623 		return 2;
   1624 	case 4:
   1625 	case 11:
   1626 	case 22:
   1627 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
   1628 
   1629 	/* OFDM rates */
   1630 	case 12:
   1631 	case 18:
   1632 		return 12;
   1633 	case 24:
   1634 	case 36:
   1635 		return 24;
   1636 	case 48:
   1637 	case 72:
   1638 	case 96:
   1639 	case 108:
   1640 		return 48;
   1641 	}
   1642 
   1643 	/* default to 1Mbps */
   1644 	return 2;
   1645 }
   1646 
   1647 /*
   1648  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1649  * The function automatically determines the operating mode depending on the
   1650  * given rate. `flags' indicates whether short preamble is in use or not.
   1651  */
   1652 static uint16_t
   1653 rt2560_txtime(int len, int rate, uint32_t flags)
   1654 {
   1655 	uint16_t txtime;
   1656 
   1657 	if (RAL_RATE_IS_OFDM(rate)) {
   1658 		/* IEEE Std 802.11a-1999, pp. 37 */
   1659 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1660 		txtime = 16 + 4 + 4 * txtime + 6;
   1661 	} else {
   1662 		/* IEEE Std 802.11b-1999, pp. 28 */
   1663 		txtime = (16 * len + rate - 1) / rate;
   1664 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1665 			txtime +=  72 + 24;
   1666 		else
   1667 			txtime += 144 + 48;
   1668 	}
   1669 	return txtime;
   1670 }
   1671 
   1672 static uint8_t
   1673 rt2560_plcp_signal(int rate)
   1674 {
   1675 	switch (rate) {
   1676 	/* CCK rates (returned values are device-dependent) */
   1677 	case 2:		return 0x0;
   1678 	case 4:		return 0x1;
   1679 	case 11:	return 0x2;
   1680 	case 22:	return 0x3;
   1681 
   1682 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1683 	case 12:	return 0xb;
   1684 	case 18:	return 0xf;
   1685 	case 24:	return 0xa;
   1686 	case 36:	return 0xe;
   1687 	case 48:	return 0x9;
   1688 	case 72:	return 0xd;
   1689 	case 96:	return 0x8;
   1690 	case 108:	return 0xc;
   1691 
   1692 	/* unsupported rates (should not get there) */
   1693 	default:	return 0xff;
   1694 	}
   1695 }
   1696 
   1697 static void
   1698 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
   1699     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
   1700 {
   1701 	struct ieee80211com *ic = &sc->sc_ic;
   1702 	uint16_t plcp_length;
   1703 	int remainder;
   1704 
   1705 	desc->flags = htole32(flags);
   1706 	desc->flags |= htole32(len << 16);
   1707 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
   1708 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
   1709 
   1710 	desc->physaddr = htole32(physaddr);
   1711 	desc->wme = htole16(
   1712 	    RT2560_AIFSN(2) |
   1713 	    RT2560_LOGCWMIN(3) |
   1714 	    RT2560_LOGCWMAX(8));
   1715 
   1716 	/* setup PLCP fields */
   1717 	desc->plcp_signal  = rt2560_plcp_signal(rate);
   1718 	desc->plcp_service = 4;
   1719 
   1720 	len += IEEE80211_CRC_LEN;
   1721 	if (RAL_RATE_IS_OFDM(rate)) {
   1722 		desc->flags |= htole32(RT2560_TX_OFDM);
   1723 
   1724 		plcp_length = len & 0xfff;
   1725 		desc->plcp_length_hi = plcp_length >> 6;
   1726 		desc->plcp_length_lo = plcp_length & 0x3f;
   1727 	} else {
   1728 		plcp_length = (16 * len + rate - 1) / rate;
   1729 		if (rate == 22) {
   1730 			remainder = (16 * len) % 22;
   1731 			if (remainder != 0 && remainder < 7)
   1732 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
   1733 		}
   1734 		desc->plcp_length_hi = plcp_length >> 8;
   1735 		desc->plcp_length_lo = plcp_length & 0xff;
   1736 
   1737 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1738 			desc->plcp_signal |= 0x08;
   1739 	}
   1740 }
   1741 
   1742 static int
   1743 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
   1744     struct ieee80211_node *ni)
   1745 {
   1746 	struct rt2560_tx_desc *desc;
   1747 	struct rt2560_tx_data *data;
   1748 	int rate, error;
   1749 
   1750 	desc = &sc->bcnq.desc[sc->bcnq.cur];
   1751 	data = &sc->bcnq.data[sc->bcnq.cur];
   1752 
   1753 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1754 
   1755 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1756 	    BUS_DMA_NOWAIT);
   1757 	if (error != 0) {
   1758 		printf("%s: could not map mbuf (error %d)\n",
   1759 		    sc->sc_dev.dv_xname, error);
   1760 		m_freem(m0);
   1761 		return error;
   1762 	}
   1763 
   1764 	data->m = m0;
   1765 	data->ni = ni;
   1766 
   1767 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
   1768 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
   1769 	    data->map->dm_segs->ds_addr);
   1770 
   1771 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1772 	    BUS_DMASYNC_PREWRITE);
   1773 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
   1774 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1775 	    BUS_DMASYNC_PREWRITE);
   1776 
   1777 	return 0;
   1778 }
   1779 
   1780 static int
   1781 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
   1782     struct ieee80211_node *ni)
   1783 {
   1784 	struct ieee80211com *ic = &sc->sc_ic;
   1785 	struct rt2560_tx_desc *desc;
   1786 	struct rt2560_tx_data *data;
   1787 	struct ieee80211_frame *wh;
   1788 	uint16_t dur;
   1789 	uint32_t flags = 0;
   1790 	int rate, error;
   1791 
   1792 	desc = &sc->prioq.desc[sc->prioq.cur];
   1793 	data = &sc->prioq.data[sc->prioq.cur];
   1794 
   1795 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1796 
   1797 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1798 	    BUS_DMA_NOWAIT);
   1799 	if (error != 0) {
   1800 		printf("%s: could not map mbuf (error %d)\n",
   1801 		    sc->sc_dev.dv_xname, error);
   1802 		m_freem(m0);
   1803 		return error;
   1804 	}
   1805 
   1806 #if NBPFILTER > 0
   1807 	if (sc->sc_drvbpf != NULL) {
   1808 		struct mbuf mb;
   1809 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   1810 
   1811 		tap->wt_flags = 0;
   1812 		tap->wt_rate = rate;
   1813 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   1814 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   1815 		tap->wt_antenna = sc->tx_ant;
   1816 
   1817 		M_COPY_PKTHDR(&mb, m0);
   1818 		mb.m_data = (caddr_t)tap;
   1819 		mb.m_len = sc->sc_txtap_len;
   1820 		mb.m_next = m0;
   1821 		mb.m_pkthdr.len += mb.m_len;
   1822 		bpf_mtap(sc->sc_drvbpf, &mb);
   1823 	}
   1824 #endif
   1825 
   1826 	data->m = m0;
   1827 	data->ni = ni;
   1828 
   1829 	wh = mtod(m0, struct ieee80211_frame *);
   1830 
   1831 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1832 		flags |= RT2560_TX_ACK;
   1833 
   1834 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
   1835 		    RAL_SIFS;
   1836 		*(uint16_t *)wh->i_dur = htole16(dur);
   1837 
   1838 		/* tell hardware to add timestamp for probe responses */
   1839 		if ((wh->i_fc[0] &
   1840 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1841 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1842 			flags |= RT2560_TX_TIMESTAMP;
   1843 	}
   1844 
   1845 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
   1846 	    data->map->dm_segs->ds_addr);
   1847 
   1848 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1849 	    BUS_DMASYNC_PREWRITE);
   1850 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
   1851 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   1852 	    BUS_DMASYNC_PREWRITE);
   1853 
   1854 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
   1855 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
   1856 
   1857 	/* kick prio */
   1858 	sc->prioq.queued++;
   1859 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
   1860 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
   1861 
   1862 	return 0;
   1863 }
   1864 
   1865 /*
   1866  * Build a RTS control frame.
   1867  */
   1868 static struct mbuf *
   1869 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
   1870     uint16_t dur)
   1871 {
   1872 	struct ieee80211_frame_rts *rts;
   1873 	struct mbuf *m;
   1874 
   1875 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1876 	if (m == NULL) {
   1877 		sc->sc_ic.ic_stats.is_tx_nobuf++;
   1878 		printf("%s: could not allocate RTS frame\n",
   1879 		    sc->sc_dev.dv_xname);
   1880 		return NULL;
   1881 	}
   1882 
   1883 	rts = mtod(m, struct ieee80211_frame_rts *);
   1884 
   1885 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1886 	    IEEE80211_FC0_SUBTYPE_RTS;
   1887 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1888 	*(uint16_t *)rts->i_dur = htole16(dur);
   1889 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1890 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1891 
   1892 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
   1893 
   1894 	return m;
   1895 }
   1896 
   1897 static int
   1898 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
   1899     struct ieee80211_node *ni)
   1900 {
   1901 	struct ieee80211com *ic = &sc->sc_ic;
   1902 	struct rt2560_tx_desc *desc;
   1903 	struct rt2560_tx_data *data;
   1904 	struct rt2560_node *rn;
   1905 	struct ieee80211_rateset *rs;
   1906 	struct ieee80211_frame *wh;
   1907 	struct ieee80211_key *k;
   1908 	struct mbuf *mnew;
   1909 	uint16_t dur;
   1910 	uint32_t flags = 0;
   1911 	int rate, error;
   1912 
   1913 	wh = mtod(m0, struct ieee80211_frame *);
   1914 
   1915 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1916 		rs = &ic->ic_sup_rates[ic->ic_curmode];
   1917 		rate = rs->rs_rates[ic->ic_fixed_rate];
   1918 	} else {
   1919 		rs = &ni->ni_rates;
   1920 		rn = (struct rt2560_node *)ni;
   1921 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
   1922 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
   1923 		rate = rs->rs_rates[ni->ni_txrate];
   1924 	}
   1925 	rate &= IEEE80211_RATE_VAL;
   1926 
   1927 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1928 		k = ieee80211_crypto_encap(ic, ni, m0);
   1929 		if (k == NULL) {
   1930 			m_freem(m0);
   1931 			return ENOBUFS;
   1932 		}
   1933 
   1934 		/* packet header may have moved, reset our local pointer */
   1935 		wh = mtod(m0, struct ieee80211_frame *);
   1936 	}
   1937 
   1938 	/*
   1939 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
   1940 	 * for directed frames only when the length of the MPDU is greater
   1941 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
   1942 	 */
   1943 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1944 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
   1945 		struct mbuf *m;
   1946 		int rtsrate, ackrate;
   1947 
   1948 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1949 		ackrate = rt2560_ack_rate(ic, rate);
   1950 
   1951 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
   1952 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
   1953 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
   1954 		      3 * RAL_SIFS;
   1955 
   1956 		m = rt2560_get_rts(sc, wh, dur);
   1957 
   1958 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
   1959 		data = &sc->txq.data[sc->txq.cur_encrypt];
   1960 
   1961 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   1962 		    BUS_DMA_NOWAIT);
   1963 		if (error != 0) {
   1964 			printf("%s: could not map mbuf (error %d)\n",
   1965 			    sc->sc_dev.dv_xname, error);
   1966 			m_freem(m);
   1967 			m_freem(m0);
   1968 			return error;
   1969 		}
   1970 
   1971 		/* avoid multiple free() of the same node for each fragment */
   1972 		ieee80211_ref_node(ni);
   1973 
   1974 		data->m = m;
   1975 		data->ni = ni;
   1976 
   1977 		/* RTS frames are not taken into account for rssadapt */
   1978 		data->id.id_node = NULL;
   1979 
   1980 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
   1981 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
   1982 		    data->map->dm_segs->ds_addr);
   1983 
   1984 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1985 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1986 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   1987 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
   1988 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1989 
   1990 		sc->txq.queued++;
   1991 		sc->txq.cur_encrypt =
   1992 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   1993 
   1994 		/*
   1995 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
   1996 		 * asynchronous data frame shall be transmitted after the CTS
   1997 		 * frame and a SIFS period.
   1998 		 */
   1999 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
   2000 	}
   2001 
   2002 	data = &sc->txq.data[sc->txq.cur_encrypt];
   2003 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
   2004 
   2005 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2006 	    BUS_DMA_NOWAIT);
   2007 	if (error != 0 && error != EFBIG) {
   2008 		printf("%s: could not map mbuf (error %d)\n",
   2009 		    sc->sc_dev.dv_xname, error);
   2010 		m_freem(m0);
   2011 		return error;
   2012 	}
   2013 	if (error != 0) {
   2014 		/* too many fragments, linearize */
   2015 
   2016 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   2017 		if (mnew == NULL) {
   2018 			m_freem(m0);
   2019 			return ENOMEM;
   2020 		}
   2021 
   2022 		M_COPY_PKTHDR(mnew, m0);
   2023 		if (m0->m_pkthdr.len > MHLEN) {
   2024 			MCLGET(mnew, M_DONTWAIT);
   2025 			if (!(mnew->m_flags & M_EXT)) {
   2026 				m_freem(m0);
   2027 				m_freem(mnew);
   2028 				return ENOMEM;
   2029 			}
   2030 		}
   2031 
   2032 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
   2033 		m_freem(m0);
   2034 		mnew->m_len = mnew->m_pkthdr.len;
   2035 		m0 = mnew;
   2036 
   2037 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2038 		    BUS_DMA_NOWAIT);
   2039 		if (error != 0) {
   2040 			printf("%s: could not map mbuf (error %d)\n",
   2041 			    sc->sc_dev.dv_xname, error);
   2042 			m_freem(m0);
   2043 			return error;
   2044 		}
   2045 
   2046 		/* packet header have moved, reset our local pointer */
   2047 		wh = mtod(m0, struct ieee80211_frame *);
   2048 	}
   2049 
   2050 #if NBPFILTER > 0
   2051 	if (sc->sc_drvbpf != NULL) {
   2052 		struct mbuf mb;
   2053 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
   2054 
   2055 		tap->wt_flags = 0;
   2056 		tap->wt_rate = rate;
   2057 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
   2058 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
   2059 		tap->wt_antenna = sc->tx_ant;
   2060 
   2061 		M_COPY_PKTHDR(&mb, m0);
   2062 		mb.m_data = (caddr_t)tap;
   2063 		mb.m_len = sc->sc_txtap_len;
   2064 		mb.m_next = m0;
   2065 		mb.m_pkthdr.len += mb.m_len;
   2066 		bpf_mtap(sc->sc_drvbpf, &mb);
   2067 
   2068 	}
   2069 #endif
   2070 
   2071 	data->m = m0;
   2072 	data->ni = ni;
   2073 
   2074 	/* remember link conditions for rate adaptation algorithm */
   2075 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   2076 		data->id.id_len = m0->m_pkthdr.len;
   2077 		data->id.id_rateidx = ni->ni_txrate;
   2078 		data->id.id_node = ni;
   2079 		data->id.id_rssi = ni->ni_rssi;
   2080 	} else
   2081 		data->id.id_node = NULL;
   2082 
   2083 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2084 		flags |= RT2560_TX_ACK;
   2085 
   2086 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
   2087 		    ic->ic_flags) + RAL_SIFS;
   2088 		*(uint16_t *)wh->i_dur = htole16(dur);
   2089 	}
   2090 
   2091 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
   2092 	    data->map->dm_segs->ds_addr);
   2093 
   2094 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2095 	    BUS_DMASYNC_PREWRITE);
   2096 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
   2097 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
   2098 	    BUS_DMASYNC_PREWRITE);
   2099 
   2100 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
   2101 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
   2102 
   2103 	/* kick encrypt */
   2104 	sc->txq.queued++;
   2105 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
   2106 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
   2107 
   2108 	return 0;
   2109 }
   2110 
   2111 static void
   2112 rt2560_start(struct ifnet *ifp)
   2113 {
   2114 	struct rt2560_softc *sc = ifp->if_softc;
   2115 	struct ieee80211com *ic = &sc->sc_ic;
   2116 	struct mbuf *m0;
   2117 	struct ieee80211_node *ni;
   2118 	struct ether_header *eh;
   2119 
   2120 	/*
   2121 	 * net80211 may still try to send management frames even if the
   2122 	 * IFF_RUNNING flag is not set...
   2123 	 */
   2124 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2125 		return;
   2126 
   2127 	for (;;) {
   2128 		IF_POLL(&ic->ic_mgtq, m0);
   2129 		if (m0 != NULL) {
   2130 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
   2131 				ifp->if_flags |= IFF_OACTIVE;
   2132 				break;
   2133 			}
   2134 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   2135 			if (m0 == NULL)
   2136 				break;
   2137 
   2138 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   2139 			m0->m_pkthdr.rcvif = NULL;
   2140 #if NBPFILTER > 0
   2141 			if (ic->ic_rawbpf != NULL)
   2142 				bpf_mtap(ic->ic_rawbpf, m0);
   2143 #endif
   2144 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
   2145 				break;
   2146 
   2147 		} else {
   2148 			if (ic->ic_state != IEEE80211_S_RUN)
   2149 				break;
   2150 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2151 			if (m0 == NULL)
   2152 				break;
   2153 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
   2154 				ifp->if_flags |= IFF_OACTIVE;
   2155 				break;
   2156 			}
   2157 
   2158 			if (m0->m_len < sizeof (struct ether_header) &&
   2159 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
   2160                                 continue;
   2161 
   2162 			eh = mtod(m0, struct ether_header *);
   2163 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2164 			if (ni == NULL) {
   2165 				m_freem(m0);
   2166 				continue;
   2167 			}
   2168 #if NBPFILTER > 0
   2169 			if (ifp->if_bpf != NULL)
   2170 				bpf_mtap(ifp->if_bpf, m0);
   2171 #endif
   2172 
   2173 			m0 = ieee80211_encap(ic, m0, ni);
   2174 			if (m0 == NULL) {
   2175 				ieee80211_free_node(ni);
   2176 				continue;
   2177                         }
   2178 
   2179 #if NBPFILTER > 0
   2180 			if (ic->ic_rawbpf != NULL)
   2181 				bpf_mtap(ic->ic_rawbpf, m0);
   2182 
   2183 #endif
   2184 			if (rt2560_tx_data(sc, m0, ni) != 0) {
   2185 				ieee80211_free_node(ni);
   2186 				ifp->if_oerrors++;
   2187 				break;
   2188 			}
   2189 		}
   2190 
   2191 		sc->sc_tx_timer = 5;
   2192 		ifp->if_timer = 1;
   2193 	}
   2194 }
   2195 
   2196 static void
   2197 rt2560_watchdog(struct ifnet *ifp)
   2198 {
   2199 	struct rt2560_softc *sc = ifp->if_softc;
   2200 
   2201 	ifp->if_timer = 0;
   2202 
   2203 	if (sc->sc_tx_timer > 0) {
   2204 		if (--sc->sc_tx_timer == 0) {
   2205 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   2206 			rt2560_init(ifp);
   2207 			ifp->if_oerrors++;
   2208 			return;
   2209 		}
   2210 		ifp->if_timer = 1;
   2211 	}
   2212 
   2213 	ieee80211_watchdog(&sc->sc_ic);
   2214 }
   2215 
   2216 /*
   2217  * This function allows for fast channel switching in monitor mode (used by
   2218  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
   2219  * generate a new beacon frame.
   2220  */
   2221 static int
   2222 rt2560_reset(struct ifnet *ifp)
   2223 {
   2224 	struct rt2560_softc *sc = ifp->if_softc;
   2225 	struct ieee80211com *ic = &sc->sc_ic;
   2226 
   2227 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   2228 		return ENETRESET;
   2229 
   2230 	rt2560_set_chan(sc, ic->ic_curchan);
   2231 
   2232 	return 0;
   2233 }
   2234 
   2235 int
   2236 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   2237 {
   2238 	struct rt2560_softc *sc = ifp->if_softc;
   2239 	struct ieee80211com *ic = &sc->sc_ic;
   2240 	struct ifreq *ifr;
   2241 	int s, error = 0;
   2242 
   2243 	s = splnet();
   2244 
   2245 	switch (cmd) {
   2246 	case SIOCSIFFLAGS:
   2247 		if (ifp->if_flags & IFF_UP) {
   2248 			if (ifp->if_flags & IFF_RUNNING)
   2249 				rt2560_update_promisc(sc);
   2250 			else
   2251 				rt2560_init(ifp);
   2252 		} else {
   2253 			if (ifp->if_flags & IFF_RUNNING)
   2254 				rt2560_stop(sc);
   2255 		}
   2256 		break;
   2257 
   2258 	case SIOCADDMULTI:
   2259 	case SIOCDELMULTI:
   2260 		ifr = (struct ifreq *)data;
   2261 		error = (cmd == SIOCADDMULTI) ?
   2262 		    ether_addmulti(ifr, &sc->sc_ec) :
   2263 		    ether_delmulti(ifr, &sc->sc_ec);
   2264 
   2265 		if (error == ENETRESET)
   2266 			error = 0;
   2267 		break;
   2268 
   2269 	case SIOCS80211CHANNEL:
   2270 		/*
   2271 		 * This allows for fast channel switching in monitor mode
   2272 		 * (used by kismet). In IBSS mode, we must explicitly reset
   2273 		 * the interface to generate a new beacon frame.
   2274 		 */
   2275 		error = ieee80211_ioctl(ic, cmd, data);
   2276 		if (error == ENETRESET &&
   2277 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
   2278 			rt2560_set_chan(sc, ic->ic_ibss_chan);
   2279 			error = 0;
   2280 		}
   2281 		break;
   2282 
   2283 	default:
   2284 		error = ieee80211_ioctl(ic, cmd, data);
   2285 	}
   2286 
   2287 	if (error == ENETRESET) {
   2288 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   2289 		    (IFF_UP | IFF_RUNNING))
   2290 			rt2560_init(ifp);
   2291 		error = 0;
   2292 	}
   2293 
   2294 	splx(s);
   2295 
   2296 	return error;
   2297 }
   2298 
   2299 static void
   2300 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
   2301 {
   2302 	uint32_t tmp;
   2303 	int ntries;
   2304 
   2305 	for (ntries = 0; ntries < 100; ntries++) {
   2306 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
   2307 			break;
   2308 		DELAY(1);
   2309 	}
   2310 	if (ntries == 100) {
   2311 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
   2312 		return;
   2313 	}
   2314 
   2315 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
   2316 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
   2317 
   2318 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
   2319 }
   2320 
   2321 static uint8_t
   2322 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
   2323 {
   2324 	uint32_t val;
   2325 	int ntries;
   2326 
   2327 	val = RT2560_BBP_BUSY | reg << 8;
   2328 	RAL_WRITE(sc, RT2560_BBPCSR, val);
   2329 
   2330 	for (ntries = 0; ntries < 100; ntries++) {
   2331 		val = RAL_READ(sc, RT2560_BBPCSR);
   2332 		if (!(val & RT2560_BBP_BUSY))
   2333 			return val & 0xff;
   2334 		DELAY(1);
   2335 	}
   2336 
   2337 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
   2338 	return 0;
   2339 }
   2340 
   2341 static void
   2342 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
   2343 {
   2344 	uint32_t tmp;
   2345 	int ntries;
   2346 
   2347 	for (ntries = 0; ntries < 100; ntries++) {
   2348 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
   2349 			break;
   2350 		DELAY(1);
   2351 	}
   2352 	if (ntries == 100) {
   2353 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
   2354 		return;
   2355 	}
   2356 
   2357 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
   2358 	    (reg & 0x3);
   2359 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
   2360 
   2361 	/* remember last written value in sc */
   2362 	sc->rf_regs[reg] = val;
   2363 
   2364 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
   2365 }
   2366 
   2367 static void
   2368 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
   2369 {
   2370 	struct ieee80211com *ic = &sc->sc_ic;
   2371 	uint8_t power, tmp;
   2372 	u_int i, chan;
   2373 
   2374 	chan = ieee80211_chan2ieee(ic, c);
   2375 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   2376 		return;
   2377 
   2378 	if (IEEE80211_IS_CHAN_2GHZ(c))
   2379 		power = min(sc->txpow[chan - 1], 31);
   2380 	else
   2381 		power = 31;
   2382 
   2383 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
   2384 
   2385 	switch (sc->rf_rev) {
   2386 	case RT2560_RF_2522:
   2387 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
   2388 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
   2389 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2390 		break;
   2391 
   2392 	case RT2560_RF_2523:
   2393 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2394 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
   2395 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
   2396 		rt2560_rf_write(sc, RT2560_RF4,
   2397 		    (chan == 14) ? 0x00280 : 0x00286);
   2398 		break;
   2399 
   2400 	case RT2560_RF_2524:
   2401 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
   2402 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
   2403 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2404 		rt2560_rf_write(sc, RT2560_RF4,
   2405 		    (chan == 14) ? 0x00280 : 0x00286);
   2406 		break;
   2407 
   2408 	case RT2560_RF_2525:
   2409 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2410 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
   2411 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2412 		rt2560_rf_write(sc, RT2560_RF4,
   2413 		    (chan == 14) ? 0x00280 : 0x00286);
   2414 
   2415 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2416 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
   2417 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2418 		rt2560_rf_write(sc, RT2560_RF4,
   2419 		    (chan == 14) ? 0x00280 : 0x00286);
   2420 		break;
   2421 
   2422 	case RT2560_RF_2525E:
   2423 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
   2424 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
   2425 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2426 		rt2560_rf_write(sc, RT2560_RF4,
   2427 		    (chan == 14) ? 0x00286 : 0x00282);
   2428 		break;
   2429 
   2430 	case RT2560_RF_2526:
   2431 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
   2432 		rt2560_rf_write(sc, RT2560_RF4,
   2433 		   (chan & 1) ? 0x00386 : 0x00381);
   2434 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
   2435 
   2436 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
   2437 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
   2438 		rt2560_rf_write(sc, RT2560_RF4,
   2439 		    (chan & 1) ? 0x00386 : 0x00381);
   2440 		break;
   2441 
   2442 	/* dual-band RF */
   2443 	case RT2560_RF_5222:
   2444 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
   2445 
   2446 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
   2447 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
   2448 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
   2449 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
   2450 		break;
   2451 	}
   2452 
   2453 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
   2454 	    ic->ic_state != IEEE80211_S_SCAN) {
   2455 		/* set Japan filter bit for channel 14 */
   2456 		tmp = rt2560_bbp_read(sc, 70);
   2457 
   2458 		tmp &= ~RT2560_JAPAN_FILTER;
   2459 		if (chan == 14)
   2460 			tmp |= RT2560_JAPAN_FILTER;
   2461 
   2462 		rt2560_bbp_write(sc, 70, tmp);
   2463 
   2464 		DELAY(1000); /* RF needs a 1ms delay here */
   2465 		rt2560_disable_rf_tune(sc);
   2466 
   2467 		/* clear CRC errors */
   2468 		RAL_READ(sc, RT2560_CNT0);
   2469 	}
   2470 }
   2471 
   2472 /*
   2473  * Disable RF auto-tuning.
   2474  */
   2475 static void
   2476 rt2560_disable_rf_tune(struct rt2560_softc *sc)
   2477 {
   2478 	uint32_t tmp;
   2479 
   2480 	if (sc->rf_rev != RT2560_RF_2523) {
   2481 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
   2482 		rt2560_rf_write(sc, RT2560_RF1, tmp);
   2483 	}
   2484 
   2485 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
   2486 	rt2560_rf_write(sc, RT2560_RF3, tmp);
   2487 
   2488 	DPRINTFN(2, ("disabling RF autotune\n"));
   2489 }
   2490 
   2491 /*
   2492  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
   2493  * synchronization.
   2494  */
   2495 static void
   2496 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
   2497 {
   2498 	struct ieee80211com *ic = &sc->sc_ic;
   2499 	uint16_t logcwmin, preload;
   2500 	uint32_t tmp;
   2501 
   2502 	/* first, disable TSF synchronization */
   2503 	RAL_WRITE(sc, RT2560_CSR14, 0);
   2504 
   2505 	tmp = 16 * ic->ic_bss->ni_intval;
   2506 	RAL_WRITE(sc, RT2560_CSR12, tmp);
   2507 
   2508 	RAL_WRITE(sc, RT2560_CSR13, 0);
   2509 
   2510 	logcwmin = 5;
   2511 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
   2512 	tmp = logcwmin << 16 | preload;
   2513 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
   2514 
   2515 	/* finally, enable TSF synchronization */
   2516 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
   2517 	if (ic->ic_opmode == IEEE80211_M_STA)
   2518 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
   2519 	else
   2520 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
   2521 		       RT2560_ENABLE_BEACON_GENERATOR;
   2522 	RAL_WRITE(sc, RT2560_CSR14, tmp);
   2523 
   2524 	DPRINTF(("enabling TSF synchronization\n"));
   2525 }
   2526 
   2527 static void
   2528 rt2560_update_plcp(struct rt2560_softc *sc)
   2529 {
   2530 	struct ieee80211com *ic = &sc->sc_ic;
   2531 
   2532 	/* no short preamble for 1Mbps */
   2533 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
   2534 
   2535 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
   2536 		/* values taken from the reference driver */
   2537 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
   2538 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
   2539 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
   2540 	} else {
   2541 		/* same values as above or'ed 0x8 */
   2542 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
   2543 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
   2544 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
   2545 	}
   2546 
   2547 	DPRINTF(("updating PLCP for %s preamble\n",
   2548 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
   2549 }
   2550 
   2551 /*
   2552  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
   2553  * know how these values are computed.
   2554  */
   2555 static void
   2556 rt2560_update_slot(struct ifnet *ifp)
   2557 {
   2558 	struct rt2560_softc *sc = ifp->if_softc;
   2559 	struct ieee80211com *ic = &sc->sc_ic;
   2560 	uint8_t slottime;
   2561 	uint16_t sifs, pifs, difs, eifs;
   2562 	uint32_t tmp;
   2563 
   2564 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   2565 
   2566 	/* define the MAC slot boundaries */
   2567 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
   2568 	pifs = sifs + slottime;
   2569 	difs = sifs + 2 * slottime;
   2570 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
   2571 
   2572 	tmp = RAL_READ(sc, RT2560_CSR11);
   2573 	tmp = (tmp & ~0x1f00) | slottime << 8;
   2574 	RAL_WRITE(sc, RT2560_CSR11, tmp);
   2575 
   2576 	tmp = pifs << 16 | sifs;
   2577 	RAL_WRITE(sc, RT2560_CSR18, tmp);
   2578 
   2579 	tmp = eifs << 16 | difs;
   2580 	RAL_WRITE(sc, RT2560_CSR19, tmp);
   2581 
   2582 	DPRINTF(("setting slottime to %uus\n", slottime));
   2583 }
   2584 
   2585 static void
   2586 rt2560_set_basicrates(struct rt2560_softc *sc)
   2587 {
   2588 	struct ieee80211com *ic = &sc->sc_ic;
   2589 
   2590 	/* update basic rate set */
   2591 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   2592 		/* 11b basic rates: 1, 2Mbps */
   2593 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
   2594 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
   2595 		/* 11a basic rates: 6, 12, 24Mbps */
   2596 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
   2597 	} else {
   2598 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
   2599 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
   2600 	}
   2601 }
   2602 
   2603 static void
   2604 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
   2605 {
   2606 	uint32_t tmp;
   2607 
   2608 	/* set ON period to 70ms and OFF period to 30ms */
   2609 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
   2610 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
   2611 }
   2612 
   2613 static void
   2614 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
   2615 {
   2616 	uint32_t tmp;
   2617 
   2618 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   2619 	RAL_WRITE(sc, RT2560_CSR5, tmp);
   2620 
   2621 	tmp = bssid[4] | bssid[5] << 8;
   2622 	RAL_WRITE(sc, RT2560_CSR6, tmp);
   2623 
   2624 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
   2625 }
   2626 
   2627 static void
   2628 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2629 {
   2630 	uint32_t tmp;
   2631 
   2632 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   2633 	RAL_WRITE(sc, RT2560_CSR3, tmp);
   2634 
   2635 	tmp = addr[4] | addr[5] << 8;
   2636 	RAL_WRITE(sc, RT2560_CSR4, tmp);
   2637 
   2638 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
   2639 }
   2640 
   2641 static void
   2642 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
   2643 {
   2644 	uint32_t tmp;
   2645 
   2646 	tmp = RAL_READ(sc, RT2560_CSR3);
   2647 	addr[0] = tmp & 0xff;
   2648 	addr[1] = (tmp >>  8) & 0xff;
   2649 	addr[2] = (tmp >> 16) & 0xff;
   2650 	addr[3] = (tmp >> 24);
   2651 
   2652 	tmp = RAL_READ(sc, RT2560_CSR4);
   2653 	addr[4] = tmp & 0xff;
   2654 	addr[5] = (tmp >> 8) & 0xff;
   2655 }
   2656 
   2657 static void
   2658 rt2560_update_promisc(struct rt2560_softc *sc)
   2659 {
   2660 	struct ifnet *ifp = &sc->sc_if;
   2661 	uint32_t tmp;
   2662 
   2663 	tmp = RAL_READ(sc, RT2560_RXCSR0);
   2664 
   2665 	tmp &= ~RT2560_DROP_NOT_TO_ME;
   2666 	if (!(ifp->if_flags & IFF_PROMISC))
   2667 		tmp |= RT2560_DROP_NOT_TO_ME;
   2668 
   2669 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2670 
   2671 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   2672 	    "entering" : "leaving"));
   2673 }
   2674 
   2675 static void
   2676 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
   2677 {
   2678 	uint32_t tmp;
   2679 	uint8_t tx;
   2680 
   2681 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
   2682 	if (antenna == 1)
   2683 		tx |= RT2560_BBP_ANTA;
   2684 	else if (antenna == 2)
   2685 		tx |= RT2560_BBP_ANTB;
   2686 	else
   2687 		tx |= RT2560_BBP_DIVERSITY;
   2688 
   2689 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
   2690 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
   2691 	    sc->rf_rev == RT2560_RF_5222)
   2692 		tx |= RT2560_BBP_FLIPIQ;
   2693 
   2694 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
   2695 
   2696 	/* update values for CCK and OFDM in BBPCSR1 */
   2697 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
   2698 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
   2699 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
   2700 }
   2701 
   2702 static void
   2703 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
   2704 {
   2705 	uint8_t rx;
   2706 
   2707 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
   2708 	if (antenna == 1)
   2709 		rx |= RT2560_BBP_ANTA;
   2710 	else if (antenna == 2)
   2711 		rx |= RT2560_BBP_ANTB;
   2712 	else
   2713 		rx |= RT2560_BBP_DIVERSITY;
   2714 
   2715 	/* need to force no I/Q flip for RF 2525e and 2526 */
   2716 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
   2717 		rx &= ~RT2560_BBP_FLIPIQ;
   2718 
   2719 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
   2720 }
   2721 
   2722 static const char *
   2723 rt2560_get_rf(int rev)
   2724 {
   2725 	switch (rev) {
   2726 	case RT2560_RF_2522:	return "RT2522";
   2727 	case RT2560_RF_2523:	return "RT2523";
   2728 	case RT2560_RF_2524:	return "RT2524";
   2729 	case RT2560_RF_2525:	return "RT2525";
   2730 	case RT2560_RF_2525E:	return "RT2525e";
   2731 	case RT2560_RF_2526:	return "RT2526";
   2732 	case RT2560_RF_5222:	return "RT5222";
   2733 	default:		return "unknown";
   2734 	}
   2735 }
   2736 
   2737 static void
   2738 rt2560_read_eeprom(struct rt2560_softc *sc)
   2739 {
   2740 	uint16_t val;
   2741 	int i;
   2742 
   2743 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
   2744 	sc->rf_rev =   (val >> 11) & 0x1f;
   2745 	sc->hw_radio = (val >> 10) & 0x1;
   2746 	sc->led_mode = (val >> 6)  & 0x7;
   2747 	sc->rx_ant =   (val >> 4)  & 0x3;
   2748 	sc->tx_ant =   (val >> 2)  & 0x3;
   2749 	sc->nb_ant =   val & 0x3;
   2750 
   2751 	/* read default values for BBP registers */
   2752 	for (i = 0; i < 16; i++) {
   2753 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
   2754 		sc->bbp_prom[i].reg = val >> 8;
   2755 		sc->bbp_prom[i].val = val & 0xff;
   2756 	}
   2757 
   2758 	/* read Tx power for all b/g channels */
   2759 	for (i = 0; i < 14 / 2; i++) {
   2760 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
   2761 		sc->txpow[i * 2] = val >> 8;
   2762 		sc->txpow[i * 2 + 1] = val & 0xff;
   2763 	}
   2764 }
   2765 
   2766 static int
   2767 rt2560_bbp_init(struct rt2560_softc *sc)
   2768 {
   2769 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2770 	int i, ntries;
   2771 
   2772 	/* wait for BBP to be ready */
   2773 	for (ntries = 0; ntries < 100; ntries++) {
   2774 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
   2775 			break;
   2776 		DELAY(1);
   2777 	}
   2778 	if (ntries == 100) {
   2779 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
   2780 		return EIO;
   2781 	}
   2782 
   2783 	/* initialize BBP registers to default values */
   2784 	for (i = 0; i < N(rt2560_def_bbp); i++) {
   2785 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
   2786 		    rt2560_def_bbp[i].val);
   2787 	}
   2788 #if 0
   2789 	/* initialize BBP registers to values stored in EEPROM */
   2790 	for (i = 0; i < 16; i++) {
   2791 		if (sc->bbp_prom[i].reg == 0xff)
   2792 			continue;
   2793 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   2794 	}
   2795 #endif
   2796 
   2797 	return 0;
   2798 #undef N
   2799 }
   2800 
   2801 static int
   2802 rt2560_init(struct ifnet *ifp)
   2803 {
   2804 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2805 	struct rt2560_softc *sc = ifp->if_softc;
   2806 	struct ieee80211com *ic = &sc->sc_ic;
   2807 	uint32_t tmp;
   2808 	int i;
   2809 
   2810 	/* for CardBus, power on the socket */
   2811 	if (!(sc->sc_flags & RT2560_ENABLED)) {
   2812 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
   2813 			printf("%s: could not enable device\n",
   2814 			    sc->sc_dev.dv_xname);
   2815 			return EIO;
   2816 		}
   2817 		sc->sc_flags |= RT2560_ENABLED;
   2818 	}
   2819 
   2820 	rt2560_stop(sc);
   2821 
   2822 	/* setup tx rings */
   2823 	tmp = RT2560_PRIO_RING_COUNT << 24 |
   2824 	      RT2560_ATIM_RING_COUNT << 16 |
   2825 	      RT2560_TX_RING_COUNT   <<  8 |
   2826 	      RT2560_TX_DESC_SIZE;
   2827 
   2828 	/* rings _must_ be initialized in this _exact_ order! */
   2829 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
   2830 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
   2831 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
   2832 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
   2833 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
   2834 
   2835 	/* setup rx ring */
   2836 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
   2837 
   2838 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
   2839 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
   2840 
   2841 	/* initialize MAC registers to default values */
   2842 	for (i = 0; i < N(rt2560_def_mac); i++)
   2843 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
   2844 
   2845 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
   2846 	rt2560_set_macaddr(sc, ic->ic_myaddr);
   2847 
   2848 	/* set basic rate set (will be updated later) */
   2849 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
   2850 
   2851 	rt2560_set_txantenna(sc, 1);
   2852 	rt2560_set_rxantenna(sc, 1);
   2853 	rt2560_update_slot(ifp);
   2854 	rt2560_update_plcp(sc);
   2855 	rt2560_update_led(sc, 0, 0);
   2856 
   2857 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2858 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
   2859 
   2860 	if (rt2560_bbp_init(sc) != 0) {
   2861 		rt2560_stop(sc);
   2862 		return EIO;
   2863 	}
   2864 
   2865 	/* set default BSS channel */
   2866 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
   2867 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
   2868 
   2869 	/* kick Rx */
   2870 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
   2871 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2872 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
   2873 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2874 			tmp |= RT2560_DROP_TODS;
   2875 		if (!(ifp->if_flags & IFF_PROMISC))
   2876 			tmp |= RT2560_DROP_NOT_TO_ME;
   2877 	}
   2878 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
   2879 
   2880 	/* clear old FCS and Rx FIFO errors */
   2881 	RAL_READ(sc, RT2560_CNT0);
   2882 	RAL_READ(sc, RT2560_CNT4);
   2883 
   2884 	/* clear any pending interrupts */
   2885 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2886 
   2887 	/* enable interrupts */
   2888 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
   2889 
   2890 	ifp->if_flags &= ~IFF_OACTIVE;
   2891 	ifp->if_flags |= IFF_RUNNING;
   2892 
   2893 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2894 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2895 	else
   2896 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2897 
   2898 	return 0;
   2899 #undef N
   2900 }
   2901 
   2902 static void
   2903 rt2560_stop(void *priv)
   2904 {
   2905 	struct rt2560_softc *sc = priv;
   2906 	struct ieee80211com *ic = &sc->sc_ic;
   2907 	struct ifnet *ifp = ic->ic_ifp;
   2908 
   2909 	sc->sc_tx_timer = 0;
   2910 	ifp->if_timer = 0;
   2911 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2912 
   2913 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2914 
   2915 	/* abort Tx */
   2916 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
   2917 
   2918 	/* disable Rx */
   2919 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
   2920 
   2921 	/* reset ASIC (and thus, BBP) */
   2922 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
   2923 	RAL_WRITE(sc, RT2560_CSR1, 0);
   2924 
   2925 	/* disable interrupts */
   2926 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
   2927 
   2928 	/* clear any pending interrupt */
   2929 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
   2930 
   2931 	/* reset Tx and Rx rings */
   2932 	rt2560_reset_tx_ring(sc, &sc->txq);
   2933 	rt2560_reset_tx_ring(sc, &sc->atimq);
   2934 	rt2560_reset_tx_ring(sc, &sc->prioq);
   2935 	rt2560_reset_tx_ring(sc, &sc->bcnq);
   2936 	rt2560_reset_rx_ring(sc, &sc->rxq);
   2937 
   2938 }
   2939